WO2018188472A1 - 轮升伞可控升力高效能产生装置及使用方法 - Google Patents

轮升伞可控升力高效能产生装置及使用方法 Download PDF

Info

Publication number
WO2018188472A1
WO2018188472A1 PCT/CN2018/080405 CN2018080405W WO2018188472A1 WO 2018188472 A1 WO2018188472 A1 WO 2018188472A1 CN 2018080405 W CN2018080405 W CN 2018080405W WO 2018188472 A1 WO2018188472 A1 WO 2018188472A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
parachute
lift
pull
load frame
Prior art date
Application number
PCT/CN2018/080405
Other languages
English (en)
French (fr)
Inventor
王树强
Original Assignee
王树强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王树强 filed Critical 王树强
Publication of WO2018188472A1 publication Critical patent/WO2018188472A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/02Non-rigid airships
    • B64B1/04Non-rigid airships the profile being maintained by ties or cords connecting opposite surfaces

Definitions

  • the present invention relates to the field of aircraft technology, and in particular, to a liftable high-efficiency energy generating device and a using method capable of providing lift.
  • the fixed-wing aircraft is the lift generated by the pressure difference between the upper and lower wings when moving at high speed.
  • the rotorcraft is the lift generated by the pressure difference between the upper and lower rotors when the rotor rotates at high speed.
  • the rocket relies on The recoil force generated by reverse high speed injection.
  • the hydrogen (or helium) airbag requires a large volume for the static buoyancy of the air, and the pressure difference between the upper and lower sides of the moving wing generates lift.
  • the heavier power equipment requires lower efficiency, and the high-speed jet is generated.
  • the recoil requires more fuel.
  • Relative movement speed as can be seen from the above formula, the air resistance under normal conditions is proportional to the air resistance coefficient and the windward area, and proportional to the square of the speed.
  • the parachute is an aerodynamic reducer. It usually has a large folded umbrella surface. The falling person or object is connected to the umbrella surface through the rope.
  • the umbrella surface is quickly dropped, and the umbrella surface is inflated with respect to the air movement, which can generate a large air resistance, so that the person or the object is decelerated and stably fallen, and the safety of the person or object falling in the air is ensured. If further analysis is made, the air resistance generated by the parachute canopy is essentially the lift of the whole system, but the lift does not exceed the gravity of the whole system, so the whole system has been falling. According to the present invention, the flexible umbrella surface is combined with the commonly used lift generating method according to the analysis, so that the lift can be generated with high efficiency and controllability.
  • the basic structural device of the present invention comprises a load frame, a convertible rope quick pull-down device and a number of lightweight tensile connection cords and a parachute umbrella of at least 2 sets connected at the same time (from a lightweight tough flexible umbrella surface, center)
  • the load-bearing rope, the surrounding load-bearing rope, the lightweight anti-overlap, the umbrella opening protection device and the initial lifter, the components are connected from bottom to top in turn, and the initial lifter can automatically generate and continuously maintain the lift.
  • Devices such as balloons or electric rotors filled with low-density gas (hydrogen or helium) must have a lift force F greater than the weight of the parachute and a length of lightweight tensile cord.
  • the convertible rope quick pull-down device means that a plurality of ropes can be connected, one can be quickly pulled down by a person or other power mechanism, and the rest can be completely released, and can be converted into a quick pull-down of the other rope as required, and the rest is completely completed.
  • the released device which is a mechanical structure that is very easy to implement, sets the weight of the entire device to Mg.
  • the operation method of the present invention is as follows: firstly release all the lightweight tensile connecting ropes, the closed lifter is lifted into the air by the initial lifter, and then quickly pulled by the convertible rope quick pull-down device on the mounting load frame.
  • One of the light-weight tensile connecting ropes of the parachute, the pull-down umbrella surface moves downward relative to the air and then continues to move downward after being inflated, the umbrella surface is blocked by the air resistance f, and the air resistance of the umbrella surface is passed through the connecting rope and fast reverse acting converting means down to the rope load applied to the frame becomes a load on the lift frame F sharp, i.e.
  • the contraction under the action of the resistance, the air resistance received during the ascent will be much smaller than the air resistance at the time of the pull-down, so the first parachute will return to the initial position within a certain period of time, by adjusting the lift of the initial lift,
  • the length of the connecting rope and the storage speed of the quick-down pull-down device of the convertible rope can make the process of the downward-lifting movement of the parachute equal to the time of the free-rising movement process, and then the lifting and pulling down of the parachute will continue to apply lift to the load frame.
  • the invention fully utilizes the law of air resistance, drives the wheel parachute to rise with the initial lift of less lift, and pulls and releases the self-propelled rise of the plurality of wheeled parachutes, and the parachute is inflated during the movement. And the drooping closure, due to the air movement of the inflated unfolded umbrella during the rapid pull-down, which generates a large air resistance, which is reversely applied to the load frame by the connecting rope and the convertible rope quick pull-down device fixed on the load frame. , thereby forming a sustained large lift on the load frame.
  • the umbrella surface of the device of the invention has a large area after being inflated, and the high-speed pull-down of the connecting rope is also very easy to realize and control by a simple convertible rope quick pull-down device with less power or even manpower, that is, the umbrella surface and the air.
  • the relative motion speed can be controlled to achieve high speed, so according to the air resistance formula, the device of the present invention can generate lift with high efficiency and controllability.
  • the invention has the advantages that the invention has simple structure, most of the components are flexible materials, and are convenient for storage, so it is suitable for a variety of flying devices; and can be connected in series by multiple front and rear series, or parallel, or series and parallel. It forms a variety of lift devices that provide greater values of lift with good stability and safety.
  • FIG. 1 is a schematic view of a basic structure apparatus according to a preferred embodiment of the present invention (a state in which a parachute is suspended).
  • Fig. 2 is a schematic view showing the basic structure of a preferred embodiment of the present invention (inflated state of the parachute inflatable).
  • Fig. 3 is a structural schematic view of the main component parachute of the present invention (a hanging state).
  • Fig. 4 is a structural schematic view of the main component parachute of the present invention (inflated deployment state).
  • Figure 5 is a schematic illustration of the method of use of the present invention in which the invention is in an initial state.
  • Figure 6 is a schematic illustration of the method of use of the present invention in which the invention is in an activated state.
  • Figure 7 is a schematic illustration of the method of use of the present invention in which the invention is in an intermediate state.
  • Figure 8 is a schematic illustration of the method of use of the present invention in which the invention is in an end state.
  • Figure 9 is a schematic illustration of another preferred embodiment of the invention (using a coiled release mechanism).
  • Figure 10 is a schematic illustration of another preferred embodiment of the invention (using an electric rotor helicopter).
  • FIG. 1 and 2 show a schematic diagram of a basic structural device of a preferred embodiment of the present invention
  • FIG. 1 is a state in which the wheeled parachute 2 is suspended
  • FIG. 2 is a state in which the wheeled parachute 2 is inflated
  • the basic structural device of the present invention includes : initial lifter 1, wheeled parachute 2, lightweight tensile connecting rope 3, convertible rope quick pull-down device 4, load frame 5, and components are connected in order from top to bottom.
  • the initial lift 1 refers to a device capable of automatically generating lift and can be continuously maintained for a period of time.
  • the preferred embodiment of the present invention employs a balloon filled with a low density gas (hydrogen or helium balloon) as the initial lift 1, which is a well-known technique, a balloon It can be made of polymer composite film material.
  • a low density gas hydrogen or helium balloon
  • the advantages of this type of device are no energy consumption, no noise, stable lift.
  • the disadvantage is that it is bulky and cannot control the magnitude and direction of lift.
  • Lightweight tensile cable 3 can be used for higher strength cotton.
  • the convertible rope quick pull-down device 4 means that a plurality of ropes can be connected, and one of them can be quickly pulled down by a person or other power mechanism, and the rest can be completely released, and According to the requirement, the device is quickly converted into a device for quickly pulling down another rope and the rest is completely released.
  • the preferred embodiment of the present invention uses the simplest manpower to operate the pull-down mode, and the operator is fixed to the load frame 5 through the seat belt, which is lightweight.
  • the tensile connecting cord 3 is directly fixed to the lower portion of the load frame 5, and is disposed at a position where the human hand can freely touch, and is The fixed person pulls down the lightweight tensile connecting rope 3 to realize the quick pull-down function of the convertible rope. It must be said that the operator and the connecting rope are simultaneously fixed on the load frame 5, so that the pulling force of the person and the connecting rope can be transmitted to Load on the frame 5.
  • the load frame 5 can be made of an aluminum alloy, a titanium alloy, and a lightweight high-strength carbon fiber composite material.
  • FIG. 3 and 4 are schematic views showing the structure of the main component of the wheeled parachute 2 of the present invention
  • Fig. 3 is a state in which the wheeled parachute 2 is suspended
  • Fig. 4 is a state in which the wheeled parachute 2 is inflated.
  • the parachute 2 is composed of a canopy 201, a central bearing rope 202, a peripheral bearing rope 203, an anti-overlap 204, and a canopy opening support device 205.
  • the central bearing rope 202 is fixed at the center of the canopy 201 and is connected to the initial lifter 1 upward through the canopy 201, and is connected downwardly to the lightweight tensile connecting cord 3, the function of which is to ensure that the umbrella surface 201 is pulled.
  • a plurality of peripheral bearing ropes 203 are arranged at a peripheral position of the umbrella surface 201.
  • the plurality of peripheral bearing ropes 203 are combined and connected downward with the lightweight tensile connecting rope 3, and the function is to transmit the downwardly inflated air.
  • the air resistance of the umbrella surface 201 is received.
  • An anti-folding net 204 is installed between each of the surrounding bearing ropes 203.
  • the mesh of the anti-overlap net 204 needs to be smaller than the outer diameter of the initial lifter 1, and its function is to pull up the inflated umbrella face 201 and the initial rise of free rise.
  • the central bearing rope 202 at the bottom of the parachute is provided with a canopy opening support device 205, which should be disposed at the end position of the canopy 201 hanging down, using an upper tapered frame of lightweight plastic texture, and the upper end is mostly inserted and hanged closed.
  • the shape of the umbrella surface 201 can be various shapes such as a square shape, a circular shape, an airfoil shape, and a strip shape as needed.
  • the umbrella surface 201 can be made of high-strength parachute cloth material, and the central bearing rope 202 and the surrounding bearing rope 203 can be made of high-strength cotton rope, Kevlar or other polymer material composite rope, anti-folding net.
  • a fiber web made of a high-strength cotton fiber or a composite material of a polymer material can be used.
  • FIG. 5 A schematic diagram of the method of use of the present invention is shown in Figures 5, 6, 7, and 8.
  • the invention it is necessary to simultaneously connect at least two sets of the initial lifter 1, the parachute 2, and the lightweight tensile connecting cord 3 on the convertible rope quick pull-down device 4, and set the weight of the whole device to be Mg, for convenience of explanation,
  • Set to connect 2 sets at the same time one set is the initial lift 1 a , the parachute 2 a , the light tensile connection rope 3 a , the other set is the initial lift 1 b , the parachute 2 b , light weight Tensile connection cord 3 b .
  • the lightweight pull-resistant connecting rope 3 a of one of the parachutes is quickly pulled by the convertible rope quick pull-down device 4, and the umbrella surface of the pull-down parachute 2 a is moved downward with respect to the air to be inflated and then continued.
  • the rest of the parachute 2 b is not pulled, so it stays in the air in the droop closed state, the pull-down parachute 2 a umbrella surface will be blocked by the air resistance f, the air resistance of the umbrella surface is passed through the connecting rope 3 a and 4 can be converted quickly rope pull-down devices reverse acting on the load acting on the frame 5 serves as a load on the lift frame F 5 liter, i.e.
  • the convertible rope quick pull-down device 4 adopts a coil release mechanism pull-down mode, and the coil release mechanism is easily connected with the power mechanism, which is also a relatively common mechanical device, so the present invention does not Detailed constructional explanations.
  • the coiled release mechanism 6 is fixed on the load frame 5, and other components are the same as above.
  • the power-driven coiled release mechanism 6 is wound around the pull-down connecting rope 3 to realize the convertible quick pull-down of the wheel parachute 2, and then the parachute is passed according to the above steps. The pull-down and recovery of the turns will continue to apply lift to the load frame.
  • the present invention employs such a coil release mechanism to provide a large pulling force and a coiling speed, and can be in the form of an electric motor, computer control or the like.
  • the initial lifter 1 in the basic structure device can adopt an electric rotor-type helicopter, and a light-weight tensile line is mixed into a certain length of the lightweight tensile connecting rope, and a power source is disposed on the load frame.
  • the other devices are the same as above, and the lift F must be greater than the weight of the parachute, the electric rotor and the length of the lightweight tensile connecting rope. It can also realize the active continuous rise of the parachute, and then pass the parachute according to the above steps. Pulling down and picking up will continue to apply lift to the load frame.
  • 10 is a schematic view of a basic structural device according to another preferred embodiment of the present invention.
  • the basic structural device of the present invention includes: an electric rotor initial lifter 7, a wheeled parachute 2, and a lightweight tensile hybrid wire connecting rope 8
  • the convertible rope quick-receiving device 6, the load frame 5, the power source 9, and the components are sequentially connected from top to bottom, and the initial lifter is changed from a low-density gas balloon (hydrogen or helium balloon) device to an electric rotor device, which overcomes Its large size is shortcoming, and the lift can be adjusted.
  • a low-density gas balloon hydrogen or helium balloon
  • the total weight of the device is increased, and the power is limited, and the electric rotor has a certain noise.
  • the invention has the following characteristics: 1.
  • the structure is simple, and most of the construction adopts a lightweight material, a soft structure and a small amount of hard frame, which greatly reduces the total weight of the device and is convenient for storage; 2.
  • Pulling down by using a connecting rope To generate lift, simple start-up, force adjustment from small to large, easy to control, can be implemented by small power or even manpower, energy consumption is extremely low during the adjustment process;
  • 3, can be connected in series before or after multiple rounds of parachute, or parallel, or A variety of ways, such as series and parallel, constitute a variety of lift devices, can provide greater value of lift, have good stability;
  • the entire system can only function if it needs to be lifted to a certain height, so it must have a fairly high clearance when in use.

Abstract

一种可以提供升力的轮升伞可控升力高效能产生装置及使用方法,该装置包括载荷框架(5)、可转换绳索快速下拉装置(4)和与其连接的至少2套的一定长度的轻质抗拉连接绳(3)、轮升伞(2)和初始升力器(1),各构件依次从下到上连接。该装置使用方法以较小升力的初始升力器(1)带动轮升伞(2)上升,通过对多个轮升伞(2)的轮流下拉和放开自由上升,轮升伞(2)轮流充气展开和下垂闭合,由于快速下拉时充气展开的轮升伞(2)相对空气运动而产生较大的空气阻力,该阻力通过连接绳(3)和固定在载荷框架(5)上的可转换绳索快速下拉装置(4)反向作用在载荷框架(5)上,从而形成对载荷框架(5)的持续的较大升力。

Description

轮升伞可控升力高效能产生装置及使用方法 技术领域
本发明涉及飞行器技术领域,尤其是涉及一种可以提供升力的轮升伞可控升力高效能产生装置及使用方法。
背景技术
人类很早就有在空中自由飞行的理想,随着世界技术的进步,形形色色的飞行器层出不穷。飞行器运行一般可分为三个阶段:起升、平飞、降落,起升时需要飞行器能够在一定时间内产生大于自身重力的升力,平飞时需要飞行器能够长时间维持平衡于自身重力的升力和一定的前行动力,降落时需要飞行器能够可控制的逐步降低升力从而让自身能逐步降至地面而不是坠落,所以飞行器的最重要和必要的一项本质就是持续的提供升力,如何产生一种可控制的能够抵消自身重力的升力。如气球、飞艇是依靠气囊对空气的静浮力,固定翼飞机是在高速向前运动时机翼上下的压力差产生的升力,旋翼机是旋翼高速旋转时上下的压力差产生的升力,火箭是依靠反向高速喷射产生的反冲力。
技术问题
但上述升力产生方法都有很多不足,氢气(或氦气)气囊对空气的静浮力都需要超大的体积,运动机翼上下压力差产生升力需要较重的动力设备导致效能较低,高速喷射产生的反冲力需要较多的燃料。近年来飞行领域没有新的升力产生装置和理论出现,所以飞行器发展的大多是高能耗的大型客货机或者轻微型的无人机,而轻型载人飞行器一直徘徊在莱特兄弟最初的滑翔机模式里。那么是否有既能够高效能可控持续的提供升力又自重较轻的装置和方法呢?
技术解决方案
物体在空气中运动会受到空气的阻力,空气阻力的公式:F=(1/2)CρSV 2,式中:C为空气阻力系数;ρ为空气密度;S物体迎风面积;V为物体与空气的相对运动速度,由上式可知,正常情况下空气阻力的大小与空气阻力系数及迎风面积成正比,与速度平方成正比。根据这一规律人们发明了降落伞,降落伞是一种气动力减速器,它通常有一个折叠的面积很大的伞面,下落的人或物体通过绳索与伞面相连,工作时由于受重力作用下坠带动伞面快速下落,伞面相对于空气运动充气展开,可以产生很大的空气阻力,使人或物体减速、稳定的下落,保证在空中下落的人或物体的安全。如果进一步深入分析,降落伞伞面所产生的空气阻力实质是对整个系统的升力,只不过这个升力没有超过整个系统重力,所以整个系统 一直下降。本发明就是根据这一分析对柔性伞面结合常用的升力产生方法进行复合设计的,使之能够高效能可控持续的产生升力。
本发明的基本结构装置包括载荷框架、可转换绳索快速下拉装置和与其同时连接的数量至少2套的一定长度的轻质抗拉连接绳、轮升伞(由轻质的坚韧柔性伞面、中心承力绳、周边承力绳、轻质防叠合网、伞面张开保障装置组成)和初始升力器,各构件依次从下到上连接,初始升力器指能够自动产生并持续维持升力的装置,如充满低密度气体(氢气或氦气)的气球或电动旋翼等,其升力F必须能大于轮升伞和一定长度的轻质抗拉连接绳的重量mg。可转换绳索快速下拉装置指可以连接多条绳索,能够通过人或其它动力机构对其中一条进行快速下拉,而其余完全放开,并且能按要求及时转换成对另一条绳索进行快速下拉而其余完全放开的装置,此为非常容易实现的机械构造,设定整个装置重量为Mg。
本发明的运行方法步骤如下:先放开所有的轻质抗拉连接绳,由初始升力器将闭合状态的轮升伞升至空中,然后用安装载荷框架上的可转换绳索快速下拉装置快速拉动其中一个轮升伞的轻质抗拉连接绳,下拉伞面相对于空气向下运动进而充气展开后仍然继续向下运动,伞面会受到空气阻力f ,伞面受到的空气阻力通过连接绳和可转换绳索快速下拉装置反向作用到载荷框架上成为作用于载荷框架上的升力F ,即F =f ,根据空气阻力公式知空气阻力与速度平方成正比,随连接绳的下拉速度达到一定数值时,即伞面相对于空气向下运动速度达到一定数值时,载荷框架上受到的升力F 等于整个装置的重量Mg,继续增加连接绳的下拉速度,载荷框架上受到的升力F 将大于整个装置的重量Mg,此时整个装置的状态是:载荷框架向上运动,正被下拉连接绳的轮升伞将逐渐接近载荷框架,而其余的初始升力器、轮升伞却在其初始升力器持续升力的作用下随载荷框架上升并保持拉伸状态。当可转换绳索快速下拉装置快速下拉连接绳达到尽头时完全放开该连接绳,同时转换下拉第二个轮升伞的连接绳,此时第二个轮升伞将按上述原理产生对载荷框架的升力,而第一个轮升伞失去了可转换绳索快速下拉装置对连接绳的拉力,在空气阻力、初始升力器的合力作用下会以一个较大的加速度快速上升,同时伞面在空气阻力的作用下收缩,在上升过程中受到的空气阻力将远远小于下拉时的空气阻力,因而第一个轮升伞将在一定时间内回到初始位置,通过调整初始升力器的升力大小、连接绳的长度及可转换绳索快速下拉装置的收纳速度可以使轮升伞向下受拉运动过程和自由上升运动过程时间相当,那么通过轮升伞的轮流上升和下拉将持续对载荷框架施加升力。
有益效果
本发明充分利用空气阻力规律,以较小升力的初始升力器带动轮升伞上升,通过对 多个轮升伞的轮流下拉和放开自有上升,轮升伞在该运动过程中轮流充气展开和下垂闭合,由于快速下拉时充气展开的轮升伞相对空气运动而产生较大的空气阻力,该阻力通过连接绳和固定在载荷框架上的可转换绳索快速下拉装置反向作用在载荷框架上,从而形成对载荷框架的持续的较大升力。本发明装置的伞面充气后面积很大,而连接绳的高速下拉也是非常容易通过简易的可转换绳索快速下拉装置以较小的动力甚至人力进行实现和控制,也就是说伞面与空气的相对运动速度可以控制的实现高速,所以根据空气阻力公式,本发明装置可高效能的可控制的产生升力。
本发明的优点是:本发明构造简单,大部分构件为柔性材料,便于收纳,因此适合多种飞行装置;可通过多个轮升伞的前后串联、或者并连、或者串并联等多种方式构成多种形式的升力装置,可以提供更大数值的升力,有好的稳定性和安全性。
附图说明
图1为本发明优选实施例基本结构装置示意图(轮升伞下垂闭合状态)。
图2为本发明优选实施例基本结构装置示意图(轮升伞充气展开状态)。
图3为本发明的主要构件轮升伞的结构示意图(下垂闭合状态)。
图4为本发明的主要构件轮升伞的结构示意图(充气展开状态)。
图5为本发明使用方法的示意图,图中该发明处于初始状态。
图6为本发明使用方法的示意图,图中该发明处于启动状态。
图7为本发明使用方法的示意图,图中该发明处于中间状态。
图8为本发明使用方法的示意图,图中该发明处于结束状态。
图9为本发明另一优选实施例(采用盘绕释放机构)的示意图。
图10为本发明另一优选实施例(采用电动旋翼直升装置)的示意图。
本发明的最佳实施方式
以下结合附图对本发明优选实施例的基本结构、主要特征、使用方法及产生的技术效果作进一步详细描述。应当理解,此处所描述的具体实施过程仅仅用以解释本发明,并不用于限定本发明。
如图1、2示出了本发明优选实施例的基本结构装置示意图,图1为轮升伞2下垂闭合状态,图2为轮升伞2充气展开状态,图中本发明的基本结构装置包括:初始升力器1、轮升伞2、轻质抗拉连接绳3、可转换绳索快速下拉装置4、载荷框架5,各构件依次从上到下连接。初始升力器1指能够自动产生升力并能在一段时间内持续维持的装置,本发明优选实施例采用充满低密度气体(氢气或氦气球)的气球作为初始升力器1,此为公知技术,气 球可采用高分子复合薄膜材料制作,这类装置优点是无能耗、无噪音、升力稳定,缺点是体积较大、无法控制升力的大小和方向;轻质抗拉连接绳3可用强度较高的绵纶绳、凯芙拉或其它高分子材料复合绳制作;可转换绳索快速下拉装置4指可以连接多条绳索,能够通过人或其它动力机构对其中一条进行快速下拉而其余完全放开,并且能按要求及时转换成对另一条绳索进行快速下拉而其余完全放开的装置,本发明优选实施例采用最简单的人力进行操作下拉模式,将操作人通过安全带固定于载荷框架5上,轻质抗拉连接绳3直接固定在载荷框架5的下部,位置设于人手能够自由触及的部位,被固定的人下拉轻质抗拉连接绳3即可实现可转换绳索快速下拉功能,必须提出的是操作人和连接绳要同时固定在载荷框架5上,这样人和连接绳受到的拉力才能传递到载荷框架5上。载荷框架5可由铝合金、钛合金、轻质高强碳纤维复合材料制成。
如图3、4示出了本发明的主要构件轮升伞2的结构示意图,图3为轮升伞2下垂闭合状态,图4为轮升伞2充气展开状态。图中轮升伞2由伞面201、中心承力绳202、周边承力绳203、防叠合网204、伞面张开保障装置205组成。中心承力绳202在伞面201的中心位置固定并向上穿过伞面201与初始升力器1连接,向下与轻质抗拉连接绳3连接,其作用是保证在伞面201受拉向下运动充气展开后初始升力器1的升力不会作用到伞面201上而导致其变形闭合,而在伞面下201不受下拉下垂闭合时能向上拉动伞面201随初始升力器1上升。在伞面201的周边位置设有多条周边承力绳203,多条周边承力绳203汇总后向下与轻质抗拉连接绳3连接在一起,其作用是传递向下运动的充气展开的伞面201受到的空气阻力。各条周边承力绳203间加装防叠合网204,防叠合网204的网眼需小于初始升力器1的外径,其作用是在下拉的充气展开的伞面201和自由上升的初始升力器1相遇时,避免初始升力器1钻入充气展开的伞面201之下从而叠合在一起影响下一步的运动轨迹。在轮升伞底部的中心承力绳202设有伞面张开保障装置205,应设在伞面201下垂闭合的末端位置,采用轻质塑料质地的上锥形框架,上端大部分插入下垂闭合的伞面201里,只留尾端露在外面,其作用是在下拉时保证气流及时充入伞面201里面进而使其展开。伞面201的形状可根据需要采用方形、圆形、翼型、带条形等多种形状。伞面201可采用高强度的降落伞布材料制作,中心承力绳202、周边承力绳203可采用强度较高的绵纶绳、凯芙拉或其它高分子材料复合绳制作,防叠合网204可采用强度较高的绵纶线、高分子材料复合线制作的纤维网。
如图5、6、7、8示出了本发明使用方法的示意图。本发明使用时在可转换绳索快速下拉装置4上需要同时连接至少2套的初始升力器1、轮升伞2、轻质抗拉连接绳3,设定整个装置重量为Mg,为方便阐述,设定为同时连接2套,一套为初始升力器1 a、轮升伞 2 a、轻质抗拉连接绳3 a,另一套为初始升力器1 b、轮升伞2 b、轻质抗拉连接绳3 b
按图5所示先放开所有的轻质抗拉连接绳3 a和3 b,由初始升力器1 a和1 b将闭合状态的轮升伞2 a和2 b升至空中,整个装置处于初始状态。
按图6所示用可转换绳索快速下拉装置4快速拉动其中一个轮升伞的轻质抗拉连接绳3 a,下拉轮升伞2 a的伞面相对于空气向下运动进而充气展开后继续向下运动,其余的轮升伞2 b不受拉力,所以保持在空中的下垂闭合状态,下拉的轮升伞2 a伞面会受到空气阻力f ,伞面受到的空气阻力通过连接绳3 a和可转换绳索快速下拉装置4反向作用到载荷框架5上成为作用于载荷框架5上的升力F ,即F =f ,根据空气阻力公式知空气阻力与速度平方成正比,随连接绳3 a的收纳速度达到一定数值时,载荷框架5上受到的升力F 将大于整个装置的重量Mg,此时整个装置的状态是:载荷框架5向上运动,正被下拉连接绳3 a的轮升伞2 a将逐渐接近载荷框架5,而其余的初始升力器1 b、轮升伞2 b却在其初始升力器1 b持续升力的作用下随载荷框架5上升而上升并保持连接绳3 b的拉伸状态、轮升伞2 b的下垂闭合状态。
按图7所示当可转换绳索快速下拉装置4快速收纳连接绳3 a达到尽头时完全放开该连接绳3 a,同时转换收纳第二个轮升伞2 b的连接绳3 b,此时第二个轮升伞2 b将按上述原理产生对载荷框架5的升力,而第一个轮升伞2 a失去了可转换绳索快速下拉装置4对连接绳3 a的拉力,在空气阻力和初始升力器的合力作用下会以一个较大的加速度快速上升,同时第一个轮升伞2 a的伞面在空气阻力的作用下收缩,在上升过程中受到的空气阻力将远远小于下拉时的空气阻力,因而第一个轮升伞2 a将在一定时间内回到初始位置,通过调整初始升力器1的升力大小、连接绳3的长度及可转换绳索快速下拉装置4的下拉速度可以使轮升伞2向下受拉运动过程和自由上升运动过程时间相当,那么通过轮升伞2的轮流上升和下拉将持续对载荷框架施加升力。
按图8所示当整个装置尤其是载荷框架5上升到预定位置后,将所有的轻质抗拉连接绳3 a和3 b固定到同一位置不再下拉,由于整个装置的重量MG>初始升力器1 a和1 b的合力nF,整个装置将向下运动,此时轮升伞2 a和2 b的伞面相对于空气向下运动进而充气展开后继续向下运动,整个过程与普通的降落伞一致,整个轮升伞装置处于结束状态。
本发明的实施方式
按图9所示在本发明另一较优的实施方式可转换绳索快速下拉装置4采用盘绕释放机构下拉模式,盘绕释放机构容易与动力机构连接也是较常见实现的机械装置,所以本发明不做详细的构造阐述。将盘绕释放机构6固定在载荷框架5上,其它构件同上,通过动力驱 动盘绕释放机构6盘绕下拉连接绳3也可实现对轮升伞2的可转换快速下拉,进而按照上述步骤通过轮升伞的轮流下拉和回升将持续对载荷框架施加升力。本发明采用这类盘绕释放机构具有提供较大拉力和盘绕速度的特点,并可采用电动机、计算机控制等形式。
在另一较优的实施方式中,基本结构装置中的初始升力器1可以采用电动旋翼直升装置,在一定长度的轻质抗拉连接绳中混入电源细线,在载荷框架上配置电源,其它装置同上,其升力F必须能大于轮升伞、电动旋翼和一定长度的轻质抗拉连接绳的重量mg,也可实现轮升伞的主动持续上升,进而按照上述步骤通过轮升伞的轮流下拉和回升将持续对载荷框架施加升力。如图10示出了本发明另一优选实施例的基本结构装置示意图,图中本发明的基本结构装置包括:电动旋翼初始升力器7、轮升伞2、轻质抗拉混合电线连接绳8、可转换绳索快速收纳装置6、载荷框架5、电源9,各构件依次从上到下连接,初始升力器由低密度气体气球(氢气或氦气球)这类装置改为电动旋翼装置,克服了其体积较大的缺点,并且升力可调整控制,但由于附加了电动机、电源线、电源等,增加了装置总重,并有电量限制,同时电动旋翼有一定的噪音。
工业实用性
本发明具有如下特点:1、由于结构简单、而且大部分构建采用轻质材料、软式结构配合少量硬质框架,大幅度减少了装置的总重,也便于收纳;2、通过用连接绳下拉来产生升力,启动简单、用力从小到大调节控制方便、可由小动力甚至人力即可实施,调节过程中能耗极低;3、可通过多个轮升伞的前后串联、或者并连、或者串并联等多种方式构成多种形式的升力装置,可以提供更大数值的升力,有好的稳定性;4、整个系统由于采用轮升伞,如出现安全隐患可作为降落伞使用,能使飞行器安全的降落;5整个系统由于需要轮升伞升到一定高度才能发挥作用,因此使用时必须具有相当高度的净空。
上面结合附图对本发明实施方式作了详细说明,但是本发明不限于上述实施方式,应当理解,在本领域普通技术人员所具备的知识范围内,本领域的普通技术无需创造性劳动就可以在不脱离本发明的构思和范围的前提下可以做出许多其它改变和改型。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
序列表自由内容

Claims (6)

  1. 一种轮升伞可控升力高效能产生装置,其特征在于:该装置包括载荷框架、可转换绳索快速下拉装置和与其同时连接的数量至少2套的一定长度的轻质抗拉连接绳、轮升伞和初始升力器,各构件依次从下到上连接。
  2. 根据权利要求1所述的装置,其特征在于:所述初始升力器指能够自动产生升力并能在一段时间内持续维持的装置,本发明优选实施例采用充满低密度气体(氢气或氦气球)的气球作为初始升力器,另一优选实施例采用电动旋翼直升装置,其升力F必须能大于轮升伞和一定长度的轻质抗拉连接绳的重量mg。
  3. 根据权利要求1所述的装置,其特征在于:所述轮升伞由伞面、中心承力绳、周边承力绳、防叠合网、伞面张开保障装置组成。中心承力绳在伞面的中心位置固定并向上穿过伞面与初始升力器连接,向下与轻质抗拉连接绳连接,在伞面的周边位置设有多条周边承力绳,多条周边承力绳汇总后向下与轻质抗拉连接绳连接在一起,各条周边承力绳间加装防叠合网,防叠合网的网眼需小于初始升力器的外径,在轮升伞底部的中心承力绳设有伞面张开保障装置,应设在伞面下垂闭合的末端位置,采用轻质塑料质地的上锥形框架,上端大部分插入下垂闭合的伞面里,只留尾端露在外面。
  4. 根据权利要求1所述的装置,其特征在于:所述可转换绳索快速下拉装置指可以连接多条绳索,能够通过人或其它动力机构对其中一条进行快速下拉,而其余完全放开,并且能按要求及时转换成对另一条绳索进行快速下拉而其余完全放开的装置。本发明优选实施例采用人力进行操作下拉模式,操作人通过安全带固定于载荷框架上,绳索直接固定在载荷框架的下部,位置设于人手能够自由触及的部位,被固定的人和绳索即可实现可转换绳索快速下拉装置的功能,必须提出的是操作人和连接绳要同时固定在载荷框架上,这样人和连接绳受到的拉力才能传递到载荷框架上。另一优选实施例采用盘绕释放机构下拉模式,盘绕释放机构为较常见实现的机械装置且容易与动力机构连接,将盘绕释放机构固定在载荷框架上,通过动力驱动盘绕释放机构盘绕下拉绳索也可实现对轮升伞的可转换快速下拉,进而按照上述步骤通过轮升伞的轮流下拉和回升将持续对载荷框架施加升力。可转换绳索快速下拉装置必须固定在载荷框架上。
  5. 一种轮升伞可控升力高效能产生装置的使用方法,其特征在于:轮升伞可控升力高效能产生装置使用时在可转换绳索快速下拉装置上需要同时连接至少2套的初始升力器、轮升伞、轻质抗拉连接绳。以较小升力的初始升力器带动轮升伞上升,通过对多个轮升伞的轮流下拉和放开自由上升,轮升伞在该运动过程中轮流充气展开和下垂闭合,由于快速下拉时充气展开的轮升伞相对空气运动而产生较大的空气阻力,该阻力通过连接绳和固定在载荷框架 上的可转换绳索快速下拉装置反向作用在载荷框架上,从而形成对载荷框架的持续的较大升力。
  6. 根据权利要求5所述的使用方法,其特征在于,使用步骤包括:先放开所有的轻质抗拉连接绳,由初始升力器将闭合状态的轮升伞升至空中,整个装置处于初始状态;用可转换绳索快速下拉装置快速拉动其中一个轮升伞的轻质抗拉连接绳,下拉轮升伞的伞面相对于空气向下运动进而充气展开后继续向下运动,其余的轮升伞不受拉力,所以保持在空中的下垂闭合状态,下拉的轮升伞伞面会受到空气阻力,伞面受到的空气阻力通过连接绳和可转换绳索快速下拉装置反向作用到载荷框架上成为作用于载荷框架上的升力,随连接绳的下拉速度达到一定数值时,载荷框架上受到的升力将大于整个装置的重量,此时载荷框架向上运动,正被下拉连接绳的轮升伞将逐渐接近载荷框架,而其余的初始升力器、轮升伞却在其初始升力器持续升力的作用下随载荷框架上升而上升并保持连接绳的拉伸状态、轮升伞的下垂闭合状态;当可转换绳索快速下拉装置快速收纳连接绳达到尽头时完全放开该连接绳,同时转换收纳第二个轮升伞的连接绳,此时第二个轮升伞将按同样原理产生对载荷框架的升力,而第一个轮升伞失去了可转换绳索快速下拉装置对连接绳的拉力,在空气阻力和初始升力器的合力作用下会以一个较大的加速度快速上升,同时第一个轮升伞的伞面在空气阻力的作用下收缩,在上升过程中受到的空气阻力将远远小于下拉时的空气阻力,因而第一个轮升伞将在一定时间内回到初始位置,那么通过轮升伞的轮流上升和下拉将持续对载荷框架施加升力。
PCT/CN2018/080405 2017-04-12 2018-03-25 轮升伞可控升力高效能产生装置及使用方法 WO2018188472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710236408.2 2017-04-12
CN201710236408.2A CN107021200B (zh) 2017-04-12 2017-04-12 轮升伞可控升力高效能产生装置及使用方法

Publications (1)

Publication Number Publication Date
WO2018188472A1 true WO2018188472A1 (zh) 2018-10-18

Family

ID=59527463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080405 WO2018188472A1 (zh) 2017-04-12 2018-03-25 轮升伞可控升力高效能产生装置及使用方法

Country Status (2)

Country Link
CN (1) CN107021200B (zh)
WO (1) WO2018188472A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021200B (zh) * 2017-04-12 2021-08-27 王树强 轮升伞可控升力高效能产生装置及使用方法
CN109515679B (zh) * 2018-10-17 2022-06-28 中国特种飞行器研究所 一种可外部调节张力的浮空器内吊索结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030995A (ja) * 1999-07-21 2001-02-06 Masahiko Hayashi 弾性体の曲げ張力で補強された膜構造を持つ飛行体
CN1459402A (zh) * 2002-05-19 2003-12-03 袁世正 安全型航空器
US7147184B1 (en) * 2005-08-24 2006-12-12 Sierra Nevada Corporation Aerodynamic fairing system for airship
CN202124117U (zh) * 2011-04-09 2012-01-25 杨晓雯 气球助力、人力驱动飞行系统
CN102806995A (zh) * 2011-06-02 2012-12-05 周辉山 多面体飞行伞
CN107021200A (zh) * 2017-04-12 2017-08-08 王树强 轮升伞可控升力高效能产生装置及使用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3400379A1 (de) * 1984-01-07 1985-07-18 Richard 3320 Salzgitter Künanz Propeller-trampolin
CN1033032A (zh) * 1987-11-07 1989-05-24 李春明 单翅扑翼人力飞行器
RU2094318C1 (ru) * 1991-12-23 1997-10-27 Александр Михайлович Гусаковский Индивидуальный складывающийся летательный аппарат
CN2170268Y (zh) * 1993-07-15 1994-06-29 乔君旺 伞状飞行器
CN2464636Y (zh) * 2000-09-23 2001-12-12 马云洲 人力扑翼飞行器
CN1517272A (zh) * 2003-01-17 2004-08-04 李修权 快速充气降落伞
LT5212B (lt) * 2003-09-11 2005-04-25 Remigijus Dainys Muskulinis ornitopteris-sklandytuvas
RU2282567C1 (ru) * 2005-02-21 2006-08-27 Вячеслав Петрович Медведев Аппарат для парашютирования с планированием
CN1730352A (zh) * 2005-08-26 2006-02-08 云南大学 人力升空伞
CN201052838Y (zh) * 2007-05-29 2008-04-30 吴思泉 人力飞行器
CN103303455B (zh) * 2013-06-06 2015-10-21 北京新誉防务技术研究院有限公司 一种中小型伞式飞艇及其控制方法
CN205574275U (zh) * 2015-10-03 2016-09-14 吕军 飞行伞

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030995A (ja) * 1999-07-21 2001-02-06 Masahiko Hayashi 弾性体の曲げ張力で補強された膜構造を持つ飛行体
CN1459402A (zh) * 2002-05-19 2003-12-03 袁世正 安全型航空器
US7147184B1 (en) * 2005-08-24 2006-12-12 Sierra Nevada Corporation Aerodynamic fairing system for airship
CN202124117U (zh) * 2011-04-09 2012-01-25 杨晓雯 气球助力、人力驱动飞行系统
CN102806995A (zh) * 2011-06-02 2012-12-05 周辉山 多面体飞行伞
CN107021200A (zh) * 2017-04-12 2017-08-08 王树强 轮升伞可控升力高效能产生装置及使用方法

Also Published As

Publication number Publication date
CN107021200B (zh) 2021-08-27
CN107021200A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
US20170029111A1 (en) Unmanned aerial vehicle and method for launching
WO2018188472A1 (zh) 轮升伞可控升力高效能产生装置及使用方法
CN205087155U (zh) 可快速张伞并缓冲下降式的安全逃生降落伞
KR101276168B1 (ko) 활주로가 필요 없는 비행기 이륙과 상승장치
CN104859834A (zh) 低能耗可快速控变静升降装置
TWM473991U (zh) 跳傘模擬系統
CN202124117U (zh) 气球助力、人力驱动飞行系统
US9334058B2 (en) Pre-deployed parachute
CN203078758U (zh) 可储能的旋翼式空投或空降装置
JP7153408B1 (ja) 強制排気機構を備える飛翔体
CN109319083A (zh) 一种中轴变浮力软式浮空飞行器
CN106945839B (zh) 飞行装置及其飞行方法
CN109204809B (zh) 一种自动伸展的柔性滑翔机
CN210793608U (zh) 一种用于腿部残障人士的热气球飞行座椅
CN2615048Y (zh) 太阳能伞式充气飞行器
Berland et al. Development of a Low Cost 10,000 lb Capacity Ram-Air Parachute, DRAGONFLY Program
CN1388039A (zh) 气囊伞气动力减速系统
CN220391520U (zh) 一种应急逃生降落伞
CN220924503U (zh) 一种飞行器用快速开伞的降落伞结构
US20090146002A1 (en) Initiating flight of a flying structure
CN114901551A (zh) 多旋翼飞行器
JP2021154800A (ja) 個人用もしくは貨物用飛行デバイス
CN102079385A (zh) 低空降落伞及其收拢方法
CN202896868U (zh) 可控制方向降落装置
CN2538669Y (zh) 气囊伞气动力减速系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784942

Country of ref document: EP

Kind code of ref document: A1