WO2018190339A1 - 収差補正方法及び光学装置 - Google Patents

収差補正方法及び光学装置 Download PDF

Info

Publication number
WO2018190339A1
WO2018190339A1 PCT/JP2018/015080 JP2018015080W WO2018190339A1 WO 2018190339 A1 WO2018190339 A1 WO 2018190339A1 JP 2018015080 W JP2018015080 W JP 2018015080W WO 2018190339 A1 WO2018190339 A1 WO 2018190339A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
refractive index
modulation
index interface
optical axis
Prior art date
Application number
PCT/JP2018/015080
Other languages
English (en)
French (fr)
Inventor
直也 松本
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to KR1020197020383A priority Critical patent/KR102490763B1/ko
Priority to US16/604,312 priority patent/US11454793B2/en
Priority to CN201880024335.3A priority patent/CN110520779B/zh
Priority to EP18783927.9A priority patent/EP3611549B1/en
Priority to JP2019512527A priority patent/JP7033123B2/ja
Publication of WO2018190339A1 publication Critical patent/WO2018190339A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0056Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0072Optical details of the image generation details concerning resolution or correction, including general design of CSOM objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Definitions

  • the present disclosure relates to an aberration correction method and an optical apparatus.
  • Patent Documents 1 and 2 disclose a method of reducing the influence of aberration or the like at the refractive index interface using a spatial light modulator.
  • the aberration of the laser beam is corrected so that the condensing point of the laser beam is positioned between the aberration range generated inside the medium.
  • the refractive index of the condensing unit is determined from the incident surface of the medium when it is assumed that the refractive index of the medium is n and the refractive index n of the medium is equal to the refractive index of the atmospheric medium of the condensing unit.
  • the condensing point of the laser light is within a range larger than n ⁇ d ⁇ s and smaller than n ⁇ d from the incident surface of the medium.
  • the aberration of the laser beam is corrected so that is positioned. Thereby, the aberration of the laser beam can be corrected so that the focal point is located in a range where the longitudinal aberration exists in the medium when the aberration is not corrected.
  • Non-Patent Document 1 describes a technique related to a two-photon excitation fluorescence microscope.
  • an aberration correction pattern is displayed on the spatial light modulator, and the irradiation light to the observation object is modulated using this spatial light modulator, resulting in the surface shape of the observation object.
  • the spherical aberration that occurs is corrected.
  • spatial light having an aberration correction pattern for example, is used to correct aberration (for example, spherical aberration) caused by a refractive index interface existing on the surface or inside of an object.
  • aberration for example, spherical aberration
  • irradiation light or observation light
  • SLM Spatial Light Modulator
  • the aberration correction pattern is a pattern that spreads concentrically around the optical axis. Easy.
  • the refractive index interface of the object may be inclined with respect to the optical axis.
  • the calculation of the aberration correction pattern is complicated, and a long time is required for the calculation.
  • the calculation of the aberration correction pattern itself may be difficult.
  • Embodiments provide an aberration correction method and an optical apparatus capable of easily performing aberration correction in a short time even when a refractive index interface such as the surface of an object is inclined with respect to the optical axis.
  • the purpose is to do.
  • the aberration correction method includes a coupling step for optically coupling a modulation surface of a spatial light modulator and an object via an objective lens, and a correction pattern for correcting aberration caused by the refractive index interface of the object. And a control step of controlling the spatial light modulator based on the included modulation pattern.
  • the position of the correction pattern in the modulation pattern is set based on the inclination information of the refractive index interface of the object with respect to the plane perpendicular to the optical axis of the objective lens.
  • An optical device includes a spatial light modulator having a modulation surface, an objective lens disposed on an optical path between the modulation surface and an object, and a correction pattern for correcting aberration caused by a refractive index interface of the object.
  • a control unit that controls the spatial light modulator based on a modulation pattern including: In the optical device, the position of the correction pattern in the modulation pattern is set based on the inclination information of the refractive index interface of the object with respect to the plane perpendicular to the optical axis of the objective lens.
  • the inventor sets the position of the correction pattern in the modulation pattern according to the inclination information such as the inclination angle.
  • the inventors have found that aberrations can be corrected appropriately.
  • aberration correction can be easily performed in a short time without complicated calculations.
  • the aberration correction method includes a coupling step for optically coupling a modulation surface of a spatial light modulator and an object via an objective lens, and a correction pattern for correcting aberration caused by the refractive index interface of the object. And a control step of controlling the spatial light modulator based on the included modulation pattern.
  • the spatial light modulator and the objective lens are arranged based on inclination information of the refractive index interface of the object with respect to a plane perpendicular to the optical axis of the objective lens.
  • An optical device has a modulation surface and modulates light based on a modulation pattern including a correction pattern for correcting an aberration caused by a refractive index interface of the object, the modulation surface and the object
  • An objective lens disposed on an optical path between the objective lens and the spatial light modulator, a moving mechanism that moves at least one of the objective lens and the spatial light modulator in a direction intersecting the optical axis of the objective lens, and a control unit that controls the moving mechanism; .
  • the control unit controls the moving mechanism based on the inclination information of the refractive index interface of the object with respect to the plane perpendicular to the optical axis of the objective lens.
  • the aberration correction can be easily performed in a short time even when the refractive index interface of the object is inclined with respect to the optical axis.
  • FIG. 1 is a diagram illustrating a configuration of a microscope apparatus as an optical apparatus according to an embodiment.
  • FIG. 2 is a flowchart showing the operation of the microscope apparatus.
  • FIG. 3 is a diagram conceptually showing the modulation pattern created in the creation steps (a) to (d).
  • FIG. 4 is a schematic diagram showing a state where the refractive index interface is inclined with respect to a plane perpendicular to the optical axis of the objective lens.
  • FIGS. 5A and 5B are images showing effects according to one embodiment, showing a state of blood vessels when a dry objective lens is used as an objective lens and the inside of a biological sample is observed as an object. Yes.
  • FIG. 1 is a diagram illustrating a configuration of a microscope apparatus as an optical apparatus according to an embodiment.
  • FIG. 2 is a flowchart showing the operation of the microscope apparatus.
  • FIG. 3 is a diagram conceptually showing the modulation pattern created in the creation steps (a) to (d).
  • FIG. 4 is a
  • FIGS. 7A and 7B are diagrams conceptually showing one modified example.
  • FIG. 8 is a flowchart showing the aberration correction method of the first modification.
  • FIG. 9 is a diagram illustrating a configuration of a microscope apparatus that can realize an aberration correction method according to a modification.
  • FIG. 10 is a diagram illustrating a case where it can be approximated that the refractive index interface of the object is constituted by two surfaces.
  • FIG. 11 is a diagram illustrating a case where it can be approximated that the refractive index interface of an object is constituted by a large number of surfaces.
  • FIG. 12 is a diagram illustrating a configuration of a microscope apparatus according to a third modification.
  • 13A and 13B are mouse brain images obtained by (a) and (b) pre-scanning.
  • FIG. 14 is a diagram illustrating a state where an object has a plurality of refractive index interfaces inside.
  • FIG. 1 is a diagram illustrating a configuration of a microscope apparatus 1A as an optical apparatus according to an embodiment.
  • 1 A of microscope apparatuses are apparatuses which acquire the enlarged image of the target object B, irradiating light with respect to the target object B, Comprising: As FIG. 1 shows, the microscope unit 10, the inclination measurement unit 20, and the image acquisition unit 30 and a control unit 40.
  • the microscope unit 10 irradiates the object B with irradiation light P1 from an inclination measurement unit 20 and an image acquisition unit 30, which will be described later, and detects light P2 from the object B to the inclination measurement unit 20 and the image acquisition unit 30. Output each.
  • the detected light P2 is, for example, reflected light of the irradiation light P1, harmonics of the irradiation light P1, or fluorescence excited by the irradiation light P1.
  • the microscope unit 10 includes a sample stage (stage) 11, an objective lens 12, an objective lens moving mechanism 13, and a beam splitter 14.
  • the sample stage 11 is a plate-like member for supporting the object B (or a container that accommodates the object B).
  • the sample stage 11 is made of, for example, glass.
  • the irradiation light P ⁇ b> 1 is applied to the object B from the surface side of the sample table 11. Further, the detected light P ⁇ b> 2 from the object B is emitted to the surface side of the sample table 11.
  • the objective lens 12 is disposed on the optical path of the irradiation light P1 between the SLM 33 described later and the surface Ba of the object B.
  • the objective lens 12 is disposed on the optical path of the detected light P2 between the SLM 36, which will be described later, and the surface Ba of the object B.
  • One surface of the objective lens 12 is disposed so as to face the sample stage 11, and the focal point on the one surface side of the objective lens 12 is located inside the object B.
  • the objective lens 12 collects the irradiation light P ⁇ b> 1 at one point inside the object B.
  • the objective lens 12 receives a part of the detected light P2 emitted from the one point of the object B and collimates the part.
  • the objective lens 12 may be an immersion objective lens such as a dry objective lens, a water immersion objective lens, or an oil immersion objective lens.
  • the objective lens for the irradiation light P1 and the objective lens for the detected light P2 are common, but the objective lens for the irradiation light P1 and the objective lens for the detected light P2 are common.
  • the lens may be provided separately.
  • an objective lens having a large pupil diameter may be used for the irradiation light P1, and the light may be locally focused by aberration correction described later. Further, an objective lens having a large pupil may be used for the detected light P2 so that more light can be extracted.
  • the objective lens moving mechanism 13 is a mechanism for moving the objective lens 12 in the optical axis direction of the irradiation light P1.
  • the objective lens 12 is supported by an objective lens moving mechanism 13 so as to be movable in the optical axis direction.
  • the objective lens moving mechanism 13 is configured by, for example, a stepping motor or a piezo actuator.
  • the beam splitter 14 divides and combines the optical path between the image acquisition unit 30 and the optical path between the tilt measurement unit 20. Specifically, the beam splitter 14 reflects the irradiation light P ⁇ b> 1 that has reached the microscope unit 10 from the image acquisition unit 30 toward the objective lens 12. Further, the beam splitter 14 reflects the detection light P ⁇ b> 2 collected by the objective lens 12 toward the image acquisition unit 30. On the other hand, the beam splitter 14 transmits the light P32 from the tilt measurement unit 20 and the reflected light of the light P32 on the object B.
  • the beam splitter 14 is preferably configured by, for example, a half mirror or a dichroic mirror.
  • the microscope unit 10 may further include a reflection mirror 15 that changes the optical axis direction of the light P32.
  • the tilt measurement unit 20 is a measurement unit in the present embodiment, and measures the tilt angle of the refractive index interface of the object B with respect to a plane perpendicular to the optical axis of the objective lens 12.
  • a refractive index interface between the surface Ba of the target object B and the surrounding medium will be described as an example as a refractive index interface of the target object B, but the refractive index interface of the target object B is not limited to this.
  • the refractive index interface between the object B and the container that accommodates the object B may be used, or the refractive index interface in the internal structure of the object B may be used.
  • the surrounding medium is, for example, air or immersion liquid.
  • the tilt measurement unit 20 may be an interference light measurement unit that measures the surface shape of the object B using, for example, a Michelson interferometer.
  • the inclination measurement unit 20 includes a coherent light source 21, a beam splitter 22, a reference light mirror 23, and a detector 24 as shown in FIG.
  • the coherent light source 21 generates coherent light P3 irradiated on the object B.
  • the coherent light source 21 is preferably configured by, for example, a semiconductor laser element.
  • the beam splitter 22 branches the coherent light P3 from the coherent light source 21 into reference light P31 and light P32 to the microscope unit 10. Further, the beam splitter 22 reflects the reference light P31 reflected by the reference light mirror 23 and transmits the reflected light from the surface of the object B of the light P32, thereby synthesizing these lights and interfering light P4. Is generated.
  • the interference light P4 enters the detector 24.
  • the reference light mirror 23 may be configured to be movable with respect to the optical axis direction of the reference light P31, or may be fixed.
  • the detector 24 detects the interference light P4 synthesized by the beam splitter 22 and outputs a detection signal S1.
  • the detector 24 includes a two-dimensional light detection element such as a CCD image sensor or a CMOS image sensor.
  • the tilt measurement unit is not limited to the above-described configuration.
  • the tilt measurement unit may have an interference measurement method such as a mirrow type or a linique type.
  • the tilt measurement unit may have a confocal reflectance microscope or a common path interferometer. According to such a microscope, it is possible to suitably measure the inclination angle of the surface Ba of the object B using the focusing information.
  • the image acquisition unit 30 detects the detected light P2 from the object B and creates an enlarged image.
  • the fluorescence optical system in the case where the detected light P2 is fluorescence from the object B will be described.
  • the detected light P2 may be reflected light from the object B or a harmonic.
  • the image acquisition unit 30 of this embodiment includes a laser light source 31, a beam expander 32, an SLM 33, a dichroic mirror 34, an optical scanner 35, an SLM 36, a detector 37, and a filter 38.
  • the laser light source 31 is a light source for irradiating the object B with the irradiation light P ⁇ b> 1 through the objective lens 12.
  • the laser light source 31 outputs light P5 that is the source of the irradiation light P1.
  • the light P5 is laser light including the excitation wavelength of the object B, for example.
  • the laser light source 31 includes, for example, a semiconductor laser element.
  • the beam expander 32 includes, for example, a plurality of lenses 32a and 32b arranged side by side on the optical axis of the light P5, and adjusts the size of the cross section perpendicular to the optical axis of the light P5.
  • the SLM 33 is a type of SLM that controls phase modulation for each of a plurality of pixels.
  • the SLM 33 displays a modulation pattern (hologram) including a correction pattern for correcting an aberration caused by a difference in refractive index of the surface Ba of the object B on the modulation surface 33a.
  • the SLM 33 modulates the light P5 from the laser light source 31 to generate light P1 that is irradiated to the object B.
  • the objective lens 12 is disposed on the optical path of the light P1 between the modulation surface 33a of the SLM 33 and the surface Ba of the object B.
  • the SLM 33 is not limited to the phase modulation type, and may be an amplitude (intensity) modulation type.
  • the SLM 33 may be either a reflection type or a transmission type. Details of the modulation pattern including the correction pattern will be described later.
  • the dichroic mirror 34 transmits one of the irradiation light P1 from the SLM 33 and the detected light P2 from the microscope unit 10, and reflects the other. In the example shown in FIG. 1, the dichroic mirror 34 transmits the irradiation light P1 and reflects the detection light P2.
  • the optical scanner 35 scans the condensing position of the irradiation light P1 on the object B by moving the optical axis of the irradiation light P1 in a plane perpendicular to the optical axis of the irradiation light P1.
  • the optical scanner 35 is configured by, for example, a galvanometer mirror, a resonance mirror, or a polygon mirror. Further, the detected light P ⁇ b> 2 from the object B is detected via the optical scanner 35. Thereby, the optical axis of irradiation light P1 and the optical axis of to-be-detected light P2 can be made mutually corresponded.
  • the SLM 36 is a type of SLM that controls phase modulation for each of a plurality of pixels.
  • the SLM 36 displays a modulation pattern including a correction pattern for correcting an aberration caused by the difference in refractive index of the surface Ba of the object B on the modulation surface 36a.
  • the SLM 36 modulates the detected light P2 from the dichroic mirror 34.
  • the objective lens 12 is disposed on the optical path of the detected light P2 between the modulation surface 36a of the SLM 36 and the surface Ba of the object B.
  • the SLM 36 is not limited to the phase modulation type, and may be an amplitude (intensity) modulation type. Further, the SLM 36 may be either a reflection type or a transmission type.
  • a pinhole is arranged in front of the detector 37, it is preferable to display a pattern for condensing the detected light P2 in the pinhole on the modulation surface 36a in addition to the correction pattern. Thereby, a confocal effect can be obtained.
  • a pattern for condensing the detected light P2 on the detector 37 is a correction pattern.
  • the confocal effect can be obtained by including the modulation pattern in the modulation pattern. Details of the modulation pattern including the correction pattern will be described later.
  • the detector 37 detects the light intensity of the detected light P2 emitted from the object B through the objective lens 12, and outputs a detection signal S2.
  • the detector 37 may be a point sensor such as a PMT (Photomultiplier Tube), a photodiode, or an avalanche photodiode.
  • the detector 37 may be an area image sensor such as a CCD image sensor, a CMOS image sensor, a multi-anode PMT, or a photodiode array.
  • a condensing lens 37a may be disposed immediately before the detector 37.
  • the filter 38 is disposed on the optical axis between the dichroic mirror 34 and the detector 37.
  • the filter 38 cuts the wavelength of the irradiation light P1 and the wavelength of fluorescence unnecessary for observation from the light incident on the detector 37. Note that the filter 38 may be disposed either before or after the condenser lens 37a.
  • the image acquisition unit 30 of the present embodiment further includes a mirror 39a and a reflecting member 39b in addition to the above configuration.
  • the mirror 39a bends the optical axes of the irradiation light P1 and the detected light P2 in order to optically couple the optical scanner 35 and the beam splitter 14 of the microscope unit 10.
  • the reflecting member 39b is a prism having two reflecting surfaces, and is disposed to face the SLM 36.
  • the reflection member 39b reflects the detection light P2 from the dichroic mirror 34 on one reflection surface toward the SLM 36, and reflects the detection light P2 from the SLM 36 toward the detector 37 on the other reflection surface.
  • At least one 4f optical system may be provided on the optical axes of the irradiation light P1 and the detection light P2.
  • two 4f optical systems 51 and 52 are shown in FIG.
  • the 4f optical systems 51 and 52 have a role of transferring the wavefront of the irradiation light P1 generated in the SLM 33 to the rear focal point of the objective lens 12. If the objective lens 12 and the SLM 33 are extremely close to each other, the 4f optical system can be omitted.
  • the control unit 40 is a control unit in the present embodiment.
  • the control unit 40 controls the microscope unit 10, the tilt measurement unit 20, and the image acquisition unit 30.
  • control unit 40 controls the position of the objective lens 12 in the optical axis direction using the objective lens moving mechanism 13 in the microscope unit 10. Further, the control unit 40 moves the sample table 11 that supports the object B in a direction that intersects the optical axis direction.
  • the control unit 40 also controls the coherent light source 21, the detector 24, and the reference light mirror 23 of the tilt measurement unit 20.
  • the control unit 40 also controls the laser light source 31, the optical scanner 35, and the detector 37 of the image acquisition unit 30. Further, the control unit 40 calculates a modulation pattern displayed on the SLMs 33 and 36 and causes the SLMs 33 and 36 to display the modulation pattern.
  • the control unit 40 includes, for example, an input device 41 such as a mouse and a keyboard, a display device (display) 42, and a computer 43.
  • the computer 43 is, for example, a personal computer, a microcomputer, a smart device, a cloud server, or the like.
  • control unit 40 constitutes a part of the measurement unit in the present embodiment.
  • the control unit 40 receives the detection signal S1 from the detector 24 of the tilt measurement unit 20, and based on the detection signal S1, the object B is detected using a method using Fourier transform or ⁇ / 4 phase shift interferometry.
  • the information regarding the inclination angle of the surface Ba of is acquired.
  • the control unit 40 creates modulation pattern data including a correction pattern for correcting an aberration caused by the refractive index difference of the surface Ba of the object B.
  • the modulation pattern data is provided to the SLM 33 and the SLM 36.
  • the control unit 40 creates an enlarged image related to the object B based on the detection signal S2 from the detector 37 and information on the light irradiation position by the optical scanner 35.
  • the created image is displayed on the display device 42.
  • FIG. 2 is a flowchart showing the operation of the above-described microscope apparatus 1A.
  • the light irradiation method and the observation method including the aberration correction method according to the present embodiment will be described with reference to FIG.
  • the modulation surfaces 33a, 36a of the SLMs 33, 36 and the surface Ba of the object B are optically coupled via the objective lens 12 (coupling step). S10).
  • the light P3 is emitted from the light source 21 of the inclination measurement unit 20, and the interference light P4 between the reflected light from the surface of the object B and the reference light P31 is detected by the detector 24.
  • interference fringes on the surface Ba of the object B are observed.
  • the control unit 40 acquires the inclination angle of the surface Ba of the object B with respect to the plane perpendicular to the optical axis of the objective lens 12 (measurement step S11).
  • the control unit 40 creates modulation pattern data including a correction pattern for correcting the aberration caused by the refractive index difference of the surface Ba of the object B ( Creating step S12).
  • the SLM 33 and the SLM 36 are controlled based on the modulation pattern data, and the modulation pattern based on the modulation pattern data is displayed on the SLMs 33 and 36 (control step S13).
  • the light P5 emitted from the laser light source 31 is modulated by the SLM 33, and the modulated irradiation light P1 is irradiated onto the object B through the objective lens 12 (irradiation step S14).
  • the intensity of the detected light P2 generated in the object B is detected by the detector 37 (detection step S15).
  • the detected light P ⁇ b> 2 is modulated by the SLM 36 and then enters the detector 37.
  • the irradiation step S14 and the detection step S15 are repeated (or simultaneously performed continuously) while scanning the irradiation light P1 by the optical scanner 35.
  • an enlarged image of the object B is created in the control unit 40 based on the detection information in the detection step S15 (image creation step S16).
  • the “optical axis of the objective lens 12” refers to the optical axis of the objective lens 12. It means a straight line extending to the surface Ba.
  • the "optical axis of the objective lens 12” means that the optical axis of the objective lens 12 is modulated by each of the SLMs 33 and 36.
  • FIG. 3 is a diagram conceptually showing the modulation pattern created in creation step S12.
  • 3A shows a state in which the optical axis 12a of the objective lens 12 and the surface Ba of the object B are perpendicular to each other, and FIG. 3B shows such a case on the modulation surfaces 33a and 36a.
  • the modulation pattern D1 to be performed is shown.
  • an XYZ orthogonal coordinate system in which the direction along the optical axis 12a is the Z direction is shown.
  • the modulation pattern D1 includes a correction pattern D3 for correcting aberration caused by the refractive index difference of the surface Ba of the object B.
  • the correction pattern D3 is a point-symmetrical pattern with respect to the optical axis 12a of the objective lens 12.
  • the correction pattern D3 is concentrically centered on a point T where the optical axis 12a of the objective lens 12 intersects the modulation surfaces 33a and 36a of the SLMs 33 and 36. It is a spreading pattern. That is, the center O of the correction pattern D3 is located on the optical axis 12a of the objective lens 12.
  • 3C shows a state where the surface Ba of the object B is inclined by an angle ⁇ with respect to the plane H perpendicular to the optical axis 12a of the objective lens 12, and FIG. In such a case, the modulation pattern D2 displayed on the modulation surfaces 33a and 36a is shown.
  • the modulation pattern D2 includes the correction pattern D3 described above. However, the center O of the correction pattern D3 is deviated by a distance E in the inclination direction of the surface Ba with respect to the point T where the optical axis 12a of the objective lens 12 intersects the modulation surfaces 33a and 36a of the SLMs 33 and 36.
  • the distance E is proportional to the inclination angle ⁇ of the surface Ba with respect to the plane H, and is preferably obtained based on the inclination angle ⁇ .
  • the distance E is determined based on the inclination angle ⁇ (decision step S12a).
  • the diameter d3 of the display area of the correction pattern D3 on the modulation surfaces 33a and 36a may be larger than the pupil diameter of the objective lens 12.
  • the region where the correction pattern D3 exists is biased with respect to the point T. Therefore, when the display area of the correction pattern D3 is small, there is a possibility that a part of light does not pass through the correction pattern D3 and the aberration correction is not performed. Since the diameter d3 of the display area of the correction pattern D3 is larger than the pupil diameter of the objective lens 12, such a concern can be reduced.
  • the correction patterns displayed on the SLMs 33 and 36 have the same shape, and the center thereof coincides with the optical axis of the objective lens 12.
  • the pixel position in the modulation surfaces 33a, 36a of the SLMs 33, 36 is (x, y)
  • the pixel pitch is p
  • the position where the optical axis of the objective lens 12 and the modulation surfaces 33a, 36a intersect is T (x 0 , y 0 )
  • the spherical aberration correction pattern ⁇ in such a case is obtained by, for example, the following formula (1).
  • is the wavelength of light
  • n 1 is the refractive index of the surrounding medium
  • n 2 is the refractive index of the object B
  • NA is The numerical aperture, ⁇ , of the objective lens 12 is a defocus parameter that moves the actual light collection position back and forth on the optical axis.
  • the light P5 output as a plane wave from the laser light source 31 is modulated by the SLM 33.
  • the modulated light P1 is diffracted on the surface Ba of the object B, but is condensed at one point of a predetermined depth in the object B.
  • FIG. 4 is a schematic diagram showing a state where the refractive index interface Ba is inclined with respect to a plane H perpendicular to the optical axis A1 of the objective lens 12.
  • the position on the wavefront C of the light P1 corresponding to the pixel position (x, y) in the modulation surfaces 33a and 36a of the SLMs 33 and 36 is (x ′, y ′). That is, the position T ′ on the wavefront C of the light P1 corresponding to the position T (x 0 , y 0 ) where the optical axis of the objective lens 12 and the modulation surfaces 33a and 36a intersect is (x ′ 0 , y ′ 0 ). It becomes.
  • the inclination angle of the refractive index interface Ba with respect to the plane H is ⁇ .
  • a straight line perpendicular to the refractive index interface Ba becomes the new optical axis A2, and the wavefront of the optical axis A2 and the light P1 emitted from the objective lens 12 (or the light P2 incident on the objective lens 12)
  • the intersection point Q ′ 1 (x ′ 0 + x ′ 1 , y ′ 0 + y ′ 1 ) with the paraboloid C is the central axis of the new aberration correction pattern. That is, the aberration correction pattern ⁇ when the refractive index interface Ba is tilted can be obtained by the following formula (2).
  • the center of the new correction pattern is used as the original correction pattern (the correction pattern when the refractive index interface Ba is perpendicular to the optical axis A 1 of the objective lens 12. ) How many pixels should be moved.
  • the tilt azimuth angle ⁇ and the tilt angle ⁇ are measured based on the surface shape of the object B obtained by the tilt measurement unit 20.
  • the obtained surface shape is approximated by a polynomial
  • the tilt azimuth angle ⁇ and the tilt angle ⁇ are derived from the first-order terms (ax + by, a and b are coefficients) of the obtained polynomial.
  • the derivation of the tilt azimuth angle ⁇ and the tilt angle ⁇ is not limited to polynomial approximation.
  • approximation other than polynomial approximation or interpolation such as spline interpolation may be used.
  • creation step S12 the influence of the tilt angle ⁇ on the aberration correction is suppressed based on the position of the aberration correction pattern when the surface Ba of the object B is perpendicular to the optical axis of the objective lens 12.
  • the movement distance (inclination information) of the aberration correction pattern for determination is determined (decision step S12a). This moving distance is suitably obtained from the numerical aperture NA, the focal length f, and the imaging magnification M of the objective lens 12 as shown below.
  • the radius L1 of the pupil of the objective lens 12 is obtained by the following formula (4) based on the numerical aperture NA and the focal length f of the objective lens 12.
  • L1 NA ⁇ f (4)
  • the imaging magnification M of the objective lens 12 with respect to the SLMs 33 and 36 (the objective lens 12 and the SLMs 33 and 36 have an M: 1 enlarged imaging relationship (the light diameter on the SLMs 33 and 36 side is larger than the light diameter on the objective lens 12 side).
  • the light radius L2 in the SLMs 33 and 36 is obtained by the following equation (5).
  • L2 L1 / M (5)
  • the number R of pixels of the SLMs 33 and 36 included in the radius L2 is obtained by the following equation (6).
  • R L2 / p (6)
  • the number r of pixels per angle of 1 ° formed by the optical axis of the objective lens 12 and the light beam is obtained by the following formula (7).
  • the moving distance (number of pixels) of the aberration correction pattern is obtained by the product of the inclination angle ⁇ and the number of pixels r.
  • the tilt angle component ⁇ x in the x-axis direction and the tilt angle component ⁇ y in the y-axis direction are calculated based on the tilt azimuth angle ⁇ and the tilt angle ⁇ .
  • x 1 ⁇ x ⁇ r (8)
  • y 1 ⁇ y ⁇ r (9)
  • the inventor determines the correction pattern D3 when these are substantially vertical as the tilt angle. It has been found that aberrations can be suitably corrected by moving in the tilt direction by a distance corresponding to ⁇ . That is, in the present embodiment, the modulation pattern D2 including the pattern obtained by moving the correction pattern D3 in the modulation surfaces 33a and 36a when the optical axis 12a of the objective lens 12 and the surface Ba of the object B are substantially perpendicular is used. And displayed on the modulation surfaces 33a and 36a. Then, the moving distance of the correction pattern D3 is determined based on the inclination angle ⁇ of the surface Ba of the object B. Thus, aberration correction can be easily performed in a short time without complicated calculations.
  • FIG. 5 (a) and 5 (b) are images showing the effects of the present embodiment.
  • a dry objective lens is used as the objective lens 12, and a blood vessel when the inside of the biological sample is observed as the object B is shown. It shows a state.
  • the vertical axis in the figure is the depth from the surface of the biological sample.
  • FIG. 5A is an image obtained by applying the aberration correction method of the present embodiment
  • FIG. 5B is an image obtained without correcting the aberration.
  • the blood vessel appears to be blurred due to the influence of the aberration when the depth exceeds 500 ⁇ m.
  • FIG. 5A when the aberration correction method of this embodiment is applied, blood vessels can be clearly seen up to a depth exceeding 1000 ⁇ m.
  • the objective lens 12 is a dry objective lens and the aberration due to the surface Ba of the object B is large, the aberration is preferably corrected to a deeper portion. A clear image can be obtained. Further, since the objective lens 12 is a dry objective lens or an immersion objective lens, simple measurement can be performed in a non-contact and minimally invasive manner.
  • the SLMs 33 and 36 of this embodiment may be any type of SLM that performs phase modulation for each of a plurality of pixels.
  • an LCOS (Liquid Crystal On On Silicon) type SLM or a deformable mirror may be applied.
  • the deformable mirror may be either a membrane type or a segment type.
  • the LCOS type SLM has a larger number of pixels than the deformable mirror and can correct aberrations with high accuracy. Further, the deformable mirror can operate at a higher speed than the LCOS type SLM, and the working time can be shortened.
  • the microscope apparatus 1A of the present embodiment may be a laser scanning two-photon excitation fluorescence microscope (TPFLM).
  • TPFLM laser scanning two-photon excitation fluorescence microscope
  • fluorescence is generated only in a portion where the photon density is extremely high due to the two-photon absorption process (portion where the excitation light is collected by the objective lens 12).
  • Near-infrared light is used as the excitation light, but this excitation light is less absorbed and scattered by the living body than visible light.
  • a point where the generation of fluorescence is local and a point where absorption and scattering are small are suitable for deep observation of a biological sample.
  • the aberration correction method of this embodiment which can perform aberration correction easily in a short time when observing the deep part of a biological sample is very useful. According to the aberration correction method of the present embodiment, it is possible to improve the resolution of the deep portion of the biological sample, and facilitate observation at a depth that is difficult to observe with the conventional TPFLM.
  • excitation light is scanned by a biaxial galvano scanner in a plane perpendicular to the optical axis 12a of the objective lens 12, and fluorescence generated at the focal point position is detected by a detector such as PMT.
  • a detector such as PMT.
  • the above operation was repeated while moving the objective lens 12 or the sample stage 11 in the optical axis direction, and a plurality of images having different depths were obtained.
  • the distance between the objective lens 12 and the sample stage 11 was changed from 600 ⁇ m to 800 ⁇ m.
  • FIG. 6A to FIG. 6C are two-dimensional images obtained by cutting the three-dimensional image obtained in the present embodiment in the depth direction.
  • FIG. 6A is an image when the aberration correction method of the above embodiment is applied
  • FIG. 6B is a conventional parallel light without correcting the aberration (that is, the wavefront is perpendicular to the optical axis).
  • 6C is an image obtained without moving the correction pattern (see FIG. 3A).
  • the moving distance (number of pixels) is 65 pixels.
  • the surrounding medium is air, there is a difference in refractive index between the surrounding medium and the model sample (epoxy resin). Accordingly, aberration occurs on the surface of the model sample. Further, since the surface of the model sample is inclined, aberrations other than spherical aberration also occur.
  • the outline of the fluorescent beads in the image extends in the depth direction under the influence of the aberration described above. Further, when the correction pattern is not moved (FIG. 6C), the maximum fluorescence intensity of the fluorescent beads is 0.4 times that when the correction of aberration is not performed (FIG. 6B). As a result, the image was unclear compared to when no aberration correction was performed. This is considered to be due to the fact that other aberrations (for example, astigmatism) remain in the correction pattern that corrects only spherical aberration, and that other aberrations have become larger because the wavefront is not appropriate.
  • other aberrations for example, astigmatism
  • FIG. 6A when the aberration correction method of the above embodiment is applied, other aberrations other than spherical aberration are also corrected well, so that the contour shape of the fluorescent beads in the image is improved. It can be seen that it is close to a sphere and is remarkably improved.
  • the maximum fluorescence intensity of the fluorescent beads was 6.5 times that of the case where the aberration was not corrected (FIG. 6B), which was much brighter. That is, according to the present example, it was shown that when the surface Ba of the object B is inclined with respect to the optical axis 12a, the aberration can be corrected with high accuracy by applying the aberration correction method of the above embodiment.
  • FIG. 7 is a diagram conceptually showing a modification of the above embodiment.
  • the SLMs 33 and 36 are exemplified as the SLMs that control the modulation for each of a plurality of pixels.
  • the SLMs 33 and 36 are not limited to this, for example, the modulation patterns are fixed on the modulation surfaces 33a and 36a. It may be an SLM.
  • the moving distance E is determined based on the inclination angle ⁇ of the surface Ba with respect to the plane H.
  • the aberration correction can be easily performed in a short time without performing a complicated calculation as in the above embodiment.
  • the above-described mathematical formulas (8) and (9) are replaced by the following mathematical formulas (10) and (11), respectively.
  • x 1 ⁇ x ⁇ L2 / ⁇ max (10)
  • y 1 ⁇ y ⁇ L2 / ⁇ max (11)
  • the modulation surface 33a, a 36a may be moved respectively in the x-axis direction to x 1, y-axis direction by y 1.
  • such a method can be applied to an SLM of a type that controls modulation for each of a plurality of pixels.
  • the movement distance E is determined based on the inclination angle ⁇ of the surface Ba with respect to the plane H.
  • the correction pattern D3 is displayed on the SLMs 33 and 36 so that the center O of the correction pattern D3 is positioned on the optical axis 12a of the objective lens 12, and the SLMs 33 and 36 themselves are relatively distance E from the optical axis 12a. Just move. Even with such a method, it is possible to obtain the same effect as in the above embodiment.
  • FIG. 8 is a flowchart showing the aberration correction method of this modification.
  • this modification first, the inclination angle of the surface Ba of the object B with respect to a plane perpendicular to the optical axis of the objective lens 12 is acquired (measurement step S11).
  • the determination step S21 the moving distance E of the modulation surfaces 33a and 36a is determined based on the inclination angle ⁇ of the surface Ba with respect to the plane H.
  • the modulation surfaces 33a and 36a having the aberration correction pattern D3 are moved by a distance E relative to the optical axis 12a of the objective lens 12 in the direction intersecting the optical axis 12a.
  • FIG. 9 is a diagram showing a configuration of a microscope apparatus 1B that can realize the aberration correction method of the present modification.
  • the microscope apparatus 1B further includes moving mechanisms 33b and 36b in addition to the configuration of the microscope apparatus 1A shown in FIG.
  • the moving mechanism 33b supports the SLM 33 and moves the modulation surface 33a relative to the optical axis 12a of the objective lens 12 in a direction intersecting the optical axis 12a.
  • the moving mechanism 36b supports the SLM 36 and moves the modulation surface 36a relative to the optical axis 12a of the objective lens 12 in a direction intersecting the optical axis 12a.
  • the moving mechanisms 33 b and 36 b are controlled by the computer 43 of the control unit 40.
  • the computer 43 determines the moving distance of the modulation surfaces 33a and 36a based on the inclination angle ⁇ of the surface Ba with respect to the plane H.
  • the microscope apparatus 1B may include a mechanism for moving the objective lens 12 in a direction intersecting the optical axis 12a instead of moving the SLMs 33 and 36 or together with the movement of the SLMs 33 and 36.
  • the surface shape of the object B is approximated by a polynomial, and a method of deriving the tilt azimuth angle ⁇ and the tilt angle ⁇ from the first-order terms of the obtained polynomial (in other words, the surface Ba of the object B is represented by one A method for approximating a flat surface) was exemplified.
  • the optical axis 12a of the objective lens 12 may be divided into a plurality of regions, and the movement distance of the correction pattern D3 corresponding to each region may be determined based on the inclination angle ⁇ of each region.
  • the inclination azimuth ⁇ 1 and the inclination angle ⁇ 1 related to the surface Ba1 and the surface Ba2 are related.
  • the tilt azimuth angle ⁇ 2 and the tilt angle ⁇ 2 can each be measured.
  • decision step S12a on the basis of the tilt azimuth angle alpha 1 and the inclination angle beta 1, and calculates the moving direction and moving distance of the partial correction pattern for correcting aberration caused by surface Ba1.
  • step S12a on the basis of the tilt azimuth angle alpha 2 and the inclination angle beta 2, and calculates the moving direction and moving distance of the partial correction pattern for correcting aberration caused by surface Ba2. Then, by superimposing the partial correction patterns after movement, a modulation pattern for correcting aberrations can be created. This is the same even when it can be approximated that the surface Ba of the object B is constituted by a large number of surfaces Baa, as shown in FIG. 11, for example.
  • the complex calculation is performed as in the above embodiment.
  • aberration correction can be easily performed in a short time.
  • FIG. 12 is a diagram showing a configuration of a microscope apparatus 1C according to a third modification of the embodiment.
  • the microscope apparatus 1C is different from the microscope apparatus 1A shown in FIG. 1 in that it does not include the tilt measurement unit 20 but includes a shape memory unit 60 instead.
  • the shape storage unit 60 is a storage unit in the present embodiment, and stores in advance information related to the inclination angle ⁇ of the surface Ba of the object B. 2, the computer 43 determines the moving distance of the correction pattern D3 based on the information stored in the shape storage unit 60. According to such an aberration correction method and microscope apparatus 1C, the measurement time S11 shown in FIG. 2 can be omitted, and the working time can be further shortened. In particular, it is suitable when the tilt azimuth angle ⁇ and tilt angle ⁇ of the surface Ba are known, such as a semiconductor device.
  • the microscope unit 10A does not include the reflecting mirror 15 (see FIG. 1), and instead of the beam splitter 14 (see FIG. 1). A reflection mirror 16.
  • the configuration of the other microscope unit 10A is the same as that of the microscope unit 10 of the above embodiment.
  • the inclination measurement unit 20 measures the surface shape of the object B using a Michelson interferometer.
  • a Michelson interferometer There are various other methods for measuring the tilt azimuth angle ⁇ and the tilt angle ⁇ of the surface Ba of the object B.
  • the surface shape of the object B can be measured from the contours of the object B included in a plurality of images with different depths obtained by prescanning.
  • the surface shape of the object B can be measured by irradiating the surface Ba of the object B with ultrasonic waves and measuring the reflected waves.
  • a light cutting method can be used.
  • FIG. 13 (a) and FIG. 13 (b) are mouse brain images obtained by pre-scanning.
  • FIG. 13A is an image at a depth position of 120 ⁇ m from the top of the object B in the optical axis direction
  • FIG. 13B is an image at a depth position of 560 ⁇ m from the top of the object B in the optical axis direction. is there.
  • the outline Bc of the object B due to autofluorescence appears clearly in the image.
  • the tilt azimuth angle ⁇ and the tilt angle ⁇ of the surface Ba can be suitably obtained.
  • FIG. 14 is a diagram illustrating a state where the object B has a plurality of refractive index interfaces B12 and B23 therein.
  • the refractive index interface B12 with respect to a plane perpendicular H12 to the optical axis A1 of the objective lens 12 is inclined by an angle beta 12
  • the refractive index interface B23 with respect to a plane perpendicular H23 to the optical axis A1 of the objective lens 12 is It is inclined by an angle ⁇ 23.
  • a straight line perpendicular to the refractive index interface B12 becomes a new optical axis A12, and the wavefront of the optical axis A12 and the light P1 emitted from the objective lens 12 (or the light P2 incident on the objective lens 12) ( The intersection point Q ′ 2 (x ′ 0 + x ′ 2 , y ′ 0 + y ′ 2 ) with the paraboloid C is obtained.
  • a straight line perpendicular to the refractive index interface B23 becomes a new optical axis A23, and an intersection point Q ′ 3 (x ′ 0 + x ′ 3 , y ′ 0 + y ′ 3 ) between the optical axis A23 and the wavefront C is obtained. can get.
  • the aberration correction pattern ⁇ when the refractive index interfaces B12 and B23 are inclined is obtained by the following equation (12).
  • the aberration correction is performed using one spatial light modulator. It can be performed.
  • the aberration correction pattern ⁇ taking into account the inclinations at the respective refractive index interfaces B12 and B23 may be obtained, and the respective spatial light modulators may be controlled.
  • d 2 is a distance between the refractive index boundary B12 on the optical axis A1 and the refractive index interface B23
  • d 3 denotes a distance between the refractive index interface B23 and the focusing point on the optical axis
  • n 1 is from the refractive index interface B12 refractive index of the portion positioned on the objective lens 12 side
  • n 2 is the side opposite to the refractive index
  • n 3 objective lens 12 than the refractive index interface B23 is between the refractive index interface B12 of the object B and the refractive index interface B23 Is the refractive index of the portion located at.
  • x 2 and y 2 can be obtained from the inclination of the refractive index interface B12
  • x 3 and y 3 can be obtained from the inclination of the refractive index interface B23.
  • the aberration correction method and the optical apparatus are not limited to the above-described embodiments, and various other modifications are possible.
  • the above-described embodiments and modifications may be combined with each other according to the necessary purpose and effect.
  • the third modification has been described as a modification of the embodiment shown in FIGS. 1 and 2, but in the first modification as well, the shape memory is used instead of the inclination measurement unit 20 shown in FIG.
  • the unit 60 may be provided, and the computer 43 may determine the movement distances of the modulation surfaces 33a and 36a based on the information stored in the shape memory unit 60 during the determination step S21 shown in FIG.
  • the storage unit may expand the correction pattern into a polynomial such as a Zernike polynomial and store the coefficient of each term of the polynomial.
  • the modulation pattern displayed on the SLM need not be the correction pattern itself.
  • it may be a modulation pattern in which another pattern such as a pattern for controlling the condensing shape or condensing position of the irradiation light P1 irradiated to the object B and a correction pattern are superimposed.
  • a microscope apparatus is illustrated as an optical apparatus.
  • the aberration correction method can be applied to various optical apparatuses such as a laser processing apparatus.
  • the tilt measurement unit 20 may be a measurement unit based on an optical cutting method that performs measurement by combining a line laser and a camera, or moves the object B in the optical axis direction of the objective lens 12 to measure the in-focus position. It may be a measurement unit. Two or more detectors may be built in the optical system.
  • the microscope apparatuses 1A, 1B, and 1C have a configuration of an upright microscope, they are not limited to this, and may have a configuration of an inverted microscope.
  • the glass surface serves as a reference surface, and the object B is pressed, but a portion that is not pressed and does not become a flat surface can be measured by the measuring unit 20.
  • the detected light P2 is descanned by the optical scanner 35 and detected by the detector 37.
  • the present invention is not limited to this, and the detected light P2 is descanned by the optical scanner 35. Instead, it may be detected by the detector 37. Further, the tilt information may be the tilt angle itself.
  • the position of the correction pattern in the modulation pattern is set based on the inclination information of the refractive index interface of the object with respect to the plane perpendicular to the optical axis of the objective lens.
  • the spatial light modulator having the modulation surface, the objective lens disposed on the optical path between the modulation surface and the object, and the aberration caused by the refractive index interface of the object are reduced.
  • the position of the correction pattern in the modulation pattern is set based on the inclination information of the refractive index interface of the object with respect to the plane perpendicular to the optical axis of the objective lens.
  • the spatial light modulator and the objective lens are arranged based on inclination information of the refractive index interface of the object with respect to a plane perpendicular to the optical axis of the objective lens.
  • the spatial light modulator has a modulation surface and modulates light based on a modulation pattern including a correction pattern for correcting an aberration caused by a refractive index interface of an object.
  • An objective lens disposed on the optical path between the modulation surface and the object, a moving mechanism for moving at least one of the objective lens and the spatial light modulator in a direction crossing the optical axis of the objective lens, and a moving mechanism
  • a control unit for controlling.
  • the control unit controls the moving mechanism based on the inclination information of the refractive index interface of the object with respect to the plane perpendicular to the optical axis of the objective lens.
  • the aberration correction method may further include a measurement step of measuring the tilt angle of the refractive index interface of the object, and the tilt information may be determined based on the tilt angle measured by the measurement step.
  • the optical device may further include a measurement unit that measures the inclination angle of the refractive index interface of the object, and the inclination information may be determined based on the inclination angle measured by the measurement unit.
  • a plurality of images of the object having different depths from the refractive index interface of the object may be acquired, and the tilt angle may be obtained based on the plurality of images.
  • the measurement unit of the optical device may acquire a plurality of images of the object having different depths from the refractive index interface of the object, and obtain the inclination angle based on the plurality of images. Thereby, an inclination angle can be measured easily.
  • the tilt information may be determined based on information relating to the tilt angle of the refractive index interface of the object stored in advance.
  • the optical device may further include a storage unit that stores in advance information regarding the inclination angle of the refractive index interface of the object, and the inclination information may be determined based on information stored in the storage unit.
  • the diameter of the correction pattern region on the modulation surface may be larger than the pupil diameter of the objective lens.
  • the correction pattern or modulation surface
  • the region where the correction pattern exists is biased with respect to the optical axis. Therefore, when the area of the correction pattern is small, there is a possibility that a part of the light does not pass through the correction pattern and the aberration correction is not performed. Such a fear can be reduced by making the diameter of the region of the correction pattern larger than the pupil diameter of the objective lens.
  • the refractive index interface of the object is divided into a plurality of regions, the inclination angle in each region is measured, and the inclination information is determined based on the inclination angle in each region. May be.
  • the measurement unit of the optical device divides the refractive index interface of the object into a plurality of regions, measures the tilt angle in each region, and the tilt information is determined based on the tilt angle in each region. Also good. As a result, even when the refractive index interface of the object has a complicated shape in which the inclination angle varies from region to region, the functions and effects of the aberration correction method and the optical device described above can be suitably obtained.
  • the embodiment can be used as an aberration correction method and an optical apparatus.
  • SYMBOLS 1A, 1B, 1C DESCRIPTION OF SYMBOLS 1A, 1B, 1C ... Microscope apparatus, 10, 10A ... Microscope unit, 11 ... Sample stand, 12 ... Objective lens, 12a ... Optical axis, 13 ... Objective lens moving mechanism, 14 ... Beam splitter, 15, 16 ... Reflection mirror, DESCRIPTION OF SYMBOLS 20 ... Inclination measurement unit, 21 ... Coherent light source, 22 ... Beam splitter, 23 ... Reference light mirror, 24 ... Detector, 30 ... Image acquisition unit, 31 ... Laser light source, 32 ... Beam expander, 33, 36 ... SLM , 33a, 36a ... modulation surface, 33b, 36b ... moving mechanism, 34 ...
  • dichroic mirror 35 ... optical scanner, 37 ... detector, 37a ... condensing lens, 38 ... filter, 39a ... mirror, 39b ... reflecting member, 40 ... Control unit, 41 ... Input device, 42 ... Display device, 43 ... Computer, 51 ... 4f optical system, 60 ... Shape memory unit G, A1, A2 ... optical axis, B ... object, Ba ... surface, Bc ... contour, D1, D2 ... modulation pattern, D3 ... aberration correction pattern, H ... plane, P1 ... irradiation light, P2 ... detected light, P3: coherent light, P4: interference light, P5: light, O: center of correction pattern.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

顕微鏡装置1Aは、変調面を有するSLM33,36と、変調面と対象物Bとの間の光路上に配置された対物レンズ12と、対象物Bの屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいてSLM33,36を制御するコンピュータ43と、を備える。コンピュータ43は、対物レンズ12の光軸に垂直な平面に対する屈折率界面の傾斜情報に基づいて、変調パターンにおける補正パターンの位置を決定する。これにより、対象物の屈折率界面が光軸に対して傾斜している場合であっても収差補正を短時間で容易に行うことが可能な収差補正方法及び光学装置が実現される。

Description

収差補正方法及び光学装置
 本開示は、収差補正方法及び光学装置に関するものである。
 特許文献1及び2には、屈折率界面における収差等の影響を、空間光変調器を用いて低減する方法が開示されている。特許文献1に記載された方法では、媒質内部に発生する収差範囲の間にレーザ光の集光点が位置するように、レーザ光の収差を補正する。また、特許文献2に記載された方法では、媒質の屈折率をn、媒質の屈折率nが集光手段の雰囲気媒質の屈折率に等しいと仮定した場合における媒質の入射面から集光手段の焦点までの深さをd、媒質によって発生する縦収差の最大値をΔsと定義するとき、媒質の入射面からn×d-Δsより大きく、n×dより小さい範囲にレーザ光の集光点が位置するように、レーザ光の収差を補正する。これにより、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に集光点が位置するように、レーザ光の収差を補正することができる。
 非特許文献1には、2光子励起蛍光顕微鏡に関する技術が記載されている。この2光子励起蛍光顕微鏡では、空間光変調器に収差補正パターンを表示させ、この空間光変調器を用いて観察対象物への照射光を変調することにより、観察対象物の表面形状に起因して生じる球面収差を補正している。
特開2010-75997号公報 特開2011-180290号公報
Naoya Matsumoto, Takashi Inoue, Akiyuki Matsumoto, and Shigetoshi Okazaki, "Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator", Biomedical Optics Express, Vol.6, No.7, pp.2575-2587, (2015)
 例えばレーザ加工装置や顕微鏡などの様々な光学装置においては、対象物の表面もしくは内部に存在する屈折率界面により生じる収差(例えば、球面収差)を補正するために、例えば収差補正パターンを有する空間光変調器(Spatial Light Modulator:SLM)を用いて照射光(若しくは観察光)を変調することがある。そのような場合、対象物の屈折率界面が光軸に対して垂直であれば、収差補正パターンは光軸を中心とした同心円状に広がるパターンとなるので、パターンを求めるための計算は比較的容易である。
 しかしながら、対象物の屈折率界面が光軸に対して傾斜している場合も有り得る。そのような場合、球面収差以外の収差が含まれるので、収差補正パターンの計算が複雑となり、計算に長時間を要してしまう。特に、例えば顕微鏡で立体像を得る場合等、対象物とレンズとの相対距離を変えながら照射若しくは観察を行うような場合には、相対距離が変化する毎に収差補正パターンを計算し直す必要があるので、作業に要する時間が非常に長くなってしまう。また、収差補正パターンの計算自体が困難となる場合もある。
 実施形態は、対象物の表面などの屈折率界面が光軸に対して傾斜している場合であっても、収差補正を短時間で容易に行うことが可能な収差補正方法及び光学装置を提供することを目的とする。
 一実施形態は、収差補正方法である。収差補正方法は、空間光変調器の変調面と対象物とを、対物レンズを介して光学的に結合する結合ステップと、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて空間光変調器を制御する制御ステップと、を含む。収差補正方法において、変調パターンにおける補正パターンの位置は、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて設定される。
 また、一実施形態は、光学装置である。光学装置は、変調面を有する空間光変調器と、変調面と対象物との間の光路上に配置された対物レンズと、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて空間光変調器を制御する制御部と、を備える。光学装置において、変調パターンにおける補正パターンの位置は、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて設定される。
 本発明者は、対象物の屈折率界面が対物レンズの光軸に対して傾斜している場合には、変調パターンにおける補正パターンの位置を、傾斜角度などの傾斜情報に応じて設定することにより、収差を好適に補正できることを見出した。これにより、複雑な計算をすることなく、収差補正を短時間で容易に行うことができる。
 別の実施形態は、収差補正方法である。収差補正方法は、空間光変調器の変調面と対象物とを、対物レンズを介して光学的に結合する結合ステップと、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて空間光変調器を制御する制御ステップと、を含む。収差補正方法において、空間光変調器及び対物レンズは、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて配置される。
 また、別の実施形態は、光学装置である。光学装置は、変調面を有し、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて光を変調する空間光変調器と、変調面と対象物との間の光路上に配置された対物レンズと、対物レンズ及び空間光変調器の少なくともいずれか一方を対物レンズの光軸と交差する方向に移動させる移動機構と、移動機構を制御する制御部と、を備える。光学装置において、制御部は、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて、移動機構を制御する。
 前述した本発明者の知見は、空間光変調器の変調面内における補正パターンの移動を必ずしも必要とせず、空間光変調器の変調面自体及び/或いは対物レンズ自体を移動させることでも実現可能である。これにより、複雑な計算をすることなく、収差補正を短時間で容易に行うことができる。
 実施形態の収差補正方法及び光学装置によれば、対象物の屈折率界面が光軸に対して傾斜している場合であっても収差補正を短時間で容易に行うことができる。
図1は、一実施形態に係る光学装置としての顕微鏡装置の構成を示す図である。 図2は、顕微鏡装置の動作を示すフローチャートである。 図3は、(a)~(d)作成ステップにおいて作成される変調パターンを概念的に示す図である。 図4は、対物レンズの光軸に垂直な平面に対して屈折率界面が傾いている状態を示す模式図である。 図5は、(a)、(b)一実施形態による効果を示す画像であって、対物レンズとして乾燥対物レンズを用い、対象物として生体試料の内部を観察したときの血管の様子を示している。 図6は、(a)~(c)実施例において得られた三次元画像を深さ方向に切断して得られた二次元画像である。 図7は、(a)、(b)一変形例を概念的に示す図である。 図8は、第1変形例の収差補正方法を示すフローチャートである。 図9は、一変形例の収差補正方法を実現できる顕微鏡装置の構成を示す図である。 図10は、対象物の屈折率界面が2つの面によって構成されていると近似できる場合を示す図である。 図11は、対象物の屈折率界面が多数の面によって構成されていると近似できる場合を示す図である。 図12は、第3変形例に係る顕微鏡装置の構成を示す図である。 図13は、(a)、(b)プレスキャンにより得られたマウスの脳画像である。 図14は、対象物が内部に複数の屈折率界面を有する場合の状態を示す図である。
 以下、添付図面を参照しながら、収差補正方法及び光学装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、一実施形態に係る光学装置としての顕微鏡装置1Aの構成を示す図である。顕微鏡装置1Aは、対象物Bに対して光を照射しながら対象物Bの拡大画像を取得する装置であって、図1に示されるように、顕微鏡ユニット10、傾斜計測ユニット20、画像取得ユニット30、及び制御ユニット40を備えている。
 顕微鏡ユニット10は、後述する傾斜計測ユニット20及び画像取得ユニット30からの照射光P1を対象物Bに照射するとともに、対象物Bからの被検出光P2を傾斜計測ユニット20及び画像取得ユニット30へそれぞれ出力する。被検出光P2は、例えば、照射光P1の反射光、照射光P1の高調波、若しくは照射光P1によって励起された蛍光である。顕微鏡ユニット10は、試料台(ステージ)11、対物レンズ12、対物レンズ移動機構13、及びビームスプリッタ14を有する。
 試料台11は、対象物B(若しくは対象物Bを収容する容器)を支持するための板状の部材である。試料台11は、例えばガラス製である。本実施形態では、照射光P1は試料台11の表面側から対象物Bに照射される。また、対象物Bからの被検出光P2は、試料台11の表面側へ出射する。
 対物レンズ12は、後述するSLM33と対象物Bの表面Baとの間の照射光P1の光路上に配置されている。また、対物レンズ12は、後述するSLM36と対象物Bの表面Baとの間の被検出光P2の光路上に配置されている。対物レンズ12の一方の面は試料台11と対向するように配置され、対物レンズ12の該一方の面側の焦点は、対象物Bの内部に位置している。対物レンズ12は、対象物Bの内部の一点に照射光P1を集光する。また、対物レンズ12は、対象物Bの該一点から放射される被検出光P2の一部を受けて、該一部を平行化する。対物レンズ12は、乾燥対物レンズ、水浸対物レンズ、或いは油浸対物レンズなどの液浸対物レンズでもよい。
 なお、本実施形態では照射光P1のための対物レンズと被検出光P2のための対物レンズとが共通となっているが、照射光P1のための対物レンズと被検出光P2のための対物レンズとが別個に設けられてもよい。例えば、照射光P1のために瞳径が大きい対物レンズを用い、後述する収差補正により局所的に集光させてもよい。また、被検出光P2のために瞳の大きな対物レンズを用い、より多くの光を取り出せるようにしてもよい。
 対物レンズ移動機構13は、対物レンズ12を照射光P1の光軸方向に移動させるための機構である。対物レンズ12は、対物レンズ移動機構13によって、光軸方向に移動可能なように支持されている。対物レンズ移動機構13は、例えばステッピングモータ若しくはピエゾアクチュエータ等によって構成される。
 ビームスプリッタ14は、画像取得ユニット30との間の光路と、傾斜計測ユニット20との間の光路とを分割及び合成する。具体的には、ビームスプリッタ14は、画像取得ユニット30から顕微鏡ユニット10に到達した照射光P1を、対物レンズ12へ向けて反射する。また、ビームスプリッタ14は、対物レンズ12によって集められた被検出光P2を、画像取得ユニット30に向けて反射する。一方、ビームスプリッタ14は、傾斜計測ユニット20からの光P32、及び対象物Bにおける光P32の反射光を透過する。ビームスプリッタ14は、例えばハーフミラーやダイクロイックミラーによって好適に構成される。顕微鏡ユニット10は、光P32の光軸方向を変更する反射ミラー15を更に有してもよい。
 傾斜計測ユニット20は、本実施形態における計測部であり、対物レンズ12の光軸に垂直な平面に対する、対象物Bの屈折率界面の傾斜角度を計測する。以下、対象物Bの屈折率界面として、対象物Bの表面Baと周囲媒質との屈折率界面を一例として説明するが、対象物Bの屈折率界面はこれに限らない。例えば、対象物Bと対象物Bを収容する容器との屈折率界面でもよいし、対象物Bの内部構造における屈折率界面であってもよい。周囲媒質は、例えば空気或いは浸液である。
 傾斜計測ユニット20は、例えば、マイケルソン干渉計を用いた、対象物Bの表面形状を計測する干渉光計測ユニットであってもよい。その場合、傾斜計測ユニット20は、図1に示されるようにコヒーレント光源21、ビームスプリッタ22、参照光用ミラー23、及び検出器24を有する。
 コヒーレント光源21は、対象物Bに照射されるコヒーレント光P3を発生する。コヒーレント光源21は、例えば半導体レーザ素子によって好適に構成される。ビームスプリッタ22は、コヒーレント光源21からのコヒーレント光P3を、参照光P31と顕微鏡ユニット10への光P32とに分岐する。また、ビームスプリッタ22は、参照光用ミラー23において反射した参照光P31を反射させるとともに、光P32の対象物B表面からの反射光を透過させることにより、これらの光を合成して干渉光P4を生成する。干渉光P4は、検出器24に入射する。なお、参照光用ミラー23は、参照光P31の光軸方向に対して移動可能に構成されていてもよいし、固定されていてもよい。検出器24は、ビームスプリッタ22によって合成された干渉光P4を検出し、検出信号S1を出力する。検出器24は、例えばCCDイメージセンサやCMOSイメージセンサなどの2次元光検出素子を含む。
 なお、傾斜計測ユニットは、上述した構成に限られない。例えば、傾斜計測ユニットは、ミロー型、リニーク型などの干渉計測方式を有してもよい。或いは、傾斜計測ユニットは、コンフォーカルリフレクタンス顕微鏡を有してもよく、コモンパス干渉計を有してもよい。このような顕微鏡によれば、合焦情報を用いて対象物Bの表面Baの傾斜角度を好適に計測することができる。
 画像取得ユニット30は、対象物Bからの被検出光P2を検出し、拡大画像を作成する。なお、以下では被検出光P2が対象物Bからの蛍光である場合の蛍光光学系の例について説明するが、被検出光P2は対象物Bからの反射光或いは高調波であってもよい。本実施形態の画像取得ユニット30は、レーザ光源31、ビームエキスパンダ32、SLM33、ダイクロイックミラー34、光スキャナ35、SLM36、検出器37、及びフィルタ38を有する。
 レーザ光源31は、対象物Bに対し、対物レンズ12を介して照射光P1を照射するための光源である。レーザ光源31は、照射光P1の元になる光P5を出力する。光P5は、例えば対象物Bの励起波長を含むレーザ光である。レーザ光源31は、例えば半導体レーザ素子を含んで構成される。ビームエキスパンダ32は、例えば光P5の光軸上に並んで配置された複数のレンズ32a,32bを含んで構成され、光P5の光軸に対して垂直な断面の大きさを調整する。
 SLM33は、位相変調を複数の画素毎に制御するタイプのSLMである。SLM33は、対象物Bの表面Baの屈折率差に起因する収差を補正するための補正パターンを含む変調パターン(ホログラム)を変調面33aに表示する。SLM33は、レーザ光源31からの光P5を変調することにより、対象物Bへ照射される光P1を生成する。SLM33の変調面33aと対象物Bの表面Baとの間の光P1の光路上には、対物レンズ12が配置されている。なお、SLM33は、位相変調型に限らず、振幅(強度)変調型でも良い。また、SLM33は、反射型及び透過型の何れであってもよい。なお、補正パターンを含む変調パターンの詳細については後述する。
 ダイクロイックミラー34は、SLM33からの照射光P1、及び顕微鏡ユニット10からの被検出光P2のうち一方を透過し、他方を反射する。図1に示される例では、ダイクロイックミラー34は、照射光P1を透過し、被検出光P2を反射する。
 光スキャナ35は、照射光P1の光軸に垂直な面内において照射光P1の光軸を移動させることにより、対象物Bにおける照射光P1の集光位置を走査する。光スキャナ35は、例えばガルバノミラー、共振ミラー若しくはポリゴンミラーによって構成される。また、対象物Bからの被検出光P2は、光スキャナ35を介して検出される。これにより、照射光P1の光軸と被検出光P2の光軸とを互いに一致させることができる。
 SLM36は、位相変調を複数の画素毎に制御するタイプのSLMである。SLM36は、対象物Bの表面Baの屈折率差に起因する収差を補正するための補正パターンを含む変調パターンを変調面36aに表示する。SLM36は、ダイクロイックミラー34からの被検出光P2を変調する。SLM36の変調面36aと対象物Bの表面Baとの間の被検出光P2の光路上には、対物レンズ12が配置されている。
 SLM36は、位相変調型に限らず、振幅(強度)変調型でも良い。また、SLM36は、反射型及び透過型の何れであってもよい。検出器37の前段にピンホールを配置する場合、補正パターンに加え、ピンホールに被検出光P2が集光するためのパターンを変調面36aに表示することが好ましい。これにより、コンフォーカル効果を得ることができる。二光子吸収などの多光子吸収効果を利用して、対象物Bから発生した蛍光などの被検出光P2を検出する場合、検出器37に被検出光P2を集光するためのパターンを補正パターンに重畳させて変調パターンに含めることにより、コンフォーカル効果を得ることができる。なお、補正パターンを含む変調パターンの詳細については後述する。
 検出器37は、対象物Bから対物レンズ12を介して出射された被検出光P2の光強度を検出し、検出信号S2を出力する。検出器37は、PMT(Photomultiplier Tube)、フォトダイオード、アバランシェフォトダイオードといったポイントセンサであってもよい。或いは、検出器37は、CCDイメージセンサ、CMOSイメージセンサ、マルチアノードPMT、フォトダイオードアレイといったエリアイメージセンサであってもよい。なお、検出器37の直前には集光レンズ37aが配置されてもよい。
 フィルタ38は、ダイクロイックミラー34と検出器37との間の光軸上に配置される。フィルタ38は、検出器37に入射する光から、照射光P1の波長、及び観察に不要な蛍光等の波長をカットする。なお、フィルタ38は、集光レンズ37aの前段、後段のどちらに配置されてもよい。
 なお、本実施形態の画像取得ユニット30は、上記の構成に加えて、ミラー39a及び反射部材39bを更に有する。ミラー39aは、光スキャナ35と顕微鏡ユニット10のビームスプリッタ14とを光学的に結合させるために、照射光P1及び被検出光P2の光軸を屈曲させる。反射部材39bは、2つの反射面を有するプリズムであって、SLM36と対向して配置される。反射部材39bは、一方の反射面においてダイクロイックミラー34からの被検出光P2をSLM36へ向けて反射し、他方の反射面においてSLM36からの被検出光P2を検出器37へ向けて反射する。
 対物レンズ12とSLM33との距離が長い場合には、照射光P1及び被検出光P2の光軸上に少なくとも一つの4f光学系が設けられてもよい。一例として、図1には2つの4f光学系51及び52が示されている。4f光学系51及び52は、SLM33において生成された照射光P1の波面を対物レンズ12の後側焦点へ転送する役割を有する。なお、対物レンズ12とSLM33とが極めて近い場合には、4f光学系を省くことも可能である。
 制御ユニット40は、本実施形態における制御部である。制御ユニット40は、顕微鏡ユニット10、傾斜計測ユニット20、及び画像取得ユニット30を制御する。
 例えば、制御ユニット40は、顕微鏡ユニット10において対物レンズ移動機構13を用いて対物レンズ12の光軸方向の位置を制御する。また、制御ユニット40は、対象物Bを支持する試料台11を光軸方向と交差する方向に移動させる。また、制御ユニット40は、傾斜計測ユニット20のコヒーレント光源21、検出器24、及び参照光用ミラー23の制御を行う。また、制御ユニット40は、画像取得ユニット30のレーザ光源31、光スキャナ35、及び検出器37を制御する。更に、制御ユニット40は、SLM33及び36に表示される変調パターンを計算し、その変調パターンをSLM33及び36に表示させる。
 制御ユニット40は、例えば、マウスやキーボードといった入力装置41、表示装置(ディスプレイ)42、及びコンピュータ43を含んで構成される。コンピュータ43は、例えば、パーソナルコンピュータ、マイクロコンピュータ、スマートデバイス、クラウドサーバなどである。
 また、制御ユニット40は、本実施形態における計測部の一部を構成する。制御ユニット40は、傾斜計測ユニット20の検出器24からの検出信号S1を入力し、この検出信号S1に基づき、フーリエ変換を用いた方法やλ/4位相シフト干渉法を用いて、対象物Bの表面Baの傾斜角度に関する情報を取得する。制御ユニット40は、得られた情報に基づいて、対象物Bの表面Baの屈折率差に起因する収差を補正するための補正パターンを含む変調パターンデータを作成する。変調パターンデータは、SLM33及びSLM36に提供される。また、制御ユニット40は、検出器37からの検出信号S2、及び光スキャナ35による光照射位置の情報に基づいて、対象物Bに関する拡大画像を作成する。作成された画像は、表示装置42に表示される。
 図2は、上述した顕微鏡装置1Aの動作を示すフローチャートである。図2を参照しながら、本実施形態による収差補正方法を含む光照射方法及び観察方法について説明する。
 まず、試料台11上に対象物Bを載置することにより、SLM33,36の変調面33a,36aと対象物Bの表面Baとを、対物レンズ12を介して光学的に結合する(結合ステップS10)。次に、傾斜計測ユニット20の光源21から光P3を出射させ、対象物Bの表面からの反射光と参照光P31との干渉光P4を検出器24において検出する。これにより、対象物Bの表面Baにおける干渉縞が観測される。そして、この干渉縞に基づき、制御ユニット40において、対物レンズ12の光軸に垂直な平面に対する対象物Bの表面Baの傾斜角度が取得される(計測ステップS11)。
 続いて、計測ステップS11において取得した傾斜角度に基づいて、対象物Bの表面Baの屈折率差に起因する収差を補正するための補正パターンを含む変調パターンデータが制御ユニット40により作成される(作成ステップS12)。続いて、変調パターンデータに基づいてSLM33及びSLM36が制御され、変調パターンデータに基づく変調パターンがSLM33及び36に表示される(制御ステップS13)。そして、レーザ光源31から出射された光P5がSLM33により変調され、変調後の照射光P1が対物レンズ12を介して対象物Bに照射される(照射ステップS14)。
 続いて、対象物Bにおいて生じた被検出光P2の強度を検出器37において検出する(検出ステップS15)。このとき、被検出光P2は、SLM36によって変調された後、検出器37に入射する。なお、本実施形態では、光スキャナ35によって照射光P1を走査しながら、照射ステップS14及び検出ステップS15が繰り返し(または同時に連続して)行われる。その後、検出ステップS15における検出情報に基づき、制御ユニット40において対象物Bの拡大画像が作成される(画像作成ステップS16)。
 ここで、作成ステップS12において作成される、SLM33,36の変調面33a,36aに表示される変調パターンの詳細について述べる。なお、以下の説明において、対象物Bの表面Baと対物レンズ12の光軸との関係に言及する場合、「対物レンズ12の光軸」とは、対物レンズ12の光軸を対象物Bの表面Baまで延長した直線を意味する。また、SLM33,36の変調面33a,36aと対物レンズ12の光軸との関係に言及する場合、「対物レンズ12の光軸」とは、対物レンズ12の光軸をSLM33,36の各変調面33a,36aまで延長した直線(途中の光軸がミラー等により曲げられるときは、曲がった後の直線)を意味する。通常、これらの直線は、照射光P1及び被検出光P2の光線の中心軸線と一致する。
 図3は、作成ステップS12において作成される変調パターンを概念的に示す図である。図3(a)は、対物レンズ12の光軸12aと対象物Bの表面Baとが互いに垂直である状態を示し、図3(b)は、そのような場合に変調面33a,36aに表示される変調パターンD1を示している。なお、図中には、光軸12aに沿った方向をZ方向とするXYZ直交座標系が示されている。
 変調パターンD1は、対象物Bの表面Baの屈折率差に起因する収差を補正するための補正パターンD3を含んでいる。補正パターンD3は、対物レンズ12の光軸12aに関して点対称なパターンであり、例えば対物レンズ12の光軸12aがSLM33,36の各変調面33a,36aと交わる点Tを中心とした同心円状に広がるパターンである。すなわち、補正パターンD3の中心Oは対物レンズ12の光軸12a上に位置する。
 また、図3(c)は、対象物Bの表面Baが対物レンズ12の光軸12aに垂直な平面Hに対して角度βだけ傾斜している状態を示し、図3(d)は、そのような場合に変調面33a,36aに表示される変調パターンD2を示している。
 変調パターンD2は、上述した補正パターンD3を含んでいる。但し、補正パターンD3の中心Oは、対物レンズ12の光軸12aがSLM33,36の各変調面33a,36aと交わる点Tに対し、表面Baの傾斜方向に距離Eだけずれている。距離Eは、平面Hに対する表面Baの傾斜角度βに比例しており、傾斜角度βに基づいて好適に求められる。本実施形態では、作成ステップS12において、傾斜角度βに基づいて距離Eを決定する(決定ステップS12a)。
 なお、変調面33a,36aにおける補正パターンD3の表示領域の直径d3は、対物レンズ12の瞳径より大きくてもよい。図3(d)のように補正パターンD3を点Tに対して相対的に移動させると、補正パターンD3が存在する領域が点Tに対して偏る。したがって、補正パターンD3の表示領域が小さい場合、光の一部については、補正パターンD3を通らず収差補正が行われない虞がある。補正パターンD3の表示領域の直径d3が対物レンズ12の瞳径より大きいことにより、そのような虞を低減できる。
 傾斜角度βに基づいて距離Eを決定する方法の詳細について、以下に説明する。照射光P1が集光する過程、及び被検出光P2が放射する過程に対象物Bの表面Baなどの屈折率界面が存在し、その界面が光軸に対して垂直である場合には、その界面により生じる収差はほぼ球面収差となる。
 収差が球面収差のみである場合、対物レンズ12の光軸に垂直な面内における収差の分布は、光軸を中心とした同心円状に広がる形となる。SLM33,36に表示される補正パターンも同様の形状となり、その中心は、対物レンズ12の光軸と一致する。SLM33,36の変調面33a,36a内での画素位置を(x,y)、画素ピッチをp、対物レンズ12の光軸と変調面33a,36aとが交わる位置をT(x,y)とすると、そのような場合の球面収差補正パターンφは、例えば次の数式(1)によって求められる。
Figure JPOXMLDOC01-appb-M000001
但し、dは光軸上における屈折率界面(表面Ba)と集光点との距離、λは光の波長、nは周囲媒質の屈折率、nは対象物Bの屈折率、NAは対物レンズ12の開口数、αは、実際の光線の集光位置を光軸上で前後させるデフォーカスパラメータである。
 この球面収差補正パターンφがSLM33に表示されると、レーザ光源31から平面波として出力された光P5がSLM33によって変調される。変調された光P1は、対象物Bの表面Baにおいて回折されつつも、対象物Bにおける所定の深さの一点に集光する。
 図4は、対物レンズ12の光軸A1に垂直な平面Hに対して屈折率界面Baが傾いている状態を示す模式図である。なお、SLM33,36の変調面33a,36a内での画素位置(x,y)に対応する光P1の波面Cでの位置を(x’,y’)とする。つまり、対物レンズ12の光軸と変調面33a,36aとが交わる位置T(x,y)に対応する光P1の波面Cでの位置T’は、(x’,y’)となる。平面Hに対する屈折率界面Baの傾斜角はβである。このとき、屈折率界面Baに対して垂直な直線が新たな光軸A2となり、その光軸A2と、対物レンズ12から出射される光P1(或いは対物レンズ12に入射する光P2)の波面(放物面)Cとの交点Q’(x’+x’,y’+y’)が、新たな収差補正パターンの中心軸となる。つまり、屈折率界面Baが傾いている場合の収差補正パターンφは、次の数式(2)によって求められる。
Figure JPOXMLDOC01-appb-M000002
 そして、以下に示すように、平面Hに対する傾斜方位角α及び傾斜角β、対物レンズ12の開口数NA及び焦点距離f、SLM33,36の画素ピッチp、SLM33,36に対する対物レンズ12の結像倍率M、並びに周囲媒質の屈折率nに基づいて、この新たな補正パターンの中心を元の補正パターン(屈折率界面Baが対物レンズ12の光軸A1に対して垂直である場合の補正パターン)に対して何画素移動させればよいかを容易に求めることができる。
 まず、計測ステップS11において、傾斜計測ユニット20により得られた対象物Bの表面形状に基づいて、傾斜方位角α及び傾斜角βを計測する。一例では、得られた表面形状を多項式近似し、得られた多項式のうち1次項(ax+by、a,bは係数)から、傾斜方位角α及び傾斜角βを導出する。なお、傾斜方位角α及び傾斜角βの導出は、多項式近似に限らない。例えば、多項式近似以外の近似でもよいし、スプライン補間などの補間でもよい。
 次に、作成ステップS12において、対象物Bの表面Baが対物レンズ12の光軸に対して垂直である場合の収差補正パターンの位置を基準とする、傾斜角βによる収差補正への影響を抑制するための収差補正パターンの移動距離(傾斜情報)を決定する(決定ステップS12a)。この移動距離は、以下に示すように、対物レンズ12の開口数NA、焦点距離f、及び結像倍率Mから好適に求められる。
 まず、対物レンズ12から対象物Bへ到達する、あるいは対象物Bから対物レンズ12へ入射する光線と、対物レンズ12の光軸とのなす角度の最大値をθmaxとすると、このθmaxは、対物レンズ12の開口数NA及び周囲媒質の屈折率nに基づいて、次の数式(3)により求められる。
  θmax=asin(NA/n) ・・・(3)
 また、対物レンズ12の瞳の半径L1は、対物レンズ12の開口数NA及び焦点距離fに基づいて、次の数式(4)により求められる。
  L1=NA・f ・・・(4)
また、SLM33,36に対する対物レンズ12の結像倍率M(対物レンズ12とSLM33,36とがM:1の拡大結像関係(SLM33,36側の光径が対物レンズ12側の光径よりも小さい)にある)に基づいて、SLM33,36における光の半径L2は次の数式(5)により求められる。
  L2=L1/M ・・・(5)
 ここで、変調面33a,36aの画素ピッチをpとすると、半径L2に含まれるSLM33,36の画素数Rは、次の数式(6)により求められる。
  R=L2/p ・・・(6)
上記の数式(3)及び数式(6)から、対物レンズ12の光軸と光線とのなす角度1°あたりの画素数rは、次の数式(7)により求められる。
  r=R/θmax=(NA・f)/(M・p) ・・・(7)
 収差補正パターンの移動距離(画素数)は、傾斜角βと画素数rとの積により求められる。一例では、傾斜方位角α及び傾斜角βに基づいて、x軸方向への傾斜角成分βxと、y軸方向への傾斜角成分βyとを算出する。収差補正パターンのx軸方向への移動距離(画素数)xと、y軸方向への移動距離(画素数)yとは、それぞれ次の数式(8),(9)により求められる。
  x=βx・r ・・・(8)
  y=βy・r ・・・(9)
これらを数式(2)に適用することにより、SLM33,36に表示すべき収差補正パターンが導出される。
 以上に説明した本実施形態の顕微鏡装置1A及び収差補正方法によって得られる効果について説明する。
 上述したように、本発明者は、対象物Bの表面Baが対物レンズ12の光軸12aに対して傾斜している場合には、これらが略垂直である場合の補正パターンD3を、傾斜角βに応じた距離だけ傾斜方向に移動させることにより、収差を好適に補正できることを見出した。すなわち、本実施形態では、対物レンズ12の光軸12aと対象物Bの表面Baとが略垂直である場合の補正パターンD3を変調面33a,36a内において移動させたパターンを含む変調パターンD2を、変調面33a,36aに表示させる。そして、この補正パターンD3の移動距離を、対象物Bの表面Baの傾斜角βに基づいて決定する。これにより、複雑な計算をすることなく、収差補正を短時間で容易に行うことができる。
 図5(a)及び図5(b)は、本実施形態による効果を示す画像であって、対物レンズ12として乾燥対物レンズを用い、対象物Bとして生体試料の内部を観察したときの血管の様子を示している。図中の縦軸は、生体試料の表面からの深さである。図5(a)は本実施形態の収差補正方法を適用して得られた画像であって、図5(b)は収差の補正を行わずに得られた画像である。
 図5(b)に示されるように、収差の補正を行わない場合、深さ500μmを超えると収差の影響によって血管がぼやけて見える。これに対し、図5(a)に示されるように、本実施形態の収差補正方法を適用した場合、深さ1000μmを超える範囲まで血管が明瞭に見える。このように、本実施形態によれば、対物レンズ12が乾燥対物レンズであって対象物Bの表面Baに起因する収差が大きい場合であっても、収差を好適に補正し、より深い部分まで明瞭な画像を得ることができる。また、対物レンズ12が乾燥対物レンズ或いは液浸対物レンズであることにより、非接触・低侵襲での簡易な計測が可能となる。
 なお、本実施形態のSLM33,36は、位相変調を複数の画素毎に行うタイプのSLMであればよく、例えばLCOS(Liquid Crystal On Silicon)型のSLM、或いはデフォーマブルミラー等が適用され得る。デフォーマブルミラーは、メンブレン型及びセグメント型のいずれであってもよい。LCOS型SLMはデフォーマブルミラーと比べて画素数が多く、収差を高精度で補正できる。また、デフォーマブルミラーはLCOS型SLMと比べて高速に動作でき、作業時間を短縮できる。
 本実施形態の顕微鏡装置1Aは、レーザ走査型2光子励起蛍光顕微鏡(TPFLM)であってもよい。TPFLMでは、2光子吸収過程により光子密度が極めて高くなる部分(対物レンズ12で励起光を集光した部分)においてのみ、蛍光が生じる。また励起光には近赤外の光が用いられるが、この励起光は、可視光に比べて生体に対する吸収、散乱が小さくなる。蛍光の発生が局所的である点、及び吸収や散乱が小さい点が、生体試料の深部観察に適している。そして、生体試料の深部を観察する際に、収差補正を短時間で容易に行うことができる本実施形態の収差補正方法は極めて有用である。本実施形態の収差補正方法によれば、生体試料の深部の解像度の向上、及び従来のTPFLMでは観察が難しかった深さでの観察を容易にすることができる。
 (実施例)
 上記実施形態の一実施例について説明する。本実施例では、対象物Bとして、粒径3μmの球形の蛍光ビーズをエポキシ樹脂に内包させたモデル試料を作成した。そして、ゴニオメータを用いて、モデル試料の表面を対物レンズ12の光軸12aに垂直な平面から8°傾け、観察を行った。
 三次元のビーズ分布を得るために、対物レンズ12の光軸12aに垂直な面内において2軸のガルバノスキャナにて励起光を走査し、集光点位置において生じた蛍光をPMTなどの検出器により検出し、二次元画像を得た。その後、対物レンズ12若しくは試料台11を光軸方向に移動させながら上記の操作を繰り返し行い、深さがそれぞれ異なる複数の画像を得た。このとき、対物レンズ12と試料台11との距離を、600μmから800μmまで変化させた。そして、これらの画像を再構成して、三次元画像を得た。なお、対物レンズ12として乾燥対物レンズ(20倍、NA=0.7)を用い、モデル試料の周囲媒質を空気とした。
 図6(a)~図6(c)は、本実施例において得られた三次元画像を深さ方向に切断して得られた二次元画像である。図6(a)は上記実施形態の収差補正方法を適用したときの画像であり、図6(b)は収差の補正を行わずに(すなわち波面が光軸に対して垂直な従来の平行光を照射して)得られた画像であり、図6(c)は補正パターンを移動せずに(図3(a)参照)得られた画像である。なお、図6(a)では、移動距離(画素数)は65画素であった。本実施例では周囲媒質を空気としたので、周囲媒質とモデル試料(エポキシ樹脂)との間に屈折率差が存在する。従って、モデル試料の表面において収差が生じる。更に、モデル試料の表面が傾いているので、球面収差以外の収差も生じる。
 図6(b)を参照すると、上述した収差の影響を受けて、画像中の蛍光ビーズの輪郭が深さ方向に伸びている。また、補正パターンを移動しなかった場合(図6(c))には、収差の補正を行わなかった場合(図6(b))と比較して蛍光ビーズの最大蛍光強度が0.4倍となり、収差補正を行わない場合よりも不鮮明な画像となった。これは、球面収差のみを補正する補正パターンでは他の収差(例えば非点収差)が残ること、及び、波面が適切でないために却って他の収差が大きくなったことが原因であると考えられる。
 これに対し、図6(a)を参照すると、上記実施形態の収差補正方法を適用した場合、球面収差以外の他の収差も良好に補正されることにより、画像中の蛍光ビーズの輪郭形状が、球形に近くなり顕著に改善されていることがわかる。また、収差の補正を行わなかった場合(図6(b))と比較して蛍光ビーズの最大蛍光強度が6.5倍となり、格段に明るくなった。すなわち、本実施例により、対象物Bの表面Baが光軸12aに対して傾斜している場合に、上記実施形態の収差補正方法を適用することによって収差を精度良く補正できることが示された。
 (第1変形例)
 図7は、上記実施形態の一変形例を概念的に示す図である。上記実施形態ではSLM33,36として複数の画素毎に変調を制御するタイプのSLMを例示したが、SLM33,36はこれに限られず、例えば変調面33a,36a上で変調パターンが固定されたタイプのSLMであってもよい。その場合、図7(a)及び図7(b)に示されるように、対物レンズ12の光軸12aと対象物Bの表面Baとが略垂直である場合の収差補正パターンD3を有する変調面33a,36a自体を、対物レンズ12の光軸12aに対して光軸12aと交差する方向に相対的に距離Eだけ移動させる。そして、移動距離Eを、平面Hに対する表面Baの傾斜角度βに基づいて決定する。
 このような方法により、上記実施形態と同様に、複雑な計算をすることなく、収差補正を短時間で容易に行うことができる。なお、この場合、前述した数式(8)及び(9)は、それぞれ次の数式(10)及び(11)に置き換えられる。
  x=βx・L2/θmax ・・・(10)
  y=βy・L2/θmax ・・・(11)
そして、変調面33a,36aを、x軸方向にx、y軸方向にyだけそれぞれ移動させるとよい。
 また、このような方法は、複数の画素毎に変調を制御するタイプのSLMであっても適用できる。まず、移動距離Eを、平面Hに対する表面Baの傾斜角度βに基づいて決定する。そして、補正パターンD3の中心Oが対物レンズ12の光軸12a上に位置するように補正パターンD3をSLM33,36に表示させ、そのSLM33,36自体を光軸12aに対して相対的に距離Eだけ移動させる。このような方法であっても、上記実施形態と同様の効果を得ることができる。
 図8は、本変形例の収差補正方法を示すフローチャートである。図8に示されるように、本変形例では、まず、対物レンズ12の光軸に垂直な平面に対する対象物Bの表面Baの傾斜角度を取得する(計測ステップS11)。次に、決定ステップS21において、変調面33a,36aの移動距離Eを、平面Hに対する表面Baの傾斜角度βに基づいて決定する。そして、結合ステップS22において、収差補正パターンD3を有する変調面33a,36aを、対物レンズ12の光軸12aに対して光軸12aと交差する方向に相対的に距離Eだけ移動させる。この状態で、試料台11上に対象物Bを載置することにより、SLM33,36の変調面33a,36aと対象物Bの表面Baとを、対物レンズ12を介して光学的に結合する。続いて、レーザ光源31から出射された光P5をSLM33により変調する(変調ステップS23)。そして、変調後の照射光P1を対物レンズ12を介して対象物Bに照射する(照射ステップS14)。以降、検出ステップS15及び画像作成ステップS16を、上記実施形態と同様に行う。
 図9は、本変形例の収差補正方法を実現できる顕微鏡装置1Bの構成を示す図である。顕微鏡装置1Bは、図1に示された顕微鏡装置1Aの構成に加えて、移動機構33b,36bを更に備える。移動機構33bは、SLM33を支持しており、変調面33aを、対物レンズ12の光軸12aに対して光軸12aと交差する方向に相対的に移動させる。同様に、移動機構36bは、SLM36を支持しており、変調面36aを、対物レンズ12の光軸12aに対して光軸12aと交差する方向に相対的に移動させる。
 移動機構33b,36bは、制御ユニット40のコンピュータ43によって制御される。コンピュータ43は、平面Hに対する表面Baの傾斜角βに基づいて、変調面33a,36aの移動距離を決定する。このような顕微鏡装置1Bにより、上記実施形態と同様に、複雑な計算をすることなく、収差補正を短時間で容易に行うことができる。なお、顕微鏡装置1Bは、SLM33,36を移動させる代わりに、或いはSLM33,36の移動とともに、対物レンズ12を光軸12aと交差する方向に移動させる機構を備えてもよい。
 (第2変形例)
 上記実施形態では、対象物Bの表面形状を多項式近似し、得られた多項式のうち1次項から傾斜方位角α及び傾斜角βを導出する方法(言い換えれば、対象物Bの表面Baを一つの平坦面に近似する方法)を例示した。これ以外にも、例えば対物レンズ12の光軸12aを複数の領域に分割し、各領域の傾斜角βに基づいて、各領域に対応する補正パターンD3の移動距離を決定してもよい。
 図10に示されるように、例えば対象物Bの表面Baが2つの面Ba1,Ba2によって構成されていると近似できる場合、面Ba1に関する傾斜方位角α及び傾斜角β、並びに面Ba2に関する傾斜方位角α及び傾斜角βが、それぞれ計測され得る。そして、決定ステップS12aにおいて、傾斜方位角α及び傾斜角βに基づいて、面Ba1に起因する収差を補正するための部分的な補正パターンの移動方向及び移動距離を算出する。同様に、決定ステップS12aにおいて、傾斜方位角α及び傾斜角βに基づいて、面Ba2に起因する収差を補正するための部分的な補正パターンの移動方向及び移動距離を算出する。そして、移動後の各部分的補正パターンを重ね合わせることにより、収差補正のための変調パターンを作成することができる。このことは、例えば図11に示されるように、対象物Bの表面Baが多数の面Baaによって構成されていると近似できる場合においても同様である。
 本変形例によれば、傾斜角βが領域毎に異なるような複雑な形状を対象物Bの表面Baが有するような場合であっても、上記実施形態と同様に、複雑な計算をすることなく、収差補正を短時間で容易に行うことができる。
 (第3変形例)
 図12は、上記実施形態の第3変形例に係る顕微鏡装置1Cの構成を示す図である。顕微鏡装置1Cにおいて、図1に示された顕微鏡装置1Aと異なる点は、傾斜計測ユニット20を備えておらず、その代わりに形状記憶ユニット60を備える点である。
 形状記憶ユニット60は、本実施形態における記憶部であって、対象物Bの表面Baの傾斜角βに関する情報を予め記憶する。そして、図2に示された決定ステップS12aの際に、コンピュータ43は、形状記憶ユニット60に記憶された情報に基づいて、補正パターンD3の移動距離を決定する。このような収差補正方法及び顕微鏡装置1Cによれば、図2に示された計測ステップS11を省略して、作業時間をより短縮することができる。特に、例えば半導体デバイスのように、表面Baの傾斜方位角α及び傾斜角βが既知である場合に好適である。
 なお、本変形例の顕微鏡装置1Cでは傾斜計測ユニット20が不要であるため、顕微鏡ユニット10Aは、反射ミラー15(図1参照)を有しておらず、ビームスプリッタ14(図1参照)に代えて反射ミラー16を有する。その他の顕微鏡ユニット10Aの構成は、上記実施形態の顕微鏡ユニット10と同様である。
 (第4変形例)
 上記実施形態では、傾斜計測ユニット20において、マイケルソン干渉計を用いて対象物Bの表面形状を計測している。対象物Bの表面Baの傾斜方位角α及び傾斜角βを計測する方式としては、これ以外にも様々な方式がある。例えば、プレスキャンにより得られた、深さがそれぞれ異なる複数の画像に含まれる対象物Bの輪郭から、対象物Bの表面形状を計測することができる。或いは、対象物Bの表面Baに超音波を照射し、その反射波を計測することによって、対象物Bの表面形状を計測することができる。または、光切断法を用いることもできる。
 図13(a)及び図13(b)は、プレスキャンにより得られたマウスの脳画像である。図13(a)は対象物Bの頂部から光軸方向に120μmの深さ位置の画像であり、図13(b)は対象物Bの頂部から光軸方向に560μmの深さ位置の画像である。これらの図に示されるように、画像には、自家蛍光による対象物Bの輪郭Bc(対象物Bと周囲媒質との境界)が明瞭に現れている。これらの画像の深さ位置、及び輪郭Bcの変化に基づいて、表面Baの傾斜方位角α及び傾斜角βを好適に求めることができる。
 (第5変形例)
 上記実施形態では、対象物Bが1つの屈折率界面を有している場合を想定している。しかし、対象物Bは複数の屈折率界面を有していてもよい。図14は、対象物Bが内部に複数の屈折率界面B12,B23を有する場合の状態を示す図である。なお、対物レンズ12の光軸A1に垂直な平面H12に対して屈折率界面B12は角度β12だけ傾いており、対物レンズ12の光軸A1に垂直な平面H23に対して屈折率界面B23は角度β23だけ傾いている。
 このとき、屈折率界面B12に対して垂直な直線が新たな光軸A12となり、その光軸A12と、対物レンズ12から出射される光P1(或いは対物レンズ12に入射する光P2)の波面(放物面)Cとの交点Q’(x’+x’,y’+y’)が得られる。同様に、屈折率界面B23に対して垂直な直線が新たな光軸A23となり、その光軸A23と波面Cとの交点Q’(x’+x’,y’+y’)が得られる。
 そして、屈折率界面B12及びB23が傾いている場合の収差補正パターンφは、次の数式(12)によって求められる。数式(12)によって得られた収差補正パターンφを用いれば、対象物Bが内部に複数の屈折率界面B12,B23を有している場合でも、1つの空間光変調器を用いて、収差補正を行うことができる。また、複数の空間光変調器を用いる場合、それぞれの屈折率界面B12,B23における傾きを考慮した収差補正パターンφを求め、それぞれの空間光変調器を制御してもよい。
Figure JPOXMLDOC01-appb-M000003
但し、dは光軸A1上における屈折率界面B12と屈折率界面B23との距離、dは光軸上における屈折率界面B23と集光点との距離、nは屈折率界面B12より対物レンズ12側に位置する部分の屈折率、nは対象物Bの屈折率界面B12と屈折率界面B23との間の屈折率、nは屈折率界面B23より対物レンズ12とは反対側に位置する部分の屈折率である。x、yは、屈折率界面B12の傾きから求めることができ、x、yは、屈折率界面B23の傾きから求めることができる。
 収差補正方法及び光学装置は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態及び各変形例を、必要な目的及び効果に応じて互いに組み合わせてもよい。例えば、第3変形例は図1及び図2に示された実施形態の変形例として説明されているが、第1変形例においても、図9に示された傾斜計測ユニット20の代わりに形状記憶ユニット60を設け、図8に示された決定ステップS21の際に、コンピュータ43は、形状記憶ユニット60に記憶された情報に基づいて変調面33a,36aの移動距離を決定してもよい。また、形状記憶ユニット60の代わりに、補正パターンを記憶する記憶ユニット(記憶部)を備えてもよい。また、記憶ユニットは、補正パターンをZernike多項式などの多項式に展開し、多項式の各項の係数を記憶してもよい。
 また、上述した実施形態及び各変形例において、SLMに表示される変調パターンは、補正パターンそのものでなくてもよい。例えば、対象物Bに照射される照射光P1の集光形状や集光位置を制御するためのパターンといった他のパターンと補正パターンとを重畳した変調パターンであってもよい。また、上記実施形態及び各変形例では、光学装置として顕微鏡装置を例示しているが、収差補正方法は、例えばレーザ加工装置といった様々な光学装置に適用可能である。
 また、傾斜計測ユニット20は、ラインレーザとカメラを組み合わせて計測を行う光切断法による計測ユニットでもよいし、対物レンズ12の光軸方向に対象物Bを移動させて、合焦点位置を計測する計測ユニットでもよい。また、2つ以上の検出器が光学系に内蔵されてもよい。
 また、顕微鏡装置1A、1B、及び1Cは、正立型顕微鏡の構成を有するが、これに限らず、倒立型顕微鏡の構成を有してもよい。倒立型顕微鏡の場合、ガラス面が基準面となり、対象物Bを押し付けるが、押し付けられずに平面にならなかった部分を計測ユニット20で計測することができる。
 また、顕微鏡装置1A、1B、及び1Cでは、被検出光P2は、光スキャナ35にデスキャンされて検出器37で検出されるが、これに限らず、被検出光P2が光スキャナ35にデスキャンされずに検出器37で検出されてもよい。また、傾斜情報は、傾斜角度自体であってもよい。
 上記実施形態による収差補正方法では、空間光変調器の変調面と対象物とを、対物レンズを介して光学的に結合する結合ステップと、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて空間光変調器を制御する制御ステップと、を含む構成としている。収差補正方法において、変調パターンにおける補正パターンの位置は、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて設定される。
 また、上記実施形態による光学装置では、変調面を有する空間光変調器と、変調面と対象物との間の光路上に配置された対物レンズと、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて空間光変調器を制御する制御部と、を備える構成としている。光学装置において、変調パターンにおける補正パターンの位置は、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて設定される。
 上記実施形態による収差補正方法では、空間光変調器の変調面と対象物とを、対物レンズを介して光学的に結合する結合ステップと、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて空間光変調器を制御する制御ステップと、を含む構成としている。収差補正方法において、空間光変調器及び対物レンズは、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて配置される。
 また、上記実施形態による光学装置では、変調面を有し、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて光を変調する空間光変調器と、変調面と対象物との間の光路上に配置された対物レンズと、対物レンズ及び空間光変調器の少なくともいずれか一方を対物レンズの光軸と交差する方向に移動させる移動機構と、移動機構を制御する制御部と、を備える構成としている。光学装置において、制御部は、対物レンズの光軸に垂直な平面に対する対象物の屈折率界面の傾斜情報に基づいて、移動機構を制御する。
 また、上記の収差補正方法は、対象物の屈折率界面の傾斜角度を計測する計測ステップを更に含み、傾斜情報は、計測ステップにより計測された傾斜角度に基づいて決定されてもよい。同様に、上記の光学装置は、対象物の屈折率界面の傾斜角度を計測する計測部を更に備え、傾斜情報は、計測部により計測された傾斜角度に基づいて決定されてもよい。これにより、傾斜角度を計測して補正パターンの移動距離を好適に決定することができる。
 この場合、収差補正方法の計測ステップでは、対象物の屈折率界面からの深さがそれぞれ異なる対象物の複数の画像を取得し、複数の画像に基づいて傾斜角度を求めてもよい。同様に、光学装置の計測部は、対象物の屈折率界面からの深さがそれぞれ異なる対象物の複数の画像を取得し、複数の画像に基づいて傾斜角度を求めてもよい。これにより、傾斜角度を容易に計測することができる。
 また、上記の収差補正方法では、傾斜情報は、予め記憶された対象物の屈折率界面の傾斜角度に関する情報に基づいて決定されてもよい。同様に、上記の光学装置は、対象物の屈折率界面の傾斜角度に関する情報を予め記憶する記憶部を更に備え、傾斜情報は、記憶部に記憶された情報に基づいて決定されてもよい。これにより、作業時間をより短縮することができる。
 また、上記の収差補正方法及び光学装置では、変調面における補正パターンの領域の直径が、対物レンズの瞳径より大きくてもよい。補正パターン(若しくは変調面)を光軸に対して相対的に移動させると、補正パターンが存在する領域が光軸に対して偏る。したがって、補正パターンの領域が小さい場合、光の一部については、補正パターンを通らず収差補正が行われない虞がある。補正パターンの領域の直径が対物レンズの瞳径より大きいことにより、そのような虞を低減できる。
 また、上記の収差補正方法において、計測ステップでは、対象物の屈折率界面を複数の領域に分割し、各領域における傾斜角度を計測し、傾斜情報は、各領域における傾斜角度に基づいて決定されてもよい。同様に、上記の光学装置の計測部は、対象物の屈折率界面を複数の領域に分割し、各領域における傾斜角度を計測し、傾斜情報は、各領域における傾斜角度に基づいて決定されてもよい。これにより、傾斜角度が領域毎に異なるような複雑な形状を対象物の屈折率界面が有する場合であっても、上述した収差補正方法及び光学装置の作用及び効果を好適に得ることができる。
 実施形態は、収差補正方法及び光学装置として利用可能である。
 1A,1B,1C…顕微鏡装置、10,10A…顕微鏡ユニット、11…試料台、12…対物レンズ、12a…光軸、13…対物レンズ移動機構、14…ビームスプリッタ、15,16…反射ミラー、20…傾斜計測ユニット、21…コヒーレント光源、22…ビームスプリッタ、23…参照光用ミラー、24…検出器、30…画像取得ユニット、31…レーザ光源、32…ビームエキスパンダ、33,36…SLM、33a,36a…変調面、33b,36b…移動機構、34…ダイクロイックミラー、35…光スキャナ、37…検出器、37a…集光レンズ、38…フィルタ、39a…ミラー、39b…反射部材、40…制御ユニット、41…入力装置、42…表示装置、43…コンピュータ、51…4f光学系、60…形状記憶ユニット、A1,A2…光軸、B…対象物、Ba…表面、Bc…輪郭、D1,D2…変調パターン、D3…収差補正パターン、H…平面、P1…照射光、P2…被検出光、P3…コヒーレント光、P4…干渉光、P5…光、O…補正パターンの中心。

Claims (14)

  1.  空間光変調器の変調面と対象物とを、対物レンズを介して光学的に結合する結合ステップと、
     前記対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて前記空間光変調器を制御する制御ステップと、
    を含み、
     前記変調パターンにおける前記補正パターンの位置は、前記対物レンズの光軸に垂直な平面に対する前記対象物の前記屈折率界面の傾斜情報に基づいて設定される、収差補正方法。
  2.  空間光変調器の変調面と対象物とを、対物レンズを介して光学的に結合する結合ステップと、
     前記対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて前記空間光変調器を制御する制御ステップと、
    を含み、
     前記空間光変調器及び前記対物レンズは、前記対物レンズの光軸に垂直な平面に対する前記対象物の前記屈折率界面の傾斜情報に基づいて配置される、収差補正方法。
  3.  前記対象物の前記屈折率界面の傾斜角度を計測する計測ステップを更に含み、
     前記傾斜情報は、前記計測ステップにより計測された前記傾斜角度に基づいて決定される、請求項1または2に記載の収差補正方法。
  4.  前記計測ステップでは、前記対象物の前記屈折率界面からの深さがそれぞれ異なる前記対象物の複数の画像を取得し、前記複数の画像に基づいて前記傾斜角度を求める、請求項3に記載の収差補正方法。
  5.  前記傾斜情報は、予め記憶された前記対象物の前記屈折率界面の傾斜角度に関する情報に基づいて決定される、請求項1または2に記載の収差補正方法。
  6.  前記変調面における前記補正パターンの領域の直径が、前記対物レンズの瞳径より大きい、請求項1~5のいずれか一項に記載の収差補正方法。
  7.  前記計測ステップでは、前記対象物の前記屈折率界面を複数の領域に分割し、各領域における前記傾斜角度を計測し、
     前記傾斜情報は、前記各領域における前記傾斜角度に基づいて決定される、請求項3に記載の収差補正方法。
  8.  変調面を有する空間光変調器と、
     前記変調面と対象物との間の光路上に配置された対物レンズと、
     前記対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて前記空間光変調器を制御する制御部と、
    を備え、
     前記変調パターンにおける前記補正パターンの位置は、前記対物レンズの光軸に垂直な平面に対する前記対象物の前記屈折率界面の傾斜情報に基づいて設定される、光学装置。
  9.  変調面を有し、対象物の屈折率界面に起因する収差を補正するための補正パターンを含む変調パターンに基づいて光を変調する空間光変調器と、
     前記変調面と前記対象物との間の光路上に配置された対物レンズと、
     前記対物レンズ及び前記空間光変調器の少なくともいずれか一方を前記対物レンズの光軸と交差する方向に移動させる移動機構と、
     前記移動機構を制御する制御部と、
    を備え、
     前記制御部は、前記対物レンズの前記光軸に垂直な平面に対する前記対象物の前記屈折率界面の傾斜情報に基づいて、移動機構を制御する、光学装置。
  10.  前記対象物の前記屈折率界面の傾斜角度を計測する計測部を更に備え、
     前記傾斜情報は、前記計測部により計測された前記傾斜角度に基づいて決定される、請求項8または9に記載の光学装置。
  11.  前記計測部は、前記対象物の前記屈折率界面からの深さがそれぞれ異なる前記対象物の複数の画像を取得し、前記複数の画像に基づいて前記傾斜角度を求める、請求項10に記載の光学装置。
  12.  前記対象物の前記屈折率界面の傾斜角度に関する情報を予め記憶する記憶部を更に備え、
     前記傾斜情報は、前記記憶部に記憶された前記情報に基づいて決定される、請求項8または9に記載の光学装置。
  13.  前記変調面における前記補正パターンの領域の直径が、前記対物レンズの瞳径より大きい、請求項8~12のいずれか一項に記載の光学装置。
  14.  前記計測部は、前記対象物の前記屈折率界面を複数の領域に分割し、各領域における前記傾斜角度を計測し、
     前記傾斜情報は、前記各領域における前記傾斜角度に基づいて決定される、請求項10に記載の光学装置。
PCT/JP2018/015080 2017-04-14 2018-04-10 収差補正方法及び光学装置 WO2018190339A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197020383A KR102490763B1 (ko) 2017-04-14 2018-04-10 수차 보정 방법 및 광학 장치
US16/604,312 US11454793B2 (en) 2017-04-14 2018-04-10 Aberration correction method and optical device
CN201880024335.3A CN110520779B (zh) 2017-04-14 2018-04-10 像差校正方法和光学装置
EP18783927.9A EP3611549B1 (en) 2017-04-14 2018-04-10 Aberration correction method and optical device
JP2019512527A JP7033123B2 (ja) 2017-04-14 2018-04-10 収差補正方法及び光学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-080749 2017-04-14
JP2017080749 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018190339A1 true WO2018190339A1 (ja) 2018-10-18

Family

ID=63793391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015080 WO2018190339A1 (ja) 2017-04-14 2018-04-10 収差補正方法及び光学装置

Country Status (6)

Country Link
US (1) US11454793B2 (ja)
EP (1) EP3611549B1 (ja)
JP (1) JP7033123B2 (ja)
KR (1) KR102490763B1 (ja)
CN (1) CN110520779B (ja)
WO (1) WO2018190339A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220252512A1 (en) * 2021-02-08 2022-08-11 Kla Corporation Three-dimensional imaging with enhanced resolution
CN113985539B (zh) * 2021-11-04 2022-09-23 中国人民解放军国防科技大学 阵列光束倾斜像差校正系统
CN114894712B (zh) * 2022-03-25 2023-08-25 业成科技(成都)有限公司 光学量测设备及其校正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054909A (ja) * 2000-08-11 2002-02-20 Dainippon Screen Mfg Co Ltd 画像取得装置
JP2010075997A (ja) 2008-09-01 2010-04-08 Hamamatsu Photonics Kk 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
JP2011180290A (ja) 2010-02-26 2011-09-15 Hamamatsu Photonics Kk 収差補正方法、この収差補正方法を用いた顕微鏡観察方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
JP2014521122A (ja) * 2011-07-14 2014-08-25 ホワルド フグヘス メドイクアル インストイトウテ 適応光学系を有する顕微鏡検査法
JP2015219502A (ja) * 2014-05-21 2015-12-07 浜松ホトニクス株式会社 光刺激装置及び光刺激方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265898B2 (ja) * 2012-08-16 2018-01-24 シチズン時計株式会社 収差補正光学ユニット及びレーザー顕微鏡
JP6772442B2 (ja) * 2015-09-14 2020-10-21 株式会社ニコン 顕微鏡装置および観察方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054909A (ja) * 2000-08-11 2002-02-20 Dainippon Screen Mfg Co Ltd 画像取得装置
JP2010075997A (ja) 2008-09-01 2010-04-08 Hamamatsu Photonics Kk 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
JP2011180290A (ja) 2010-02-26 2011-09-15 Hamamatsu Photonics Kk 収差補正方法、この収差補正方法を用いた顕微鏡観察方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
JP2014521122A (ja) * 2011-07-14 2014-08-25 ホワルド フグヘス メドイクアル インストイトウテ 適応光学系を有する顕微鏡検査法
JP2015219502A (ja) * 2014-05-21 2015-12-07 浜松ホトニクス株式会社 光刺激装置及び光刺激方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOYA MATSUMOTOTAKASHI INOUEAKIYUKI MATSUMOTOSHIGETOSHI OKAZAKI: "Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator", BIOMEDICAL OPTICS EXPRESS, vol. 6, no. 7, 2015, pages 2575 - 2587
See also references of EP3611549A4

Also Published As

Publication number Publication date
US20200150423A1 (en) 2020-05-14
CN110520779B (zh) 2021-10-29
KR102490763B1 (ko) 2023-01-20
EP3611549B1 (en) 2024-05-29
CN110520779A (zh) 2019-11-29
KR20190133145A (ko) 2019-12-02
JPWO2018190339A1 (ja) 2020-02-27
US11454793B2 (en) 2022-09-27
EP3611549A4 (en) 2021-01-20
JP7033123B2 (ja) 2022-03-09
EP3611549A1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US10302569B2 (en) Microscope device and image acquisition method
CN106461925B (zh) 用于具有自适应光学系统的拉曼散射光学显微镜的系统和方法
US8731272B2 (en) Computational adaptive optics for interferometric synthetic aperture microscopy and other interferometric imaging
JP6518041B2 (ja) 光刺激装置及び光刺激方法
US20110267663A1 (en) Holographic image projection method and holographic image projection system
JP7033123B2 (ja) 収差補正方法及び光学装置
JP6850684B2 (ja) 光計測装置
JP2014098835A (ja) 顕微鏡用照明光学系およびこれを用いた顕微鏡
JP6300673B2 (ja) 位相変調素子調整システムおよび位相変調素子調整方法
JP6300739B2 (ja) 画像取得装置および画像取得方法
JP2011128572A (ja) ホログラム像投影方法およびホログラム像投影装置
JP6539391B2 (ja) 顕微鏡装置及び画像取得方法
Booth et al. Adaptive optics for fluorescence microscopy
EP3853651B1 (en) Confocal laser scanning microscope configured for generating line foci
CN107209359B (zh) 图像取得装置以及图像取得方法
US20210373307A1 (en) Method for digitally correcting an optical image of a sample by means of a microscope, and microscope
JP6030180B2 (ja) 収差補正方法、この収差補正方法を用いた顕微鏡観察方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
KR20240041450A (ko) 다중 배율 렌즈 기반 광 회절 단층촬영장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512527

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197020383

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018783927

Country of ref document: EP

Effective date: 20191114