WO2018189900A1 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
WO2018189900A1
WO2018189900A1 PCT/JP2017/015364 JP2017015364W WO2018189900A1 WO 2018189900 A1 WO2018189900 A1 WO 2018189900A1 JP 2017015364 W JP2017015364 W JP 2017015364W WO 2018189900 A1 WO2018189900 A1 WO 2018189900A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
optical path
correction value
light
wiring
Prior art date
Application number
PCT/JP2017/015364
Other languages
French (fr)
Japanese (ja)
Inventor
真裕 加藤
康太 今西
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2017/015364 priority Critical patent/WO2018189900A1/en
Publication of WO2018189900A1 publication Critical patent/WO2018189900A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a light irradiation apparatus.
  • Patent Document 1 discloses a laser annealing apparatus that captures a wiring of a substrate being transported with a CCD camera and adjusts an irradiation position of a laser beam based on the obtained image.
  • the TFT formation region cannot be accurately irradiated with a laser beam.
  • the laser beam can be accurately irradiated to the TFT formation region along the first wiring, but the second wiring having a different direction from the first wiring is used.
  • the laser beam cannot be accurately irradiated to the TFT forming region along the line.
  • An object of the present invention is to improve the accuracy of determining a position where light should be irradiated in a light irradiation apparatus, and to prevent light irradiation to a position where light should not be irradiated.
  • a light irradiation apparatus includes: a light source; a transport unit that transports a substrate having a surface to be irradiated with light from the light source at a constant speed along a predetermined direction; and the light from the light source is An optical path correction unit that corrects an optical path of the light based on a first correction value so that the predetermined area of the surface is irradiated; the light from the light source is not irradiated outside the predetermined area of the surface; An optical path blocking unit that blocks an optical path based on a second correction value; a first image including a first wiring of a plurality of wirings provided on the surface along a transport direction of the substrate or a vertical direction thereof; A first imaging unit for imaging; a second imaging unit for imaging a second image including a second wiring of the plurality of wirings; and a first arithmetic unit for calculating the first correction value based on the first image And based on the second image, A second calculation unit that calculates two
  • the first imaging unit, the second imaging unit, and the optical path blocking unit are provided in the light irradiation device. Therefore, since it is possible to perform alignment at two locations in one head, it is possible to improve the accuracy of determining the position where light should be irradiated and to block the light path of unnecessary light by the light path blocking unit. It is possible to prevent light from being irradiated to a position that should not be irradiated.
  • FIG. 1 is a schematic side view of a laser annealing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing a positional relationship between a substrate and a head. The top view which shows the detail of a head.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a schematic cross-sectional view taken along the line V-V in FIG. 3.
  • the control block diagram of the laser annealing apparatus of FIG. 2 is a control flowchart of the laser annealing apparatus of FIG. 2 is a control flowchart of the laser annealing apparatus of FIG.
  • a laser annealing apparatus (light irradiation apparatus) 1 of this embodiment is a TFT formation region (predetermined region) of an amorphous silicon film formed on a mother substrate (substrate) 10 which is a transparent glass substrate. ) Is irradiated with a laser beam (light).
  • the laser annealing apparatus 1 includes a transport unit 20 that transports the mother substrate 10 along a predetermined horizontal direction, a laser light source (light source) 30, and an optical mechanism for condensing a laser beam emitted from the laser light source 30. 40, a first imaging unit 50a and a second imaging unit 50b, and a controller 60.
  • the mother substrate 10 is also simply referred to as a substrate 10.
  • FIG. 2 shows a plan view of the mother substrate 10 having a surface provided with a plurality of wirings 11 extending substantially along one direction (vertical direction in the figure), and the head 43.
  • a TFT formation region 12 is defined on the surface of the mother substrate 10 along each wiring 11 indicated by a broken line in the drawing.
  • the pattern of the wiring 11 is schematically shown, and only a part of the TFT formation region 12 is shown.
  • FIG. 2 shows a single mother substrate 10 on which eight cell substrates 13 that are surrounded by a solid line in the drawing are scheduled.
  • the plurality of wirings 11 are preliminarily intended to be parallel to each other, but are not necessarily aligned in a single direction.
  • the direction of wiring it includes “a direction along a single direction” including a direction slightly deviated from a direction that exactly matches a predetermined single direction (A direction in the figure).
  • the laser annealing apparatus 1 includes an optical path correction unit that adjusts the optical path of a laser beam so that the laser beam from the laser light source 30 is irradiated onto the TFT formation region 12 on the surface of the substrate 10, and a portion other than the TFT formation region 12. And an optical path blocking unit that blocks the optical path of the laser beam so as not to be irradiated.
  • a mask 44 is mounted on each head 43.
  • six heads 43 are arranged for one mother substrate 10.
  • the six heads 43 are moved along the direction orthogonal to the transport direction of the substrate 10 (the direction of the double arrow B) by the drive unit 46 (see FIG. 1).
  • the head 43 may be moved by the drive unit 46 along an arbitrary direction that intersects the transport direction of the substrate 10 as well as the direction orthogonal to the transport direction of the substrate 10.
  • the number of heads 43 and the arrangement manner are not particularly limited.
  • Such a head 43 and the drive part 46 are one of the members which comprise an optical path correction unit.
  • the transport unit 20 includes a stage 21 for transporting the substrate 10 at a constant speed in a constant direction (arrow A direction).
  • the substrate 10 faces the surface (opposite surface) opposite to the surface on which the wiring is provided toward the stage 21, and the upper side of the stage 21 so that the direction of the wiring and the direction in which the substrate 10 should be transported substantially coincide.
  • the stage 21 is provided with a mechanism for floating the substrate 10 and transporting the substrate 10 while maintaining the floating state. With this mechanism, the substrate 10 is transported without contacting the stage 21 on the upper side of the stage 21.
  • This mechanism may be realized, for example, by forming a large number of jets for ejecting gas on the upper surface of the stage 21 and floating the substrate 10 with the gas ejected from the jets.
  • two such stages 21 are provided in series along the transport direction of the substrate 10.
  • a first imaging unit 50a and a second imaging unit 50b are arranged.
  • the first imaging unit 50 a and the second imaging unit 50 b are CCD cameras having the same function, and are provided along a direction that intersects the conveyance direction of the substrate 10. Therefore, in FIG. 1, the 1st imaging part 50a and the 2nd imaging part 50b have overlapped.
  • the illumination light source 70a and the illumination light source 70b are arranged so as to irradiate illumination light toward the front side (surface on which the wiring is provided) of the substrate 10, and the first imaging unit 50a and the second imaging unit are arranged.
  • the parts 50b are arranged toward the front surface (rear surface) of the substrate 10 where no wiring is provided so as to receive light from the illumination light source 70a and the illumination light source 70b from the back side of the substrate 10, respectively.
  • the first imaging unit 50a images the wiring (first wiring) on the surface of the substrate 10 that passes between the first imaging unit 50a and the illumination light source 70a from the back surface of the substrate 10
  • the second imaging unit 50b images the wiring (second wiring) on the surface of the substrate 10 passing between the second imaging unit 50b and the illumination light source 70b from the back surface of the substrate 10, and the first image and the first image respectively. 2 images are acquired.
  • the transfer unit 20 there are provided a laser light source 30 facing the surface on which the wiring of the substrate 10 is provided, and an optical mechanism 40 disposed between the substrate 10 and the laser light source 30.
  • the laser light source 30 is, for example, an excimer laser using a short wavelength ultraviolet ray having a wavelength of 400 nm or less.
  • the optical mechanism 40 is provided on the optical path of the laser beam emitted downward from the laser light source 30 in the vertical direction.
  • an optical lens group 41, a light blocking member 42, a shutter (light path blocking unit) 80, and a head 43 including a mask 44 and a lens array 45 are transferred from the laser light source 30 to the substrate 10. They are arranged in this order.
  • the optical lens group 41 is composed of a combination of a plurality of lenses.
  • the optical lens group 41 includes at least a lens for making the intensity distribution of the laser beam emitted from the laser light source 30 uniform and a lens for making the received laser beam parallel light.
  • a light shielding member 42 is disposed below the optical lens group 41.
  • the light shielding member 42 is formed with a through hole 42a through which a necessary laser beam passes.
  • the upper surface of the light shielding member 42 is covered with an opaque light shielding film except for a portion where the through hole 42a is formed. Accordingly, the laser beam other than passing through the through hole 42 a is blocked by the light blocking member 42.
  • the light blocking member 42 is a member that deforms the beam shape (beam profile) of the laser beam from the optical lens group 41 in order to focus on a mask 44 described later, and the through hole 42a is matched to the beam shape to be focused. The shape and position are set. In the present embodiment, for example, the beam shape (beam profile) of the laser beam is deformed into a rectangle according to the mask 44.
  • a shutter 80 is disposed below the light blocking member 42.
  • the shutter 80 is used to block the optical path of the laser beam that has not passed through the light shielding member 42 and is not correctly irradiated on the TFT formation region 12. Therefore, the upper surface of the shutter 80 is covered with an opaque light shielding film, and the laser beam cannot pass through the shutter 80.
  • the shutter 80 can be driven in a direction intersecting the transport direction (arrow A direction) of the substrate 10 by a driving mechanism (second driving unit) (not shown).
  • the shutter 80 is normally disposed outside the optical path of the laser beam. However, when it is determined that the optical path of the laser beam needs to be blocked by control by the controller 60 described later, the shutter 80 is moved into the optical path and Block the light path. Details of the position and movement of the shutter 80 will be described later.
  • Such a shutter 80 and the second drive unit are one of the members constituting the optical path blocking unit.
  • a head 43 including a lens array 45 is disposed below the shutter 80, and an optical system for causing light collected by the lens array 45 to travel straight toward the surface of the substrate 10 (downward). (Not shown) is disposed below the head 43.
  • This optical system is composed of a plurality of optical elements arranged corresponding to the individual lenses of the lens array 45, and is a part of the optical mechanism 40.
  • the head 43 includes a frame-shaped base 48 provided at the peripheral edge thereof, and a rectangular mask 44 provided inside the base 48.
  • an opening M for passing a necessary laser beam is formed in the center of the mask 44.
  • the upper surface of the mask 44 is covered with an opaque light shielding film except for a portion where the opening M is formed and an alignment region 47 described later. Accordingly, the laser beam focused on the mask 44 by the light shielding member 42 is blocked by the mask 44 except for the laser beam passing through the opening M.
  • an alignment region 47 for aligning the TFT formation region 12 of the substrate 10 and the lens array 45 is provided upstream of the opening M in the conveyance direction (arrow A direction) of the substrate 10 (not shown).
  • a first mark 47a used for alignment based on the first wiring and a second mark 47b used for alignment based on the second wiring different from the first wiring are provided in the alignment region 47.
  • the first mark 47a and the second mark 47b are used to adjust the position where the light collected by the lens array 45 is irradiated.
  • the first mark 47a and the second mark 47b sandwich an opening M formed in the mask 44 in a direction intersecting the conveyance direction of the substrate 10 (a direction indicated by a double-headed arrow B) (see a broken-line circle in the drawing).
  • the first imaging unit 50a described above acquires a first image obtained by imaging the first wiring and the first mark 47a from the back surface of the substrate 10, and the second imaging unit described above. 50b acquires the 2nd image which imaged the 2nd wiring and the 2nd mark 47b from the back of substrate 10.
  • Both the first mark 47 a and the second mark 47 b are marks for aligning the TFT formation region 12 of the substrate 10 and the lens array 45.
  • the shape of the first mark 47a and the second mark 47b may be any shape such as a cross shape.
  • the distance between the wiring 11 extending in the vertical or horizontal direction of the substrate and the cross mark can be read.
  • the wiring 11 and the cross-shaped mark are separated from each other by a distance C1 in a direction intersecting the conveyance direction (arrow A direction) (double arrow B direction).
  • the wiring 11 and the cross-shaped mark exactly coincide with each other in the transport direction (arrow A direction) and the direction crossing the transport direction (double arrow B direction) It is set so that the laser beam is irradiated onto the TFT forming region 12 when it is within the range.
  • two marks such as the first mark 47a and the second mark 47b are provided as alignment marks.
  • the number of alignment marks is three or more. Also good.
  • FIG. 4 is a view of the substrate to be transported as viewed from the front.
  • a lens array 45 is disposed below the opening M of the mask 44.
  • the lens array 45 includes a plurality of hemispherical lenses formed in a matrix, and is attached to the lower surface of the mask 44 via a sheet.
  • the lens array 45 condenses the laser beam that has passed through the opening M of the mask 44, and the collected laser beam is applied to the TFT formation region 12 on the substrate 10.
  • FIG. 5 is a view of the substrate to be transported as viewed from the rear.
  • a first imaging unit 50a is disposed below the first mark 47a
  • a second imaging unit 50b is disposed below the second mark 47b.
  • An illumination light source 70a is disposed above the first mark 47a and the first imaging unit 50a
  • an illumination light source 70b is disposed above the second mark 47b and the second imaging unit 50b.
  • the first imaging unit 50a images the first mark 47a illuminated by the illumination light source 70a from the back surface
  • the above-described shutter 80 is disposed above the opening 44 a of the mask 44.
  • the shutter 80 is disposed above the second imaging unit 50b, not above the first imaging unit 50a.
  • the shutter 80 is driven in a direction intersecting the conveyance direction of the substrate 10 (direction of a double-headed arrow B), and is irradiated on the TFT formation region 12 imaged by the second imaging unit 50b out of the laser beam that has passed through the light shielding member 42. Block the optical path of the laser beam.
  • the shutter 80 may also be provided above the first imaging unit 50a as virtually indicated by a broken line.
  • the controller 60 is electrically connected to the transport unit 20, the laser light source 30, the first imaging unit 50 a and the second imaging unit 50 b, the driving unit 46, and the shutter 80. Control these.
  • the controller 60 is constructed by hardware including a storage unit such as a processing unit, RAM, and ROM, and software mounted thereon.
  • the controller 60 includes a first calculation unit 61, a second calculation unit 62, a determination unit 63, a laser light source control unit 64, a first optical path control unit 65, and a second optical path control unit. 66 and a conveyance control unit 67.
  • the first calculation unit 61 detects a shift in the direction intersecting the transport direction of the substrate 10 between the wiring 11 and the first mark 47a in the image (first image) captured by the first imaging unit 50a, and detects the detected shift width. Is calculated as the first correction value C1.
  • the first correction value C1 may be a distance between the wiring 11 and the first mark 47a, for example, as shown in FIG.
  • the second calculation unit 62 detects and detects a shift in the direction intersecting the conveyance direction of the substrate 10 between the wiring 11 and the second mark 47b in the image (second image) captured by the second imaging unit 50b.
  • the calculated deviation width is calculated as the second correction value C2.
  • the first calculating unit 61 obtains the first correction value C1
  • the second operation unit 62 obtains the second correction value C2
  • ) between the first correction value C1 and the second correction value C2 is a predetermined threshold Cth It is judged whether it is less than.
  • the predetermined threshold Cth is a value that determines whether or not the optical path is blocked by the shutter 80 in the control described later, and can be determined as appropriate from the accuracy required for the laser annealing process.
  • the laser light source control unit 64 controls the laser light source 2 so as to change the pulse frequency of the laser light source 2 at a constant cycle.
  • the first light path control part 65 is controlled based on the determination result by the determination unit 63, based on the first correction value C1 calculated by the first calculating section 61 (first correction value C1 is less than the predetermined value C 0
  • the driving unit 46 is driven to align the TFT formation region 12 of the substrate 10 with the lens array 45.
  • the first optical path control unit 65 drives the head 43 so that the first correction value C1 shown in FIG. 3 becomes zero.
  • the second optical path control unit 66 is controlled based on the determination result by the determination unit 63, and determines the amount of movement for driving the second drive unit (not shown) based on the second correction value C2. Then, the shutter 80 is moved based on the movement amount, the optical path of the laser beam is blocked, and the laser beam is not irradiated on the area other than the TFT formation region 12 of the substrate 10.
  • the difference between the first correction value C1 is the first correction value C1 in conditions is less than the predetermined value C 0 and the second correction value C2 when is not less than the predetermined threshold Cth (
  • the shutter 80 is moved.
  • the conveyance control unit 67 controls the driving of the conveyance unit 20 so that the substrate 10 is conveyed at a predetermined speed and stopped at a predetermined timing as necessary.
  • step S7-1 when the controller 60 of the present embodiment starts control (step S7-1), the first calculation unit 61 calculates the first correction value C1 (step S7-2). Further, the controller 60 calculates the second correction value C2 in the second calculation unit 62 (step S7-3). Next, the controller 60 drives the drive unit 46 based on the first correction value C1 to align the TFT formation region 12 of the substrate 10 and the lens array 45 (step S7-4). Thereafter, the controller 60 determines whether or not the magnitude of the difference value (
  • the TFT forming region 12 of the substrate 10 is irradiated with a laser beam (step S7-6). Otherwise, the shutter 80 is driven based on the second correction value C2, and the optical path of the laser beam is partially blocked as described above (step S7-7). Thereafter, a laser beam is irradiated onto the TFT formation region 12 of the substrate 10 (step S7-8).
  • the shutter 80 is driven so as to shield the region irradiated with the laser beam (already irradiated region) (step S7-9), and the region not irradiated with the laser beam (non-irradiated region) is irradiated with the laser beam (step S7-9). Step S7-10).
  • step S7-11 determines whether the first correction value C1 and the second correction value C2 can be calculated (step S7-11), and the first correction value C1 and the second correction value C2 can be calculated.
  • the controller 60 returns to step S7-2 and repeats a series of controls. If the first correction value C1 and the second correction value C2 cannot be calculated, the controller 60 ends the control (step S7-12). .
  • the control by the controller 60 may also be performed as follows.
  • step S8-1 when starting the control (step S8-1), the controller 60 of the present embodiment calculates the first correction value C1 by the first calculation unit 61 (step S8-2), correction value C1 is equal to or less than the predetermined value C 0 (step S8-3).
  • step S 8 - 4 If the first correction value C1 is the predetermined value C 0 or more, the controller 60, the first correction value C1 drives the drive unit 46 to be less than a predetermined value (step S 8 - 4), again step S8-2 And step S8-3 is executed. If the first correction value C1 is less than the predetermined value C 0, the controller 60, in the second arithmetic unit 62 calculates the second correction value C2 (step S8-5), the second correction value C2 is a predetermined value It is determined whether it is less than (step S8-6).
  • the controller 60 drives the shutter 80 based on the second correction value C2, and partially blocks the optical path of the laser beam as described above (step S8-8). Thereafter, a laser beam is irradiated onto the TFT formation region 12 of the substrate 10 (step S8-9). Next, the shutter 80 is driven so as to shield the region irradiated with the laser beam (already irradiated region) (step S8-10), and the region not irradiated with the laser beam (unirradiated region) is irradiated with the laser beam (step S8-10). Step S8-11).
  • step S8-12 the controller 60 determines whether the first correction value C1 and the second correction value C2 can be calculated (step S8-12), and the first correction value C1 and the second correction value C2 can be calculated.
  • step S8-2 the controller 60 returns to step S8-2 and repeats a series of controls. If the first correction value C1 and the second correction value C2 cannot be calculated, the controller 60 ends the control (step S8-13). .
  • the second head 43 from the left (or the fifth head 43 from the left) is disposed across the two adjacent cell substrates 13.
  • the directions of the wirings provided on these two cell substrates 13 are slightly shifted. If only one imaging unit is provided and only one alignment mark is provided for one head, the alignment is performed at one location in one head 43. However, the laser annealing process in the region covered by the opening M of the mask 44 is performed at a time. Therefore, when wirings 11 having different orientations exist in the region, only a part of the wirings 11 on the substrate 10 are tracked by the laser annealing apparatus 1, and the wirings 11 having different orientations from the part of the wirings 11 are subjected to laser annealing. It is not followed by the device 1.
  • the said position alignment can be performed based on two places in one head 43, the tracking precision is improved. Therefore, even when there are two wirings 11 with different orientations in a certain area, it is possible to accurately detect the wirings 11 with different orientations. Further, by accurately detecting and following the wiring, the laser annealing process can be performed accurately as will be described later.
  • first mark 47 a and the second mark 47 b are provided on both sides of the opening M of the mask 44 in a direction intersecting the transport direction of the substrate 10, it follows on both sides of the opening M formed on the mask 44.
  • the correct wiring can be detected. That is, the presence of the wiring 11 having different orientations on both sides of the opening M of the mask 44 can be reliably detected, and the tracking accuracy can be improved with higher accuracy.
  • the optical path of the laser beam whose irradiation position is shifted can be blocked by the shutter 80, so that the laser beam to the area other than the TFT formation region 12 can be blocked. Irradiation can be prevented.
  • the light irradiation apparatus includes: a light source; a transport unit that transports a substrate having a surface to be irradiated with light from the light source at a constant speed along a predetermined direction; and the light from the light source.
  • An optical path correction unit that corrects the optical path of the light based on a first correction value so that the light from the light source is not irradiated outside the predetermined area of the surface.
  • An optical path blocking unit that blocks the optical path of the first image of the plurality of wirings provided on the surface along the transport direction of the substrate or the vertical direction thereof.
  • a first imaging unit that captures a second image of the plurality of wirings, and a first calculation that calculates the first correction value based on the first image And based on the second image
  • a second calculation unit for calculating the second correction value, a first optical path control unit for controlling the optical path correction unit based on the first correction value, and the optical path blocking unit based on the second correction value.
  • a controller having a second optical path control unit to be controlled.
  • the first imaging unit and the second imaging unit are provided. Therefore, the position of the light irradiated on the surface of the substrate can be adjusted based on the two information, and therefore the light irradiation position on the substrate being transported can be set with high accuracy. Further, when it is detected that a tracking shift has occurred, the optical path of the laser beam whose irradiation position is shifted can be blocked by the shutter 80, so that it is possible to prevent the laser beam from being irradiated to areas other than the TFT formation region 12. .
  • the optical path correction unit includes a mask in which an opening is formed, a lens array for collecting light from the light source that has passed through the opening, and the first wiring in the first image. And a head provided with a first mark imaged together with the second wiring in the second image; and the head along a direction intersecting the transport direction. It is preferable to include a drive unit that moves.
  • the first mark and the second mark for alignment are provided in one head corresponding to each of the first imaging unit and the second imaging unit. Therefore, it is possible to perform alignment between the TFT formation region and the lens array in two places in one head, and accordingly, light irradiation following the substrate being transported can be performed with high accuracy. If only one imaging unit is provided and only one alignment mark is provided for one head, the accuracy of the alignment should be confirmed only at one location within one head. Can do. However, since the head performs laser annealing in a certain area at a time, if there are wirings in different directions in this certain area, light irradiation that follows only a part of the wiring on the substrate is performed. Does not follow the wiring whose direction is different from that of some of the wirings. On the other hand, in the configuration of the above embodiment, since the accuracy of the alignment can be confirmed at two locations in one head, the detection accuracy of the tracking accuracy can be improved.
  • the first mark and the second mark may be provided on both sides of the opening of the mask in a direction intersecting with the transport direction of the substrate.
  • the first imaging unit may image the first wiring and the first mark in the same visual field
  • the second imaging unit images the second wiring and the second mark in the same visual field. Also good.
  • the first calculation unit uses, as the first correction value, a shift in the direction that intersects the transport direction between the first wiring and the first mark in the first image.
  • the second calculation unit calculates a shift in the direction intersecting the transport direction between the second wiring and the second mark in the second image as the second correction value. It is preferable.
  • the controller is configured such that at least one of the first correction value, the second correction value, and the difference value between the first correction value and the second correction value is less than a predetermined value. It is preferable to further include a determination unit that determines whether or not there is.
  • At least one of the first optical path control unit and the second optical path control unit is controlled based on a determination result by the determination unit.
  • the optical path blocking unit includes an optical path blocking unit that blocks an optical path of the light irradiated to other than the surface, and a second driving unit that moves the optical path blocking unit.

Abstract

This light irradiation device 1 is equipped with a conveyance unit 20 for conveying a board, a light source 30, a first imaging unit 50a, a second imaging unit 50b, a drive unit 46, a controller 60, an optical path correction unit 43·46, and an optical path blocking unit 80. The controller 60 is equipped with: a first computation unit 61 for calculating a first correction value C1 on the basis of an image captured by the first imaging unit 50a; a first optical path control unit 65 for controlling the optical path correction unit 43·46 on the basis of the first correction value C1; a second computation unit 62 for calculating a second correction value C2 on the basis of an image captured by the second imaging unit 50b; and a second optical path control unit 66 for controlling the optical path blocking unit 80 on the basis of the second correction value C2. As a result, the accuracy with which the light irradiation device 1 irradiates light with respect to wires upon the board is improved.

Description

光照射装置Light irradiation device
 本発明は、光照射装置に関する。 The present invention relates to a light irradiation apparatus.
 液晶パネルなどの製造工程の一つであるレーザアニール処理工程では、搬送される基板のうち、薄膜トランジスタ(TFT)形成領域のアモルファスシリコン膜をポリシリコン化する。このとき、搬送される基板のTFT形成領域にレーザビームを正確に照射することが必要である。例えば、特許文献1には、搬送中の基板の配線をCCDカメラで撮影し、得られた画像に基づいてレーザビームの照射位置を調整するレーザアニール装置が開示されている。 In the laser annealing process, which is one of the manufacturing processes for liquid crystal panels and the like, the amorphous silicon film in the thin film transistor (TFT) formation region of the transported substrate is turned into polysilicon. At this time, it is necessary to accurately irradiate a laser beam to the TFT formation region of the substrate to be transported. For example, Patent Document 1 discloses a laser annealing apparatus that captures a wiring of a substrate being transported with a CCD camera and adjusts an irradiation position of a laser beam based on the obtained image.
特開2010-283073号公報JP 2010-283073 A
 特許文献1に開示されているような従来のレーザアニール装置では、TFT形成領域にレーザビームを正確に照射できないことがある。例えば、照射位置を調整する基準となる第1配線に追従するレーザビーム照射では、第1配線に沿うTFT形成領域にレーザビームを正確に照射できるものの、第1配線と向きが異なる第2配線に沿うTFT形成領域にレーザビームを正確に照射できない。 In the conventional laser annealing apparatus as disclosed in Patent Document 1, there are cases where the TFT formation region cannot be accurately irradiated with a laser beam. For example, in the laser beam irradiation following the first wiring that is a reference for adjusting the irradiation position, the laser beam can be accurately irradiated to the TFT formation region along the first wiring, but the second wiring having a different direction from the first wiring is used. The laser beam cannot be accurately irradiated to the TFT forming region along the line.
 本発明は、光照射装置において、光を照射すべき位置を判断する精度を向上させ、光を照射すべきでない位置への光の照射を防止することを目的とする。 An object of the present invention is to improve the accuracy of determining a position where light should be irradiated in a light irradiation apparatus, and to prevent light irradiation to a position where light should not be irradiated.
 本発明の一実施形態に係る光照射装置は、光源;前記光源からの光が照射されるべき表面を有する基板を所定方向に沿って一定速度で搬送する搬送部;前記光源からの前記光が前記表面の所定領域に照射されるように前記光の光路を第1補正値に基づいて補正する光路補正ユニット;前記光源からの前記光が前記表面の所定領域外に照射されないように前記光の光路を第2補正値に基づいて遮断する光路遮断ユニット;前記基板の搬送方向またはその垂直方向に沿って前記表面の上に設けられた複数の配線のうちの第1配線を含む第1画像を撮像する第1撮像部;前記複数の配線のうちの第2配線を含む第2画像を撮像する第2撮像部;および前記第1画像に基づいて前記第1補正値を算出する第1演算部と、前記第2画像に基づいて前記第2補正値を算出する第2演算部と、前記第1補正値に基づいて前記光路補正ユニットを制御する第1光路制御部と、前記第2補正値に基づいて前記光路遮断ユニットを制御する第2光路制御部とを有するコントローラを備える。 A light irradiation apparatus according to an embodiment of the present invention includes: a light source; a transport unit that transports a substrate having a surface to be irradiated with light from the light source at a constant speed along a predetermined direction; and the light from the light source is An optical path correction unit that corrects an optical path of the light based on a first correction value so that the predetermined area of the surface is irradiated; the light from the light source is not irradiated outside the predetermined area of the surface; An optical path blocking unit that blocks an optical path based on a second correction value; a first image including a first wiring of a plurality of wirings provided on the surface along a transport direction of the substrate or a vertical direction thereof; A first imaging unit for imaging; a second imaging unit for imaging a second image including a second wiring of the plurality of wirings; and a first arithmetic unit for calculating the first correction value based on the first image And based on the second image, A second calculation unit that calculates two correction values, a first optical path control unit that controls the optical path correction unit based on the first correction value, and a first controller that controls the optical path blocking unit based on the second correction value. A controller having two optical path controllers.
 本発明の上記実施形態によれば、光照射装置において、第1撮像部および第2撮像部と、光路遮断ユニットとが設けられている。従って、一つのヘッドにおいて二箇所で位置合わせを行うことができるため、光を照射すべき位置を判断する精度を向上でき、かつ、光路遮断ユニットによって不要な光の光路を遮断できるため、光を照射すべきでない位置への光の照射を防止できる。 According to the embodiment of the present invention, in the light irradiation device, the first imaging unit, the second imaging unit, and the optical path blocking unit are provided. Therefore, since it is possible to perform alignment at two locations in one head, it is possible to improve the accuracy of determining the position where light should be irradiated and to block the light path of unnecessary light by the light path blocking unit. It is possible to prevent light from being irradiated to a position that should not be irradiated.
本発明の一実施形態に係るレーザアニール装置の模式的な側面図。1 is a schematic side view of a laser annealing apparatus according to an embodiment of the present invention. 基板とヘッドの位置関係を示す模式的な平面図。FIG. 2 is a schematic plan view showing a positional relationship between a substrate and a head. ヘッドの詳細を示す平面図。The top view which shows the detail of a head. 図3のIV-IV線に沿った模式的な断面図。FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 3. 図3のV-V線に沿った模式的な断面図。FIG. 5 is a schematic cross-sectional view taken along the line V-V in FIG. 3. 図1のレーザアニール装置の制御ブロック図。The control block diagram of the laser annealing apparatus of FIG. 図1のレーザアニール装置の制御フローチャート。2 is a control flowchart of the laser annealing apparatus of FIG. 図1のレーザアニール装置の制御フローチャート。2 is a control flowchart of the laser annealing apparatus of FIG.
 以下、添付図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1に示すように、本実施形態のレーザアニール装置(光照射装置)1は、透明なガラス基板であるマザー基板(基板)10上に成膜されたアモルファスシリコン膜のTFT形成領域(所定領域)にレーザビーム(光)を照射するための装置である。レーザアニール装置1は、マザー基板10を水平な所定の方向に沿って搬送する搬送部20と、レーザ光源(光源)30と、レーザ光源30から出射されたレーザビームを集光するための光学機構40と、第1撮像部50aおよび第2撮像部50bと、コントローラ60とを備える。なお、以下では、マザー基板10のことを単に基板10ともいう。 As shown in FIG. 1, a laser annealing apparatus (light irradiation apparatus) 1 of this embodiment is a TFT formation region (predetermined region) of an amorphous silicon film formed on a mother substrate (substrate) 10 which is a transparent glass substrate. ) Is irradiated with a laser beam (light). The laser annealing apparatus 1 includes a transport unit 20 that transports the mother substrate 10 along a predetermined horizontal direction, a laser light source (light source) 30, and an optical mechanism for condensing a laser beam emitted from the laser light source 30. 40, a first imaging unit 50a and a second imaging unit 50b, and a controller 60. Hereinafter, the mother substrate 10 is also simply referred to as a substrate 10.
 図2に、概ね一方向(図中上下方向)に沿って延びる複数の配線11が設けられた表面を有するマザー基板10、およびヘッド43の平面図を示す。本実施形態では、マザー基板10の表面上に、図中破線で示される各配線11に沿ってTFT形成領域12が画定されている。なお、図2では、配線11のパターンは模式的に示されており、一部のTFT形成領域12のみが図示されている。図2には、図中実線によって囲まれた8枚のセル基板13を作製することが予定された1枚のマザー基板10を図示している。複数の配線11はその全てが平行になることが予め企図されているが、必ずしも完全に単一方向に揃っているわけではない。本明細書中において、配線の向きをいう場合、所定の単一方向(図中A方向)と厳密に一致した向きから僅かにずれた向きを含めて、「単一方向に沿って」という。 FIG. 2 shows a plan view of the mother substrate 10 having a surface provided with a plurality of wirings 11 extending substantially along one direction (vertical direction in the figure), and the head 43. In the present embodiment, a TFT formation region 12 is defined on the surface of the mother substrate 10 along each wiring 11 indicated by a broken line in the drawing. In FIG. 2, the pattern of the wiring 11 is schematically shown, and only a part of the TFT formation region 12 is shown. FIG. 2 shows a single mother substrate 10 on which eight cell substrates 13 that are surrounded by a solid line in the drawing are scheduled. The plurality of wirings 11 are preliminarily intended to be parallel to each other, but are not necessarily aligned in a single direction. In this specification, when referring to the direction of wiring, it includes “a direction along a single direction” including a direction slightly deviated from a direction that exactly matches a predetermined single direction (A direction in the figure).
 本実施形態のレーザアニール装置1は、レーザ光源30からのレーザビームが基板10の表面のTFT形成領域12に照射されるようにレーザビームの光路を調整する光路補正ユニットと、TFT形成領域12以外に照射されないようにレーザビームの光路を遮断する光路遮断ユニットとを備えている。 The laser annealing apparatus 1 according to the present embodiment includes an optical path correction unit that adjusts the optical path of a laser beam so that the laser beam from the laser light source 30 is irradiated onto the TFT formation region 12 on the surface of the substrate 10, and a portion other than the TFT formation region 12. And an optical path blocking unit that blocks the optical path of the laser beam so as not to be irradiated.
 図2に示すように、各ヘッド43にマスク44が搭載されている。本実施形態では、ヘッド43が、1枚のマザー基板10に対して6個配置されている。本実施形態では、6個のヘッド43が、駆動部46(図1参照)によって、基板10の搬送方向に直交する方向(両矢印B方向)に沿って移動される。ヘッド43は、駆動部46によって、基板10の搬送方向に直交する方向だけでなく基板10の搬送方向に交差する任意の方向に沿って移動されてもよい。また、ヘッド43の数も配置態様も特に限定されない。このようなヘッド43および駆動部46は光路補正ユニットを構成する部材の一つである。 As shown in FIG. 2, a mask 44 is mounted on each head 43. In the present embodiment, six heads 43 are arranged for one mother substrate 10. In the present embodiment, the six heads 43 are moved along the direction orthogonal to the transport direction of the substrate 10 (the direction of the double arrow B) by the drive unit 46 (see FIG. 1). The head 43 may be moved by the drive unit 46 along an arbitrary direction that intersects the transport direction of the substrate 10 as well as the direction orthogonal to the transport direction of the substrate 10. Further, the number of heads 43 and the arrangement manner are not particularly limited. Such a head 43 and the drive part 46 are one of the members which comprise an optical path correction unit.
 図1に示すように、搬送部20は、基板10を一定速度にて一定方向(矢印A方向)へ搬送するためのステージ21を備える。本実施形態では、基板10は、配線が設けられた表面の反対面(背面)をステージ21に向け、配線の向きと基板10が搬送されるべき方向とが概ね一致するようにステージ21の上側に配置されている。ステージ21には基板10を浮遊させて、浮いた状態を維持して基板10を搬送する機構が設けられている。この機構によって、基板10はステージ21の上側をステージ21に接することなく搬送される。この機構は、例えば、ガスを噴出する多数の噴出口をステージ21の上面に形成し、該噴出口から噴出されるガスによって基板10を浮遊させることによって実現されてもよい。本実施形態では、このようなステージ21が基板10の搬送方向に沿って二つ直列に設けられている。 As shown in FIG. 1, the transport unit 20 includes a stage 21 for transporting the substrate 10 at a constant speed in a constant direction (arrow A direction). In the present embodiment, the substrate 10 faces the surface (opposite surface) opposite to the surface on which the wiring is provided toward the stage 21, and the upper side of the stage 21 so that the direction of the wiring and the direction in which the substrate 10 should be transported substantially coincide. Is arranged. The stage 21 is provided with a mechanism for floating the substrate 10 and transporting the substrate 10 while maintaining the floating state. With this mechanism, the substrate 10 is transported without contacting the stage 21 on the upper side of the stage 21. This mechanism may be realized, for example, by forming a large number of jets for ejecting gas on the upper surface of the stage 21 and floating the substrate 10 with the gas ejected from the jets. In the present embodiment, two such stages 21 are provided in series along the transport direction of the substrate 10.
 二つのステージ21の間には、第1撮像部50aおよび第2撮像部50bが配置されている。第1撮像部50aおよび第2撮像部50bは、本実施形態では同一機能のCCDカメラであり、基板10の搬送方向に交差する方向に沿って設けられている。そのため、図1では、第1撮像部50aおよび第2撮像部50bが重なっている。また、照明用光源70aおよび照明用光源70bが、基板10の表側(配線が設けられている表面)へ向けて照明光を照射するように配置されており、第1撮像部50aおよび第2撮像部50bは、それぞれ照明用光源70aおよび照明用光源70bからの光を基板10の裏側から受光するように、基板10の配線が設けられていない表面(背面)に向けて配置されている。このような構成により、第1撮像部50aは、第1撮像部50aと照明用光源70aとの間を通過する基板10の表面上の配線(第1配線)を基板10の背面から撮像し、第2撮像部50bは、第2撮像部50bと照明用光源70bとの間を通過する基板10の表面上の配線(第2配線)を基板10の背面から撮像し、それぞれ第1画像および第2画像を取得する。 Between the two stages 21, a first imaging unit 50a and a second imaging unit 50b are arranged. In the present embodiment, the first imaging unit 50 a and the second imaging unit 50 b are CCD cameras having the same function, and are provided along a direction that intersects the conveyance direction of the substrate 10. Therefore, in FIG. 1, the 1st imaging part 50a and the 2nd imaging part 50b have overlapped. Further, the illumination light source 70a and the illumination light source 70b are arranged so as to irradiate illumination light toward the front side (surface on which the wiring is provided) of the substrate 10, and the first imaging unit 50a and the second imaging unit are arranged. The parts 50b are arranged toward the front surface (rear surface) of the substrate 10 where no wiring is provided so as to receive light from the illumination light source 70a and the illumination light source 70b from the back side of the substrate 10, respectively. With such a configuration, the first imaging unit 50a images the wiring (first wiring) on the surface of the substrate 10 that passes between the first imaging unit 50a and the illumination light source 70a from the back surface of the substrate 10, The second imaging unit 50b images the wiring (second wiring) on the surface of the substrate 10 passing between the second imaging unit 50b and the illumination light source 70b from the back surface of the substrate 10, and the first image and the first image respectively. 2 images are acquired.
 搬送部20の上方には、基板10の配線が設けられる表面に向けたレーザ光源30と、基板10とレーザ光源30との間に配置された光学機構40とが設けられている。 Above the transfer unit 20, there are provided a laser light source 30 facing the surface on which the wiring of the substrate 10 is provided, and an optical mechanism 40 disposed between the substrate 10 and the laser light source 30.
 レーザ光源30は、例えば、波長が400nm以下の短波長の紫外線を使用したエキシマレーザである。 The laser light source 30 is, for example, an excimer laser using a short wavelength ultraviolet ray having a wavelength of 400 nm or less.
 光学機構40は、レーザ光源30から鉛直方向下向きに出射されるレーザビームの光路上に設けられている。本実施形態では、光学機構40として、光学レンズ群41と、遮光部材42と、シャッター(光路遮断部)80と、マスク44およびレンズアレイ45を備えるヘッド43とが、レーザ光源30から基板10へ向かってこの順で配置されている。 The optical mechanism 40 is provided on the optical path of the laser beam emitted downward from the laser light source 30 in the vertical direction. In this embodiment, as the optical mechanism 40, an optical lens group 41, a light blocking member 42, a shutter (light path blocking unit) 80, and a head 43 including a mask 44 and a lens array 45 are transferred from the laser light source 30 to the substrate 10. They are arranged in this order.
 光学レンズ群41は、複数のレンズの組み合わせからなる。光学レンズ群41には、レーザ光源30から出射されたレーザビームの強度分布を均一化するレンズと、受けたレーザビームを平行光にするためのレンズとが少なくとも含まれている。 The optical lens group 41 is composed of a combination of a plurality of lenses. The optical lens group 41 includes at least a lens for making the intensity distribution of the laser beam emitted from the laser light source 30 uniform and a lens for making the received laser beam parallel light.
 光学レンズ群41の下方には、遮光部材42が配置されている。遮光部材42には、必要なレーザビームを通過させる貫通孔42aが形成されている。遮光部材42の上面は、貫通孔42aが形成された部分を除いて不透明な遮光膜によって被覆されている。従って、貫通孔42aを通過する以外のレーザビームは遮光部材42によって遮断される。遮光部材42は、後述するマスク44に集光するために、光学レンズ群41からのレーザビームのビーム形状(ビームプロファイル)を変形させる部材であり、集光させるべきビーム形状に合わせて貫通孔42aの形状および位置が設定されている。本実施形態では、例えばレーザビームのビーム形状(ビームプロファイル)をマスク44に合わせて矩形に変形させている。 A light shielding member 42 is disposed below the optical lens group 41. The light shielding member 42 is formed with a through hole 42a through which a necessary laser beam passes. The upper surface of the light shielding member 42 is covered with an opaque light shielding film except for a portion where the through hole 42a is formed. Accordingly, the laser beam other than passing through the through hole 42 a is blocked by the light blocking member 42. The light blocking member 42 is a member that deforms the beam shape (beam profile) of the laser beam from the optical lens group 41 in order to focus on a mask 44 described later, and the through hole 42a is matched to the beam shape to be focused. The shape and position are set. In the present embodiment, for example, the beam shape (beam profile) of the laser beam is deformed into a rectangle according to the mask 44.
 遮光部材42の下方には、シャッター80が配置されている。シャッター80は、遮光部材42を通過したレーザビームのうち、TFT形成領域12に正しく照射されないレーザビームの光路を遮断するためのものである。そのため、シャッター80の上面は不透明な遮光膜で被覆されており、レーザビームはシャッター80を通過できない。シャッター80は、図示しない駆動機構(第2駆動部)によって基板10の搬送方向(矢印A方向)と交差する方向に駆動可能である。シャッター80は、通常時、レーザビームの光路外に配置されているが、後述するコントローラ60による制御にてレーザビームの光路の遮断が必要と判断された場合、光路内に移動されてレーザビームの光路を遮断する。このシャッター80の位置および移動の詳細については後述する。このようなシャッター80および第2駆動部は光路遮断ユニットを構成する部材の一つである。 A shutter 80 is disposed below the light blocking member 42. The shutter 80 is used to block the optical path of the laser beam that has not passed through the light shielding member 42 and is not correctly irradiated on the TFT formation region 12. Therefore, the upper surface of the shutter 80 is covered with an opaque light shielding film, and the laser beam cannot pass through the shutter 80. The shutter 80 can be driven in a direction intersecting the transport direction (arrow A direction) of the substrate 10 by a driving mechanism (second driving unit) (not shown). The shutter 80 is normally disposed outside the optical path of the laser beam. However, when it is determined that the optical path of the laser beam needs to be blocked by control by the controller 60 described later, the shutter 80 is moved into the optical path and Block the light path. Details of the position and movement of the shutter 80 will be described later. Such a shutter 80 and the second drive unit are one of the members constituting the optical path blocking unit.
 シャッター80の下方には、レンズアレイ45を備えるヘッド43が配置されており、レンズアレイ45によって集光された光を基板10の表面に向けて(下方へ向けて)直進させるための光学系(図示せず)がヘッド43の下方に配置されている。この光学系は、レンズアレイ45の個々のレンズに対応して整列された複数の光学素子から構成されており、光学機構40の一部である。 A head 43 including a lens array 45 is disposed below the shutter 80, and an optical system for causing light collected by the lens array 45 to travel straight toward the surface of the substrate 10 (downward). (Not shown) is disposed below the head 43. This optical system is composed of a plurality of optical elements arranged corresponding to the individual lenses of the lens array 45, and is a part of the optical mechanism 40.
 ヘッド43の平面図の詳細を図3に示す。図3に示すように、ヘッド43は、その周縁部に設けられた枠状のベース48と、ベース48の内側に設けられた矩形のマスク44とを備える。マスク44の中央には、必要なレーザビームを通過させるための開口Mが形成されている。マスク44の上面は、開口Mが形成された部分および後述するアラインメント領域47を除いて不透明な遮光膜によって被覆されている。従って、遮光部材42によってマスク44に集光されたレーザビームは、開口Mを通過するレーザビームを除いてマスク44によって遮断される。 The details of the top view of the head 43 are shown in FIG. As shown in FIG. 3, the head 43 includes a frame-shaped base 48 provided at the peripheral edge thereof, and a rectangular mask 44 provided inside the base 48. In the center of the mask 44, an opening M for passing a necessary laser beam is formed. The upper surface of the mask 44 is covered with an opaque light shielding film except for a portion where the opening M is formed and an alignment region 47 described later. Accordingly, the laser beam focused on the mask 44 by the light shielding member 42 is blocked by the mask 44 except for the laser beam passing through the opening M.
 また、図示しない基板10の搬送方向(矢印A方向)における開口Mの上流には、基板10のTFT形成領域12とレンズアレイ45とを位置合わせするためのアラインメント領域47が設けられている。アラインメント領域47には、第1配線に基づく位置合わせに用いられる第1マーク47a、第1配線と異なる第2配線に基づく位置合わせに用いられる第2マーク47bが設けられている。第1マーク47aおよび第2マーク47bは、レンズアレイ45によって集光された光が照射される位置を調整するために用いられる。基板10の搬送方向と交差する方向(両矢印B方向)において、第1マーク47aおよび第2マーク47bはマスク44に形成された開口Mを挟んでいる(図中の破線円参照)。 Further, an alignment region 47 for aligning the TFT formation region 12 of the substrate 10 and the lens array 45 is provided upstream of the opening M in the conveyance direction (arrow A direction) of the substrate 10 (not shown). In the alignment region 47, a first mark 47a used for alignment based on the first wiring and a second mark 47b used for alignment based on the second wiring different from the first wiring are provided. The first mark 47a and the second mark 47b are used to adjust the position where the light collected by the lens array 45 is irradiated. The first mark 47a and the second mark 47b sandwich an opening M formed in the mask 44 in a direction intersecting the conveyance direction of the substrate 10 (a direction indicated by a double-headed arrow B) (see a broken-line circle in the drawing).
 第1配線に基づく位置合わせを行うために、上述した第1撮像部50aは、第1配線および第1マーク47aを基板10の背面から撮像した第1画像を取得し、上述した第2撮像部50bは、第2配線および第2マーク47bを基板10の背面から撮像した第2画像を取得する。 In order to perform alignment based on the first wiring, the first imaging unit 50a described above acquires a first image obtained by imaging the first wiring and the first mark 47a from the back surface of the substrate 10, and the second imaging unit described above. 50b acquires the 2nd image which imaged the 2nd wiring and the 2nd mark 47b from the back of substrate 10.
 第1マーク47aおよび第2マーク47bはいずれも、基板10のTFT形成領域12とレンズアレイ45とを位置合わせするための印である。第1マーク47aおよび第2マーク47bの形状は、例えば十字型など、任意の形状であり得る。図3に示すように第1マーク47aまたは第2マーク47bが十字型である場合、基板の縦方向または横方向に延びる配線11と十字型の印との距離を読み取ることができる。具体的には、図3の例では、搬送方向(矢印A方向)と交差する方向(両矢印B方向)において配線11と十字型の印は距離C1離れている。本実施形態のレーザアニール装置1では、搬送方向(矢印A方向)および搬送方向と交差する方向(両矢印B方向)において、配線11と十字型の印が正確に一致しているときまたは所定の範囲内にあるとき、レーザビームがTFT形成領域12に照射されるように設定されている。なお、本実施形態では、位置合わせ用の印として第1マーク47aおよび第2マーク47bのように2個の印が設けられているが、位置合わせ用の印の数は3個以上設けられてもよい。 Both the first mark 47 a and the second mark 47 b are marks for aligning the TFT formation region 12 of the substrate 10 and the lens array 45. The shape of the first mark 47a and the second mark 47b may be any shape such as a cross shape. As shown in FIG. 3, when the first mark 47a or the second mark 47b has a cross shape, the distance between the wiring 11 extending in the vertical or horizontal direction of the substrate and the cross mark can be read. Specifically, in the example of FIG. 3, the wiring 11 and the cross-shaped mark are separated from each other by a distance C1 in a direction intersecting the conveyance direction (arrow A direction) (double arrow B direction). In the laser annealing apparatus 1 of the present embodiment, the wiring 11 and the cross-shaped mark exactly coincide with each other in the transport direction (arrow A direction) and the direction crossing the transport direction (double arrow B direction) It is set so that the laser beam is irradiated onto the TFT forming region 12 when it is within the range. In this embodiment, two marks such as the first mark 47a and the second mark 47b are provided as alignment marks. However, the number of alignment marks is three or more. Also good.
 図4は、搬送される基板を前方から見た図である。図3および図4に示すように、マスク44の開口Mの下方にはレンズアレイ45が配置されている。レンズアレイ45は、半球状のレンズが複数個マトリクス状に形成されており、マスク44の下面にシートを介して貼り付けられている。レンズアレイ45は、マスク44の開口Mを通過したレーザビームを集光し、集光されたレーザビームが基板10の上のTFT形成領域12に照射される。 FIG. 4 is a view of the substrate to be transported as viewed from the front. As shown in FIGS. 3 and 4, a lens array 45 is disposed below the opening M of the mask 44. The lens array 45 includes a plurality of hemispherical lenses formed in a matrix, and is attached to the lower surface of the mask 44 via a sheet. The lens array 45 condenses the laser beam that has passed through the opening M of the mask 44, and the collected laser beam is applied to the TFT formation region 12 on the substrate 10.
 図5は、搬送される基板を後方から見た図である。図5に示すように、第1マーク47aの下方には第1撮像部50aが配置され、第2マーク47bの下方には第2撮像部50bが配置されている。また、第1マーク47aおよび第1撮像部50aの上方には照明用光源70aが配置され、第2マーク47bおよび第2撮像部50bの上方には照明用光源70bが配置されている。このように、照明用光源70aによって照明された第1マーク47aをその背面から第1撮像部50aが撮像し、照明用光源70bによって照明された第2マーク47bをその背面から第2撮像部50bが撮像する。 FIG. 5 is a view of the substrate to be transported as viewed from the rear. As shown in FIG. 5, a first imaging unit 50a is disposed below the first mark 47a, and a second imaging unit 50b is disposed below the second mark 47b. An illumination light source 70a is disposed above the first mark 47a and the first imaging unit 50a, and an illumination light source 70b is disposed above the second mark 47b and the second imaging unit 50b. In this way, the first imaging unit 50a images the first mark 47a illuminated by the illumination light source 70a from the back surface, and the second mark 47b illuminated by the illumination light source 70b from the back surface to the second imaging unit 50b. Images.
 また、図4に示すように、マスク44の開口44aの上方には、前述のシャッター80が配置されている。本実施形態では、シャッター80は、第1撮像部50aの上方ではなく、第2撮像部50bの上方に配置されている。シャッター80は、基板10の搬送方向と交差する方向(両矢印B方向)に駆動され、遮光部材42を通過したレーザビームのうち、第2撮像部50bによって撮像されるTFT形成領域12に照射されるレーザビームの光路を遮断する。ただし、破線で仮想的に示すように、第1撮像部50aの上方にもシャッター80を設けてもよい。 Further, as shown in FIG. 4, the above-described shutter 80 is disposed above the opening 44 a of the mask 44. In the present embodiment, the shutter 80 is disposed above the second imaging unit 50b, not above the first imaging unit 50a. The shutter 80 is driven in a direction intersecting the conveyance direction of the substrate 10 (direction of a double-headed arrow B), and is irradiated on the TFT formation region 12 imaged by the second imaging unit 50b out of the laser beam that has passed through the light shielding member 42. Block the optical path of the laser beam. However, the shutter 80 may also be provided above the first imaging unit 50a as virtually indicated by a broken line.
 図1に示すように、コントローラ60は、搬送部20と、レーザ光源30と、第1撮像部50aおよび第2撮像部50bと、駆動部46と、シャッター80とに電気的に接続されており、これらを制御する。コントローラ60は、プロセッシングユニット、RAM、ROMのような記憶装置を含むハードウェアと、それに実装されたソフトウェアとにより構築されている。 As shown in FIG. 1, the controller 60 is electrically connected to the transport unit 20, the laser light source 30, the first imaging unit 50 a and the second imaging unit 50 b, the driving unit 46, and the shutter 80. Control these. The controller 60 is constructed by hardware including a storage unit such as a processing unit, RAM, and ROM, and software mounted thereon.
 図6に示すように、コントローラ60は、第1演算部61と、第2演算部62と、判定部63と、レーザ光源制御部64と、第1光路制御部65と、第2光路制御部66と、搬送制御部67とを備える。 As shown in FIG. 6, the controller 60 includes a first calculation unit 61, a second calculation unit 62, a determination unit 63, a laser light source control unit 64, a first optical path control unit 65, and a second optical path control unit. 66 and a conveyance control unit 67.
 第1演算部61は、第1撮像部50aによって撮像した画像(第1画像)における配線11と第1マーク47aとの基板10の搬送方向と交差する方向のずれを検出し、検出したずれ幅を第1補正値C1として算出する。ここで、第1補正値C1は、例えば、図3に示すように、配線11と第1マーク47aとの距離であってもよい。同様に、第2演算部62は、第2撮像部50bによって撮像した画像(第2画像)における配線11と第2マーク47bとの基板10の搬送方向と交差する方向のずれを検出し、検出したずれ幅を第2補正値C2として算出する。 The first calculation unit 61 detects a shift in the direction intersecting the transport direction of the substrate 10 between the wiring 11 and the first mark 47a in the image (first image) captured by the first imaging unit 50a, and detects the detected shift width. Is calculated as the first correction value C1. Here, the first correction value C1 may be a distance between the wiring 11 and the first mark 47a, for example, as shown in FIG. Similarly, the second calculation unit 62 detects and detects a shift in the direction intersecting the conveyance direction of the substrate 10 between the wiring 11 and the second mark 47b in the image (second image) captured by the second imaging unit 50b. The calculated deviation width is calculated as the second correction value C2.
 判定部63は、第1演算部61から第1補正値C1を取得し、第2演算部62から第2補正値C2を取得し、第1補正値C1が所定値C未満であるか否か、第2補正値C2が所定値C’未満であるか否か、第1補正値C1と第2補正値C2との差異値の大きさ(|C1-C2|)が所定の閾値Cth未満であるか否かを判定する。ここで、所定の閾値Cthは、後述する制御においてシャッター80による光路遮断の有無を決定する値であり、レーザアニール処理に求められる精度から適宜決定され得る。 Determining unit 63, the first calculating unit 61 obtains the first correction value C1, the second operation unit 62 obtains the second correction value C2, whether the first correction value C1 is less than the predetermined value C 0 Or whether the second correction value C2 is less than the predetermined value C 0 ′, the difference value (| C1−C2 |) between the first correction value C1 and the second correction value C2 is a predetermined threshold Cth It is judged whether it is less than. Here, the predetermined threshold Cth is a value that determines whether or not the optical path is blocked by the shutter 80 in the control described later, and can be determined as appropriate from the accuracy required for the laser annealing process.
 レーザ光源制御部64は、レーザ光源2のパルスの周波数を一定周期で変更するようにレーザ光源2を制御している。 The laser light source control unit 64 controls the laser light source 2 so as to change the pulse frequency of the laser light source 2 at a constant cycle.
 第1光路制御部65は、判定部63による判定結果に基づいて制御され、第1演算部61によって算出した第1補正値C1に基づいて(第1補正値C1が所定値C未満になるように)駆動部46を駆動して基板10のTFT形成領域12とレンズアレイ45とを位置合わせする。本実施形態では、第1光路制御部65は、図3に示す第1補正値C1がゼロとなるようにヘッド43を駆動する。 The first light path control part 65 is controlled based on the determination result by the determination unit 63, based on the first correction value C1 calculated by the first calculating section 61 (first correction value C1 is less than the predetermined value C 0 The driving unit 46 is driven to align the TFT formation region 12 of the substrate 10 with the lens array 45. In the present embodiment, the first optical path control unit 65 drives the head 43 so that the first correction value C1 shown in FIG. 3 becomes zero.
 第2光路制御部66は、判定部63による判定結果に基づいて制御され、第2補正値C2に基づいて第2駆動部(図示せず)を駆動する移動量を決定する。そして、当該移動量に基づいてシャッター80を移動させ、レーザビームの光路を遮断し、基板10のTFT形成領域12以外にレーザビームを照射しないようにする。詳細には、第1補正値C1が所定値C未満である条件下での第1補正値C1と第2補正値C2との差(|C1-C2|)が所定の閾値Cth未満でない場合、好ましくは、第1光路制御部65によるヘッド43の駆動が行われた後に算出された第2補正値C2が所定値C’未満でない場合、シャッター80は移動される。 The second optical path control unit 66 is controlled based on the determination result by the determination unit 63, and determines the amount of movement for driving the second drive unit (not shown) based on the second correction value C2. Then, the shutter 80 is moved based on the movement amount, the optical path of the laser beam is blocked, and the laser beam is not irradiated on the area other than the TFT formation region 12 of the substrate 10. In particular, the difference between the first correction value C1 is the first correction value C1 in conditions is less than the predetermined value C 0 and the second correction value C2 when is not less than the predetermined threshold Cth (| | C1-C2) Preferably, when the second correction value C2 calculated after the driving of the head 43 by the first optical path control unit 65 is not less than the predetermined value C 0 ′, the shutter 80 is moved.
 搬送制御部67は、基板10が所定速度で搬送され、必要に応じて所定のタイミングで停止されるように搬送部20の駆動を制御する。 The conveyance control unit 67 controls the driving of the conveyance unit 20 so that the substrate 10 is conveyed at a predetermined speed and stopped at a predetermined timing as necessary.
 図7に示すように、本実施形態のコントローラ60は、制御を開始すると(ステップS7-1)、第1演算部61にて第1補正値C1を算出する(ステップS7-2)。さらに、コントローラ60は、第2演算部62にて第2補正値C2を算出する(ステップS7-3)。次いで、コントローラ60は、第1補正値C1に基づいて駆動部46を駆動して基板10のTFT形成領域12とレンズアレイ45とを位置合わせする(ステップS7-4)。その後、コントローラ60は、第1補正値C1と第2補正値C2との差異値の大きさ(|C1-C2|)が所定の閾値Cth未満であるか否かを判定する(ステップS7-5)。第1補正値C1と第2補正値C2との差異値の大きさ(|C1-C2|)が所定の閾値Cth未満である場合、基板10のTFT形成領域12にレーザビームを照射する(ステップS7-6)。そうでない場合、第2補正値C2に基づいてシャッター80を駆動し、レーザビームの光路を前述のように部分的に遮断する(ステップS7-7)。その後、基板10のTFT形成領域12にレーザビームを照射する(ステップS7-8)。その後、レーザビームを照射した領域(既照射領域)を遮蔽するようにシャッター80を駆動し(ステップS7-9)、レーザビームを照射していない領域(未照射領域)にレーザビームを照射する(ステップS7-10)。 As shown in FIG. 7, when the controller 60 of the present embodiment starts control (step S7-1), the first calculation unit 61 calculates the first correction value C1 (step S7-2). Further, the controller 60 calculates the second correction value C2 in the second calculation unit 62 (step S7-3). Next, the controller 60 drives the drive unit 46 based on the first correction value C1 to align the TFT formation region 12 of the substrate 10 and the lens array 45 (step S7-4). Thereafter, the controller 60 determines whether or not the magnitude of the difference value (| C1-C2 |) between the first correction value C1 and the second correction value C2 is less than a predetermined threshold Cth (step S7-5). ). When the magnitude (| C1-C2 |) of the difference value between the first correction value C1 and the second correction value C2 is less than a predetermined threshold value Cth, the TFT forming region 12 of the substrate 10 is irradiated with a laser beam (step S7-6). Otherwise, the shutter 80 is driven based on the second correction value C2, and the optical path of the laser beam is partially blocked as described above (step S7-7). Thereafter, a laser beam is irradiated onto the TFT formation region 12 of the substrate 10 (step S7-8). Thereafter, the shutter 80 is driven so as to shield the region irradiated with the laser beam (already irradiated region) (step S7-9), and the region not irradiated with the laser beam (non-irradiated region) is irradiated with the laser beam (step S7-9). Step S7-10).
 これらの制御は、レーザビームの照射位置の基準となる配線が第1画像および第2画像にて検出される限りにおいて繰返し行われる。すなわち、コントローラ60は、第1補正値C1および第2補正値C2が算出可能であるかを判定し(ステップS7-11)、第1補正値C1および第2補正値C2が算出可能である場合には、コントローラ60はステップS7-2に戻って一連の制御を繰り返し、第1補正値C1および第2補正値C2が算出可能でない場合には、コントローラ60は制御を終える(ステップS7-12)。 These controls are repeated as long as the wiring serving as a reference for the laser beam irradiation position is detected in the first image and the second image. That is, the controller 60 determines whether the first correction value C1 and the second correction value C2 can be calculated (step S7-11), and the first correction value C1 and the second correction value C2 can be calculated. The controller 60 returns to step S7-2 and repeats a series of controls. If the first correction value C1 and the second correction value C2 cannot be calculated, the controller 60 ends the control (step S7-12). .
 なお、上述したように、本実施形態では、第1補正値C1がゼロとなるようにヘッド43を駆動するため、|C1-C2|=|C2|である。よって、|C2|<Cthの場合にはステップS7-6へ進み、|C2|≧Cthの場合にはステップS7-7へ進む。 As described above, in the present embodiment, since the head 43 is driven so that the first correction value C1 becomes zero, | C1-C2 | = | C2 |. Therefore, if | C2 | <Cth, the process proceeds to step S7-6, and if | C2 | ≧ Cth, the process proceeds to step S7-7.
 コントローラ60による制御はまた、以下のように行われてもよい。 The control by the controller 60 may also be performed as follows.
 図8に示すように、本実施形態のコントローラ60は、制御を開始すると(ステップS8-1)、第1演算部61にて第1補正値C1を算出し(ステップS8-2)、第1補正値C1が所定値C未満であるか否かを判定する(ステップS8-3)。 As shown in FIG. 8, when starting the control (step S8-1), the controller 60 of the present embodiment calculates the first correction value C1 by the first calculation unit 61 (step S8-2), correction value C1 is equal to or less than the predetermined value C 0 (step S8-3).
 第1補正値C1が所定値C以上である場合、コントローラ60は、第1補正値C1が所定値未満になるように駆動部46を駆動し(ステップS8-4)、再度ステップS8-2およびステップS8-3を実行する。第1補正値C1が所定値C未満である場合に、コントローラ60は、第2演算部62にて第2補正値C2を算出し(ステップS8-5)、第2補正値C2が所定値未満であるか否かを判定する(ステップS8-6)。 If the first correction value C1 is the predetermined value C 0 or more, the controller 60, the first correction value C1 drives the drive unit 46 to be less than a predetermined value (step S 8 - 4), again step S8-2 And step S8-3 is executed. If the first correction value C1 is less than the predetermined value C 0, the controller 60, in the second arithmetic unit 62 calculates the second correction value C2 (step S8-5), the second correction value C2 is a predetermined value It is determined whether it is less than (step S8-6).
 第2補正値C2が所定値C’未満ある場合、基板10のTFT形成領域12にレーザビームを照射する(ステップS8-7)。そうでない場合、コントローラ60は、第2補正値C2に基づいてシャッター80を駆動し、レーザビームの光路を前述のように部分的に遮断する(ステップS8-8)。その後、基板10のTFT形成領域12にレーザビームを照射する(ステップS8-9)。次いで、レーザビームを照射した領域(既照射領域)を遮蔽するようにシャッター80を駆動し(ステップS8-10)、レーザビームを照射していない領域(未照射領域)にレーザビームを照射する(ステップS8-11)。 When the second correction value C2 is less than the predetermined value C 0 ′, the laser beam is irradiated onto the TFT formation region 12 of the substrate 10 (step S8-7). Otherwise, the controller 60 drives the shutter 80 based on the second correction value C2, and partially blocks the optical path of the laser beam as described above (step S8-8). Thereafter, a laser beam is irradiated onto the TFT formation region 12 of the substrate 10 (step S8-9). Next, the shutter 80 is driven so as to shield the region irradiated with the laser beam (already irradiated region) (step S8-10), and the region not irradiated with the laser beam (unirradiated region) is irradiated with the laser beam (step S8-10). Step S8-11).
 なお、上述したように、これらの制御は、レーザビームの照射位置の基準となる配線が第1画像および第2画像にて検出される限り繰り返される。すなわち、コントローラ60は、第1補正値C1および第2補正値C2が算出可能であるかを判定し(ステップS8-12)、第1補正値C1および第2補正値C2が算出可能である場合には、コントローラ60はステップS8-2に戻って一連の制御を繰り返し、第1補正値C1および第2補正値C2が算出可能でない場合には、コントローラ60は制御を終える(ステップS8-13)。 Note that, as described above, these controls are repeated as long as the reference wiring for the laser beam irradiation position is detected in the first image and the second image. That is, the controller 60 determines whether the first correction value C1 and the second correction value C2 can be calculated (step S8-12), and the first correction value C1 and the second correction value C2 can be calculated. In step S8-2, the controller 60 returns to step S8-2 and repeats a series of controls. If the first correction value C1 and the second correction value C2 cannot be calculated, the controller 60 ends the control (step S8-13). .
 本実施形態のレーザアニール装置1の具体的な作用効果の一例を説明する。 An example of specific functions and effects of the laser annealing apparatus 1 of the present embodiment will be described.
 図2に示す6個のヘッド43のうち、左から2番目のヘッド43(または左から5番目のヘッド43)は、隣接する二つのセル基板13に跨って配置されている。これらの二つのセル基板13に設けられた配線の向きは、僅かにずれている。仮に、撮像部が一つのみ設けられており、一つのヘッドに一つの位置合わせマークのみが設けられている場合、位置合わせは一つのヘッド43において一箇所で行われる。しかし、マスク44の開口Mによってカバーされる領域におけるレーザアニール処理は一度に行われる。そのため、前記領域内に異なる向きの配線11が存在する場合、基板10上の一部の配線11のみがレーザアニール装置1によって追従され、その一部の配線11と向きが異なる配線11はレーザアニール装置1によって追従されない。これに対し、上記実施形態の構成では、一つのヘッド43において二箇所に基づいて上記位置合わせを行うことができるため、追従の精度を向上させている。従って、一定領域内に二つの異なる向きの配線11が存在する場合であっても、異なる向きの配線11の各々に正確に検知できる。また、配線を正確に検知しかつ追従することによって、後述のように正確にレーザアニール処理を正確に実行できる。 Among the six heads 43 shown in FIG. 2, the second head 43 from the left (or the fifth head 43 from the left) is disposed across the two adjacent cell substrates 13. The directions of the wirings provided on these two cell substrates 13 are slightly shifted. If only one imaging unit is provided and only one alignment mark is provided for one head, the alignment is performed at one location in one head 43. However, the laser annealing process in the region covered by the opening M of the mask 44 is performed at a time. Therefore, when wirings 11 having different orientations exist in the region, only a part of the wirings 11 on the substrate 10 are tracked by the laser annealing apparatus 1, and the wirings 11 having different orientations from the part of the wirings 11 are subjected to laser annealing. It is not followed by the device 1. On the other hand, in the structure of the said embodiment, since the said position alignment can be performed based on two places in one head 43, the tracking precision is improved. Therefore, even when there are two wirings 11 with different orientations in a certain area, it is possible to accurately detect the wirings 11 with different orientations. Further, by accurately detecting and following the wiring, the laser annealing process can be performed accurately as will be described later.
 また、基板10の搬送方向と交差する方向において、マスク44の開口Mの両側に第1マーク47aおよび第2マーク47bが設けられているため、マスク44に形成された開口Mの両側で追従すべき配線を正確に検知できる。即ち、マスク44の開口Mの両側で異なる向きの配線11が存在することを確実に検知でき、追従の正確さを一層高精度に向上できる。 In addition, since the first mark 47 a and the second mark 47 b are provided on both sides of the opening M of the mask 44 in a direction intersecting the transport direction of the substrate 10, it follows on both sides of the opening M formed on the mask 44. The correct wiring can be detected. That is, the presence of the wiring 11 having different orientations on both sides of the opening M of the mask 44 can be reliably detected, and the tracking accuracy can be improved with higher accuracy.
 また、このようにして上記位置合わせが正確に実行されていないと検知された場合、照射位置がずれているレーザビームの光路をシャッター80によって遮断できるため、TFT形成領域12以外へのレーザビームの照射を防止できる。 Further, when it is detected that the alignment is not accurately performed in this way, the optical path of the laser beam whose irradiation position is shifted can be blocked by the shutter 80, so that the laser beam to the area other than the TFT formation region 12 can be blocked. Irradiation can be prevented.
 本発明の好ましい実施形態を以下に示す。 Preferred embodiments of the present invention are shown below.
 一実施形態において、本発明に係る光照射装置は、光源;前記光源からの光が照射されるべき表面を有する基板を所定方向に沿って一定速度で搬送する搬送部;前記光源からの前記光が前記表面の所定領域に照射されるように前記光の光路を第1補正値に基づいて補正する光路補正ユニット;前記光源からの前記光が前記表面の所定領域外に照射されないように前記光の光路を第2補正値に基づいて遮断する光路遮断ユニット;前記基板の搬送方向またはその垂直方向に沿って前記表面の上に設けられた複数の配線のうちの第1配線を含む第1画像を撮像する第1撮像部;前記複数の配線のうちの第2配線を含む第2画像を撮像する第2撮像部;および前記第1画像に基づいて前記第1補正値を算出する第1演算部と、前記第2画像に基づいて前記第2補正値を算出する第2演算部と、前記第1補正値に基づいて前記光路補正ユニットを制御する第1光路制御部と、前記第2補正値に基づいて前記光路遮断ユニットを制御する第2光路制御部とを有するコントローラを備える。 In one embodiment, the light irradiation apparatus according to the present invention includes: a light source; a transport unit that transports a substrate having a surface to be irradiated with light from the light source at a constant speed along a predetermined direction; and the light from the light source. An optical path correction unit that corrects the optical path of the light based on a first correction value so that the light from the light source is not irradiated outside the predetermined area of the surface. An optical path blocking unit that blocks the optical path of the first image of the plurality of wirings provided on the surface along the transport direction of the substrate or the vertical direction thereof. A first imaging unit that captures a second image of the plurality of wirings, and a first calculation that calculates the first correction value based on the first image And based on the second image A second calculation unit for calculating the second correction value, a first optical path control unit for controlling the optical path correction unit based on the first correction value, and the optical path blocking unit based on the second correction value. A controller having a second optical path control unit to be controlled.
 この構成によれば、第1撮像部および第2撮像部が設けられている。そのため、基板の表面上に照射される光の位置の調整を二つの情報に基づいて行うことができ、従って、搬送中の基板に対する光照射位置を高精度に設定することができる。また、追従のずれが発生していると検知された場合、照射位置がずれているレーザビームの光路をシャッター80によって遮断できるため、TFT形成領域12以外にレーザビームが照射されることを防止できる。 According to this configuration, the first imaging unit and the second imaging unit are provided. Therefore, the position of the light irradiated on the surface of the substrate can be adjusted based on the two information, and therefore the light irradiation position on the substrate being transported can be set with high accuracy. Further, when it is detected that a tracking shift has occurred, the optical path of the laser beam whose irradiation position is shifted can be blocked by the shutter 80, so that it is possible to prevent the laser beam from being irradiated to areas other than the TFT formation region 12. .
 一つの局面において、前記光路補正ユニットは、開口が形成されたマスクと、前記開口を通過した前記光源からの光を集光するためのレンズアレイと、前記第1画像内にて前記第1配線とともに撮像される第1マークと、前記第2画像内にて前記第2配線とともに撮像される第2マークとが設けられているヘッド;および、前記搬送方向に交差する方向に沿って前記ヘッドを移動させる駆動部、を備えることが好ましい。 In one aspect, the optical path correction unit includes a mask in which an opening is formed, a lens array for collecting light from the light source that has passed through the opening, and the first wiring in the first image. And a head provided with a first mark imaged together with the second wiring in the second image; and the head along a direction intersecting the transport direction. It is preferable to include a drive unit that moves.
 この構成によれば、第1撮像部および第2撮像部のそれぞれに対応して位置合わせ用の第1マークおよび第2マークが一つのヘッドに設けられている。そのため、一つのヘッド内にて、TFT形成領域と前記レンズアレイとの位置合わせを二箇所で行うことができ、従って、搬送中の基板に追従する光照射を高精度に行うことができる。仮に、撮像部が一つのみ設けられており、一つのヘッドに一つの位置合わせマークのみが設けられている場合、上記位置合わせの正確さは一つのヘッド内において一箇所のみでしか確認することができる。しかし、ヘッドは一定領域内のレーザアニール処理を一度に行うため、この一定領域内に異なる向きの配線が存在する場合、基板上の一部の配線にのみ追従する光照射がなされ、この光照射は、その一部の配線と向きが異なる配線には追従しない。これに対し、上記実施形態の構成では、一つのヘッドにおいて二箇所で上記位置合わせの正確さを確認できるため、追従の正確さの検知精度を向上できる。 According to this configuration, the first mark and the second mark for alignment are provided in one head corresponding to each of the first imaging unit and the second imaging unit. Therefore, it is possible to perform alignment between the TFT formation region and the lens array in two places in one head, and accordingly, light irradiation following the substrate being transported can be performed with high accuracy. If only one imaging unit is provided and only one alignment mark is provided for one head, the accuracy of the alignment should be confirmed only at one location within one head. Can do. However, since the head performs laser annealing in a certain area at a time, if there are wirings in different directions in this certain area, light irradiation that follows only a part of the wiring on the substrate is performed. Does not follow the wiring whose direction is different from that of some of the wirings. On the other hand, in the configuration of the above embodiment, since the accuracy of the alignment can be confirmed at two locations in one head, the detection accuracy of the tracking accuracy can be improved.
 一つの局面において、前記第1マークと前記第2マークは、前記基板の搬送方向と交差する方向において、前記マスクの前記開口の両側に設けられていてもよい。 In one aspect, the first mark and the second mark may be provided on both sides of the opening of the mask in a direction intersecting with the transport direction of the substrate.
 この構成によれば、基板の搬送方向と交差する方向において、開口の両側にて行われる配線の追従の正確さを確認できる。具体的には、基板の配線はある範囲の領域を一区画として複数区画形成されることが多いため、開口の両側にて異なる区画のパターンが存在することを確実に確認し、即ち二つの異なる区画において互いに向きの異なる配線が存在することを確実に確認し、上記位置合わせの正確さを一層向上できる。 According to this configuration, it is possible to confirm the accuracy of the tracking of the wiring performed on both sides of the opening in the direction intersecting the substrate transport direction. Specifically, since the wiring of the substrate is often formed in a plurality of sections with a certain area as one section, it is surely confirmed that there is a pattern of different sections on both sides of the opening, that is, two different It is possible to surely confirm that wirings having different directions exist in the section, and further improve the accuracy of the alignment.
 一つの局面において、第1撮像部は第1配線および前記第1マークを同一視野内に撮像してもよく、第2撮像部は第2配線および前記第2マークを同一視野内に撮像してもよい。 In one aspect, the first imaging unit may image the first wiring and the first mark in the same visual field, and the second imaging unit images the second wiring and the second mark in the same visual field. Also good.
 一つの局面において、前記第1演算部は、前記第1画像内での前記第1配線と前記第1マークとの間における前記搬送方向に交差する前記方向でのずれを前記第1補正値として算出し、前記第2演算部は、前記第2画像内での前記第2配線と前記第2マークとの間における前記搬送方向に交差する前記方向でのずれを前記第2補正値として算出することが好ましい。 In one aspect, the first calculation unit uses, as the first correction value, a shift in the direction that intersects the transport direction between the first wiring and the first mark in the first image. The second calculation unit calculates a shift in the direction intersecting the transport direction between the second wiring and the second mark in the second image as the second correction value. It is preferable.
 一つの局面において、前記コントローラは、前記第1補正値、前記第2補正値、および前記第1補正値と前記第2補正値との間の差異値の大きさの少なくとも一つが所定値未満であるか否かを判定する判定部をさらに有することが好ましい。 In one aspect, the controller is configured such that at least one of the first correction value, the second correction value, and the difference value between the first correction value and the second correction value is less than a predetermined value. It is preferable to further include a determination unit that determines whether or not there is.
 一つの局面において、前記判定部による判定結果に基づいて第1光路制御部および第2光路制御部の少なくとも一つが制御されることが好ましい。 In one aspect, it is preferable that at least one of the first optical path control unit and the second optical path control unit is controlled based on a determination result by the determination unit.
 一つの局面において、前記光路遮断ユニットは、前記表面以外へ照射される前記光の光路を遮断する光路遮断部と、前記光路遮断部を移動させる第2駆動部とを備えることが好ましい。 In one aspect, it is preferable that the optical path blocking unit includes an optical path blocking unit that blocks an optical path of the light irradiated to other than the surface, and a second driving unit that moves the optical path blocking unit.
 1 レーザアニール装置
 20 搬送部
 21 ステージ
 30 レーザ光源
 40 光学機構
 41 光学レンズ群
 42 遮光部材
 42a 貫通孔
 43 ヘッド(光路補正ユニット)
 44 マスク
 44a 開口
 45 レンズアレイ
 46 駆動部(光路補正ユニット)
 47 アラインメント領域
 47a 第1マーク
 47b 第2マーク
 48 ベース
 50a 第1撮像部
 50b 第2撮像部
 60 コントローラ
 61 第1演算部
 62 第2演算部
 63 判定部
 64 レーザ光源制御部
 65 第1光路制御部
 66 第2光路制御部
 67 搬送制御部
 70a,70b 光源
 80 シャッター(光路遮断部)(光路遮断ユニット)
DESCRIPTION OF SYMBOLS 1 Laser annealing apparatus 20 Conveyance part 21 Stage 30 Laser light source 40 Optical mechanism 41 Optical lens group 42 Light-shielding member 42a Through-hole 43 Head (optical path correction unit)
44 Mask 44a Aperture 45 Lens array 46 Drive unit (optical path correction unit)
47 alignment region 47a first mark 47b second mark 48 base 50a first imaging unit 50b second imaging unit 60 controller 61 first calculation unit 62 second calculation unit 63 determination unit 64 laser light source control unit 65 first optical path control unit 66 Second optical path control unit 67 Transport control unit 70a, 70b Light source 80 Shutter (optical path blocking unit) (optical path blocking unit)

Claims (7)

  1.  光源と、
     前記光源からの光が照射されるべき表面を有する基板を所定方向に沿って一定速度で搬送する搬送部と、
     前記光源からの前記光が前記表面の所定領域に照射されるように前記光の光路を第1補正値に基づいて補正する光路補正ユニットと、
     前記光源からの前記光が前記表面の所定領域外に照射されないように前記光の光路を第2補正値に基づいて遮断する光路遮断ユニットと、
     前記基板の搬送方向またはその垂直方向に沿って前記表面の上に設けられた複数の配線のうちの第1配線を含む第1画像を撮像する第1撮像部と、
     前記複数の配線のうちの第2配線を含む第2画像を撮像する第2撮像部と、
     前記第1画像に基づいて前記第1補正値を算出する第1演算部、前記第1補正値に基づいて前記光路補正ユニットを制御する第1光路制御部、前記第2画像に基づいて前記第2補正値を算出する第2演算部、および前記第2補正値に基づいて前記光路遮断ユニットを制御する第2光路制御部を有するコントローラと
     を備える、光照射装置。
    A light source;
    A transport unit that transports a substrate having a surface to be irradiated with light from the light source at a constant speed along a predetermined direction;
    An optical path correction unit that corrects an optical path of the light based on a first correction value so that the light from the light source is irradiated onto a predetermined region of the surface;
    An optical path blocking unit that blocks the optical path of the light based on a second correction value so that the light from the light source is not irradiated outside a predetermined region of the surface;
    A first imaging unit that captures a first image including a first wiring among a plurality of wirings provided on the surface along a transport direction of the substrate or a vertical direction thereof;
    A second imaging unit that captures a second image including a second wiring of the plurality of wirings;
    A first calculation unit that calculates the first correction value based on the first image; a first optical path control unit that controls the optical path correction unit based on the first correction value; and the first calculation unit based on the second image. 2. A light irradiation apparatus comprising: a second arithmetic unit that calculates a second correction value; and a controller that includes a second optical path control unit that controls the optical path blocking unit based on the second correction value.
  2.  前記光路補正ユニットは、
     開口が形成されたマスク、前記開口を通過した光を集光するためのレンズアレイ、前記第1画像内にて前記第1配線とともに撮像される第1マーク、および前記第2画像内にて前記第2配線とともに撮像される第2マークが設けられているヘッドと、
     前記搬送方向と交差する方向に移動させる駆動部と
     を備える、請求項1に記載の光照射装置。
    The optical path correction unit is
    A mask in which an opening is formed, a lens array for condensing light that has passed through the opening, a first mark that is imaged with the first wiring in the first image, and the second image in the second image A head provided with a second mark imaged together with the second wiring;
    The light irradiation apparatus according to claim 1, further comprising: a drive unit that moves in a direction that intersects the transport direction.
  3.  前記第1マークと前記第2マークは、前記基板の搬送方向と交差する方向において、前記マスクの前記開口の両側に設けられている、請求項2に記載の光照射装置。 3. The light irradiation apparatus according to claim 2, wherein the first mark and the second mark are provided on both sides of the opening of the mask in a direction crossing a transport direction of the substrate.
  4.  前記第1演算部は、前記第1画像内での前記第1配線と前記第1マークとの間における前記搬送方向に交差する前記方向でのずれを前記第1補正値として算出し、
     前記第2演算部は、前記第2画像内での前記第2配線と前記第2マークとの間における前記搬送方向に交差する前記方向でのずれを前記第2補正値として算出する、請求項2または3に記載の光照射装置。
    The first calculation unit calculates, as the first correction value, a shift in the direction intersecting the transport direction between the first wiring and the first mark in the first image,
    The second calculation unit calculates, as the second correction value, a shift in the direction intersecting the transport direction between the second wiring and the second mark in the second image. The light irradiation apparatus according to 2 or 3.
  5.  前記コントローラは、
     前記第1補正値、前記第2補正値、および前記第1補正値と前記第2補正値との間の差異値の大きさの少なくとも一つが所定値未満であるか否かを判定する判定部
     をさらに有する、請求項1~4のいずれか一項に記載の光照射装置。
    The controller is
    A determination unit that determines whether at least one of the first correction value, the second correction value, and a difference value between the first correction value and the second correction value is less than a predetermined value. The light irradiation apparatus according to any one of claims 1 to 4, further comprising:
  6.  前記判定部による判定結果に基づいて第1光路制御部および第2光路制御部の少なくとも一つによる制御が行われる、請求項5に記載の光照射装置。 The light irradiation apparatus according to claim 5, wherein control by at least one of the first optical path control unit and the second optical path control unit is performed based on a determination result by the determination unit.
  7.  前記光路遮断ユニットは、
     前記表面以外へ照射される前記光の光路を遮断する光路遮断部と、
     前記光路遮断部を移動させる第2駆動部と
     を備える、請求項2~6のいずれか一項に記載の光照射装置。
    The optical path blocking unit is
    An optical path blocking unit that blocks an optical path of the light irradiated to other than the surface;
    The light irradiation apparatus according to any one of claims 2 to 6, further comprising: a second drive unit that moves the optical path blocking unit.
PCT/JP2017/015364 2017-04-14 2017-04-14 Light irradiation device WO2018189900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015364 WO2018189900A1 (en) 2017-04-14 2017-04-14 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015364 WO2018189900A1 (en) 2017-04-14 2017-04-14 Light irradiation device

Publications (1)

Publication Number Publication Date
WO2018189900A1 true WO2018189900A1 (en) 2018-10-18

Family

ID=63793272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015364 WO2018189900A1 (en) 2017-04-14 2017-04-14 Light irradiation device

Country Status (1)

Country Link
WO (1) WO2018189900A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354463A (en) * 1998-06-04 1999-12-24 Toshiba Corp Laser annealing device and manufacture of poly crystalline semiconductor film
JP2005347741A (en) * 2004-05-06 2005-12-15 Semiconductor Energy Lab Co Ltd Laser irradiation apparatus
JP2007214388A (en) * 2006-02-09 2007-08-23 Shimadzu Corp Crystallizing device and positioning stage
JP2010283073A (en) * 2009-06-03 2010-12-16 V Technology Co Ltd Laser annealing method, and laser annealing apparatus
JP2013041938A (en) * 2011-08-12 2013-02-28 V Technology Co Ltd Laser doping method and laser doping apparatus
JP2016219581A (en) * 2015-05-19 2016-12-22 株式会社ブイ・テクノロジー Laser annealing method, laser annealing apparatus, and manufacturing method of thin film transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354463A (en) * 1998-06-04 1999-12-24 Toshiba Corp Laser annealing device and manufacture of poly crystalline semiconductor film
JP2005347741A (en) * 2004-05-06 2005-12-15 Semiconductor Energy Lab Co Ltd Laser irradiation apparatus
JP2007214388A (en) * 2006-02-09 2007-08-23 Shimadzu Corp Crystallizing device and positioning stage
JP2010283073A (en) * 2009-06-03 2010-12-16 V Technology Co Ltd Laser annealing method, and laser annealing apparatus
JP2013041938A (en) * 2011-08-12 2013-02-28 V Technology Co Ltd Laser doping method and laser doping apparatus
JP2016219581A (en) * 2015-05-19 2016-12-22 株式会社ブイ・テクノロジー Laser annealing method, laser annealing apparatus, and manufacturing method of thin film transistor

Similar Documents

Publication Publication Date Title
KR101688129B1 (en) Laser annealing method and laser annealing apparatus
KR101650113B1 (en) Exposure apparatus and photomask
JP4754924B2 (en) Exposure equipment
TWI397776B (en) Exposing apparatus
KR101674131B1 (en) Alignment method, alignment device, and exposure device
JP5281350B2 (en) Peripheral exposure apparatus and peripheral exposure method
TWI713091B (en) Laser annealing method and apparatus, and thin-film transistor substrate
WO2006051700A1 (en) Production method of substrate for liquid crystal display
JPWO2012073810A1 (en) Substrate exposure method
KR101780368B1 (en) Photomask, and laser annealing device and exposure device which use same
KR101993950B1 (en) Position determining device, position determining method, lithographic apparatus, and method for manufacturing object
JP4874876B2 (en) Proximity scan exposure apparatus and exposure method therefor
JP5098041B2 (en) Exposure method
JP4971835B2 (en) Exposure method and exposure apparatus
KR101753450B1 (en) Orientation processing device and orientation processing method
KR101674133B1 (en) Photomask
WO2018189900A1 (en) Light irradiation device
WO2018189899A1 (en) Light irradiation device
JP4822977B2 (en) Black matrix pattern forming method and exposure apparatus
JP2012173337A (en) Mask, proximity scan exposure device, and proximity scan exposure method
TWI784097B (en) Exposure device and exposure method
JP2009265313A (en) Scanning exposure device and scanning exposure method
WO2020213341A1 (en) Lens unit, and light radiating device provided with lens unit
JP5630864B2 (en) Exposure equipment
JP2009300580A (en) Proximity exposure apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP