WO2018189277A1 - Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur - Google Patents

Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur Download PDF

Info

Publication number
WO2018189277A1
WO2018189277A1 PCT/EP2018/059348 EP2018059348W WO2018189277A1 WO 2018189277 A1 WO2018189277 A1 WO 2018189277A1 EP 2018059348 W EP2018059348 W EP 2018059348W WO 2018189277 A1 WO2018189277 A1 WO 2018189277A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
parameters
communication protocol
mathematical model
computing device
Prior art date
Application number
PCT/EP2018/059348
Other languages
German (de)
English (en)
Inventor
Thomas Baumgärtner
Martin Kautz
Stefan LANGEMEYER
Roland Reichenbacher
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2018189277A1 publication Critical patent/WO2018189277A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities

Definitions

  • the invention relates to an energy-management heat pump and a method for operating a energy-management-capable heat pump.
  • BAS Building Automation System
  • the said automation system controls the infrastructure underlying the building, in particular electric batteries, thermal energy storage or heat pump.
  • a building automation system has several abstract levels. For example, the Managementebe ne higher-level functions, such as a visualization ⁇ tion of building infrastructure on.
  • the automation level merges individual field devices and, in particular, controls device groups.
  • Field Level International: Field Level
  • individual components of the building infrastructure are connected to the building automation system.
  • a subsystem of the building automation system is a buil ⁇ de-Energy Management System, or energy management system (English: Building Energy Management System; abbreviated BEMS).
  • BEMS Building Energy Management System
  • the core functions of an energy management system are the energy-efficient control of the components connected thereto, the protection of the infrastructure and the provision of a certain comfort, for example the adjustment of the internal temperature in the individual rooms of the building.
  • LEED Leadership in Energy and Environmental Design
  • ENERGY STAR ENERGY STAR
  • Future energy management systems include, as one of their main tasks, co-ordinating building-internal generation and consumption. This includes a management of renewable energy sources, in particular photovoltaic systems, electrical energy storage or controllable loads, such as charging electric cars. Furthermore, an energy management system includes ⁇ example, electrical measurements, a monitoring of the infrastructure, a data analysis and
  • an energy management system for consumption and in the production of energy, for example, dynamic prices.
  • an energy management system may perform a prediction of load profiles, for example over a future period of 24 hours, by a scheduling module.
  • EMS energy management system
  • a scheduling module for example, for renewable energy sources, such as photovoltaic systems, such planning or prediction is difficult.
  • the present invention has for its object to provide a heat pump whose integration is facilitated to an energy management system.
  • the object is achieved by a heat pump with the features of independent claim 1 and by a method having the features of independent claim 12.
  • the heat pump according to the invention comprises
  • the computing device is adapted to form derived from the internal parameters parameters; in which
  • the computing device is coupled for data exchange with a communication interface of the heat pump such that the derived parameters are externally providable by means of a protocol ⁇ superordinate in relation to the first communications pro second communication protocol.
  • a higher level communication protocol refers to a communication protocol which is at least one larger one
  • the second communication protocol with respect to the first Kommunikati ⁇ onsprotokoll s to an increased range of functions. Furthermore, the second communication protocol with respect to the first communication protocol, an increased number of levels (English: Layer), have a higher priority and / or an auto-discovery protocol (English Auto-Discovery Protocol).
  • the control unit is provided for controlling the heat pump.
  • the connections for data exchange can be bidirectional or unidirectional.
  • the derived parameters are provided externally. This enables a connection or integration of the heat pump according to the invention into an energy management system. This is because the parameters relevant to the control or regulation of the heat pump (derived parameters) are provided via a higher-level communication protocol.
  • the first communication protocol is a hardware-close communication protocol with a limited functionality, wel ⁇ ches is also referred to as a base protocol.
  • the centrewerti ⁇ ge second communication protocol allows via the communi ⁇ nikationsterrorismmaschine a control of the heat pump with an enlarged in relation to the basic protocol scope of functions. This facilitates the integration of the heat pump according to the invention into an energy management system.
  • the computing device forms at least one protocol conversion in which the first communication protocol is translated into the higher-order, that is, the higher-order second communication protocol.
  • the heat pump according to the invention has an internal protocol converter.
  • the computing device can for this purpose include a protocol converter with the trade name Siemens Simatic S7.
  • the inventive heat pump ska verbes ⁇ sert can be used to continue len bine within an energy management system. Furthermore, costs for integrating the heat pump into an energy management system can be reduced.
  • inventive method for operating a heat pump with a computing device and a control unit, which are coupled to each other for data exchange are - By means of a first communication protocol, internal parameters of the heat pump are transferred from the control unit to the arithmetic unit;
  • the heat pump according to the invention has similar and equivalent advantages of the method according to the invention.
  • the internal parameter set values and / or actual values of the heat pump include ⁇ .
  • the setpoint values and / or actual values of the control unit are forwarded to the computing device by means of the first communication protocol (basic protocol).
  • the actual values can be detected by sensors of the heat pump who ⁇ .
  • the sensors transmit the acquired actual values to the control unit.
  • the second communication protocol BACnet, OPC UA or a communication protocol according to IEC 60870-5-104 ⁇ comprises.
  • the ge ⁇ called advantageous communication protocols have a wide range of functions and further advantageous own sheep ⁇ th.
  • all relevant internal parameters for example nominal values and / or actual values, are externally available via the communication interface via the above-mentioned, ie higher-value communication protocols.
  • the internal parameters may be the state (on / off) of the compressor, the evaporation temperature of a working fluid of the heat pump, the outside temperature and / or further.
  • a mathematical model for the formation of the derived parameters is stored by means of the computing device.
  • a mathematical model may take environmentally at least one sliding ⁇ chung, which provides the internal parameters with the derived parameters in relationship and equation parameters.
  • the mathematical model is also referred to as a model of the heat pump or heat pump model. It is particularly preferred if the mathematical model via the communication interface via the übergeordne ⁇ th second communication protocol is externally mountable.
  • the mathematical model is au ⁇ tomatInstitutome output from the high-order second communication Proto ⁇ koll outward advantageously, that is externally provided.
  • the internal regulation of the heat pump is advantageously documented and / or traceable.
  • the heat pump thereby advantageously comprises a plug-and-play functionality. Moreover, characterized the reference values and / or actual values are associated correctly with the corresponding back ⁇ terighten mathematical model.
  • the derived parameters can the operating status of the heat pump, the electric power of furnishedpum ⁇ pe, the thermal performance of the heat pump, the Kondensati ⁇ onstemperatur a working fluid of the heat pump and / or the coefficient of performance of the heat pump.
  • the term operating state of the heat pump may include one or a plurality of the following states of the heat pump: on, off, fault, de-icing, or on.
  • the heat pump may preferably comprise a sensor unit.
  • the sensor unit may include a plurality of sensors.
  • the heat pump is connected via the communication interface with an energy management system, in particular a building energy management system or an energy management system for an electrical distribution network or an industrial energy management system.
  • an energy management system in particular a building energy management system or an energy management system for an electrical distribution network or an industrial energy management system.
  • the heat pump allows a simple and cost-effective integration into the above systems.
  • the derived parameters can ⁇ example, on the energy management system for regulating or controlling the heat pump will be passed.
  • the computing device comprises a first, second and third rake ⁇ unit
  • the first arithmetic unit for exchanging data with the communication interface of the heat pump is coupled such that the parameters passed from ⁇ are externally providable by means of the with respect to the first communication Proto ⁇ koll parent second communication protocol; in which - the second arithmetic unit is adapted to form the derived parameters using egg ⁇ nes mathematical model from the internal parameters; and
  • the third arithmetic unit is adapted to provide equation parameters of the mathematical model for the second arithmetic unit.
  • each of the arithmetic units is specialized in the task assigned to it.
  • the arithmetic units can be interconnected for mutual data exchange. This connection can be bidirectional or unidirectional.
  • the second and / or third arithmetic unit is / are coupled to the control unit for data exchange.
  • the second arithmetic unit is provided for forming the derived parameters by means of the mathematical model.
  • the equation parameters of the mathematical model can be adjusted. It is particularly preferred if a calculation rule of the control unit is taken into account in the mathematical model.
  • the data coupling is provided in particular the data coupling of the third arithmetic unit with the control unit.
  • the control unit may comprise a sensor unit, in which case the third calculation unit may be ⁇ ten
  • the heat pump comprises an energy store, which is coupled to the second processing unit for data exchange, wherein the energy storage is provided to balance load deviations from the mathematical model, in particular in a defrost of the heat pump.
  • the energy storage is advantageous if the switching times of the heat pump are regulated or controlled by the energy management system ⁇ system by means of the communication interface of the heat pump.
  • internal information about the heat pump is provided externally. For example, the Connect time of Wär ⁇ mepumpe can be determined after a power failure by a random generator. This information can be ⁇ provides externallygiege also by means of the communication interface of the heat pump.
  • the energy store in particular a battery, could advantageously cover the energy requirement for de-icing, which at best occurs before the heat pump is switched on.
  • FIG. 1 shows a circuit diagram of a heat pump according to the prior art
  • Figure 2 is a circuit diagram of a heat pump according to a
  • the arrows in the figures indicate a coupling for data exchange, in particular by means of communication protocols.
  • FIG. 1 shows the circuit diagram of the heat pump 1 known from the prior art.
  • the known heat pump 1 has a control unit 4 and a sensor unit 6.
  • the sensor unit 6 can be regarded as part of the control unit 4.
  • the sensor unit 6 comprises sensors for detecting measured values or actual values. By balancing the detected actual values with setpoint values stored within the control unit 4, a control 46 of the known heat pump 1 takes place according to one or more specific calculation instructions.
  • the known heat pump 1 may comprise a basic communication interface 41.
  • first communication protocol ⁇ such as Modbus, or CAN
  • certain internal parameters can be read from or provided by means of a hardware ⁇ nearby base communication protocol. Due to the hardware-related basic communication protocol, a connection or integration of the known heat pump 1 into an energy management system is difficult and expensive.
  • FIG. 2 shows a schematic circuit diagram of the heat pump 1 according to an embodiment of the present invention.
  • the heat pump 1 in FIG. 1 comprises a computing device 2 and a control unit 4. Furthermore, this comprises a sensor unit 6 for acquiring measured values, that is to say actual values.
  • the sensor unit 6 can also be regarded as part of the control unit 4.
  • a regulation 46 of the heat pump 1 can take place by balancing the actual values with the desired values stored within the control unit 4.
  • the computing device 2 of the heat pump 1 is coupled to the control unit 4 for data exchange via a first communication protocol 41 (basic communication protocol).
  • the computing device 2 is designed as a protocol converter such that the first communication protocol 41 sets ⁇ converted into a higher second communications protocol 42 may be.
  • the computing device 2 comprises a first, second and third arithmetic unit 21, 22, 23.
  • Internal parameters of the heat pump 1, in particular actual values and / or setpoint values as well as further internal specifications and / or information of the heat pump 1, by means of the first communication protocol 41 of the control unit 4 are transferred to the first arithmetic unit 21 of the computing device 2.
  • parameters derived from the internal parameters are formed by means of the first arithmetic unit 21.
  • the derived parameters can be formed by means of a mathematical model.
  • the mathematical model may include one or a plurality of equations having, for example, actual values and / or setpoints as variables.
  • the equations underlying the mathematical model may include equation params.
  • the mathematical model forms a model of the heat pump 1, by means of which parameters relevant for the heat pump 1 can be derived from the internal parameters.
  • the first calculating unit 21 is via the superordinate second communication protocol 42 with a communication interface ⁇ point 42 of the heat pump 1 is coupled for data exchange.
  • the parameters derived by the first calculating unit 21 are externally provided ⁇ be riding through the communication interface 42 by means of the HOE ⁇ her structurien second communication protocol 42nd This external provision allows before ⁇ geous enough, a quick, easy and, where appropriate standardized connection or integration of the heat pump 1 in a non-illustrated energy management system.
  • the second arithmetic unit 22 is provided for forming and evaluating the mathematical model.
  • the mathematical model by means of the second arithmetic unit 22 can be ge ⁇ stores.
  • the second arithmetic unit 22 is coupled to the DATAOUT ⁇ exchange with the first computing unit 21 and the control unit. 4
  • the mathematical model can be read out and / or possibly changed and / or adapted and / or brought up to date (update).
  • the second processor 22 to the control unit 4 in particular ⁇ sondere to the actual values and / or target values and / or a rule ⁇ regulations of the control unit 4 considered by the mathematical model.
  • an energy ⁇ memory 8 in particular a battery
  • the heat pump 1 GE ⁇ coupled.
  • the energy storage 8 may be coupled directly to the sensor unit 6 for data exchange.
  • An adaptation of the mathematical model to the previously not considered loads is possible through the external provision of the mathematical model.
  • the third arithmetic unit 23 is provided for adjusting and / or Be ⁇ woman on top of the equation parameters of the mathematical model.
  • the third arithmetic unit 23 for data exchange with the second arithmetic unit 22, with the control unit 4 and with the sensor unit 6 is coupled. This makes it possible to adapt or change the equation parameters, since these can change over the service life of the heat pump 1, for example as a result of their aging.
  • the heat pump 1 can thus be efficiently integrated into an energy management ⁇ ment system. All relevant, ie derived, parameters are made available for the energy management system by means of the higher-value communication protocol 42 (second communication protocol), for example BACnet.
  • second communication protocol for example BACnet.
  • the implementation of the above-described processes or steps, in particular the formation of the derived parameters by means of the mathematical model can be carried out based on instructions (collectively, the computer-readable memory designated ⁇ net hereinafter) present on computer readable storage media, or volatile computer memories.
  • Computer-readable memory for example, volatile storage such as caches, buffers, or RAM and non-volatile memory as ⁇ removable disk, or hard disks.
  • the features or method steps described above may be present in or on a computer-readable storage case in the form of at least one instruction ⁇ set.
  • the functions or method steps are not bound to a specific instruction set or to a specific form of instruction sets or to a specific storage medium or to a specific processor or to specific execution schemes and can be executed by software, firmware, microcode, hardware, processors or integrated circuits in single operation or in any combination.
  • a variety of processing strategies can be used, such as serial processing by a single processor, multiprocessing, multitasking or parallel processing.
  • the instructions may be stored in local memories, but it is also possible to store the instructions on a remote system and access them via network.
  • the terms computing device and processing unit as used herein include processors and processing means in the broadest sense, for example servers, general purpose processors, graphics processors, digital signal processors, application specific integrated circuits (ASICs), programmable logic circuits such as FPGAs, discrete analog or digital
  • Processors can be ner or more devices. If a processor consists of several devices, these can be configured for parallel or sequential processing of instructions.

Abstract

La présente invention concerne une pompe à chaleur (1), comprenant un dispositif de calcul (2) et une unité de réglage (4), lesquels sont couplés pour un échange de données de telle sorte que, au moyen d'un premier protocole de communication, des paramètres internes de la pompe à chaleur (1) peuvent être transférés au dispositif de calcul (2); et le dispositif de calcul (2) est conçu pour établir des paramètres dérivés des paramètres internes; le dispositif de calcul (2) étant couplé, pour l'échange de données avec une interface de communication (42) de la pompe à chaleur (1), de telle sorte que, au moyen d'un deuxième protocole de communication supérieur par rapport au premier protocole de communication, les paramètres dérivés peuvent être fournis de manière externe. L'invention concerne en outre un procédé de fonctionnement d'une pompe à chaleur (1).
PCT/EP2018/059348 2017-04-13 2018-04-12 Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur WO2018189277A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017206418.8A DE102017206418A1 (de) 2017-04-13 2017-04-13 Wärmepumpe und Verfahren zum Betrieb einer Wärmepumpe
DE102017206418.8 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018189277A1 true WO2018189277A1 (fr) 2018-10-18

Family

ID=62062988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059348 WO2018189277A1 (fr) 2017-04-13 2018-04-12 Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur

Country Status (2)

Country Link
DE (1) DE102017206418A1 (fr)
WO (1) WO2018189277A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096811A2 (fr) * 2009-02-23 2010-08-26 Field Diagnostic Services, Inc. Dispositif de commande et procédé d'amélioration du rendement de systèmes de chauffage et de refroidissement
EP2829825A1 (fr) * 2012-03-21 2015-01-28 Panasonic Corporation Procédé pour commander un système de chauffage et système de chauffage
WO2016061686A1 (fr) * 2014-10-23 2016-04-28 Q-Links Home Automation Inc. Procédé et système d'automatisation domestique par le biais d'un thermostat
EP3079027A1 (fr) * 2013-12-06 2016-10-12 Gree Electric Appliances, Inc. of Zhuhai Système de surveillance destiné à des systèmes de conditionnement d'air basé sur la génération d'énergie répartie et système de conditionnement d'air utilisant ledit système de surveillance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529907B1 (ko) * 2003-06-19 2005-11-22 엘지전자 주식회사 에어컨의 중앙제어 시스템 및 그 동작방법
US20070082601A1 (en) * 2005-03-10 2007-04-12 Desrochers Eric M Dynamic control of dilution ventilation in one-pass, critical environments
JP2008232531A (ja) * 2007-03-20 2008-10-02 Toshiba Corp リモート性能監視装置及びリモート性能監視方法
US20100217452A1 (en) * 2009-02-26 2010-08-26 Mccord Alan Overlay packet data network for managing energy and method for using same
US20120065793A1 (en) * 2010-02-25 2012-03-15 Kaji Mitsuru Demand and supply control apparatus, demand and supply control method, and program
US9168315B1 (en) * 2011-09-07 2015-10-27 Mainstream Engineering Corporation Cost-effective remote monitoring, diagnostic and system health prediction system and method for vapor compression and heat pump units based on compressor discharge line temperature sampling
US11009250B2 (en) * 2015-06-30 2021-05-18 Emerson Climate Technologies Retail Solutions, Inc. Maintenance and diagnostics for refrigeration systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096811A2 (fr) * 2009-02-23 2010-08-26 Field Diagnostic Services, Inc. Dispositif de commande et procédé d'amélioration du rendement de systèmes de chauffage et de refroidissement
EP2829825A1 (fr) * 2012-03-21 2015-01-28 Panasonic Corporation Procédé pour commander un système de chauffage et système de chauffage
EP3079027A1 (fr) * 2013-12-06 2016-10-12 Gree Electric Appliances, Inc. of Zhuhai Système de surveillance destiné à des systèmes de conditionnement d'air basé sur la génération d'énergie répartie et système de conditionnement d'air utilisant ledit système de surveillance
WO2016061686A1 (fr) * 2014-10-23 2016-04-28 Q-Links Home Automation Inc. Procédé et système d'automatisation domestique par le biais d'un thermostat

Also Published As

Publication number Publication date
DE102017206418A1 (de) 2018-10-18

Similar Documents

Publication Publication Date Title
EP3214718B1 (fr) Procede et systeme de fonctionnement d'un reseau d'alimentation en energie autarcique
EP2633600B1 (fr) Procédé de détection de données à cycle court, pour la surveillance de l'énergie et pour la commande de réseau dans le système de compteur intelligent/réseau électrique intelligent à l'aide d'un logiciel médiateur intelligent distribué
EP3107174B1 (fr) Procédé, dispositif de commande et système de fonctionnement d'un sous-réseau d'un réseau de distribution d'énergie
EP2684335B1 (fr) Installation d'automatisation d'énergie et procédé servant à faire fonctionner une installation d'automatisation d'énergie
DE102017203836A1 (de) Verfahren und System zum Bestimmen einer erwarteten Lebensdauer eines elektrischen Betriebsmittels
EP3048687A1 (fr) Procede de commande d'un reseau de distribution d'energie electrique
EP3161928B1 (fr) Système de gestion d'énergie permettant de commander un dispositif, produit-programme d'ordinateur et procédé de commande d'un dispositif
WO2018114404A1 (fr) Procédé de structuration d'un réseau existant permettant la distribution de l'énergie électrique
EP3284152B1 (fr) Commande de transfert d'énergie entre un réseau d'alimentation en énergie et des dispositifs d'utilisateur final sur la base du flux d'énergie et de la qualité du réseau
EP2843788A2 (fr) Procédé destiné au fonctionnement d'un système de centrale
DE19817191C2 (de) Verfahren zum Regeln der Gesamtleistung von energietechnischen Anlagen, insbesondere einer Gruppe von elektrischen Verbrauchern
WO2018189277A1 (fr) Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur
WO2019149948A1 (fr) Procédé et agencement de gestion de charge d'appareils électriques
DE102020104516B3 (de) Verfahren zur Ermittlung von Parametern einer oder mehrerer Energiewandlungsanlagen
DE102016217748A1 (de) Erbringung von Primärregelleistung
EP3311460B1 (fr) Système distribué de conversion d'énergie
AT514766A1 (de) Verfahren zur Stabilisierung eines Energieverteilnetzes
EP3859929B1 (fr) Système énergétique ainsi que ses procédés et dispositifs de commande
DE102009008033B3 (de) Versorgung von energietechnischen Objekten mit Energie verschiedener Energiearten
DE102018110044B4 (de) Verfahren und Vorrichtung zum aufeinander abgestimmten Betreiben von elektrischen Einrichtungen
DE102017222304B4 (de) Verfahren zur Regelung der elektrischen Netzleistungsaufnahme einer technischen Anlage und zugehörige Anlage
EP4176504A1 (fr) Réseau de distribution d'énergie électrique
WO2022223633A1 (fr) Identification de la topologie de structures de compteur d'un système énergétique
WO2021219265A1 (fr) Procédé de commande d'échanges thermiques et dispositif de commande associé
EP4231478A1 (fr) Procédé, dispositif de commande de réseau et système de commande d'un réseau local électrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18720131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18720131

Country of ref document: EP

Kind code of ref document: A1