WO2018188080A1 - 一种测量时间差的方法和装置 - Google Patents

一种测量时间差的方法和装置 Download PDF

Info

Publication number
WO2018188080A1
WO2018188080A1 PCT/CN2017/080629 CN2017080629W WO2018188080A1 WO 2018188080 A1 WO2018188080 A1 WO 2018188080A1 CN 2017080629 W CN2017080629 W CN 2017080629W WO 2018188080 A1 WO2018188080 A1 WO 2018188080A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
reference signal
time
tdif
receives
Prior art date
Application number
PCT/CN2017/080629
Other languages
English (en)
French (fr)
Inventor
胡军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/080629 priority Critical patent/WO2018188080A1/zh
Priority to CN201780083211.8A priority patent/CN110169151A/zh
Publication of WO2018188080A1 publication Critical patent/WO2018188080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for measuring a time difference.
  • the base station synchronization technology is a technology for realizing time synchronization between different base stations by acquiring timing offsets of different base stations and adjusting timing clocks of different base stations.
  • timing offsets of different base stations are typically determined by based on inter-station edge user equipment (UE).
  • the inter-station edge UE refers to a UE located within the overlapping coverage of neighboring base stations.
  • the Taccess is a time when the serving base station detects the random access signal sent by the UE
  • Tneigh is a time when the neighboring base station detects the random access signal. This method only considers Taccess and Tneigh, so the accuracy of the determined timing offset is low.
  • the observable time difference of arrival (OTDOA) technique is a technique for locating a UE by measuring a signal transmission time difference between a UE and a different base station.
  • the signal transmission time difference ⁇ T is generally determined by the following method: the positioning server determines the timing deviation TdifGPS of different base stations by using a global positioning system (GPS) technology; and then receives the timing deviation measured by the UE reported by the UE.
  • the method needs to determine the timing deviation TdifGPS based on the GPS technology to further determine the signal transmission time difference ⁇ T, so the applicable range is small.
  • the embodiment of the present application provides a method and apparatus for measuring a time difference to solve at least one of the following problems: a problem that the accuracy of the determined timing offset is low; and determining a time difference of signal transmission between the UE and different base stations. In the process, the problem is less applicable due to the dependence on GPS technology.
  • a method for measuring a time difference may include: receiving, by a first base station, a first reference signal sent by a UE, and recording a reception time as Tr1; and receiving, by the first base station, Tr2, Tr2 sent by the second base station
  • the second base station receives the time when the second base station receives the first reference signal; the first base station sends the second reference signal to the UE; the first base station receives the Tdif UE sent by the UE, and the Tdif UE receives the UE received by the UE and receives the first base station.
  • the first base station determines a timing offset Tdif of the first base station and the second base station according to Tr1, Tr2, and TdifUE, and a time difference of signal transmission At least one of ⁇ T; wherein ⁇ T is the difference between the transmission time of the signal between the UE and the first base station and the transmission time of the signal between the UE and the second base station.
  • the first base station may be a serving base station of the UE.
  • the second base station may be a non-serving base station of the UE.
  • the UE is located in an overlapping area of the coverage of the first base station and the coverage of the second base station.
  • the method may further include: the first base station sends the first configuration information to the UE; the first configuration information is used to indicate that the UE sends the first reference signal at the first measurement moment.
  • the optional implementation may be applied to a scenario in which the UE does not need to transmit uplink data. In this scenario, the first base station indicates to the UE that the uplink reference signal (ie, the first reference signal) is sent, thereby completing Tdif and/or ⁇ T. measuring.
  • the first configuration information may further include a measurement period, configured to instruct the UE to send the first reference signal once every integer multiple of the measurement period from the first measurement time.
  • the optional implementation provides a method for the first base station to instruct the UE to periodically send an uplink reference signal (ie, a first reference signal). In this way, the first base station can improve the measurement accuracy by measuring the time difference (including Tdif and/or ⁇ T) a plurality of times.
  • the method may further include: the first base station sends the first configuration information to the UE; the first configuration information is used to indicate that the UE sends the first reference signal at the first measurement moment; the first base station is at the first Transmitting a second reference signal to the UE; the first base station sends the second configuration information to the second base station, where the second configuration information is used to indicate that the second base station sends the third reference signal to the UE at the second measurement moment;
  • the measurement time is the sum of the first measurement time and the timing adjustment amount of the second base station with respect to the first base station.
  • the timing adjustment amount may be a value obtained by inverting a timing offset of the second base station relative to the first base station.
  • the timing deviation may be a timing deviation obtained according to the method in the prior art.
  • the clock synchronization of the first base station and the UE is taken as an example. In fact, if the clock of the first base station and the UE are not synchronized, the first base station sends the UE to the UE at the first measurement moment.
  • the third reference signal may be replaced by: the first base station transmitting the third reference signal to the UE at the third measurement time, wherein the third measurement time is a sum of the first measurement time and the timing adjustment amount of the first base station relative to the terminal.
  • the first configuration information may further include a measurement period, configured to instruct the UE to send the first reference signal once every integer multiple of the measurement period from the first measurement time.
  • the sending, by the first base station, the second reference signal to the UE at the first measurement time may include: the first base station sending the second reference signal to the UE once every integer multiple of the measurement period starting at the first measurement time.
  • the second configuration information may further include a measurement period, configured to instruct the second base station to send the third reference signal once every integer multiple of the measurement period from the second measurement time. In this way, the first base station can improve the measurement accuracy by measuring the time difference (including Tdif and/or ⁇ T) a plurality of times.
  • a method for measuring a time difference may include: receiving, by a second base station, a first reference signal sent by a UE, and recording a reception time as Tr2; and transmitting, by the second base station, a third reference signal to the UE, the third reference The signal is used by the UE to determine the TdifUE; the TdifUE is the difference TdifUE between the time when the UE receives the second reference signal sent by the first base station and the time when the UE receives the third reference signal sent by the second base station, and sends the difference to the first base station.
  • Tr1 is a time when the first base station receives the first reference signal measured by the first base station
  • ⁇ T refers to a transmission time between the signal and the signal between the UE and the first base station, and the signal is transmitted between the UE and the second base station. The difference in time.
  • the method may further include: the second base station receiving the second configuration information sent by the first base station; wherein the second configuration information includes the second measurement time; the second measurement time is the first measurement time and First The first measurement time is a time when the first base station sends a second reference signal to the UE, and the second base station sends a third reference signal to the UE at the second measurement time.
  • the second configuration information may further include a measurement period;
  • the second base station transmitting the third reference signal to the UE at the second measurement moment may include: the second base station starts every integer multiple from the second measurement moment The measurement period is sent once the third reference signal is sent.
  • a method for measuring a time difference comprising: the UE transmitting a first reference signal, the first reference signal being used by the first base station to determine Tr1, and the second base station determining Tr2, wherein Tr1 is a time when a base station receives the first reference signal, Tr2 is a time when the second base station receives the first reference signal; the UE receives the second reference signal sent by the first base station; the UE receives the third reference signal sent by the second base station; and the UE determines the TdifUE The Tdif UE is a difference between a time when the UE receives the second reference signal sent by the first base station and a time when the UE receives the third reference signal sent by the second base station; the UE sends a Tdif UE to the first base station, where the Tdif UE is used by the first base station according to the Tr1.
  • Tr2 and TdifUE determining a timing offset Tdif of the first base station and the second base station, and at least one of a signal transmission time difference ⁇ T; wherein ⁇ T is a transmission time and signal of the signal between the UE and the first base station The difference in transmission time between the UE and the second base station.
  • the method may further include: receiving, by the UE, first configuration information sent by the first base station, where the first configuration information includes a first measurement time.
  • the UE sending the first reference signal may include: the UE transmitting the first reference signal at the first measurement moment.
  • the first configuration information further includes a measurement period.
  • the sending, by the UE, the first reference signal at the first measurement time may include: indicating that the UE sends the first reference once every integer multiple of the measurement period from the first measurement time. signal.
  • the method may further include: receiving, by the UE, first configuration information sent by the first base station, where the first configuration information includes a first measurement time, the first measurement time is compared with the second base station, the first base station The sum of the timing adjustment amounts is the second measurement time, and the second measurement time is the time when the second base station sends the third reference signal to the UE.
  • the UE sending the first reference signal may include: the UE transmitting the first reference signal at the first measurement moment.
  • a base station having a function of implementing the behavior of the first base station in the foregoing method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station may include: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer to execute instructions, and the processor is connected to the memory through the bus, when the base station is running, The processor executes the computer stored instructions stored by the memory to cause the base station to perform the method of measuring a time difference as in any of the first aspects above.
  • a computer readable storage medium for storing computer software instructions for use by the first base station, such that when executed on a computer, the computer can perform the measurement time difference of any of the above first aspects Methods.
  • a computer program product comprising instructions, when run on a computer, causes the computer to perform the method of measuring a time difference of any of the above first aspects.
  • a base station having a function of implementing behavior of a second base station in the foregoing method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station may include: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer to execute instructions, and the processor is connected to the memory through the bus, when the base station is running, The processor executes the computer stored instructions stored by the memory to cause the base station to perform the method of measuring a time difference as in any of the above second aspects.
  • a computer readable storage medium for storing computer software instructions for use by the second base station, wherein when executed on a computer, the computer can perform the measurement time difference of any of the above second aspects Methods.
  • a computer program product comprising instructions, when run on a computer, causes the computer to perform the method of measuring a time difference of any of the above second aspects.
  • a UE In a tenth aspect, a UE is provided, and the UE has a function of implementing UE behavior in the foregoing method embodiment. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the UE may include: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer to execute an instruction, and the processor is connected to the memory through the bus, when the base station is running, The processor executes the computer-executable instructions stored by the memory to cause the UE to perform the method of measuring a time difference as in any of the above third aspects.
  • a computer readable storage medium for storing computer software instructions for use by the UE, wherein when executed on a computer, the computer can perform the measurement time difference of any of the above third aspects method.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of measuring a time difference of any of the above third aspects.
  • FIG. 1 is a schematic diagram of a timing clock of different base stations according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a system to which the technical solution provided by the embodiment of the present application is applicable;
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of interaction of a method for measuring time difference according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a downlink reference signal execution process according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an uplink reference signal execution process according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of interaction of another method for measuring time difference according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of interaction of a method for determining an initial timing offset according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a first base station according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a second base station according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • Each base station is provided with a timing clock, and each base station is timed based on a timing clock set in itself, and performs related operations according to the determined time.
  • the first base station sends the first reference signal at the first measurement moment, that is, the first base station sends the first reference signal according to the first measurement moment determined by the timing clock set in the first base station.
  • the second base station sends the third reference signal at the second measurement time, that is, the second base station sends the third reference signal according to the second measurement time determined by the timing clock set in the second base station.
  • the time at which the first base station measures the first reference signal measured by the first base station refers to the time at which the first base station receives the first reference signal based on the timing clock set in itself.
  • FIG. 1 is a schematic diagram showing timing clocks of a reference base station, a base station 1, and a base station 2. As can be seen from FIG. 1, if the reference time is the time t1 based on the timing clock 0, the reference time recorded by the base station 1 is t2, and the reference time recorded by the base station 2 is t0, as indicated by the dotted rectangular frame in FIG.
  • the three base stations simultaneously transmit signals, specifically: the reference base station transmits a signal at time t1 based on the timing clock 0, the base station 1 transmits a signal at time t2 based on the timing clock 1, and the base station 2 is at the time t0 based on the timing clock 2.
  • the reference base station transmits a signal at time t1 based on the timing clock 0
  • the base station 1 transmits a signal at time t2 based on the timing clock 1
  • the base station 2 is at the time t0 based on the timing clock 2.
  • the timing offset between different base stations refers to the time difference of the downlink reference signals of the subframes indicated by the same subframe number of the same radio frame number transmitted by different base stations. For example, if the base station 1 transmits the downlink reference signal of the first subframe of the second radio frame at time T1, and the base station 2 transmits the downlink reference signal of the first subframe of the second radio frame at time T2, the base station 1 and the base station
  • the timing deviation of 2 is T2-T1; where T1 and T2 here refer to the absolute time, that is, the time based on the same timing clock (such as GPS time).
  • the signal transmission time difference between the UE and the different base stations refers to the transmission time of the signal between the UE and one base station, and the difference of the transmission time of the signal between the UE and another base station. For example, if the transmission time of the signal between the UE and the base station 1 is Tp1, and the transmission time of the signal between the UE and the base station 2 is Tp2, the signal transmission time difference is Tp2-Tp1.
  • the uplink direction refers to the direction from the UE to the base station.
  • the uplink reference signal is a reference signal that the UE sends to the base station.
  • the uplink reference signal may include, but is not limited to, any one of the following: a random access signal, a demodulation reference signal (DMRS), a sounding reference signal (SRS), or a newly designed one. Uplink reference signal.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • the downlink direction refers to the direction from the base station to the UE.
  • the downlink reference signal is a reference signal that the base station sends to the UE.
  • the downlink reference signal may include, but is not limited to, any one of the following: a cell-specific reference signal (CRS), a positioning reference signal (PRS), and a channel state information reference signal. , CSI-RS); also a new design of a downlink reference signal.
  • the timing clock of the UE is considered to be the same as the timing clock of the base station serving the UE (ie, the serving base station of the UE). It can be understood that the implementation scheme in the case where the timing clock of the UE is different from the timing clock of the serving base station of the UE is inferred by a person skilled in the art according to the technical solution described herein, and details are not described herein again.
  • the technical solution provided by the embodiment of the present application can be applied to the system shown in FIG. 2.
  • the system shown in FIG. 2 includes a first base station 100, a second base station 200, and a UE 300.
  • the coverage area of the first base station 100 and the coverage of the second base station 200 have an overlapping area, and the UE 300 is located in the overlapping area.
  • FIG. 2 is only an example diagram.
  • the number of the base stations and the number of the UEs are not limited to the technical solutions provided by the embodiments of the present application. In practical applications, network deployment may be performed in a different number of base stations than shown in FIG. 2 and the number of UEs as needed.
  • the timing deviation of the first base station and the second base station is determined based on one UE as an example. It can be understood that if there are multiple UEs in the coverage of the first base station and the coverage of the second base station, the timing deviation of the first base station and the second base station may be the mean value of multiple timing offsets obtained according to the foregoing technical solution. .
  • the system shown in FIG. 2 may be various communication systems such as current 2G, 3G, 4G communication systems and next generation communication systems, as well as future evolution networks such as 5G communication systems.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • SC-FDMA long term evolution
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base transceiver station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
  • the base station may also be a network device in a future 5G network or a network device in a future evolved PLMN network; or may be a wearable device or an in-vehicle device.
  • the UE 300 may include, but is not limited to, any of the following: a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA), and the like.
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station may be the first base station 100 or the second base station 200.
  • the base station shown in FIG. 3 may include at least one processor 21, and a memory 22, a communication interface 23, and a communication bus 24.
  • the processor 21 is a control center of the base station, and may be a processing component or a collective name of a plurality of processing components.
  • the processor 21 can be a central processing unit (CPU). It may also be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the technical solutions provided by the embodiments of the present application, for example, one or more microprocessors (digital signal processor) , DSP), or, one or more field programmable gate arrays (FPGAs).
  • the processor 21 can perform various functions of the base station by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the base station can include multiple processors, such as processor 21 and processor 25 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 22 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 22 may be present independently and coupled to processor 21 via communication bus 24.
  • the memory 22 can also be integrated with the processor 21.
  • the memory 22 is configured to store a software program executed by the first base station or the second base station in the technical solution provided by the embodiment of the present application, and is controlled by the processor 21.
  • the communication interface 23 may be any device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area network (WLAN). )Wait.
  • the communication interface 23 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the communication bus 24 may be an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, or an extended industry standard architecture (EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 3 does not constitute a limitation to a base station, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • FIG. 4 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • the UE shown in FIG. 4 may include at least one processor 31, and a memory 32, a display 33, and a transceiver 34.
  • the processor 31 is a control center of the UE, and may be a processor or a collective name of a plurality of processing elements. Among other things, the processor 31 can perform various functions of the UE by running or executing a software program stored in the memory 32 and calling data stored in the memory 32.
  • the memory 32 is configured to store a software program executed by the UE in the technical solution provided by the embodiment of the present application, and is controlled by the processor 31 to execute.
  • processor 31 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the UE may include multiple processors, such as processor 31 and processor 35 shown in FIG.
  • the display 33 can be used to display information input by the user or information provided to the user, various menus of the UE, and the like.
  • the display 33 can include a display panel 331.
  • the display panel 331 can be configured by using a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the device structure shown in FIG. 4 does not constitute a limitation to the UE, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the UE may further include a battery, a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the method for measuring the time difference provided by the embodiment of the present application will be described below with reference to the system architecture shown in FIG. 2 .
  • the first base station is a serving base station of the UE
  • the second base station is a neighboring base station of the first base station
  • the coverage of the second base station overlaps with the coverage of the first base station.
  • FIG. 5 is a schematic diagram of interaction of a method for measuring time difference provided by an embodiment of the present application.
  • the method shown in FIG. 5 may include the following steps S101 to S111:
  • the first base station sends a downlink reference signal 1 to the UE.
  • the downlink reference signal 1 can be considered as the second reference signal described herein.
  • S102 The UE receives the downlink reference signal 1 sent by the first base station, and records the time Tu1 at which the UE receives the downlink reference signal 1.
  • the first base station and the UE may pre-agreed the time-frequency domain resource used when transmitting the downlink reference signal 1, and the UE may receive the downlink reference signal 1 on the time-frequency resource, and mark the time at which the downlink reference signal 1 is started to be received as Tu1.
  • Tu1 is the time determined based on the timing clock of the UE. If the timing clock of the UE is the same as the timing clock of the first base station, it can be considered that Tu1 is a time determined based on the timing clock of the first base station.
  • the second base station sends a downlink reference signal 2 to the UE.
  • the downlink reference signal 2 can be considered as the third reference signal described herein.
  • the downlink reference signal 1 may be a downlink reference signal of the ith subframe of the nth radio frame recorded based on the clock in the first base station.
  • the downlink reference signal 2 may be a downlink reference signal of the i-th subframe of the nth radio frame recorded based on the clock in the second base station.
  • n is an integer greater than or equal to 1.
  • i is an integer greater than or equal to 1, and less than or equal to the total number of subframes included in one radio frame.
  • S104 The UE receives the downlink reference signal 2 sent by the second base station, and records the time Tu2 at which the UE receives the downlink reference signal 2.
  • the second base station and the UE may pre-agreed the time-frequency domain resource used when transmitting the downlink reference signal 2, and the UE may receive the downlink reference signal 2 on the time-frequency resource, and mark the time at which the downlink reference signal 1 is started to be received as Tu2. It can be considered that Tu2 is a time determined based on the timing clock of the first base station.
  • the execution order of S101 to S102 and S103 to S104 is not limited.
  • S101 to S102 may be executed first, then S103 to S104 may be executed, or S103 to S104 may be executed first, and then S101 to S102 may be executed, and S101 may be simultaneously executed.
  • S102 and S103 to S104 It will be understood that the "simultaneous" and “sequential" described herein are both for the time determined based on the same timing clock.
  • S105 The UE calculates a difference between Tu1 and Tu2 to obtain a TdifUE.
  • the UE sends a TdifUE to the first base station.
  • the first base station receives the Tdif UE sent by the UE.
  • S107 The UE sends an uplink reference signal to the first base station.
  • the uplink reference signal can be considered to be the first reference signal described herein.
  • the method may further include: the first base station sending configuration information to the UE, where the configuration information is used to indicate that the UE sends the uplink reference signal at the measurement moment.
  • S107 may include: the UE sends an uplink reference signal to the first base station at the measurement moment.
  • the configuration information further includes a measurement period.
  • the UE may send the uplink reference signal once every integer multiple of the measurement period from the measurement time.
  • the uplink reference signals transmitted in different measurement periods may be the same or different.
  • the uplink reference signal is sent to the base station.
  • Tdif and/or ⁇ T may be determined by using the uplink reference signal.
  • the first base station receives the uplink reference signal sent by the UE, and records a time Tr1 at which the first base station receives the uplink reference signal.
  • the first base station and the UE may pre-agreed the time-frequency domain resource used when transmitting the uplink reference signal, and the first base station may receive the uplink reference signal on the time-frequency resource, and start to receive the time stamp of the uplink reference signal.
  • Tr1 is a time determined based on the timing clock of the first base station.
  • the second base station receives the uplink reference signal sent by the UE, and records a time Tr2 at which the second base station receives the uplink reference signal.
  • the first base station and the UE may pre-agreed the time-frequency domain resource used when transmitting the uplink reference signal, and then the first base station may notify the second base station of the information of the time-frequency resource, so that the second base station can be at the time-frequency.
  • the uplink reference signal is received on the resource, and the time at which the uplink reference signal is received is marked as Tr2.
  • Tr2 is a time determined based on the timing clock of the second base station.
  • the second base station sends Tr2 to the first base station.
  • the first base station receives Tr2 transmitted by the second base station.
  • S108 and S109-S110 are not limited in the embodiment of the present application, and the specific execution sequence may be determined according to actual conditions. For example, S108 may be executed first and then S109 to S110 may be executed. S109 to S110 may be executed first, then S108 may be executed, and S108 and S109 to S110 may be simultaneously executed. It will be understood that the "simultaneous" and “sequential" described herein are both for the time determined based on the same timing clock.
  • the process of S101 to S107 may be referred to as the execution process of the downlink reference signal; the process of S108 to S110 is referred to as the execution process of the uplink reference signal.
  • the order of execution of the two processes in the embodiment of the present application may not be limited.
  • the first base station acquires Tdif and ⁇ T according to the value obtained by subtracting Tr1 recorded by the first base station and Tr2 recorded by the second base station. Therefore, if the relative position between the UE and the first base station and the relative position between the UE and the second base station are fixed or fluctuate within the allowed range, then in S107, the UE may not be limited. The time at which the upstream reference signal is transmitted. If the fluctuation range of the relative position between the UE and the first base station and the second base station is large, in order to reduce the inaccuracy of Tr1-Tr2 caused by the movement of the UE, the measurement result is inaccurate, and the following FIG. 8 may be used. Implementation Examples measure Tdif and / or ⁇ T.
  • FIG. 6 a schematic diagram of a process of performing downlink reference signals.
  • Tdif the difference between the time when the first base station transmits the downlink reference signal 1 and the time when the second base station transmits the downlink reference signal 2 is different from the time Tdif.
  • Tdif, Tp1, Tp2, Tu1, Tu2 and TdifUE is as shown in FIG. 6.
  • Tp1 is a transmission time of the signal between the UE and the first base station
  • Tp2 is a transmission time of the signal between the UE and the second base station. From this, we can get the following formula 1:
  • TdifUE Tdif+(Tp2-Tp1).
  • FIG. 7 it is a schematic diagram of a process of performing an uplink reference signal.
  • Tp1, Tp2, Tr1 and Tr2 is as shown in FIG.
  • Tdif the following formula 2 can be obtained:
  • Tr1-Tp1 is the time when the UE measured by the first base station transmits the uplink reference signal
  • Tr2-Tp1 is the UE that transmits the uplink reference signal measured by the second base station. time.
  • Tr1-Tr2 Tdif-(Tp2+Tp1).
  • the reference signal in the technical solution provided by the embodiment of the present application is a reference signal other than the random access signal, for example, a downlink reference signal, as compared with the random access signal used in the prior art.
  • a reference signal other than the random access signal for example, a downlink reference signal
  • the measurement accuracy of timing deviation can be improved due to the wide bandwidth of CRS and SRS.
  • various scenarios in which the signal transmission time difference is applied such as the OTDOA technology, may be expanded according to the GPS technology.
  • the inter-station handover UE refers to an inter-station edge UE that handovers a serving base station from a source base station to a target base station.
  • Tdif (Taccess-Tneigh)-(Tp1-Tp2).
  • Taccess and Tneigh is similar to the above, wherein Taccess can be a specific implementation of Tr1, and Tneigh can be a specific implementation of Tr2.
  • Tp1 is the transmission time of the signal between the UE and the source base station
  • Tp2 is the transmission time of the signal between the UE and the target base station.
  • the Tp1-Tp2 is a time difference of arrival (TDOA) between the serving base station and the neighboring base station.
  • TDOA time difference of arrival
  • the first base station sends a downlink reference signal 1 and the second base station sends a downlink reference signal 2 as an example.
  • the first base station may periodically send the downlink reference signal 1 to the UE, and the second base station may periodically send the downlink reference signal 2 to the UE.
  • one cycle can be one subframe.
  • the UE can learn the start time of the radio frame and the frame number of the radio frame recorded by the clock of the first base station by using the system message sent by the first base station, for example, the start time of the radio frame is: 1 ms.
  • the UE may learn, by the system message sent by the second base station, which subframe of the radio frame in which radio frame 2 is received. Then, the UE can obtain Tdif by recording any downlink reference signal 1 of the first base station and any downlink reference signal 2 sent by the second base station, and combining the radio frame number and the subframe number where the two downlink reference signals are located.
  • FIG. 8 is a schematic diagram of interaction of another method for measuring time difference provided by an embodiment of the present application.
  • the method shown in FIG. 8 may include the following steps S201 to S216:
  • the first base station determines an initial timing offset Tdif0 of the first base station and the second base station based on the inter-station edge UE.
  • Tdif0 can be greater than 0 or less than 0.
  • the Tdif0 determined in S201 does not consider the signal transmission time difference between the UE and the different base stations, and thus is not accurate.
  • the specific method of S201 can be as shown in FIG.
  • the serving base station in FIG. 9 may be the first base station in this embodiment, and the neighboring base station in the serving base station may be the second base station in this embodiment.
  • the method shown in FIG. 9 may include the following steps S1 to S9:
  • the first base station sends a blind detection request to the second base station.
  • the second base station receives the blind detection request.
  • S2 The second base station starts preamble (preamble) blind detection and reception.
  • the second base station sends a blind detection response to the first base station.
  • the first base station receives the blind detection response.
  • the first base station sends a random access command to the UE.
  • the UE receives the random access command.
  • S5 The UE initiates random access to the first base station, that is, the UE sends a random access signal to the first base station.
  • the first base station blindly detects the random access signal, and obtains a time Taccess for receiving the random access signal.
  • the second base station blindly detects the random access signal, and obtains a time Tneigh of receiving the random access signal.
  • the second base station sends a blind detection result to the first base station, where the blind detection result includes Tneigh.
  • the first base station receives the blind detection result.
  • Tdif0 Taccess-Tneigh.
  • the first base station determines a first measurement moment.
  • S201 and S202 are not limited in the embodiment of the present application.
  • the first base station sends a downlink reference signal 1 to the UE at the first measurement moment.
  • the first measurement time is a time determined based on a timing clock of the first base station.
  • S204 The UE receives the downlink reference signal 1 at time Tu1.
  • S205 The first base station adds the first measurement time to Tdif0 to obtain a second measurement time.
  • the second measurement time is smaller than the first measurement time; if Tdif0 ⁇ 0, the second measurement time is smaller than the first measurement time.
  • the first base station sends the second configuration information to the second base station, where the second configuration information includes a second measurement time, and is used to indicate that the second base station sends the downlink reference signal 2 to the UE at the second measurement time.
  • the second base station receives the second configuration information.
  • the second measurement time can be understood as a time determined based on the timing clock of the second base station.
  • the second measurement time is determined by the first base station, and the second measurement time is carried in the second configuration information and sent to the second base station.
  • the first base station may also send the first measurement time and Tdif0 in the second configuration information to the second base station, and determine, by the second base station, the second measurement time.
  • the second base station sends the downlink reference signal 2 to the UE at the second measurement moment according to the second configuration information.
  • S208 The UE receives the downlink reference signal 2 sent by the second base station at the time of Tu2.
  • S209 The UE calculates a difference between Tu2 and Tu1 to obtain a TdifUE.
  • S210 The UE sends a second measurement report to the first base station, where the second measurement report includes a Tdif UE.
  • the first base station receives the second measurement report.
  • the first base station sends first configuration information to the UE, where the first configuration information includes a first measurement time.
  • the UE receives the first configuration information.
  • the UE sends an uplink reference signal to the first base station at the first measurement moment according to the first configuration information.
  • S213 The first base station receives the uplink reference signal at time Tr1.
  • S214 The second base station receives the uplink reference signal at time Tr2.
  • the second base station sends a first measurement report to the first base station, where the first measurement report includes Tr2.
  • the first base station receives the first measurement report.
  • Tdif (TdifUE+(Tr1-Tr2))/2
  • ⁇ T (TdifUE-(Tr1-Tr2))/ 2.
  • the transmission time difference ⁇ T of the first base station and the second base station is obtained.
  • the first base station, the second base station, and the UE can basically transmit the reference signal at the same time based on the timing offset Tdif0 measured by the inter-station edge UE, so that the measurement result can be reduced due to the movement of the UE. Degree of influence, thereby improving measurement accuracy.
  • the first configuration information may further include a measurement period, configured to instruct the UE to send the uplink reference signal once every integer multiple of the measurement period from the first measurement time.
  • the S203 may include: the first base station sends the downlink reference signal 1 to the UE once every integer measurement period starting at the first measurement time.
  • the second configuration information may further include the measurement period, where the second base station is configured to send the downlink reference signal 2 once every integer multiple of the measurement period from the second measurement time.
  • the embodiment of the present application does not limit the specific value of the measurement period and how to determine the specific value of the measurement period.
  • This alternative implementation is for periodically measuring Tdif and/or ⁇ T. It can be understood that the reference signals transmitted in different measurement periods may be the same or different, wherein the reference signal includes at least one of an uplink reference signal, a downlink reference signal 1 and a downlink reference signal 2.
  • the UE in the downlink direction, may support measurement of the inter-frequency cell; in the uplink direction, the UE may alternately transmit the reference signal at different frequency points.
  • each network element such as the first base station, the second base station, or the UE, in order to implement the foregoing functions, It contains the corresponding hardware structure and/or software modules for performing various functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may perform the division of the function modules on the first base station, the second base station, or the UE according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one.
  • Processing module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 10 shows a possible structural diagram of the first base station 100 involved in the foregoing embodiment.
  • the first base station 100 includes a receiving unit 1001, a transmitting unit 1002, and a determining unit 1003. among them:
  • the receiving unit 1001 is configured to receive the first reference signal sent by the UE, and record the receiving time as Tr1, and receive the Tr2 sent by the second base station, where Tr2 is the time at which the second base station receives the first reference signal measured by the second base station. ;
  • the sending unit 1002 is configured to send a second reference signal to the UE.
  • the receiving unit 1001 is further configured to: receive a Tdif UE sent by the UE, where the Tdif UE is a difference between a time when the UE receives the second reference signal sent by the first base station 100 and a time when the UE receives the third reference signal sent by the second base station.
  • a determining unit 1003 configured to determine, according to Tr1, Tr2, and TdifUE, a timing offset Tdif of the first base station 100 and the second base station, and at least one of a signal transmission time difference ⁇ T; wherein ⁇ T means that the signal is at the UE and The transmission time between the first base station 100 and the difference in transmission time between the UE and the second base station.
  • the sending unit 1002 is further configured to: send the first configuration information to the UE, where the first configuration information is used to instruct the UE to send the first reference signal at the first measurement moment.
  • the first configuration information may further include a measurement period, configured to instruct the UE to send the first reference signal once every integer multiple of the measurement period from the first measurement time.
  • the sending unit 1002 is further configured to: send the first configuration information to the UE, where the first configuration information is used to indicate that the UE sends the first reference signal at the first measurement time, and the second configuration information is sent to the UE at the first measurement time.
  • the second configuration information is sent to the second base station, where the second configuration information is used to indicate that the second base station sends the third reference signal to the UE at the second measurement time; the second measurement time is the first measurement time and the first measurement time The sum of the timing adjustments of the two base stations relative to the base station.
  • the first configuration information further includes a measurement period, configured to instruct the UE to send the first reference signal once every integer multiple of the measurement period from the first measurement time.
  • the sending unit 1003 may specifically be used,
  • the second reference signal is transmitted to the UE once every integer multiple of the measurement period starting at the first measurement time.
  • the second configuration information further includes a measurement period, configured to instruct the second base station to send the third reference signal once every integer multiple of the measurement period from the second measurement time.
  • the first base station is presented in the form of dividing each functional module corresponding to each function, or the first base station is presented in a form of dividing each functional module in an integrated manner.
  • a unit herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above.
  • ASIC application-specific integrated circuit
  • the first base station 100 can take the form shown in Figure 3.
  • the determining unit 1003 in Figure 10 can be implemented by the processor 21 of Figure 3.
  • the determining unit 1003 can be executed by calling the application code stored in the memory 22 by the processor 21.
  • the embodiment of the present application does not impose any limitation on this.
  • the receiving unit 1001 and the sending unit 1002 can pass through FIG.
  • the communication interface 23 is implemented.
  • FIG. 11 shows a possible structural diagram of the second base station 110 involved in the foregoing embodiment.
  • the second base station 110 includes a receiving unit 1101 and a transmitting unit 1102. among them:
  • the receiving unit 1101 is configured to receive, by the UE, the first reference signal, and record the receiving time as Tr2.
  • the sending unit 1102 is configured to send, to the UE, a third reference signal, where the third reference signal is used by the UE to determine the Tdif UE, and the Tdif UE is used by the UE to receive the second reference signal sent by the first base station, and the UE receives the second The difference TdifUE of the time of the third reference signal transmitted by the base station 110, and transmitting the TdifUE to the first base station.
  • the sending unit 1102 is further configured to: send Tr2 to the first base station, where Tr2 is used by the first base station to determine, according to Tr1, TdifUE, and Tr2, a timing offset TdifUE of the first base station and the second base station 110, and at least a signal transmission time difference ⁇ T
  • Tr1 is a time when the first base station receives the first reference signal measured by the first base station
  • ⁇ T refers to the transmission time and signal of the signal between the UE and the first base station at the UE and the second base station 110. The difference between the transmission times.
  • the receiving unit 1101 is further configured to: receive second configuration information that is sent by the first base station, where the second configuration information includes a second measurement time, where the second measurement time is the first measurement time and the base station is opposite to the first base station.
  • the sum of the timing adjustment amounts, the first measurement time is a time when the first base station sends the second reference signal to the UE.
  • the sending unit 1102 is further configured to send the third reference signal to the UE at the second measurement moment.
  • the second base station is presented in the form of dividing each functional module corresponding to each function, or the second base station is presented in a form of dividing each functional module in an integrated manner.
  • a unit herein may refer to an ASIC, circuitry, processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that can provide the functionality described above.
  • the field The skilled person may think that the second base station 110 may adopt the form shown in Fig. 3.
  • the transmitting unit 1102 and the receiving unit 1101 in Fig. 11 may be implemented by the communication interface 23 in Fig. 3.
  • FIG. 12 shows a possible structural diagram of the UE 120 involved in the foregoing embodiment.
  • the UE 120 includes a transmitting unit 1201, a receiving unit 1202, and a determining unit 1203. among them:
  • the sending unit 1201 is configured to send a first reference signal, where the first reference signal is used by the first base station to determine Tr1, and the second base station determines Tr2 and sends Tr2 to the first base station, where Tr1 receives the first At the time of the reference signal, Tr2 is the time at which the second base station receives the first reference signal.
  • the receiving unit 1202 is configured to receive a second reference signal sent by the first base station, and receive a third reference signal sent by the second base station.
  • the determining unit 1203 is configured to determine a Tdif UE, where the Tdif UE is a difference between a time when the UE 120 receives the second reference signal sent by the first base station and a time when the UE 120 receives the third reference signal sent by the second base station.
  • the sending unit 1201 is further configured to: send a Tdif UE to the first base station, where the Tdif UE is used by the first base station to determine, according to the Tr1, the Tr2, and the Tdif UE, a timing offset of the first base station and the second base station, and at least a signal transmission time difference ⁇ T One; where ⁇ T is the difference between the transmission time of the signal between the UE 120 and the first base station and the transmission time of the signal between the UE 120 and the second base station.
  • the receiving unit 1202 is further configured to: receive first configuration information sent by the first base station, where the first configuration information includes a first measurement time, a first measurement time, and a timing adjustment of the second base station relative to the first base station.
  • the sum of the quantities is the second measurement time, and the second measurement time is the time when the second base station sends the third reference signal to the UE 120.
  • the sending unit 1202 is specifically configured to send the first reference signal at the first measurement moment.
  • the receiving unit 1202 is further configured to: receive first configuration information sent by the first base station, where the first configuration information includes a first measurement time.
  • the sending unit 1201 is specifically configured to: send the first reference signal at the first measurement moment.
  • the UE is presented in the form of dividing each functional module corresponding to each function, or the UE is presented in a form that divides each functional module in an integrated manner.
  • a unit herein may refer to an ASIC, circuitry, processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that can provide the functionality described above.
  • the field The technician can think that the UE 120 can adopt the form shown in FIG. 4.
  • the determining unit 1203 in FIG. 12 can be implemented by the processor 31 in FIG. 4, and specifically, the determining unit 1203 can call the memory by the processor 31.
  • the application code stored in 32 is executed, and the embodiment of the present application does not impose any limitation on this.
  • the transmitting unit 1201 and the receiving unit 1202 can be implemented by the transceiver 34 in FIG.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center By wired (eg coaxial cable, fiber, digital subscriber line, DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种测量时间差的方法和装置,涉及通信领域,用以解决所确定的定时偏差的精确度较低的问题,和/或,确定不同基站的传输时间差的过程中,因依赖GPS技术而导致的适用范围较小的问题。该方法包括:第一基站获取Tr1、Tr2和TdifUE;Tr1为第一基站测量得到的第一基站接收UE发送的第一参考信号的时刻,Tr2为第二基站测量得到的第二基站接收第一参考信号的时刻,TdifUE为UE测量得到的UE接收第一基站发送的第二参考信号的时刻与UE接收第二基站发送的第三参考信号的时刻的差。根据Tr1、Tr2和TdifUE,确定第一基站和第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种。

Description

一种测量时间差的方法和装置 技术领域
本申请涉及通信领域,尤其涉及一种测量时间差的方法和装置。
背景技术
基站同步技术是通过获取不同基站的定时偏差(timing offset),调整不同基站的定时时钟,从而实现不同基站间的时间同步的技术。在该技术中,一般通过基于站间边缘用户设备(user equipment,UE)确定不同基站的定时偏差。站间边缘UE是指位于相邻基站的重叠覆盖范围内的UE。具体的,服务基站利用公式Tdif=Taccess-Tneigh,得到该服务基站和该服务基站的邻基站的定时偏差Tdif。其中,Taccess为该服务基站检测到UE发送的随机接入信号的时刻,Tneigh为该邻基站检测到该随机接入信号的时刻。该方法只考虑了Taccess和Tneigh,因此所确定的定时偏差的精确度较低。
可观察到达时间差分(observed time difference of arrival,OTDOA)技术是通过测量UE与不同基站之间的信号传输时间差,对UE进行定位的技术。在该技术中,一般通过以下方法确定信号传输时间差△T:定位服务器利用全球定位系统(global positioning system,GPS)技术确定不同基站的定时偏差TdifGPS;然后接收UE上报的该UE测量得到的定时偏差TdifUE,根据公式△T=TdifUE-TdifGPS,得到△T。该方法需要基于GPS技术确定定时偏差TdifGPS,才能进一步确定信号传输时间差△T,因此适用范围较小。
发明内容
本申请实施例提供一种测量时间差的方法和装置,用以解决以下问题中的至少一种:所确定的定时偏差的精确度较低的问题;确定UE与不同基站之间的信号传输时间差的过程中,因依赖GPS技术而导致的适用范围较小的问题。
第一方面,提供一种测量时间差的方法,该方法可以包括:第一基站接收UE发送的第一参考信号,并将接收时刻记作Tr1;第一基站接收第二基站发送的Tr2,Tr2为第二基站测量得到的第二基站接收第一参考信号的时刻;第一基站向UE发送第二参考信号;第一基站接收UE发送的TdifUE,TdifUE为UE测量得到的UE接收第一基站发送的第二参考信号的时刻与UE接收第二基站发送的第三参考信号的时刻的差;第一基站根据Tr1、Tr2和TdifUE,确定第一基站和第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,△T是指,信号在UE与第一基站之间的传输时间与信号在UE与第二基站之间的传输时间的差。该技术方案中,一方面,在确定定时偏差的过程中,不仅使用了Tr1和Tr2,还使用了TdifUE;由于TdifUE、Tdif和△T之间具有关联关系,因此可以通过它们之间的关联关系,补偿△T,从而提高精确度。另外,在确定信号传输时间差的过程中,不需要依赖GPS技术,因此适用范围较大。可选的,第一基站可以是UE的服务基站。第二基站可以是UE的非服务基站。可选的,UE位于第一基站的覆盖范围和第二基站的覆盖范围的重叠区域。
在一种可能的设计中,第一基站根据Tr1、Tr2和TdifUE,确定第一基站与第二基站的定时偏差Tdif,可以包括:第一基站根据公式Tdif=(TdifUE+(Tr1-Tr2))/2,得到Tdif。该可能的设计提供了一种确定Tdif的实现方式。
在一种可能的设计中,第一基站根据Tr1、Tr2和TdifUE,确定信号传输时间差 △T,可以包括:第一基站根据公式△T=(TdifUE-(Tr1-Tr2))/2,得到△T。该可能的设计提供了一种确定△T的实现方式。
在一种可能的设计中,该方法还可以包括:第一基站向UE发送第一配置信息;该第一配置信息用于指示UE在第一测量时刻发送第一参考信号。该可选的实现方式可以应用于UE没有上行数据需要传输的场景中,该场景中通过第一基站向UE指示发送上行参考信号(即第一参考信号),从而完成Tdif和/或△T的测量。
可选的,第一配置信息还可以包括测量周期,用于指示UE从第一测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。该可选的实现方式,提供了一种第一基站指示UE周期性发送上行参考信号(即第一参考信号)的方法。这样,第一基站可以通过多次测量时间差(包括Tdif和/或△T),从而可以提高测量精度。
在一种可能的设计中,该方法还可以包括:第一基站向UE发送第一配置信息;第一配置信息用于指示UE在第一测量时刻发送第一参考信号;第一基站在第一测量时刻向UE发送第二参考信号;第一基站向第二基站发送第二配置信息;其中,第二配置信息用于指示第二基站在第二测量时刻向UE发送第三参考信号;第二测量时刻为第一测量时刻与第二基站相对第一基站的定时调整量之和。这样,可以使第一基站、第二基站和UE尽可能同时发送参考信号,从而减少因UE的移动而导致的测量误差。其中,该定时调整量可以是第二基站相对第一基站的定时偏差取反得到的值。其中,该定时偏差可以是根据现有技术中的方法得到的定时偏差。需要说明的是,本文中是以第一基站和UE的时钟同步为例进行说明的,实际上,若第一基站与UE的时钟不同步,则上述第一基站在第一测量时刻向UE发送第三参考信号,可以被替换为:第一基站在第三测量时刻向UE发送第三参考信号,其中,第三测量时刻是第一测量时刻与第一基站相对终端的定时调整量之和。
可选的,第一配置信息还可以包括测量周期,用于指示UE从第一测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。该情况下,第一基站在第一测量时刻向UE发送第二参考信号,可以包括:第一基站在第一测量时刻开始每隔整数倍的测量周期,向UE发送一次第二参考信号。并且,第二配置信息中还可以包括测量周期,用于指示第二基站从第二测量时刻开始每隔整数倍的测量周期,发送一次第三参考信号。这样,第一基站可以通过多次测量时间差(包括Tdif和/或△T),从而可以提高测量精度。
第二方面,提供一种测量时间差的方法,该方法可以包括:第二基站接收UE发送第一参考信号,并将接收时刻记作Tr2;第二基站向UE发送第三参考信号,第三参考信号用于UE确定TdifUE;TdifUE为UE测量得到的UE接收第一基站发送的第二参考信号的时刻与UE接收第二基站发送的第三参考信号的时刻的差TdifUE,并向第一基站发送TdifUE;第二基站向第一基站发送Tr2,Tr2用于第一基站根据Tr1、TdifUE和Tr2,确定第一基站和第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,Tr1为第一基站测量得到的第一基站接收第一参考信号的时刻;△T是指,信号在UE与第一基站之间的传输时间与信号在UE与第二基站之间的传输时间的差。
在一种可能的设计中,该方法还可以包括:第二基站接收第一基站发送的第二配置信息;其中,第二配置信息包括第二测量时刻;第二测量时刻为第一测量时刻与第 二基站相对第一基站的定时调整量之和,第一测量时刻为第一基站向UE发送第二参考信号的时刻;第二基站在第二测量时刻向UE发送第三参考信号。
在一种可能的设计中,第二配置信息还可以包括测量周期;第二基站在第二测量时刻向UE发送第三参考信号,可以包括:第二基站从第二测量时刻开始每隔整数倍的测量周期,发送一次第三参考信号。
第二方面的任一种实现方式中相关内容的解释及有益效果的描述均可以参考上述第一方面中对应的实现方式,此处不再赘述。
第三方面,提供一种测量时间差的方法,该方法可以包括:UE发送第一参考信号,第一参考信号用于第一基站确定Tr1,以及用于第二基站确定Tr2,其中,Tr1为第一基站接收第一参考信号的时刻,Tr2为第二基站接收第一参考信号的时刻;UE接收第一基站发送的第二参考信号;UE接收第二基站发送的第三参考信号;UE确定TdifUE;TdifUE为UE接收第一基站发送的第二参考信号的时刻与UE接收第二基站发送的第三参考信号的时刻的差;UE向第一基站发送TdifUE,TdifUE用于第一基站根据Tr1、Tr2和TdifUE,确定第一基站和第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,△T是指,信号在UE与第一基站之间的传输时间与信号在UE与第二基站之间的传输时间的差。
在一种可能的设计中,该方法还可以包括:UE接收第一基站发送的第一配置信息,第一配置信息包括第一测量时刻。该情况下,UE发送第一参考信号,可以包括:UE在第一测量时刻发送第一参考信号。
可选的,第一配置信息还包括测量周期;UE在第一测量时刻发送第一参考信号可以包括:用于指示UE从第一测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。
在一种可能的设计中,该方法还可以包括:UE接收第一基站发送的第一配置信息;其中,第一配置信息包括第一测量时刻,第一测量时刻与第二基站相对第一基站的定时调整量之和为第二测量时刻,第二测量时刻为第二基站向UE发送第三参考信号的时刻。该情况下,UE发送第一参考信号,可以包括:UE在第一测量时刻发送第一参考信号。
第三方面的任一种实现方式中相关内容的解释及有益效果的描述均可以参考上述第一方面中对应的实现方式,此处不再赘述。
第四方面,提供一种基站,该基站具有实现上述方法实施例中第一基站行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该基站可以包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该基站运行时,该处理器执行该存储器存储的该计算机执行指令,以使该基站执行如上述第一方面任意一项的测量时间差的方法。
第五方面,提供一种计算机可读存储介质,用于储存为上述第一基站所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的测量时间差的方法。
第六方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的测量时间差的方法。
第七方面,提供一种基站,该基站具有实现上述方法实施例中第二基站行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该基站可以包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该基站运行时,该处理器执行该存储器存储的该计算机执行指令,以使该基站执行如上述第二方面任意一项的测量时间差的方法。
第八方面,提供一种计算机可读存储介质,用于储存为上述第二基站所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的测量时间差的方法。
第九方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的测量时间差的方法。
第十方面,提供一种UE,该UE具有实现上述方法实施例中UE行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该UE可以包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该基站运行时,该处理器执行该存储器存储的该计算机执行指令,以使该UE执行如上述第三方面任意一项的测量时间差的方法。
第十一方面,提供一种计算机可读存储介质,用于储存为上述UE所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第三方面中任意一项的测量时间差的方法。
第十二方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第三方面中任意一项的测量时间差的方法。
上述提供的任一种装置,计算机可读介质或计算机程序产品的技术效果均可参见对应的方法所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种不同基站的定时时钟的示意图;
图2为本申请实施例提供的技术方案所适用的一种系统的架构示意图;
图3为本申请实施例提供的一种基站的结构示意图;
图4为本申请实施例提供的一种UE的结构示意图;
图5为本申请实施例提供的一种测量时间差的方法的交互示意图;
图6为本申请实施例提供的一种下行参考信号执行过程的示意图;
图7为本申请实施例提供的一种上行参考信号执行过程的示意图;
图8为本申请实施例提供的另一种测量时间差的方法的交互示意图;
图9为本申请实施例提供的一种确定初始定时偏差的方法的交互示意图;
图10为本申请实施例提供的一种第一基站的结构示意图;
图11为本申请实施例提供的一种第二基站的结构示意图;
图12为本申请实施例提供的一种UE的结构示意图。
具体实施方式
首先对本申请所涉及的相关技术及部分术语进行解释,以方便读者理解:
每个基站中设置有一个定时时钟,每个基站均是基于自身中设置的定时时钟进行计时的,并根据所确定的时刻进行相关操作。例如,第一基站在第一测量时刻发送第一参考信号,是指第一基站在基于第一基站中设置的定时时钟所确定的第一测量时刻,发送第一参考信号。第二基站在第二测量时刻发送第三参考信号,是指第二基站在基于第二基站中设置的定时时钟所确定的第二测量时刻,发送第三参考信号。又如,第一基站所测量的接收第一参考信号的时刻,是指第一基站基于其自身中设置的定时时钟所记录的接收第一参考信号的时刻。
不同基站的定时时钟可以相同,也可以不同。若不同基站的定时时钟不同,则会导致同一参考时刻会被不同基站记录成不同的时刻。例如,图1所示为参考基站、基站1和基站2的定时时钟的示意图。由图1可知,若参考时刻为基于定时时钟0的时刻t1,则基站1所记录的参考时刻为t2,基站2所记录的参考时刻为t0,如图1中的虚线矩形框所示。这样,这3个基站同时发送信号,具体可以是:参考基站在基于定时时钟0的t1时刻发送信号,基站1在基于定时时钟1的t2时刻发送信号,基站2在基于定时时钟2的t0时刻发送信号。
不同基站之间的定时偏差,是指不同基站发送同一无线帧编号的同一子帧编号所表示的子帧的下行参考信号的时间差。例如,若基站1在T1时刻发送第2个无线帧的第1个子帧的下行参考信号,基站2在T2时刻发送第2个无线帧的第1个子帧的下行参考信号,则基站1和基站2的定时偏差为T2-T1;其中,这里的T1和T2是指绝对时刻,即基于同一定时时钟的时刻(比如GPS时间)。
UE与不同基站之间的信号传输时间差,是指信号在UE与一个基站之间的传输时间,与信号在该UE与另一个基站之间的传输时间的差。例如,若信号在UE与基站1之间的传输时间是Tp1,信号在UE与基站2之间的传输时间是Tp2,则信号传输时间差为Tp2-Tp1。
上行方向,是指从UE到基站的方向。例如上行参考信号是UE向基站发送的参考信号。该上行参考信号可以包括但不限于以下任一种:随机接入信号,解调参考信号(demodulation reference signal,DMRS),探测参考信号(sounding reference signal,SRS);也可以是新设计的一种上行参考信号。
下行方向,是指从基站到UE的方向。例如下行参考信号是基站向UE发送的参考信号。该下行参考信号可以包括但不限于以下任一种:小区公共参考信号(cell-specific reference signal,CRS),定位参考信号(positioning reference signal,PRS),信道状态信息参考信号(channel state information reference signal,CSI-RS);也可以是新设计的一种下行参考信号。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中字符“/”,一般表示前后关联对象是一种“或”的关系。“多个”是 指两个或两个以上。本文中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。
需要说明的是,本申请实施例中,认为UE的定时时钟与为该UE提供服务的基站(即该UE的服务基站)的定时时钟相同。可以理解的,本领域普通技术人员可以根据本文中描述的技术方案,推理得到UE的定时时钟与该UE的服务基站的定时时钟不同的情况下的实现方案,本文中不再赘述。
本申请实施例提供的技术方案可以应用于如图2所示的系统中。图2所示的系统包括:第一基站100、第二基站200和UE300。其中,第一基站100的覆盖范围和第二基站200的覆盖范围之间具有重叠区域,UE300位于该重叠区域内。可以理解的,图2仅为示例图。基站的个数与UE的个数对本申请实施例提供的技术方案不构成限定。在实际应用中,可以根据需要以不同于图2所示的基站的个数和UE的个数进行网络部署。下文中均是以基于一个UE确定第一基站和第二基站的定时偏差为例进行说明的。可以理解的,若第一基站的覆盖范围和第二基站的覆盖范围内有多个UE,则第一基站和第二基站的定时偏差,可以是根据上述技术方案得到的多个定时偏差的均值。
图2所示的系统可以是各种通信系统,例如当前2G,3G,4G通信系统和下一代通信系统,以及未来演进网络,如5G通信系统。例如,全球移动通信系统(global system for mobile communication,GSM)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、长期演进(long term evolution,LTE)系统,以及其他此类通信系统。
基站(包括第一基站100和第二基站200)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将接收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本申请并不限定。基站还可以是未来5G网络中的网络设备或未来演进的PLMN网络中的网络设备;还可以是可穿戴设备或车载设备等。
UE300可以包括但不限于以下任一种:手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等。
如图3所示,为本申请实施例提供的一种基站的结构示意图。该基站可以是第一基站100,也可以是第二基站200。图3所示的基站可以包括:至少一个处理器21,以及,存储器22、通信接口23和通信总线24。
处理器21是基站的控制中心,具体可以是一个处理元件,也可以是多个处理元件的统称。例如,处理器21可以是一个中央处理器(central processing unit,CPU), 也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例提供的技术方案的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行基站的各种功能。
在具体实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图3中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图3中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过通信总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。其中,存储器22用于存储执行本申请实施例提供的技术方案中第一基站或第二基站所执行的软件程序,并由处理器21来控制执行。
通信接口23,可以是使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area metworks,WLAN)等。通信接口23可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线24,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component interconnect,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图4所示,为本申请实施例提供的一种UE的结构示意图。图4所示的UE可以包括:至少一个处理器31,以及,存储器32、显示器33和收发器34。
处理器31是UE的控制中心,可以是一个处理器,也可以是多个处理元件的统称。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行UE的各种功能。存储器32用于存储执行本申请实施例提供的技术方案中的UE所执行的软件程序,并由处理器31来控制执行。
关于处理器31、存储器32和收发器34的相关描述可参考上文,此处不再赘述。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU,例如图4中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,UE可以包括多个处理器,例如图4中所示的处理器31和处理器35。
显示器33可用于显示由用户输入的信息或提供给用户的信息以及UE的各种菜单等。显示器33可包括显示面板331。可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等来配置显示面板331。
图4中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块等,在此不再赘述。
下面结合图2所示的系统架构对本申请实施例提供的测量时间差的方法进行说明。需要说明的是,下文中均是以“第一基站是UE的服务基站;第二基站是第一基站的邻基站,且第二基站的覆盖范围与第一基站的覆盖范围重叠”为例进行说明的。
如图5所示,为本申请实施例提供的一种测量时间差的方法的交互示意图。图5所示的方法可以包括以下步骤S101~S111:
S101:第一基站向UE发送下行参考信号1。
下行参考信号1可以认为是本文中描述的第二参考信号。
S102:UE接收第一基站发送的下行参考信号1,并记录该UE接收下行参考信号1的时刻Tu1。
第一基站与UE可以预先约定好传输下行参考信号1时所使用的时频域资源,UE可以在该时频资源上接收下行参考信号1,并将开始接收到下行参考信号1的时刻标记为Tu1。Tu1是基于UE的定时时钟所确定的时刻。若UE的定时时钟与第一基站的定时时钟相同,因此可以认为Tu1是基于第一基站的定时时钟所确定的时刻。
S103:第二基站向UE发送下行参考信号2。
下行参考信号2可以认为是本文中描述的第三参考信号。
在一个示例中,下行参考信号1可以是基于第一基站中的时钟所记录的第n个无线帧的第i个子帧的下行参考信号。下行参考信号2可以是基于第二基站中的时钟所记录的第n个无线帧的第i个子帧的下行参考信号。其中,n是大于或等于1的整数。i是大于或等于1,且小于或等于一个无线帧中包括的子帧的总数的整数。
S104:UE接收第二基站发送的下行参考信号2,并记录UE接收下行参考信号2的时刻Tu2。
第二基站与UE可以预先约定好传输下行参考信号2时所使用的时频域资源,UE可以在该时频资源上接收下行参考信号2,并将开始接收到下行参考信号1的时刻标记为Tu2。可以认为Tu2是基于第一基站的定时时钟所确定的时刻。
本申请实施例对S101~S102和S103~S104的执行顺序不进行限定,例如可以先执行S101~S102后执行S103~S104,也可以先执行S103~S104后执行S101~S102,还可以同时执行S101~S102和S103~S104。可以理解的,这里描述的“同时”和“先后”均是针对基于同一个定时时钟所确定的时刻而言的。
S105:UE计算Tu1与Tu2的差,得到TdifUE。
S106:UE向第一基站发送TdifUE。第一基站接收UE发送的TdifUE。
S107:UE向第一基站发送上行参考信号。
上行参考信号可以认为是本文中描述的第一参考信号。
在一种可选的实施例中,在S107之前,该方法还可以包括:第一基站向UE发送配置信息,其中,该配置信息用于指示该UE在测量时刻发送上行参考信号。该情况下,S107可以包括:UE在该测量时刻向第一基站发送上行参考信号。可选的,配置信息还包括测量周期;该情况下,UE可以从测量时刻开始每隔整数倍的测量周期,发送一次上行参考信号。不同测量周期内发送的上行参考信号可以相同也可以不同。
在另一种可选的实施例中,由于UE有上行数据需要发送,即会向基站发送上行参考信号,该情况下,可以通过该上行参考信号,确定Tdif和/或△T。
S108:第一基站接收UE发送的该上行参考信号,并记录第一基站接收该上行参考信号的时刻Tr1。
第一基站与UE可以预先约定好传输上行参考信号时所使用的时频域资源,第一基站可以在该时频资源上接收该上行参考信号,并将开始接收到该上行参考信号的时刻标记为Tr1。Tr1是基于第一基站的定时时钟所确定的时刻。
S109:第二基站接收UE发送的该上行参考信号,并记录第二基站接收该上行参考信号的时刻Tr2。
第一基站与UE可以预先约定好传输上行参考信号时所使用的时频域资源,然后第一基站可以将该时频资源的信息通知给第二基站,这样,第二基站可以在该时频资源上接收该上行参考信号,并将开始接收到该上行参考信号的时刻标记为Tr2。Tr2是基于第二基站的定时时钟所确定的时刻。
S110:第二基站向第一基站发送Tr2。第一基站接收第二基站发送的Tr2。
本申请实施例对S108和S109~S110的执行顺序不进行限定,具体的执行顺序可以根据实际情况确定。例如可以先执行108后执行S109~S110,也可以先执行S109~S110后执行S108,还可以同时执行S108和S109~S110。可以理解的,这里描述的“同时”和“先后”均是针对基于同一个定时时钟所确定的时刻而言的。
本申请实施例中,可以将S101~S107的过程称为下行参考信号的执行过程;将S108~S110的过程称为上行参考信号的执行过程。本申请实施例对这两个过程的执行顺序可以不进行限定。
S111:第一基站根据公式Tdif=(TdifUE+(Tr1-Tr2))/2,得到第一基站与第二基站的定时偏差Tdif;并根据公式△T=(TdifUE-(Tr1-Tr2))/2,得到信号传输时间差△T。
可以理解的,根据S111中的两个公式可知,第一基站是根据第一基站所记录的Tr1和第二基站所记录的Tr2相减后得到的值,获取Tdif和△T的。因此,若UE与第一基站之间的相对位置,和UE与第二基站之间的相对位置是固定不变的,或者是在允许的范围内波动的,则在S107中,可以不限定UE发送上行参考信号的时刻。若UE与第一基站和第二基站之间的相对位置的波动范围较大时,为了减少因UE的移动导致的Tr1-Tr2不精确,从而导致的测量结果不精确,可以采用下文图8所示的实施 例测量Tdif和/或△T。
本申请实施例对S111中的两个步骤的执行顺序不进行限定。
下面说明S111中的公式的推导过程:
如图6所示,为下行参考信号执行过程的示意图。根据Tdif的定义可知,第一基站发送下行参考信号1的时刻与第二基站发送下行参考信号2的时刻之间相差Tdif。该过程中,Tdif、Tp1、Tp2、Tu1、Tu2和TdifUE之间的关系如图6所示。其中,Tp1为信号在UE与第一基站之间的传输时间,Tp2为信号在UE与第二基站之间的传输时间。由此可以得到如下公式1:
TdifUE=Tdif+(Tp2-Tp1)。
如图7所示,为上行参考信号执行过程的示意图。该过程中,Tp1、Tp2、Tr1和Tr2之间的关系如图7所示。根据Tdif的定义,可以得到如下公式2:
Tdif=(Tr1-Tp1)-(Tr2-Tp2),其中,Tr1-Tp1为第一基站测量得到的UE发送上行参考信号的时刻;Tr2-Tp1为第二基站测量得到的UE发送上行参考信号的时刻。
根据公式2可以得到如下公式3:
Tr1-Tr2=Tdif-(Tp2+Tp1)。
根据公式1和公式3,可以得出:
Tdif=(TdifUE+(Tr1-Tr2))/2,
△T=Tp2-Tp1=(TdifUE-(Tr1-Tr2))/2。
本申请实施例提供的技术方案中,一方面,在确定定时偏差Tdif的过程中,使用了UE测量得到的UE接收不同基站发送的参考信号的时间差TdifUE,由于TdifUE、Tdif、以及传输时间差△T之间具有关联关系,如TdifUE=Tdif+△T,因此,在计算Tdif的过程中,可以通过测量TdifUE,补偿UE与不同基站之间的信号传输时间差(即△T),进而提高精确度。另外,在确定△T的过程中,不需要依赖GPS技术,因此适用范围较大。
可以理解的,相比现有技术中采用的随机接入信号作为参考信号,若本申请实施例提供的技术方案中的参考信号为除随机接入信号之外的其他参考信号,例如下行参考信号采用CRS或上行参考信号采用SRS,则可因CRS和SRS较宽的带宽,而提升定时偏差的测量精度。另外,若采用本申请实施例提供的技术方案获取信号传输时间差,则可以使得应用信号传输时间差的各种场景,例如OTDOA技术,因不依赖GPS技术,而扩大适用范围。
需要说明的是,目前,还可以基于站间切换UE确定定时偏差。站间切换UE是指将服务基站从源基站切换至目标基站的站间边缘UE。具体的,源基站利用公式Tdif=(Taccess-Tneigh)-(Tp1-Tp2),得到该服务基站和该服务基站的邻基站的定时偏差Tdif。其中,Taccess与Tneigh的含义与上文类似,其中,Taccess可以是Tr1的一种具体实现,Tneigh可以是Tr2的一种具体实现。Tp1为信号在UE与源基站之间的传输时间,Tp2为信号在UE与目标基站之间的传输时间。其中,Tp1-Tp2为该服务基站和该邻基站的到达时间差(time difference of arrival,TDOA)。与该技术方案相比,本申请实施例提供的技术方案不需要基于站间切换UE,其基于站间边缘UE即可实现,因此适用范围较大。
上述是以第一基站发送一个下行参考信号1,第二基站发送一个下行参考信号2为例进行说明的。实际实现时,第一基站可以周期性地向UE发送下行参考信号1,第二基站可以周期性地向UE发送下行参考信号2。其中,一个周期可以是一个子帧。该情况下,UE可以通过第一基站发送的系统消息获知基于第一基站的时钟所记录的无线帧的起始时刻和无线帧的帧号,例如,无线帧的起始时刻为:第1ms,第2ms,第3ms……;还是,第1.1ms,第2.1ms,第3.1ms……等,从而推断出所接收到的下行参考信号1是哪个无线帧的哪个子帧中的下行参考信号1。类似地,UE可以通过第二基站发送的系统消息,获知所接收到的下行参考信号2是哪个无线帧的哪个子帧中的下行参考信号2。然后,UE可以通过记录第一基站的任一个下行参考信号1和第二基站发送的任一个下行参考信号2,并结合这两个下行参考信号所在的无线帧编号和子帧编号,得到Tdif。例如,UE接收第一基站在第1个无线帧的第1个子帧(该无线帧和子帧是基于第一基站的时钟确定的)发送的下行参考信号1的时刻为t1,接收第二基站在第1个无线帧的第2个子帧(该无线帧和子帧是基于第二基站的时钟确定的)发送的下行参考信号2的时刻为t2,则TdifUE=t20-t1,其中,t20为t2与一个子帧长度的差值。
如图8所示,为本申请实施例提供的另一种测量时间差的方法的交互示意图。图8所示的方法可以包括以下步骤S201~S216:
S201:第一基站基于站间边缘UE确定第一基站和第二基站的初始定时偏差Tdif0。
Tdif0可以大于0,也可以小于0。S201中确定的Tdif0没有考虑UE与不同基站之间的信号传输时间差,因此不精确。S201的具体方法可以如图9所示。图9中的服务基站可以是本实施例中的第一基站,该服务基站的邻基站可以是本实施例中的第二基站。图9所示的方法可以包括如下步骤S1~S9:
S1:第一基站向第二基站发送盲检测请求。第二基站接收该盲检测请求。
S2:第二基站启动preamble(前导码)盲检测接收。
S3:第二基站向第一基站发送盲检测响应。第一基站接收该盲检测响应。
S4:第一基站向UE发送随机接入命令。UE接收该随机接入命令。
S5:UE向第一基站发起随机接入,即UE向第一基站发送随机接入信号。
S6:第一基站盲检测随机接入信号,得到接收随机接入信号的时刻Taccess。
S7:第二基站盲检测随机接入信号,得到接收随机接入信号的时刻Tneigh。
S8:第二基站向第一基站发送盲检测结果,该盲检测结果包括Tneigh。第一基站接收该盲检测结果。
S9:第一基站根据公式Tdif0=Taccess-Tneigh,得到Tdif0。
S202:第一基站确定第一测量时刻。
本申请实施例对S201和S202的执行顺序不进行限定。
S203:第一基站在第一测量时刻向UE发送下行参考信号1。
其中,第一测量时刻是基于第一基站的定时时钟所确定的时刻。
S204:UE在Tu1时刻接收到该下行参考信号1。
S205:第一基站将第一测量时刻与Tdif0相加,得到第二测量时刻。
若Tdif0>0,则第二测量时刻小于第一测量时刻;若Tdif0<0,则第二测量时刻小于第一测量时刻。
S206:第一基站向第二基站发送第二配置信息,第二配置信息包括第二测量时刻,用于指示第二基站在第二测量时刻向UE发送下行参考信号2。第二基站接收第二配置信息。
其中,第二测量时刻可以理解为基于第二基站的定时时钟所确定的时刻。
可以理解的,在本实施例中,由第一基站确定第二测量时刻,并将第二测量时刻携带在第二配置信息中发送给第二基站。可选的,实际实现时,第一基站也可以将第一测量时刻和Tdif0携带在第二配置信息中发送给第二基站,并由第二基站确定第二测量时刻。
S207:第二基站根据第二配置信息在第二测量时刻向UE发送下行参考信号2。
S208:UE在Tu2时刻接收到第二基站发送的下行参考信号2。
S209:UE计算Tu2与Tu1的差,得到TdifUE。
S210:UE向第一基站发送第二测量报告,第二测量报告包括TdifUE。第一基站接收该第二测量报告。
S211:第一基站向UE发送第一配置信息,第一配置信息包括第一测量时刻。UE接收该第一配置信息。
S212:UE根据第一配置信息,在第一测量时刻向第一基站发送上行参考信号。
S213:第一基站在Tr1时刻接收该上行参考信号。
S214:第二基站在Tr2时刻接收该上行参考信号。
S215:第二基站向第一基站发送第一测量报告,第一测量报告包括Tr2。第一基站接收该第一测量报告。
S216:第一基站根据公式Tdif=(TdifUE+(Tr1-Tr2))/2,得到第一基站与第二基站的实际定时偏差Tdif,并根据公式△T=(TdifUE-(Tr1-Tr2))/2,得到第一基站和第二基站的传输时间差△T。
本实施例提供的技术方案中,基于站间边缘UE测量得到的定时偏差Tdif0使得第一基站、第二基站和UE基本上可以同时发送参考信号,这样能够减少因UE的移动对测量结果的精确度的影响,从而提高测量精确度。
在一种可选的实施例中,第一配置信息还可以包括测量周期,用于指示UE从第一测量时刻开始每隔整数倍的测量周期,发送一次上行参考信号。该情况下,S203可以包括:第一基站在第一测量时刻开始每隔整数倍的测量周期,向UE发送一次下行参考信号1。并且,第二配置信息中还可以包括该测量周期,用于指示第二基站从第二测量时刻开始每隔整数倍的测量周期,发送一次下行参考信号2。
本申请实施例对测量周期的具体取值以及如何确定测量周期的具体取值的实现方式不进行限定。该可选的实现方式用于周期性测量Tdif和/或△T。可以理解的,不同测量周期内所传输的参考信号可以相同也可以不同,其中,该参考信号包括上行参考信号,下行参考信号1和下行参考信号2中的至少一种。
需要说明的是,在本申请实施例中,下行方向上,UE可以支持异频小区的测量;上行方向上,UE可以在不同的频点交替发送参考信号。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一基站、第二基站或者UE,为了实现上述功能, 其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一基站、第二基站或者UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的第一基站100的一种可能的结构示意图。该第一基站100包括接收单元1001、发送单元1002和确定单元1003。其中:
接收单元1001,用于接收UE发送的第一参考信号,并将接收时刻记作Tr1,以及接收第二基站发送的Tr2,Tr2为第二基站测量得到的第二基站接收第一参考信号的时刻;
发送单元1002,用于向UE发送第二参考信号。
接收单元1001还用于,接收UE发送的TdifUE,TdifUE为UE测量得到的UE接收第一基站100发送的第二参考信号的时刻与UE接收第二基站发送的第三参考信号的时刻的差。
确定单元1003,用于根据Tr1、Tr2和TdifUE,确定第一基站100和第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,△T是指,信号在UE与第一基站100之间的传输时间与信号在UE与第二基站之间的传输时间的差。
可选的,确定单元1003具体可以用于:根据公式Tdif=(TdifUE+(Tr1-Tr2))/2,得到Tdif。
可选的,确定单元1003具体可以用于:根据公式△T=(TdifUE-(Tr1-Tr2))/2,得到△T。
可选的,发送单元1002,还可以用于:向UE发送第一配置信息;该第一配置信息用于指示UE在第一测量时刻发送第一参考信号。可选的,第一配置信息还可以包括测量周期,用于指示UE从第一测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。
可选的,发送单元1002,还可以用于:向UE发送第一配置信息;第一配置信息用于指示UE在第一测量时刻发送第一参考信号;在第一测量时刻向UE发送第二参考信号;以及向第二基站发送第二配置信息;其中,第二配置信息用于指示第二基站在第二测量时刻向UE发送第三参考信号;第二测量时刻为第一测量时刻与第二基站相对基站的定时调整量之和。
可选的,第一配置信息还包括测量周期,用于指示UE从第一测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。该情况下,发送单元1003具体可以用于, 在第一测量时刻开始每隔整数倍的测量周期,向UE发送一次第二参考信号。第二配置信息中还包括测量周期,用于指示第二基站从第二测量时刻开始每隔整数倍的测量周期,发送一次第三参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该第一基站以对应各个功能划分各个功能模块的形式来呈现,或者,该第一基站以采用集成的方式划分各个功能模块的形式来呈现。这里的单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到第一基站100可以采用图3所示的形式。比如,图10中的确定单元1003可以通过图3中的处理器21实现,具体的,确定单元1003可以通过由处理器21来调用存储器22中存储的应用程序代码来执行,本申请实施例对此不作任何限制。又如,接收单元1001和发送单元1002可以通过图3中的通信接口23实现。
比如,在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中所涉及的第二基站110的一种可能的结构示意图。该第二基站110包括接收单元1101和发送单元1102。其中:
接收单元1101,用于接收UE发送第一参考信号,并将接收时刻记作Tr2。
发送单元1102,用于向UE发送第三参考信号,所述第三参考信号用于UE确定TdifUE;TdifUE为UE测量得到的UE接收第一基站发送的第二参考信号的时刻与UE接收第二基站110发送的第三参考信号的时刻的差TdifUE,并向第一基站发送TdifUE。
发送单元1102还用于,向第一基站发送Tr2,Tr2用于第一基站根据Tr1、TdifUE和Tr2,确定第一基站和第二基站110的定时偏差TdifUE,以及信号传输时间差△T中的至少一种;其中,Tr1为第一基站测量得到的第一基站接收第一参考信号的时刻;△T是指,信号在UE与第一基站之间的传输时间与信号在UE与第二基站110之间的传输时间的差。
可选的,接收单元1101还可以用于:接收第一基站发送的第二配置信息;其中,第二配置信息包括第二测量时刻;第二测量时刻为第一测量时刻与基站相对第一基站的定时调整量之和,第一测量时刻为第一基站向UE发送第二参考信号的时刻。该情况下,发送单元1102还可以用于,在第二测量时刻向UE发送第三参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该第二基站以对应各个功能划分各个功能模块的形式来呈现,或者,该第二基站以采用集成的方式划分各个功能模块的形式来呈现。这里的单元”可以指ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到第二基站110可以采用图3所示的形式。比如,图11中的发送单元1102和接收单元1101可以通过图3中的通信接口23实现。
比如,在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中所涉及的UE120的一种可能的结构示意图。该UE120包括发送单元1201、接收单元1202和确定单元1203。其中:
发送单元1201,用于发送第一参考信号,第一参考信号用于第一基站确定Tr1,以及用于第二基站确定Tr2并向第一基站发送Tr2,其中,Tr1为第一基站接收第一参考信号的时刻,Tr2为第二基站接收第一参考信号的时刻。
接收单元1202,用于接收第一基站发送的第二参考信号,以及接收第二基站发送的第三参考信号。
确定单元1203,用于确定TdifUE;TdifUE为UE120接收第一基站发送的第二参考信号的时刻与UE120接收第二基站发送的第三参考信号的时刻的差。
发送单元1201还用于,向第一基站发送TdifUE,所述TdifUE用于第一基站根据Tr1、Tr2和TdifUE,确定第一基站和第二基站的定时偏差,以及信号传输时间差△T中的至少一种;其中,△T是指,信号在UE120与第一基站之间的传输时间与信号在UE120与第二基站之间的传输时间的差。
可选的,接收单元1202还可以用于:接收第一基站发送的第一配置信息;其中,第一配置信息包括第一测量时刻,第一测量时刻与第二基站相对第一基站的定时调整量之和为第二测量时刻,第二测量时刻为第二基站向UE120发送第三参考信号的时刻。该情况下,发送单元1202具体可以用于,在第一测量时刻发送第一参考信号。
可选的,接收单元1202还可以用于:接收第一基站发送的第一配置信息,第一配置信息包括第一测量时刻。该情况下,发送单元1201具体可以用于:在第一测量时刻发送第一参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该UE以对应各个功能划分各个功能模块的形式来呈现,或者,该UE以采用集成的方式划分各个功能模块的形式来呈现。这里的单元”可以指ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到UE120可以采用图4所示的形式。比如,图12中的确定单元1203可以通过图4中的处理器31实现,具体的,确定单元1203可以通过由处理器31来调用存储器32中存储的应用程序代码来执行,本申请实施例对此不作任何限制。又如,发送单元1201和接收单元1202可以通过图4中的收发器34实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line, DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种测量时间差的方法,其特征在于,所述方法包括:
    第一基站接收用户设备UE发送的第一参考信号,并将接收时刻记作Tr1;
    所述第一基站接收第二基站发送的Tr2,所述Tr2为所述第二基站测量得到的所述第二基站接收所述第一参考信号的时刻;
    所述第一基站向所述UE发送第二参考信号;
    所述第一基站接收所述UE发送的TdifUE,所述TdifUE为所述UE测量得到的所述UE接收所述第一基站发送的所述第二参考信号的时刻与所述UE接收所述第二基站发送的第三参考信号的时刻的差;
    所述第一基站根据所述Tr1、所述Tr2和所述TdifUE,确定所述第一基站和所述第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,所述△T是指,信号在所述UE与所述第一基站之间的传输时间与信号在所述UE与所述第二基站之间的传输时间的差。
  2. 根据权利要求1所述的方法,其特征在于,所述第一基站根据所述Tr1、所述Tr2和所述TdifUE,确定所述第一基站与所述第二基站的定时偏差Tdif,包括:
    所述第一基站根据公式Tdif=(TdifUE+(Tr1-Tr2))/2,得到所述Tdif。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一基站根据所述Tr1、所述Tr2和所述TdifUE,确定信号传输时间差△T,包括:
    所述第一基站根据公式△T=(TdifUE-(Tr1-Tr2))/2,得到所述△T。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一基站向所述UE发送配置信息;所述配置信息用于指示所述UE在测量时刻发送所述第一参考信号。
  5. 根据权利要求4所述的方法,其特征在于,
    所述配置信息还包括测量周期,用于指示所述UE从所述测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。
  6. 一种测量时间差的方法,其特征在于,所述方法包括:
    第二基站接收用户设备UE发送第一参考信号,并将接收时刻记作Tr2;
    所述第二基站向所述UE发送第三参考信号,所述第三参考信号用于所述UE确定TdifUE,所述TdifUE为所述UE测量得到的所述UE接收第一基站发送的第二参考信号的时刻与所述UE接收所述第二基站发送的所述第三参考信号的时刻的差;
    所述第二基站向所述第一基站发送所述Tr2,所述Tr2用于所述第一基站根据Tr1、所述TdifUE和所述Tr2,确定所述第一基站和所述第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,所述Tr1为所述第一基站测量得到的所述第一基站接收所述第一参考信号的时刻,所述△T是指,信号在所述UE与所述第一基站之间的传输时间与信号在所述UE与所述第二基站之间的传输时间的差。
  7. 一种测量时间差的方法,其特征在于,所述方法包括:
    用户设备UE发送第一参考信号,所述第一参考信号用于第一基站确定Tr1,以及用于第二基站确定Tr2,其中,所述Tr1为所述第一基站接收所述第一参考信号的时刻,所述Tr2为所述第二基站接收所述第一参考信号的时刻;
    所述UE接收所述第一基站发送的第二参考信号;
    所述UE接收所述第二基站发送的第三参考信号;
    所述UE确定TdifUE;所述TdifUE为所述UE接收所述第一基站发送的第二参考信号的时刻与所述UE接收所述第二基站发送的第三参考信号的时刻的差;
    所述UE向所述第一基站发送所述TdifUE,所述TdifUE用于所述第一基站根据所述Tr1、所述Tr2和所述TdifUE,确定所述第一基站和所述第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,所述△T是指,信号在所述UE与所述第一基站之间的传输时间与信号在所述UE与所述第二基站之间的传输时间的差。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述UE接收所述第一基站发送的配置信息,所述配置信息包括测量时刻;
    所述UE发送第一参考信号,包括:
    所述UE在所述测量时刻发送第一参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述配置信息还包括测量周期;所述UE在所述测量时刻发送第一参考信号,包括:
    所述UE从所述测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。
  10. 一种基站,其特征在于,所述基站包括:
    接收单元,用于接收用户设备UE发送的第一参考信号,并将接收时刻记作Tr1,以及接收第二基站发送的Tr2,所述Tr2为所述第二基站测量得到的所述第二基站接收所述第一参考信号的时刻;
    发送单元,用于向所述UE发送第二参考信号;
    所述接收单元还用于,接收所述UE发送的TdifUE,所述TdifUE为所述UE测量得到的所述UE接收所述基站发送的所述第二参考信号的时刻与所述UE接收所述第二基站发送的第三参考信号的时刻的差;
    确定单元,用于根据所述Tr1、所述Tr2和所述TdifUE,确定所述基站和所述第二基站的定时偏差Tdif,以及信号传输时间差△T中的至少一种;其中,所述△T是指,信号在所述UE与所述基站之间的传输时间与信号在所述UE与所述第二基站之间的传输时间的差。
  11. 根据权利要求10所述的基站,其特征在于,所述确定单元具体用于:根据公式Tdif=(TdifUE+(Tr1-Tr2))/2,得到所述Tdif。
  12. 根据权利要求10或11所述的基站,其特征在于,所述确定单元具体用于:根据公式△T=(TdifUE-(Tr1-Tr2))/2,得到所述△T。
  13. 根据权利要求10至12任一项所述的基站,其特征在于,
    所述发送单元还用于:向所述UE发送配置信息;所述配置信息用于指示所述UE在测量时刻发送所述第一参考信号。
  14. 根据权利要求13所述的基站,其特征在于,
    所述配置信息还包括测量周期,用于指示所述UE从所述测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。
  15. 一种基站,其特征在于,所述基站包括:
    接收单元,用于接收用户设备UE发送第一参考信号,并将接收时刻记作Tr2;
    发送单元,用于向所述UE发送第三参考信号,所述第三参考信号用于所述UE确定TdifUE,所述TdifUE为所述UE测量得到的所述UE接收第一基站发送的第二参考信号的时刻与所述UE接收所述基站发送的所述第三参考信号的时刻的差TdifUE,并向所述第一基站发送所述TdifUE;
    所述发送单元还用于,向所述第一基站发送所述Tr2,所述Tr2用于所述第一基站根据Tr1、所述TdifUE和所述Tr2,确定所述第一基站和所述基站的定时偏差TdifUE,以及信号传输时间差△T中的至少一种;其中,所述Tr1为所述第一基站测量得到的所述第一基站接收所述第一参考信号的时刻,所述△T是指,信号在所述UE与所述第一基站之间的传输时间与信号在所述UE与所述基站之间的传输时间的差。
  16. 一种用户设备UE,其特征在于,所述UE包括:
    发送单元,用于发送第一参考信号,所述第一参考信号用于第一基站确定Tr1,以及用于第二基站确定Tr2,其中,所述Tr1为所述第一基站接收所述第一参考信号的时刻,所述Tr2为所述第二基站接收所述第一参考信号的时刻;
    接收单元,用于接收所述第一基站发送的第二参考信号,以及接收所述第二基站发送的第三参考信号;
    确定单元,用于确定TdifUE;所述TdifUE为所述UE接收所述第一基站发送的第二参考信号的时刻与所述UE接收所述第二基站发送的第三参考信号的时刻的差;
    所述发送单元还用于,向所述第一基站发送所述TdifUE,所述TdifUE用于所述第一基站根据所述Tr1、所述Tr2和所述TdifUE,确定所述第一基站和所述第二基站的定时偏差,以及信号传输时间差△T中的至少一种;其中,所述△T是指,信号在所述UE与所述第一基站之间的传输时间与信号在所述UE与所述第二基站之间的传输时间的差。
  17. 根据权利要求16所述的UE,其特征在于,
    所述接收单元还用于,用于接收所述第一基站发送的配置信息,所述配置信息包括测量时刻;
    所述发送单元具体用于,在所述测量时刻发送第一参考信号。
  18. 根据权利要求17所述的UE,其特征在于,
    所述发送单元具体用于,从所述测量时刻开始每隔整数倍的测量周期,发送一次第一参考信号。
  19. 一种测量时间差的装置,其特征在于,包括:存储器、处理器、系统总线和通信接口;其中,所述存储器、所述处理器和所述通信接口通过所述系统总线连接;所述存储器用于存储程序指令;所述处理器用于调用所述程序指令,以执行如权利要求1至9任一项所述的测量时间差的方法。
PCT/CN2017/080629 2017-04-14 2017-04-14 一种测量时间差的方法和装置 WO2018188080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/080629 WO2018188080A1 (zh) 2017-04-14 2017-04-14 一种测量时间差的方法和装置
CN201780083211.8A CN110169151A (zh) 2017-04-14 2017-04-14 一种测量时间差的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080629 WO2018188080A1 (zh) 2017-04-14 2017-04-14 一种测量时间差的方法和装置

Publications (1)

Publication Number Publication Date
WO2018188080A1 true WO2018188080A1 (zh) 2018-10-18

Family

ID=63793020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080629 WO2018188080A1 (zh) 2017-04-14 2017-04-14 一种测量时间差的方法和装置

Country Status (2)

Country Link
CN (1) CN110169151A (zh)
WO (1) WO2018188080A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541071A (zh) * 2008-03-17 2009-09-23 株式会社日立制作所 无线通信系统、基站和数据发送定时控制方法
WO2014205663A1 (zh) * 2013-06-26 2014-12-31 华为技术有限公司 一种定时同步方法、装置、用户设备和通信系统
CN104349451A (zh) * 2013-08-09 2015-02-11 电信科学技术研究院 一种进行同步的方法和设备
CN104812054A (zh) * 2014-01-27 2015-07-29 中兴通讯股份有限公司 一种时延差确定方法、系统、基站及用户设备
WO2017028049A1 (zh) * 2015-08-14 2017-02-23 华为技术有限公司 一种站间同步方法、基站及控制网元

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100244190B1 (ko) * 1997-08-29 2000-02-01 구자홍 동기신호 검출회로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541071A (zh) * 2008-03-17 2009-09-23 株式会社日立制作所 无线通信系统、基站和数据发送定时控制方法
WO2014205663A1 (zh) * 2013-06-26 2014-12-31 华为技术有限公司 一种定时同步方法、装置、用户设备和通信系统
CN104349451A (zh) * 2013-08-09 2015-02-11 电信科学技术研究院 一种进行同步的方法和设备
CN104812054A (zh) * 2014-01-27 2015-07-29 中兴通讯股份有限公司 一种时延差确定方法、系统、基站及用户设备
WO2017028049A1 (zh) * 2015-08-14 2017-02-23 华为技术有限公司 一种站间同步方法、基站及控制网元

Also Published As

Publication number Publication date
CN110169151A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US12004105B2 (en) Time synchronization method and apparatus
TWI778607B (zh) 定位方法、裝置及電腦存儲介質
US11796625B2 (en) Provision of positioning reference signals
EP3944680A1 (en) Clock offset determination method, clock offset processing method, device, and system
WO2022022138A1 (zh) 通信方法以及相关联的通信装置、介质和芯片
WO2018137413A1 (zh) 授时的方法、终端设备和网络设备
CN105474719A (zh) 用于发送或接收协助数据的设备和方法
WO2007121311A1 (en) Method and apparatus for locating a wireless local area network associated with a wireless wide area network
WO2019228221A1 (zh) 时钟同步方法、装置、终端设备、芯片及可读存储介质
JP7524368B2 (ja) 測位方法及び装置
CN114342455B (zh) 一种测量上报方法及装置
US20240007980A1 (en) Method and apparatus for synchronising the apparatuses of a wireless network
WO2018177320A1 (zh) 一种时钟处理方法、接入网设备和终端设备
US10856246B2 (en) User equipment and method for estimating and updating a timing of a cell in a wireless communications network
CN116887393A (zh) 定时提前信息的获取方法和装置、存储介质及电子装置
WO2018188080A1 (zh) 一种测量时间差的方法和装置
WO2023207509A1 (zh) 用于sidelink的定位方法、装置及可读存储介质
WO2023174131A1 (zh) 通信方法和通信装置
WO2023193684A1 (zh) 验证终端位置的方法、终端及网络侧设备
WO2019127246A1 (zh) 一种定位测量方法及装置
CN116456270A (zh) 一种定位方法和装置
KR20240150598A (ko) 에러 소스 모델링을 이용해 포지셔닝을 개선시키기 위한 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905786

Country of ref document: EP

Kind code of ref document: A1