WO2018188172A1 - 一种真空电喷雾离子源及质谱仪 - Google Patents

一种真空电喷雾离子源及质谱仪 Download PDF

Info

Publication number
WO2018188172A1
WO2018188172A1 PCT/CN2017/085721 CN2017085721W WO2018188172A1 WO 2018188172 A1 WO2018188172 A1 WO 2018188172A1 CN 2017085721 W CN2017085721 W CN 2017085721W WO 2018188172 A1 WO2018188172 A1 WO 2018188172A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
ion source
hollow tube
vacuum chamber
hollow
Prior art date
Application number
PCT/CN2017/085721
Other languages
English (en)
French (fr)
Inventor
余泉
张乾
王晓浩
钱翔
倪凯
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Priority to US15/981,490 priority Critical patent/US10475634B2/en
Publication of WO2018188172A1 publication Critical patent/WO2018188172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation
    • H01J49/167Capillaries and nozzles specially adapted therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes

Definitions

  • the invention relates to the field of analytical instruments, in particular to a vacuum electrospray ion source and a mass spectrometer.
  • Mass spectrometry has the characteristics of high sensitivity, high accuracy, fast analysis speed and strong qualitative ability. It is one of the most widely used analytical techniques. In order to meet the urgent needs of on-site real-time analysis and online rapid detection and analysis, miniaturization and portability have become an important direction for the development of mass spectrometers.
  • the conventional electrospray ion source has a simple structure, and its working process can be simply described as: the sample solution passes through the capillary at a low flow rate.
  • a high voltage is applied to the capillary, and the positive and negative of the voltage depends on the nature of the object to be tested.
  • the voltage provides the electric field gradient required for liquid surface charge separation. Under the action of the electric field, the liquid forms a "Taylor cone" at the tip of the capillary.
  • the solution at the tip of the Taylor cone reaches the Rayleigh limit, that is, the Coulomb repulsion of the surface charge is at a critical point comparable to the surface tension of the solution, the tip of the cone will produce droplets containing a large amount of charge.
  • the droplets shrink and the repulsive force between the droplets increases. When it reaches and exceeds the Rayleigh limit, the droplets undergo a Coulomb explosion, removing excess charge from the surface of the droplet, producing smaller charged droplets. . The generated charged droplets further undergo a new round of explosion, reciprocating cycles, and finally get gas phase ions, which are finally detected by the mass analyzer.
  • the traditional electrospray ion source generates gas phase ions under atmospheric pressure, and then is transmitted to the vacuum chamber through the sample introduction device and detected by the mass analyzer. This process causes ion transmission loss, which restricts the signal intensity and detection of the detected substances. limit. Therefore, the development of a simple vacuum electrospray ion source to simplify the instrument structure, reduce ion loss, improve the signal intensity and detection limit of the detection material, has broad application prospects.
  • the technical problem to be solved by the specific embodiments of the present invention is to make up for the deficiencies of the above prior art, and to provide a vacuum electrospray ion source and a mass spectrometer, which can reduce the loss during ion transmission and improve the signal strength and detection during detection. limit.
  • a vacuum electrospray ion source comprises a hollow capillary tube, a vacuum chamber body, an air inlet tube, a gas supply device and an adjusting device, wherein the first end of the hollow capillary tube is a sampling port, and the second end is used as a vacuum electrospray nozzle
  • the air pressure in the vacuum chamber is in the range of 10 -4 to 200 Pa; one end of the air inlet tube extends into the vacuum chamber, and the other end is connected to the air supply device; It is used for regulating the intermittent flow of gas in the intake pipe.
  • the liquid sample to be tested entering the capillary is sucked into the nozzle end located in the vacuum chamber through the difference between the inner and outer pressures of the sampling end and the nozzle, and the gas interval is controlled by the adjusting device and the intake pipe. Slightly enter the vacuum chamber to create a transient atmospheric environment, so that the nozzle can produce a stable electrospray under the vacuum chamber.
  • the vacuum electrospray ion source further includes a three-way joint;
  • the intake pipe includes a first hollow tube and a second hollow tube; and the second end of the hollow capillary sequentially passes through the first interface of the three-way joint a second interface extending into the vacuum chamber; one end of the first hollow tube and one end of the second hollow tube are connected in the three-way joint, and the first hollow tube is further One end passes through the second interface and extends into the vacuum chamber; the other end of the second hollow tube passes through the third interface and is connected to the air supply device.
  • a vacuum electrospray ion source having a relatively simple structure can be realized by connecting the three-way joint with the capillary tube, the first hollow tube and the second hollow tube, thereby facilitating integration and portability.
  • the hollow capillary passes through the interior of the first hollow tube in the three-way joint, and passes through the second interface and into the vacuum chamber at the same position as the first hollow tube.
  • the ports of the hollow capillary are flush or spaced within 1 cm of the port of the first hollow tube.
  • the port of the hollow capillary is retracted by 1 cm with respect to the port of the first hollow tube, such that the liquid sample ejected by the hollow capillary is better immersed in the atmospheric environment created by the gas introduced by the first hollow tube. Underneath, thereby improving the ionization effect.
  • the intake pipe further includes a third hollow pipe and a silicone hose; the adjusting device includes a pinch valve; one end of the third hollow pipe and one end of the second hollow pipe are passed through a silicone hose
  • the pinch valve is connected in series, and the other end of the third hollow pipe is connected to the gas supply device, and the pinch valve is used to control between the third hollow pipe and the second hollow pipe
  • the airflow circulates.
  • the gas supplied from the gas supply device is helium.
  • the gas to be introduced may be a mixture of one or more of air, nitrogen, helium, hydrogen, argon, but is preferably helium.
  • the incoming gas also acts as a buffer gas molecule to collide with ions generated by ionization.
  • helium is introduced, it is a relatively small molecular weight gas, and the collision between the buffer gas molecules and the ions is mild, so that the electrospray ions do not generate fragments, which is advantageous for further improving the signal intensity.
  • the sampling port of the hollow capillary is placed directly in a liquid sample placed in an atmospheric pressure environment in which an electrode is inserted, the electrode being loaded with high voltage.
  • the capillary is placed directly in the sample, avoiding the use of a syringe or syringe pump to inject the liquid sample into the system, thereby avoiding sample contamination problems.
  • the high voltage power is a negative high voltage of -5000V to -1000V, or a positive high voltage of 1000V to 5000V.
  • a mass spectrometer comprising a vacuum electrospray ion source as described above, the vacuum chamber of the vacuum electrospray ion source being in communication with a vacuum chamber of the mass spectrometer.
  • the vacuum in the vacuum chamber of the vacuum electrospray ion source is maintained by a mechanical pump, the vacuum in the vacuum chamber of the mass spectrometer being held by a turbo molecular pump connected to the turbomolecular pump as The foreline pump of the turbomolecular pump.
  • the embodiment of the invention can realize electrospray ionization in a vacuum environment, so that the vacuum chamber of the ion source is connected with the vacuum chamber of the mass spectrometer, and the ion can be directly driven to the mass spectrum by the guidance of the intermittent gas inflow. In the vacuum chamber of the instrument. In this way, the ion transmission loss can be reduced, thereby improving the signal strength and the detection limit, and avoiding the loss and signal strength degradation caused by the use of the sampling device to transport ions into the mass spectrometer. At the same time, the introduction of gas can also enhance the desolvation effect of electrospray and increase the ion yield.
  • the ion source of the embodiment of the invention realizes the generation of electrospray in a vacuum environment, avoids the loss during the transmission of the electrospray ion source under atmospheric pressure, helps to reduce the sample consumption, and at the same time, the structure of the electrospray ion source Simplified, especially for ion source as a portable mass spectrometer, real-time online detection and analysis of samples and electrospray ionization.
  • FIG. 1 is a schematic structural view of a vacuum electrospray ion source according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of a mass spectrometry detecting system composed of a vacuum electrospray ion source according to an embodiment of the present invention.
  • generating ionization in an atmospheric environment requires inputting ions into the vacuum chamber of the mass spectrometer by means of a sampling device, causing ion loss, and the liquid sample is crystallized at the capillary tip directly under the vacuum environment. This makes it impossible to produce an electrospray.
  • Some solutions use laser heating, constant pressure injection and other auxiliary devices to achieve electrospray in a vacuum environment, but these auxiliary devices are bulky and complex, which is not conducive to integration and is not suitable for portable mass spectrometers.
  • the embodiment of the present invention improves the structure of the ion source, and the liquid sample to be tested is sucked into the nozzle end located in the vacuum chamber by the hollow capillary tube, and the gas is intermittently introduced into the vacuum chamber through the adjusting device and the intake pipe. Create an instantaneous atmospheric pressure environment to achieve electrospray directly in the vacuum chamber, reducing ion transmission loss.
  • FIG. 1 is a schematic view showing the structure of a vacuum electrospray ion source in the specific embodiment.
  • the vacuum electrospray ion source comprises a hollow capillary 1, a three-way joint 2, a first hollow tube 3, a vacuum chamber 4, a second hollow tube 5, a third hollow tube 6, a silicone hose 11 and a pinch valve 7. .
  • one end of the hollow capillary tube 1 serves as the sampling port 8, and the other end passes through the three-way joint 2 as a nozzle 9 for vacuum electrospray, and the nozzle 9 extends directly into the vacuum chamber 4 through the first hollow tube 3, and therein
  • the gas pressure is in the range of 10 -4 to 200 Pa.
  • the sampling end 8 is in an atmospheric pressure environment or in an environment higher than the pressure of the nozzle 9, so that the nozzle 9 and the sampling port 8 are in different air pressure environments to form a gas pressure difference, so that the liquid sample entering the sampling end enters through the negative pressure.
  • One end of the first hollow tube 3 and one end of the second hollow tube 5 are connected in the three-way joint 2, and the other end 10 of the first hollow tube 3 passes through the second interface of the three-way joint 2, and the other end 10 extends into the vacuum chamber 4.
  • the nozzle port 9 is flush or retracted with the port 10 and extends 1 cm from the nozzle (i.e., plus or minus 1 cm with respect to the flush point).
  • the other end of the second hollow tube 5 is connected to an external air supply means (not shown).
  • one end of the third hollow tube 6 is connected to the pinch valve 7 through the silicone hose 11 and the pinch valve 7 is connected to the second hollow tube 5 and the third hollow tube 6.
  • the communication between the third hollow tube 6 and the second hollow tube 5 can be controlled by controlling the switch of the pinch valve 7, and the gas is passed through the third hollow tube 6 and the second hollow tube 5 by controlling the pinch valve 7.
  • the first hollow tube 3 is ejected from the port 10 of the first hollow tube 3 into the vacuum chamber 4.
  • the process of introducing the gas is intermittent, that is, a gas that is introduced for a period of time. After closing, then turn on the gas that has been in use for a while, then turn it off. This is repeated to achieve intermittent introduction of gas to create a transient atmospheric environment in the vacuum environment of the vacuum chamber 4.
  • the hollow capillary 1 is a hollow glass capillary, and a liquid sample loaded with a high voltage enters from the sampling port of the hollow capillary 1.
  • a liquid sample loaded with a high voltage enters from the sampling port of the hollow capillary 1.
  • the pinch valve 7 is intermittently opened, and the outside air enters the vacuum chamber 4 through the third hollow tube 6, the second hollow tube 5, and the first hollow tube 3 to create an instantaneous high pressure environment, which is equivalent to creating an atmospheric pressure.
  • the environment is such that an electrospray is generated at the nozzle 9 under the atmosphere of the atmosphere.
  • the generated electrospray is driven by the airflow field into the mass analyzer in the subsequent mass spectrometer and finally detected by the ion detector.
  • the gas is introduced intermittently to create an atmospheric pressure environment required to produce an electrospray, which is produced at atmospheric pressure.
  • the electrospray is produced in a vacuum environment.
  • the introduced gas can also play the role of auxiliary blowing, accelerate the solvent evaporation in the spray droplets, improve the desolvation effect, and is more conducive to the generation of gas phase ions.
  • the specific embodiment can generate electrospray in a vacuum environment, avoiding the loss during the transmission of the electrospray ion source under atmospheric pressure, and is particularly suitable for use as an ion source of a portable mass spectrometer to realize real-time online detection and analysis of samples. And electrospray ionization.
  • the ion source of the above configuration is connected to the liquid storage device and the mass spectrometer before and after, and constitutes a structural schematic diagram of the mass spectrometry detection system.
  • the liquid sample 70 is placed under atmospheric pressure, the liquid sample 70 is inserted into the electrode 60, and the electrode 60 is loaded with high voltage electricity.
  • the hollow capillary tube 1 is a hollow glass capillary tube, and one end thereof is directly inserted into the liquid sample 70 as a sampling end.
  • the hollow capillary tube 1 extends through the three-way joint 2 and the first hollow tube 3 into the vacuum chamber 4.
  • the vacuum chamber 4 of the vacuum electrospray ion source is in communication with the vacuum chamber of the mass spectrometer. Specifically, the vacuum chamber 4 is combined with the vacuum chamber of the mass spectrometer, or the vacuum chamber of the mass spectrometer is directly used as the vacuum chamber in the ion source, and the mass analyzer 20 and the ion detector 30 of the mass spectrometer, The nozzle 9 and port 10 of the ion source are both placed in the same vacuum chamber 4.
  • the vacuum chamber 4 is connected to a turbo molecular pump 40, a mechanical pump 50, and a turbomolecular pump 40 is coupled to the mechanical pump 50. In operation, the turbomolecular pump 40 and the mechanical pump 50 together maintain the gas pressure in the vacuum chamber 4 within a vacuum pressure range of 10 -4 to 200 Pa.
  • the pinch valve 7 is instantaneously opened, and the outside air enters the vacuum chamber 4 through the hollow tube 6, the hollow tube 5, and the hollow tube 3, and the high-pressure electric field formed by the transient high-pressure environment and the electrification Next, an electrospray is generated at the nozzle port 9.
  • the introduced outside air can also promote the desolvation of the electrospray, assist in the formation of electrospray, and further increase the ion yield.
  • the gas phase ions generated by the electrospray can be directly driven into the vacuum environment of the mass spectrometer, and then enter the mass analyzer 20, the most It is finally detected by the ion detector 30.
  • the ion source of the specific embodiment can realize stable electrospray in a vacuum environment and directly generate in a vacuum environment, so that it can be directly sent into the mass spectrometer, which reduces ion transmission loss, improves signal intensity and detection limit, and avoids
  • the use of a transfer device also simplifies the structure of the electrospray ion source and helps reduce sample consumption.
  • the introduced gas not only provides the instantaneous atmospheric pressure required for the electrospray in the vacuum environment, but also accelerates the solvent evaporation of the spray droplets, enhances the desolvation effect, is more conducive to the generation of gas phase ions, and improves the ion yield.
  • the ion source and the mass spectrometer constitute a detection system, and the signal intensity and detection limit are improved at the time of detection.
  • the ion source is especially suitable for use in portable mass spectrometers, with low sample consumption for real-time online on-site analytical testing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

一种真空电喷雾离子源及质谱仪,真空电喷雾离子源包括中空毛细管(1)、真空腔体(4)、进气管、供气装置和调节装置,该中空毛细管的第一端为取样端口(8),第二端作为真空电喷雾的喷头(9),伸入该真空腔体内,该真空腔体中的气压在10 -4~200Pa的范围内;该进气管的一端伸入该真空腔体内,另一端与供气装置相连;该调节装置用于调节该进气管内间歇性地流过气体。离子源可实现在真空环境下电喷雾电离。真空电喷雾离子源的真空腔体与质谱仪的真空腔体连通构成质谱仪,可降低离子传输过程中的损耗,提高检测时的信号强度和检测限。

Description

一种真空电喷雾离子源及质谱仪 【技术领域】
本发明涉及分析仪器领域,特别是涉及一种真空电喷雾离子源及质谱仪。
【背景技术】
质谱分析法具有灵敏度高、准确度高、分析速度快以及定性能力强等特点,是应用最广泛的分析技术之一。为了满足现场实时分析和在线快速检测分析的迫切需求,小型化和便携化已经成为质谱仪发展的一个重要方向。
传统的电喷雾离子源结构简单,其工作过程可简单描述为:样品溶液以低流速通过毛细管。毛细管上通入高电压,该电压的正负取决于待测物的性质。电压提供液体表面电荷分离所需要的电场梯度。在电场的作用下,液体在毛细管尖端形成“泰勒锥”。当泰勒锥尖端的溶液到达瑞利极限即表面电荷的库仑斥力与溶液表面张力相当的临界点时,锥尖将产生含有大量电荷的液滴。随着溶剂蒸发,液滴收缩,液滴内电荷间排斥力增大,当到达并超越瑞利极限,液滴会发生库仑爆炸,除去液滴表面的过量电荷,生成更小的带电小液滴。生成的带电小液滴进一步发生新一轮爆炸,往复循环,最终得到气相离子,最终被质量分析器检测到。
传统电喷雾离子源,在大气压环境下产生气相离子,然后经过进样装置传输到真空腔体内再被质量分析器检测到,这一过程会造成离子传输损耗,制约了检测物质的信号强度和检测限。因此,开发一种简易的真空电喷雾离子源,以简化仪器结构、降低离子损耗、提高检测物质的信号强度和检测限,有着广阔的应用前景。
【发明内容】
本发明的具体实施方式所要解决的技术问题是:弥补上述现有技术的不足,提出一种真空电喷雾离子源及质谱仪,可降低离子传输过程中的损耗,提高检测时的信号强度和检测限。
本发明的具体实施方式的技术问题通过以下的技术方案予以解决:
一种真空电喷雾离子源,包括中空毛细管、真空腔体、进气管、供气装置和调节装置,所述中空毛细管的第一端为取样端口,第二端作为真空电喷雾的喷头,伸入所述真空腔体内,所述真空腔体中的气压在10-4~200Pa的范围内;所述进气管的一端伸 入所述真空腔体内,另一端与供气装置相连;所述调节装置用于调节所述进气管内间歇性地流过气体。
上述真空电喷雾离子源中,通过取样端和喷头的内外压差作为驱动力使进入毛细管中的待测液体样品被吸入到位于真空腔体内的喷头端,同时通过调节装置、进气管控制气体间歇性地进入真空腔体内,以营造瞬时大气压环境,使喷头可在真空腔体下产生稳定的电喷雾。
优选的技术方案中,
所述真空电喷雾离子源还包括三通接头;所述进气管包括第一中空管和第二中空管;所述中空毛细管的第二端依次穿过所述三通接头的第一接口、第二接口,伸入所述真空腔体内;所述第一中空管的一端与所述第二中空管的一端在所述三通接头内相连,所述第一中空管的另一端从所述第二接口穿过,伸入所述真空腔体内;所述第二中空管的另一端从所述第三接口穿过,与所述供气装置相连。
上述方案中,通过三通接头与毛细管、第一中空管和第二中空管的连接设置,可实现一种结构较为简凑的真空电喷雾离子源,从而便于集成化和便携化。
进一步优选地,
所述中空毛细管在所述三通接头内穿过所述第一中空管的内部,与所述第一中空管在同一位置穿过所述第二接口、伸入所述真空腔体内。
在所述真空腔体内,所述中空毛细管的端口相对于所述第一中空管的端口平齐或间距1cm以内。优选地,中空毛细管的端口相对于第一中空管的端口缩进1cm的范围内,这样,中空毛细管喷出的液体样品较好地沉浸于第一中空管通入的气体营造的大气压环境下,从而可提高电离效果。
进一步优选地,
所述进气管还包括第三中空管、硅胶软管;所述调节装置包括夹管阀;所述第三中空管的一端与所述第二中空管的一端通过硅胶软管在所述夹管阀内相连,所述第三中空管的另一端与所述供气装置相连,所述夹管阀用于控制所述第三中空管与所述第二中空管之间的气流流通。通过硅胶软管和夹管阀的设置,可较便捷地实现进气的间歇性控制,以及方便地控制进气引起的真空腔体的气压变化,实现最优气压,获得尽可能高地检测强度和检测限。
进一步优选地,
所述供气装置供应的气体为氦气。通入的气体可为空气、氮气、氦气、氢气、氩气中的一种或多种的混合,但优选地为氦气。通入的气体除了用于营造瞬时大气压环境之外,还会作为缓冲气分子与电离产生的离子进行碰撞。当通入氦气时,其为分子量相对较小的气体,作为缓冲气分子与离子进行的碰撞比较温和,使电喷雾离子不产生碎片,有利于进一步提高信号强度。
所述中空毛细管的取样端口直接置于液体样品中,所述液体样品置于大气压环境下,所述液体样品中插入有电极,所述电极上加载有高压电。这样,通过毛细管直接置于样品中,避免采用注射器或者注射泵注入液体样品到系统中,从而避免样品污染问题。
所述高压电为-5000V~-1000V的负高压电,或者为1000V~5000V的正高压电。
本发明的具体实施方式的技术问题通过以下进一步的技术方案予以解决:
一种质谱仪,包括如上所述的真空电喷雾离子源,所述真空电喷雾离子源的真空腔体与所述质谱仪的真空腔体连通。
优选地,所述真空电喷雾离子源的真空腔体内的真空由机械泵保持,所述质谱仪的真空腔体内的真空由涡轮分子泵保持,所述机械泵与所述涡轮分子泵连接,作为所述涡轮分子泵的前级泵。
本发明的具体实施方式与现有技术对比的有益效果是:
本发明的具体实施方式可实现在真空环境下电喷雾电离,这样,将离子源的真空腔体与质谱仪的真空腔体连通,借由间歇性气体流入后的引导,可直接带动离子到质谱仪的真空腔体中。这样,可减少离子的传输损耗,从而提高信号强度和检测限,避免了采用进样装置输送离子进入质谱仪导致的损耗和信号强度下降问题。与此同时,气体的引入也可增强电喷雾的去溶效果,提高离子产率。本发明的具体实施方式的离子源,实现了在真空环境下产生电喷雾,避免了大气压下电喷雾离子源传输过程中的损耗,有助于减少样品消耗量,同时,电喷雾离子源的结构简化,尤其适用于作为便携式质谱仪的离子源,可实现样品实时在线检测分析和电喷雾离子化。
【附图说明】
图1是本发明具体实施方式的真空电喷雾离子源的结构示意图;
图2是本发明具体实施方式的真空电喷雾离子源构成的质谱检测系统的结构示意图。
【具体实施方式】
下面结合具体实施方式并对照附图对本发明做进一步详细说明。
本发明的具体实施方式的构思是:在大气环境下产生电离需要借助进样装置将离子输入到质谱仪真空腔中,造成离子损耗,而直接在真空环境下液体样品又会在毛细管尖端结晶,使得无法产生电喷雾。有部分方案中使用激光加热、恒压进样等辅助装置以实现在真空环境下产生电喷雾,但是这些辅助装置体积庞大,结构复杂,不利于集成化,不适用于便携式质谱仪。本发明的具体实施方式通过离子源结构上的改进,由中空毛细管将待测液体样品吸入到位于真空腔体内的喷头端,同时通过调节装置、进气管控制气体间歇性地进入真空腔体,以营造瞬时大气压环境,从而实现直接在真空腔体内产生电喷雾,减少离子传输损耗。
如图1所示,为本具体实施方式中真空电喷雾离子源的结构示意图。真空电喷雾离子源包括中空毛细管1、三通接头2、第一中空管3、真空腔体4、第二中空管5、第三中空管6、硅胶软管11和夹管阀7。
其中,中空毛细管1的一端作为取样端口8,另一端穿过三通接头2作为真空电喷雾的喷头9,喷头9穿过第一中空管3内直接伸入真空腔体4内,其内气压在10-4~200Pa的范围内。取样端8处于大气压环境或者高于喷头9所处气压的环境中,这样,喷头9与取样端口8处于不同的气压环境下,形成气压差,以使取样端中进入的液体样品通过负压进入真空腔体4内。
第一中空管3的一端与第二中空管5的一端在三通接头2内相连接,第一中空管3的另一端10从三通接头2的第二接口穿过,另一端10伸入真空腔体4内。喷头端口9与端口10平齐或缩进、伸出管口1cm(也即相对于平齐点正负1cm)。
第二中空管5的另一端与外部的供气装置(图中未示出)连接。具体地,通过硅胶软管11与第三中空管6的一端在所夹管阀7内相连,夹管阀7连接第二中空管5和第三中空管6。通过控制夹管阀7的开关可控制第三中空管6与第二中空管5的连通,通过控制夹管阀7以使气体通过第三中空管6、第二中空管5、第一中空管3,从第一中空管3的端口10喷出到达真空腔体4内,通过控制夹管阀,上述通入气体的过程是间断性地,即通入一段时间的气体后关闭,然后再开启通入一段时间的气体,再关闭。如此重复,以实现间歇性地通入气体,在真空腔体4的真空环境下营造瞬时大气压环境。
上述离子源中,中空毛细管1为中空的玻璃毛细管,加载有高压电的液体样品从中空毛细管1的取样端口进入。工作时,毛细管1两端存在气压差,在压差的驱动下,液体样品经中空毛细管1被吸入真空腔体4内,在加载的高压电场的作用下,在喷头9处产生电喷雾,同时夹管阀7间歇性地开启,外界空气通过第三中空管6、第二中空管5、第一中空管3进入真空腔体4内,以营造瞬时高气压环境,相当于营造大气压环境,从而在营造的大气压环境下,喷头9处产生电喷雾。与此同时,产生的电喷雾在气流场的带动下进入后续的质谱仪中的质量分析器中,最终被离子检测器检测出来。
本具体实施方式中,间歇性引入气体以营造产生电喷雾所需要的大气气压环境,传统电喷雾在大气压环节产生,本具体实施方式中电喷雾在真空环境下产生。与此同时,引入的气体也可发挥辅助性吹气的作用,加速喷雾液滴中溶剂挥发,改进去溶效果,更利于产生气相离子。本具体实施方式作为一种离子源,可以在真空环境下产生电喷雾,避免了大气压下电喷雾离子源传输过程中的损耗,尤其适用于作为便携式质谱仪的离子源,实现样品实时在线检测分析和电喷雾离子化。
如图2所示,为上述结构的离子源与前后的储液装置、质谱仪连接构成质谱检测系统的结构示意图。液体样品70置于大气压环境下,液体样品70中插入电极60,电极60上加载高压电,中空毛细管1为中空玻璃毛细管,其一端直接插入液体样品70中,作为采样端。中空毛细管1贯穿三通接头2和第一中空管3伸入真空腔体4内。
真空电喷雾离子源的真空腔体4与质谱仪的真空腔体连通。具体地,真空腔体4与质谱仪的真空腔体合并,或者直接将质谱仪的真空腔体作为上述离子源中真空腔体来使用,则质谱仪的质量分析器20和离子检测器30、离子源的喷头9以及端口10均置于同一真空腔体4内。真空腔体4与涡轮分子泵40、机械泵50相连,涡轮分子泵40与机械泵50相连。工作时,涡轮分子泵40和机械泵50共同维持真空腔体4内的气压在10-4~200Pa的真空气压范围内。
系统工作时,中空毛细管1的两端存在气压差,加电的液体样品70被直接吸入中空毛细管,被吸入真空腔体4内。与此同时,夹管阀7瞬间打开,外界气体通过中空管6、中空管5、中空管3进入真空腔体4内,在该瞬时高气压环境以及加电形成的高压电场的作用下,喷头端口9处产生电喷雾。而且,引入的外界气体还可促进电喷雾的去溶,辅助形成电喷雾,进一步提高离子产率。在引入的气流的带动下,电喷雾产生的气相离子可被带动直接进入质谱仪的真空环境中,进而进入质量分析器20中,最 终被离子检测器30检测出来。
本具体实施方式的离子源可实现在真空环境下产生稳定的电喷雾,直接在真空环境中产生,从而可直接送入质谱仪中,减少了离子传输损耗,提高信号强度和检测限,避免了传输装置的使用,也简化了电喷雾离子源的结构,有助于减少样品消耗量。而且,引入的气体除提供真空环境下产生电喷雾所需要的瞬时大气压之外,还可加速喷雾液滴溶剂挥发,增强去溶效果,更利于产生气相离子,提高离子产率。该离子源与质谱仪构成检测系统,检测时的信号强度和检测限均有所提高。离子源尤其适合在便携式质谱仪中使用,样品消耗量小,可实现实时在线的现场分析检测。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种真空电喷雾离子源,其特征在于:包括中空毛细管、真空腔体、进气管、供气装置和调节装置,所述中空毛细管的第一端为取样端口,第二端作为真空电喷雾的喷头,伸入所述真空腔体内,所述真空腔体中的气压在10-4~200Pa的范围内;所述进气管的一端伸入所述真空腔体内,另一端与供气装置相连;所述调节装置用于调节所述进气管内间歇性地流过气体。
  2. 根据权利要求1所述的真空电喷雾离子源,其特征在于:所述真空电喷雾离子源还包括三通接头;所述进气管包括第一中空管和第二中空管;所述中空毛细管的第二端依次穿过所述三通接头的第一接口、第二接口,伸入所述真空腔体内;所述第一中空管的一端与所述第二中空管的一端在所述三通接头内相连,所述第一中空管的另一端从所述第二接口穿过,伸入所述真空腔体内;所述第二中空管的另一端从所述第三接口穿过,与所述供气装置相连。
  3. 根据权利要求2所述的真空电喷雾离子源,其特征在于:所述中空毛细管在所述三通接头内穿过所述第一中空管的内部,与所述第一中空管在同一位置穿过所述第二接口、伸入所述真空腔体内。
  4. 根据权利要求3所述的真空电喷雾离子源,其特征在于:在所述真空腔体内,所述中空毛细管的端口相对于所述第一中空管的端口平齐或间距1cm以内。
  5. 根据权利要求2所述的真空电喷雾离子源,其特征在于:所述进气管还包括第三中空管、硅胶软管;所述调节装置包括夹管阀;所述第三中空管的一端与所述第二中空管的一端通过硅胶软管在所述夹管阀内相连,所述第三中空管的另一端与所述供气装置相连,所述夹管阀用于控制所述第三中空管与所述第二中空管之间的气流流通。
  6. 根据权利要求1所述的真空电喷雾离子源,其特征在于:所述供气装置供应的气体为氦气。
  7. 根据权利要求1所述的真空电喷雾离子源,其特征在于:所述中空毛细管的取样端口直接置于液体样品中,所述液体样品置于大气压环境下,所述液体样品中插入有电极,所述电极上加载有高压电。
  8. 根据权利要求7所述的真空电喷雾离子源,其特征在于:所述高压电为-5000V~-1000V的负高压电,或者为1000V~5000V的正高压电。
  9. 一种质谱仪,其特征在于:包括如权利要求1-8任意一项所述的真空电喷雾离子源,所述真空电喷雾离子源的真空腔体与所述质谱仪的真空腔体连通。
  10. 根据权利要求9所述的质谱仪,其特征在于;所述真空电喷雾离子源的真空腔体内的真空由机械泵保持,所述质谱仪的真空腔体内的真空由涡轮分子泵保持,所述机械泵与所述涡轮分子泵连接,作为所述涡轮分子泵的前级泵。
PCT/CN2017/085721 2017-04-12 2017-05-24 一种真空电喷雾离子源及质谱仪 WO2018188172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/981,490 US10475634B2 (en) 2017-04-12 2018-05-16 Vacuum electro-spray ion source and mass spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710237631.9A CN107039232B (zh) 2017-04-12 2017-04-12 一种真空电喷雾离子源及质谱仪
CN201710237631.9 2017-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/981,490 Continuation US10475634B2 (en) 2017-04-12 2018-05-16 Vacuum electro-spray ion source and mass spectrometer

Publications (1)

Publication Number Publication Date
WO2018188172A1 true WO2018188172A1 (zh) 2018-10-18

Family

ID=59535333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085721 WO2018188172A1 (zh) 2017-04-12 2017-05-24 一种真空电喷雾离子源及质谱仪

Country Status (2)

Country Link
CN (1) CN107039232B (zh)
WO (1) WO2018188172A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195923A (zh) * 2018-01-02 2018-06-22 清华大学深圳研究生院 用于样品中挥发性有机化合物检测的方法及质谱仪装置
CN108400080A (zh) * 2018-02-11 2018-08-14 复旦大学 一种低真空条件下的质谱离子源装置
CN108831819A (zh) * 2018-04-20 2018-11-16 中国药科大学 一种原态-变性转换离子源的设备及其应用
CN108962716B (zh) * 2018-06-19 2023-10-20 中国科学院光电研究院 一种质谱检出限的检测装置及其检测方法
CN109326499B (zh) * 2018-09-29 2020-06-02 清华大学深圳研究生院 一种用于去除质谱仪进样结晶的装置
CN109860015B (zh) * 2019-02-28 2021-07-06 苏州大学 一种复合电离源装置
CN110455972B (zh) * 2019-08-21 2022-01-14 哈尔滨阿斯顿仪器有限公司 一种液相色谱质谱联用的分析方法及其用接口装置
CN111089891A (zh) * 2019-12-16 2020-05-01 清华大学深圳国际研究生院 用于固体检测的低压激光电离进样装置和方法
CN111243936A (zh) * 2020-01-17 2020-06-05 清华大学深圳国际研究生院 脉冲电喷雾离子源、脉冲进样方法及质谱检测系统
CN113764255A (zh) * 2021-05-28 2021-12-07 昆山聂尔精密仪器有限公司 一种无辅助气瓶的电喷雾离子源装置
CN113655112A (zh) * 2021-08-25 2021-11-16 北京科泰特科技发展有限公司 用于质谱仪器现场检测的进样装置及检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201975366U (zh) * 2011-02-12 2011-09-14 浙江好创生物技术有限公司 一种电喷雾离子发生器
CN103545166A (zh) * 2013-11-04 2014-01-29 清华大学深圳研究生院 便携式电喷雾离子源装置及质谱仪
US9242258B2 (en) * 2013-03-21 2016-01-26 Bruker Daltonik Gmbh Multi-nozzle chip for electrospray ionization in mass spectrometers
CN106198707A (zh) * 2016-07-08 2016-12-07 清华大学深圳研究生院 一种质谱进样装置和质谱检测设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339720B (zh) * 2011-09-26 2014-04-02 中国科学院化学研究所 一种大气压下进样离子源装置
CN102709147B (zh) * 2012-06-21 2014-11-26 清华大学深圳研究生院 一种电喷雾离子源及质谱仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201975366U (zh) * 2011-02-12 2011-09-14 浙江好创生物技术有限公司 一种电喷雾离子发生器
US9242258B2 (en) * 2013-03-21 2016-01-26 Bruker Daltonik Gmbh Multi-nozzle chip for electrospray ionization in mass spectrometers
CN103545166A (zh) * 2013-11-04 2014-01-29 清华大学深圳研究生院 便携式电喷雾离子源装置及质谱仪
CN106198707A (zh) * 2016-07-08 2016-12-07 清华大学深圳研究生院 一种质谱进样装置和质谱检测设备

Also Published As

Publication number Publication date
CN107039232B (zh) 2018-12-21
CN107039232A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2018188172A1 (zh) 一种真空电喷雾离子源及质谱仪
CN102709147B (zh) 一种电喷雾离子源及质谱仪
US10475634B2 (en) Vacuum electro-spray ion source and mass spectrometer
JP7183346B2 (ja) イオン生成と、不連続の大気インターフェースの周期との同期
JP3353561B2 (ja) 溶液の質量分析に関する方法と装置
CN106876241A (zh) 超声雾化大气压辉光放电电离装置
WO2021143078A1 (zh) 脉冲电喷雾离子源、脉冲进样方法及质谱检测系统
CN106898538B (zh) 质谱离子源
CN111477533A (zh) 用于低真空系统离子产生、传输与质谱联用的装置
CN103776818A (zh) 基于辉光放电的等离子体发生装置及构成的光谱检测系统
Özdemir et al. A deeper look into sonic spray ionization
CN105489467B (zh) 一种化学电离源装置及其电离检测方法
CN109884002A (zh) 一种用于化学电离质谱测量大气oh及ho2自由基的装置及方法
CN203658269U (zh) 基于辉光放电的等离子体激发光谱检测系统
WO2019153788A1 (zh) 一种低真空条件下的质谱离子源装置
CN204424208U (zh) 一种用于质谱仪器的进样离子化系统
CN109545648B (zh) 一种复合电离装置
CN106885837B (zh) 一种快速稳定高灵敏检测农药样品的方法
CN106158573B (zh) 一种用于质谱仪器的进样离子化系统
JP2001155677A (ja) メンブレンインレット質量分析計
CN219180473U (zh) 一种自吸式大气压光致电离离子源和质谱仪
CN206806287U (zh) 质谱嗅觉离子源
CN205081090U (zh) 一种激光电喷雾离子源
US9524859B2 (en) Pulsed ion beam source for electrospray mass spectrometry
CN203300595U (zh) 质谱离子源及质谱仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905680

Country of ref document: EP

Kind code of ref document: A1