WO2018186401A1 - Plant hydroponic cultivation device, plant hydroponic cultivation system, and cultivation method - Google Patents

Plant hydroponic cultivation device, plant hydroponic cultivation system, and cultivation method Download PDF

Info

Publication number
WO2018186401A1
WO2018186401A1 PCT/JP2018/014276 JP2018014276W WO2018186401A1 WO 2018186401 A1 WO2018186401 A1 WO 2018186401A1 JP 2018014276 W JP2018014276 W JP 2018014276W WO 2018186401 A1 WO2018186401 A1 WO 2018186401A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
water
plant
storage container
oxygen
Prior art date
Application number
PCT/JP2018/014276
Other languages
French (fr)
Japanese (ja)
Inventor
神野 浩
太郎 神野
Original Assignee
オオノ開發株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オオノ開發株式会社 filed Critical オオノ開發株式会社
Publication of WO2018186401A1 publication Critical patent/WO2018186401A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a plant hydroponic cultivation apparatus, a plant hydroponic cultivation system, and a cultivation method, and particularly relates to adjusting the water level of a liquid provided to a storage container for storing a liquid according to the type of the liquid.
  • Patent Document 1 includes a technique in which carbonated water is sprayed from the upper part of the created community in a spray form, and the sprayed carbonated water is sent by a fan so as to adhere to plant leaves efficiently.
  • the present invention provides the following items.
  • a storage container for storing liquid for storing liquid;
  • a plant hydroponic cultivation apparatus for generating plant hydroponic cultivation apparatus.
  • the storage container is configured such that a storage container for storing a plant is disposed therein, and the first water level is a water level at which the first liquid enters the storage container, and the second water level is Item 4.
  • Item 6 The plant hydroponic cultivation apparatus according to Item 5, wherein the first gas is oxygen or ozone.
  • Item 8 The plant hydroponic cultivation apparatus according to any one of Items 5 to 7, wherein the first gas and / or the second gas is in a microbubble state.
  • Item 8 The plant hydroponic cultivation apparatus according to any one of Items 5 to 7, wherein the first gas and / or the second gas is in a nanobubble state.
  • the plant hydroponic cultivation apparatus according to any one of items 1 to 11, comprising a sensor for detecting the state of the plant.
  • a storage container for storing plants A storage container for storing plants; A plant hydroponic cultivation system comprising the plant hydroponic cultivation apparatus according to any one of items 1 to 14.
  • a plant cultivation method, 15. A cultivation method comprising a step of cultivating a plant using the plant hydroponic cultivation apparatus according to any one of items 1 to 14 or the plant hydroponic cultivation system according to item 15.
  • FIG. 1 is a block diagram for explaining a configuration of a plant hydroponics system 1000 according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing an appearance of the plant hydroponics system 1000 shown in FIG.
  • FIG. 3 is a perspective view showing the storage container 100a disposed in the storage container 101 through the storage container 101 of the plant hydroponic cultivation apparatus 100 shown in FIG. 4 is a plan view of the plant hydroponics system 1000 shown in FIG. 2, and FIGS. 4 (a) and 4 (b) show the plant hydroponic system 1000 shown in FIG. 2 in the A2 direction and the B2 direction, respectively.
  • the structure seen from is shown.
  • 5 is a view for explaining the container 100a shown in FIG. 4, FIG.
  • FIG. 5 (a) is a perspective view showing the container 100a
  • FIG. 5 (b) is shown in FIG. 5 (a).
  • FIG. 5C and FIG. 5D show the storage container 100a shown in FIG. 5A and FIG. 5B, respectively, through the storage container 100a.
  • positioning of the cultivation unit 120 in the inside of 100a is shown.
  • 6A and 6B are views for explaining the storage tray 110 in the storage container 100a shown in FIG. 5A
  • FIG. 6A is a perspective view showing the storage tray 110
  • FIG. FIG. 6A shows the structure of the storage tray 110 viewed from the B6 direction
  • FIG. 6C shows the structure taken along the line CC of FIG. 6A.
  • FIG. 7 is a diagram for explaining the cultivation unit 120 in the container 100a shown in FIG.
  • FIG. 7A is a perspective view showing the cultivation unit 120
  • FIG. 7 (a) shows the structure of the cultivation unit 120 viewed from the B7 direction
  • FIG. 7 (c) shows the structure of the C7-C7 line cross section of FIG. 7 (a)
  • FIG. The structure which looked at the cultivation unit 120 shown to Fig.7 (a) from D7 direction is shown.
  • FIG. 8 is a diagram for explaining a method of using the plant hydroponics system 1000 shown in FIG. 2 and shows a state where the container 100a is assembled.
  • FIG. 9 is a diagram for explaining how to use the plant hydroponics system 1000 shown in FIG. 2, and shows a state in which the storage container 100 a is arranged in the storage container 101 of the plant hydroponic cultivation apparatus 100.
  • FIG. 10 is a diagram for explaining a standby state (state before supplying liquid) of the plant hydroponics system 1000 shown in FIG. 2, and FIG. 10 (a) and FIG. 10 (b) are respectively diagrams. 4 (a) shows the structure of the XX line cross section and the YY line cross section.
  • FIG. 11 is a diagram for explaining the operating state of the plant hydroponics system 1000 shown in FIG. 2 (the state in which the water W is supplied to the storage container 101).
  • FIG. 11 (a) and FIG. 11 (b) ) Show the XX line cross section and the YY line cross section of FIG. FIG.
  • FIG. 12 is a diagram illustrating a state in which the water W supplied to the storage container 101 of the plant hydroponic cultivation apparatus 100 flows into the storage tray 110.
  • FIGS. 12 (a) and 12 (b) are diagrams respectively.
  • FIG. 4A shows a cross section taken along line XX and line YY.
  • FIG. 13 is a diagram for explaining a state in which the flow of water from the storage container 101 of the plant hydroponics apparatus 100 to the storage tray 110 is stopped, and FIGS. 13 (a) and 13 (b) respectively.
  • the XX line cross section and the YY line cross section of Fig.4 (a) are shown.
  • FIG. 14 is a diagram for explaining an operating state of the plant hydroponic cultivation system 1000 shown in FIG. 2 (a state in which carbonated water is supplied to the container body 101), and FIG. 14 (a) and FIG. 14 (b) ) Show the structures of the XX line cross section and the YY line cross section of FIG.
  • microbubble refers to a bubble having a bubble diameter of approximately 1 to 50 ⁇ m or less.
  • nanobubble means a bubble having a bubble diameter of less than about 1 ⁇ m.
  • the storage container of the present invention may be any container that can store a liquid supplied to a plant to be cultivated by storing the plant storage container therein.
  • the storage container is typically a container having an open upper surface, and the shape and size of the container may be any shape and size.
  • the shape of the storage container of the present invention may be a rectangular parallelepiped shape or a cylindrical shape. As one preferable embodiment, it is set to a shape that matches the shape and size of the installation location for cultivation.
  • the storage container of the present invention may be made of any material.
  • a metal such as a stainless steel plate may be used, or a resin made of a resin such as acrylic may be used.
  • the storage container of the present invention may include an arbitrary discharge mechanism for discharging the stored liquid.
  • the discharge mechanism may be an opening provided at the bottom of the storage container, or may be a device such as a pump that actively discharges liquid.
  • the apparatus of the present invention includes an optional mechanism for supplying a first liquid at a first water level and a second liquid at a second water level.
  • the apparatus of the present invention includes a first liquid supply mechanism that supplies a first liquid at a first water level and a second liquid supply mechanism that supplies a second liquid at a second water level.
  • the first liquid may be a first gas / liquid mixed with a first gas.
  • the first gas may be any gas as long as it is suitable for permeating from the roots of plants.
  • it may be oxygen necessary for plant respiration, nitrogen as an element of plant fertilizer, ozone suitable for exerting a bactericidal effect on plants, oxygen and It may be air containing nitrogen.
  • the liquid is typically water.
  • the first liquid supply mechanism uses both water mixed with oxygen (referred to as “oxygen water”) and water mixed with ozone (referred to as “ozone water”) in a storage container. Can be supplied. Oxygen is preferred for plant growth and ozone is preferred for plant sterilization. Since oxygen and ozone have different purposes and applications, the first liquid supply mechanism supplies oxygen water and ozone water separately, but the present invention is not limited to this. Switching between the oxygen water and the ozone water of the first liquid supplied by the first liquid supply mechanism may be performed manually or automatically by an arbitrary sensor or timer. The sensor in the first fluid mechanism can typically detect plant disease or the presence of a pathogen in the root.
  • the first liquid supply mechanism can adjust the oxygen concentration of the oxygen water to be supplied in accordance with the oxygen concentration measured by the oxygen concentration meter.
  • This oxygen concentration measuring device may be a device known in the art. By having the oxygen concentration measuring device, the oxygen water supplied by the liquid supply mechanism can be adjusted to a desired oxygen concentration based on the obtained measurement result. It is preferable to have.
  • the first liquid supply mechanism can adjust the ozone concentration of the supplied ozone water according to the ozone concentration measured by the ozone concentration measuring instrument.
  • This ozone concentration measuring device may be a device known in the art.
  • the ozone concentration measuring device is a device that measures the concentration by evaporating ozone contained in the generated ozone water by evacuation.
  • the apparatus of the present invention is an ozone concentration measuring device. It is preferable to have.
  • the first gas in the first gas-liquid, is mixed with the first liquid in a microbubble state, and more preferably, the first gas is mixed with the first liquid in a nanobubble state.
  • the first gas typically oxygen
  • the first gas typically Specifically, the bactericidal action of the pathogen by ozone
  • microbubbles or nanobubbles contained in oxygen water or ozone water generate active oxygen at the moment of crushing in the storage container, and a sterilizing effect can be expected.
  • the first gas is mixed with the first liquid in the state of microbubbles or nanobubbles
  • the dissolved bubbles are damaged by the impact when the first liquid reaches the storage container, or large bubbles are generated by entraining air during flight in the air By doing so, it is possible to suppress the fine bubbles (micro bubbles and nano bubbles) from floating and disappearing on the water surface.
  • the supply port for supplying the first liquid toward the storage container is a large opening (for example, a diameter of about 10 mm to about 25 mm), and the water pressure (for example, about 0.01 MPa to about 0.00 mm) when passing through the supply port. More preferably, the pressure is reduced by 1 MPa) or the water pressure is reduced through a sealed container. In this way, when supplying the first liquid with a small opening (for example, a diameter of about 1 mm) and a high water pressure (for example, about 0.3 MPa or more), fine bubbles (micrometers) when passing through the supply port. This is because breakage of bubbles and nanobubbles can be suppressed.
  • the first liquid may contain, in addition to the first gas, any nutrient that is absorbed from the root of the plant and promotes the growth of the plant.
  • the second liquid may be a second gas / liquid mixed with a second gas.
  • This second gas may be carbon dioxide required for plant photosynthesis.
  • the liquid is typically water.
  • the second liquid supply mechanism of the present invention can supply water mixed with carbon dioxide (referred to as “carbonated water”).
  • the second gas is mixed with the second liquid in the microbubble state in the second gas liquid as well as the first gas liquid, and more preferably, the second gas is in the nanobubble state.
  • Two liquids are mixed.
  • the second gas-liquid is carbonated water, the more it is supplied as a bubble having a smaller particle size, the more quickly carbon dioxide is generated from the carbonated water without being released immediately even when it is exposed to the air. Therefore, carbon dioxide can be supplied little by little around the plant to be cultivated gradually and stably over a long period of time.
  • the second gas-liquid for example, carbonated water
  • the second gas-liquid starts to be released toward the periphery of the plant simultaneously with the supply to the storage container. Since it is preferable, an impact may be given to the bubble at the time of supply to the storage container.
  • carbon dioxide is present as microbubbles or nanobubbles
  • dropping, discharging or releasing carbonated water impacts the bubbles when supplied to the storage container and is preferred because carbon dioxide is released from the water. . Therefore, in one specific embodiment, the second gas-liquid supply port by the second gas-liquid supply mechanism is present at a higher position than the first gas-liquid supply port by the first gas-liquid supply mechanism.
  • the second gas-liquid supply mechanism can supply the storage container with droplets that do not float.
  • carbon dioxide contained in the liquid is immediately released from the liquid when the second gas-liquid touches the outside air. The release of too early is suppressed. Therefore, even if the droplet touches the outside air, the carbon dioxide contained therein is not released immediately but is released slowly.
  • the present invention contemplates supplying carbon dioxide stably to plants over a long period of time by gradually releasing carbon dioxide from carbonated water.
  • the second gas-liquid supply mechanism may include a heating unit that raises the temperature of the carbonated water.
  • the heating means can be any means that can heat the second liquid.
  • Switching between the start and stop of the supply of carbonated water, which is the second liquid, by the second liquid supply mechanism may be performed manually or automatically by an arbitrary sensor or timer.
  • the sensor in the second liquid mechanism may typically be an illuminance sensor that measures solar radiation in a plant hydroponic cultivation apparatus, a CO 2 sensor that measures carbon dioxide concentration, or the like.
  • control may be performed so that carbonated water is supplied for a preset time by a timer (for example, a time from 6 am to 3 pm).
  • the concentration of carbon dioxide in the carbonated water supplied by the second liquid supply mechanism is not particularly limited, but the pH decreases as the carbon dioxide concentration increases.
  • the carbonated water concentration is about 1000 ppm and the pH is about 4.5.
  • the liquid supply mechanism of the present invention can supply the first liquid and the second liquid at different water levels (the first liquid at the first water level and the second liquid at the second water level).
  • the first liquid is oxygen water and / or ozone water and the second liquid is carbonated water
  • the first liquid is preferably in contact with the plant root
  • the second liquid is a plant. It is preferable not to contact the roots of This is because the carbonated water prevents the roots of plants from absorbing oxygen and may cause damage such as root rot. Therefore, in a preferred embodiment, the first water level is a level at which the first liquid enters the storage container containing the plant, and the second water level is in the storage container where the second liquid stores the plant. The water level may not enter.
  • the adjustment of the first water level and the second water level may be achieved by providing an opening at a position that does not exceed the water level, or the amount of the first liquid or the second liquid supplied by the liquid supply mechanism may be adjusted. It may be achieved by adjusting.
  • an opening for discharging the first liquid may be provided at a position corresponding to the first water level
  • an opening for discharging the second liquid may be provided at a position corresponding to the second water level.
  • the first water level is higher than the second water level, but is not limited to this.
  • the first liquid supply mechanism and the second liquid supply mechanism may be driven exclusively. This makes it possible to avoid mixing the first liquid and the second liquid, which are different liquids. Exclusive driving of the two liquid supply mechanisms can be achieved by known control mechanisms.
  • the container which accommodates the plant of this invention is arbitrary containers which can be used for hydroponics, and what kind of thing may be sufficient as long as the root of a plant can be accommodated inside.
  • the plant storage container of the present invention is typically a container having an open top surface.
  • the shape and size of the container can be any shape and size.
  • the shape of the storage container of the present invention may be a rectangular parallelepiped shape or a cylindrical shape.
  • the shape and the size of the storage container are the same as the shape and the size of the plant to be stored and the shape and the size of the storage container for storing the storage container.
  • the storage container may be a single container, or a multiple container including an outer container that stores the first liquid and an inner container that is stored in the outer container and supports the roots of the plant. Also good.
  • a multiple container including an outer container and an inner container In order to prevent the root rot by ensuring air permeability to the roots of the plant, and from the viewpoint of making it possible to adjust the water level of the first liquid with respect to the plant, it is preferable to use a multiple container including an outer container and an inner container.
  • the bottom of the inner container has a liquid introduction hole for supplying the first liquid stored in the outer container to the plant root.
  • the inner container may be fixed with respect to the outer container, or may be detachable. It is preferable to make the inner container detachable with respect to the outer container from the viewpoint of easily performing a plant root cutting operation or the like.
  • One inner container may be stored in one outer container, or a plurality of inner containers may be stored in one outer container.
  • the container of the present invention preferably includes a first liquid water level adjusting means for the plant.
  • the water level adjusting means adjusts the relative height of the inner container with respect to the outer container, whereby the positional relationship between the plant housed in the inner container and the first liquid stored in the outer container. Can be adjusted.
  • the water level adjusting means include, but are not limited to, a protrusion that defines the height of the plant or a spacer that is separate from the outer container and the inner container.
  • the water level adjusting means may be provided on the upper surface of the outer container and / or may be provided on the lower surface of the inner container. By providing such a water level adjusting means, it becomes possible to arrange the height of the plant at an appropriate position with respect to the water level of the first liquid.
  • the outer container may be provided with a discharge hole for discharging the first liquid stored in the outer container.
  • the container of the present invention can be made of any material.
  • a metal such as a stainless steel plate may be used, or a resin made of a resin such as acrylic may be used.
  • a resin from the viewpoint of corrosion resistance and light weight, but the present invention is not limited to this.
  • the apparatus of the present invention includes an arbitrary mechanism for discharging the first liquid supplied to the storage container (including the storage container) by the first liquid supply mechanism and the second liquid supplied to the storage container by the second liquid supply mechanism. Including.
  • the discharge of the first liquid and the discharge of the second liquid may be performed by the same mechanism or by separate mechanisms. Examples of the mechanism for discharging the first liquid and the second liquid include, but are not limited to, an opening at the bottom and a liquid suction pump.
  • the discharged first liquid and the second liquid can be circulated to the first liquid supply mechanism and the second liquid supply mechanism, respectively, so that the discharged liquid can be reused.
  • the first liquid discharged from the first liquid discharge mechanism and the second liquid discharged from the second liquid discharge mechanism are returned to the first liquid supply mechanism and the second liquid supply mechanism, respectively, so that they can be reused. Or you may make it discharge
  • the present invention further provides an opening for discharging the first liquid at a position corresponding to the first water level, and an opening for discharging the second liquid at a position corresponding to the second water level. May be. By providing these openings, the first liquid supplied over the first water level and the second liquid supplied over the second water level can be discharged, and the intended adjustment of the water level is achieved. .
  • FIG. 1 is a block diagram for explaining a configuration of a plant hydroponics system 1000 according to Embodiment 1 of the present invention.
  • the inventor names the plant hydroponic cultivation system 1000 shown in FIG. 1 as a “multistage fine bubble cultivation system”.
  • the plant hydroponics system 1000 of Embodiment 1 includes a storage container 100a that stores plants, and a plant hydroponics apparatus 100 that hydroponically cultivates the plants stored in the storage container 100a.
  • the plant hydroponics apparatus 100 includes a storage container 101 for storing liquids such as oxygen water W, ozone water Ow, carbonated water Sw, and a first liquid supply mechanism that provides the storage container 101 with a first liquid at a first water level. M1 and a second liquid supply mechanism M2 that provides the storage container 101 with the second liquid at the second water level.
  • the first liquid supply mechanism M1 is a first gas generation unit 13 that generates a first gas, and a first gas generated in the first gas generation unit 13 is mixed with water (liquid) supplied from the outside to be first. It has the 1st liquid production
  • the first liquid tank (oxygen-containing water tank) 11 includes the first liquid recovered from the storage container 101 and the oxygen water W or ozone water supplied from the first liquid generator (oxygen-containing water generator) 12. Ow is accumulated, and oxygen water W or ozone water Ow circulates between the first liquid tank 11 and the first liquid generator 12.
  • the second liquid supply mechanism M2 includes a second liquid supply unit 20 that supplies the second liquid to the storage container 101. Further, the second liquid supply mechanism M2 may include a second liquid tank 21 that stores the second liquid recovered from the storage container 101.
  • a case where carbon dioxide is used as the second gas and carbonated water is used as the second liquid will be described.
  • the present invention is not limited to this.
  • the carbonated water collected from the storage container 101 and accumulated in the second liquid tank 21 (carbonated water tank) may be returned to the second liquid supply unit (carbonated water supply unit) 20 for circulation. By circulating, carbonated water in which carbon dioxide gas is dissolved can be used effectively.
  • the plant hydroponic cultivation apparatus 100 has an operation unit 30 for operating the first liquid supply mechanism M1 and the second liquid supply mechanism M2, and the first gas generation unit 13 and the first liquid generation from the operation unit 30.
  • Operation signals C13, C12, C10, and C20 for operating them are output to the unit 12, the water supply unit 10, and the second liquid supply unit 20.
  • the storage container 101 is configured so that the storage container 100a can be disposed in the storage container 101, and the storage container 100a is placed on the plant stored in the storage container 100a disposed in the storage container 101.
  • the liquid to be provided is supplied as a liquid or as a gas.
  • the storage container 101 may be provided with a water level detection sensor for detecting the water level of various liquids. In that case, oxygen water W or ozone water Ow by the water supply unit 10 based on an output signal of the water level detection sensor. It is preferable that the plant hydroponic cultivation apparatus 100 is configured such that supply of certain oxygen-containing water to the storage container 101 and supply of carbonated water Sw to the storage container 101 by the second liquid supply unit 20 are controlled.
  • FIG. 2 to 4 are diagrams for explaining a specific configuration of the plant hydroponic cultivation system 1000 shown in FIG. 1, and FIG. 2 is a perspective view showing an external appearance of the plant hydroponic cultivation system 1000.
  • FIG. FIG. 4 is a perspective view showing a storage container 100a disposed inside the storage container 101 through the storage container 101 of the plant hydroponic cultivation apparatus 100, and FIG. 4 (a) and FIG. It is a top view which shows the structure which looked at the plant hydroponics system 1000 shown to A2 direction and B2 direction.
  • the storage container 101 is supported at a certain height from the floor surface by the container legs 101a.
  • a carbonated water supply pipe 103 is attached to the storage container 101 along opposite side walls extending in the longitudinal direction, and one end of the carbonated water supply pipe 103 is connected to the carbonated water supply part 20 via a connection hose H1.
  • the carbonated water supply unit 20 uses a carbonic acid mixer that mixes carbon dioxide gas with water to generate carbonated water Sw.
  • the carbonic acid mixer may be provided with a fine bubble generator.
  • the microbubble generator can be any device that generates microbubbles (microbubbles and / or nanobubbles).
  • a carbonated water tank 21 is disposed below the end of the storage container 101 on the side where the carbonated mixer is disposed, and carbonated water Sw is supplied from the storage container 101 to the storage container 101.
  • a first carbonated water discharge pipe 105a which is a first second liquid discharge part for discharging to the carbonated water tank 21 and a second carbonated water discharge pipe 105b which is a second second liquid discharge part are connected. Yes.
  • the first carbonated water discharge pipe 105a and the second carbonated water discharge pipe 105b constitute a second liquid discharge mechanism.
  • the opening end connected to the storage container 101 of the first carbonated water discharge pipe 105a coincides with the bottom surface of the storage container 101 and is connected to the storage container 101 of the second carbonated water discharge pipe 105b.
  • the open end protrudes to a position higher than the bottom surface of the storage container 101 by a predetermined dimension.
  • a first opening / closing valve 105a1 and a second opening / closing valve 105b1 are attached to the first carbonated water discharge pipe 105a and the second carbonated water discharge pipe 105b, respectively.
  • the first carbonated water discharge pipe 105a functions as a drain pipe for extracting the carbonated water Sw from the storage container 101, and the first on-off valve 105a1 is closed to close the first on-off valve 105a1.
  • the second carbonated water discharge pipe 105b has a constant level of the carbonated water Sw in the storage container 101 (one end of the second carbonated water discharge pipe 105b is at the storage container 101). It functions as an overflow pipe that is restricted to a height that protrudes from the bottom surface.
  • the first on-off valve 105a1 and the second on-off valve 105b may be an electric on-off valve such as an electromagnetic valve or a manual on-off valve.
  • a carbon water discharge filter 105c that removes foreign matters such as leaves and dust may be attached to the ends of the first carbonated water discharge pipe 105a and the second carbonated water discharge pipe 105b on the carbonated water tank 21 side.
  • a water supply pipe 102 connected to the water supply unit 10 is attached below the bottom surface of the storage container 101.
  • the water supply pipe 102 includes a water supply main pipe 102 a extending along the longitudinal direction of the storage container 101, and a liquid inflow hole 101 b formed in the bottom surface of the water supply main pipe 102 a and the storage container 101 (see FIG. 9A). ), A water supply connection pipe 102b for connecting the water supply main pipe 102a to the water supply pump which is the water supply unit 10, and a water supply connection pipe 102b connected to the water supply main pipe 102a.
  • the water supply connecting pipe 102b is provided with an open / close valve 102b1, and the water supply pump discharge pipe 10a is also provided with an open / close valve 10a1.
  • An oxygen-containing water tank 11 is disposed below the end of the storage container 101 opposite to the end on which the carbonic acid mixer is disposed, and the storage container 101 includes a storage container.
  • the first oxygen-containing water discharge pipe 104a and the second first liquid discharge portion which are first first liquid discharge portions for discharging oxygen water W or ozone water Ow from the inside 101 to the oxygen-containing water tank 11.
  • a certain second oxygen-containing water discharge pipe 104b is connected.
  • the first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b constitute a first liquid discharge mechanism.
  • the open end connected to the storage container 101 of the first oxygen-containing water discharge pipe 104a coincides with the bottom surface of the storage container 101, and is connected to the storage container 101 of the second oxygen-containing water discharge pipe 104b.
  • the opened end projects to a position higher than the bottom surface of the storage container 101 by a predetermined dimension.
  • a first on-off valve 104a1 and a second on-off valve 104b1 are attached to the first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b, respectively.
  • the first ozone water discharge pipe 104a functions as a drain pipe for extracting the oxygen water W or the ozone water Ow from the storage container 101, and the first opening / closing valve 104a1.
  • the second on-off valve 104b1 is opened, so that the second oxygen-containing water discharge pipe 104b can keep the water level of the oxygen water W or the ozone water Ow in the storage container 101 at a certain level (second oxygen-containing water level).
  • It functions as an overflow pipe that restricts one end of the water discharge pipe 104b to a height protruding from the bottom surface of the storage container 101).
  • the first on-off valve 104a1 and the second on-off valve 104b1 may be an electric on-off valve such as an electromagnetic valve or a manual on-off valve.
  • an oxygen-containing water discharge filter 104c that removes foreign matters such as leaves and dust is attached to the ends of the first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b on the oxygen-containing water tank 11 side. May be.
  • An oxygen-containing water suction pipe 11a and an oxygen-containing water discharge pipe 11b are attached to the oxygen-containing water tank 11, and the oxygen-containing water discharge pipe 11b is connected to the water absorption pipe 10b of the water pump 10 by a connection hose H3. Yes.
  • the oxygen-containing water suction pipe 11a of the oxygen-containing water tank 11 is connected to the oxygen-containing water discharge pipe 12b of the oxygen-containing water generating unit 12 by a connection hose H4.
  • An open / close valve 11a1 and an open / close valve 11b1 are provided in the oxygen-containing water suction pipe 11a and the oxygen-containing water discharge pipe 11b, respectively.
  • a fine bubble generator 11 c may be provided in the oxygen-containing water tank 11.
  • the fine bubble generating device 11c can be any device that generates fine bubbles (microbubbles and / or nanobubbles).
  • Oxygen water W or ozone water Ow containing microbubbles (microbubbles and / or nanobubbles) generated by the microbubble generator 11c is connected to the oxygen-containing water recovery pipe 12a of the oxygen-containing water generator 12 by a connecting hose H5. ing.
  • the oxygen-containing water generating unit 12 is supplied with oxygen gas Og and ozone gas from the oxygen generating unit 13.
  • the position of the open end connected to the storage container 101 of the second oxygen-containing water discharge pipe 104b that is, the height from the bottom surface of the storage container 101 is the storage container 101 of the second carbonated water discharge pipe 105b. It is higher than the position of the open end connected to the bottom, that is, the height from the bottom surface of the storage container 101.
  • the water level of the oxygen water W or the ozone water Ow supplied to the storage container 101 can be higher than the water level of the carbonated water Sw supplied to the storage container 101.
  • FIG. 5 is a view for explaining the container 100a shown in FIG. 4, FIG. 5 (a) is a perspective view showing the container 100a, and FIG. 5 (b) is shown in FIG. 5 (a).
  • FIG. 5C and FIG. 5D show the storage container 100a shown in FIG. 5A and FIG. 5B, respectively, through the storage container 100a. The arrangement
  • the storage container 100a includes a cultivation unit 120 (inner container) having a plurality of cup-shaped bodies 122 and a storage tray 110 (outer container) on which the cultivation unit 120 is placed.
  • a cultivation unit 120 inner container
  • a storage tray 110 outer container
  • FIG. 6A and 6B are views for explaining the storage tray 110 in the storage container 100a shown in FIG. 5A
  • FIG. 6A is a perspective view showing the storage tray 110
  • FIG. FIG. 6A shows the structure of the storage tray 110 viewed from the B6 direction
  • FIG. 6C shows the structure taken along the line CC of FIG. 6A.
  • the storage tray 110 has a side wall portion 112, a bottom surface portion 111 formed at the lower end of the side wall portion 112, and a flange portion 113 formed at the upper end edge of the side wall portion 112, and the upper surface of the storage tray 110 is cultivated.
  • An opening is provided to allow the unit 120 to be taken in and out of the storage tray 110.
  • the storage tray 110 is configured such that the first liquid accumulates to a certain depth inside.
  • the height of the side wall 112 of the storage tray 110 is higher than the height at which one end of the second carbonated water discharge pipe 105b protrudes from the bottom surface of the storage container 101, and one end of the second oxygen-containing water discharge pipe 104b is It is lower than the height protruding from the bottom surface of the storage container 101.
  • the second oxygen-containing water discharge pipe 104b functions as an overflow pipe, so that the oxygen water W or the ozone water Ow is discharged from the storage container 101. It will not overflow.
  • FIG. 7 is a diagram for explaining the cultivation unit 120 in the container 100a shown in FIG. 5A
  • FIG. 7A is a perspective view showing the cultivation unit 120
  • FIG. 7 (a) shows the structure of the cultivation unit 120 viewed from the B7 direction
  • FIG. 7 (c) shows the structure of the C7-C7 line cross section of FIG. 7 (a)
  • FIG. The structure which looked at the cultivation unit 120 shown to Fig.7 (a) from D7 direction is shown.
  • a plurality of openings 121a are formed in the plate-like body 121 constituting the cultivation unit 120 so as to be arranged vertically and horizontally, and a cup-like body 122 is provided below the plate-like body 121 at a position corresponding to the plurality of openings 121a. Is attached, and the inside of the cup-shaped body 122 is a plant cultivation part 123.
  • the size of the cultivation unit shows a case where a plurality of cup-shaped bodies can be stored, but is not limited thereto.
  • the size of the cultivation unit may be a size that can accommodate one cup-shaped body.
  • a liquid introduction hole 122 a for introducing a first liquid (for example, oxygen water W or ozone water Ow) into the cup-like body 122 is formed on the bottom surface of the cup-like body 122.
  • the cultivation unit 120 In the state where the cultivation unit 120 is placed on the accommodation tray 110, the cultivation unit 120 is configured such that the first liquid accumulated in the accommodation tray 110 is introduced into the plant cultivation unit 123 from the liquid introduction hole 122 a of the cup-shaped body 122. It is configured.
  • FIG. 8 and 9 are diagrams for explaining a method of using the plant hydroponics system 1000 shown in FIG. 2, FIG. 8 shows an operation of assembling the storage container 100a, and FIG. 9 shows the storage container 100a. The operation
  • roots, stems, or seedlings of plants to be grown such as strawberries and tomatoes are accommodated in the plant cultivation unit 123 of the cultivation unit 120.
  • the container 100 a is assembled by placing the cultivation unit 120 on the accommodation tray 110 so that the plurality of cup-shaped bodies 122 of the cultivation unit 120 are accommodated inside the accommodation tray 110. .
  • the storage container 100 a is arranged on the bottom surface of the storage container 101 of the plant hydroponic cultivation apparatus 100 with a certain interval.
  • the plant hydroponics system 1000 is in a state where the plant can be grown (standby state).
  • FIG. 10 is a diagram showing a standby state (state before supplying liquid) of the plant hydroponics system 1000 shown in FIG. 2, and FIG. 10 (a) and FIG. 10 (b) are respectively shown in FIG. XX line cross section and YY line cross section.
  • the liquid is not supplied to the storage container 101 of the plant hydroponics apparatus 100.
  • the open / close valve 105a1 and the second carbonated water discharge pipe 105b of the first carbonated water discharge pipe 105a are opened and closed in this standby state.
  • the valve 105b1 is closed, the open / close valve 104a1 of the first oxygen-containing water discharge pipe 104a is closed, and the open / close valve 104b1 of the second oxygen-containing water discharge pipe 104b is opened.
  • the oxygen-containing water generation unit 12 operates, so that oxygen is added to the water. Is supplied to the oxygen-containing water tank 11, and the oxygen water is accumulated in the oxygen-containing water tank 11.
  • the oxygen water W passes through the water supply pipe 102 and forms a liquid inflow hole 101b formed in the bottom surface part of the storage container 101 (FIG. 9). To the inside of the storage container 101. As a result, the oxygen water W flows into the storage container 101 from the liquid inflow hole 101b, and the water level of the oxygen water stored in the storage container 101 gradually rises.
  • FIG. 11 is a diagram for explaining the operating state of the plant hydroponics system 1000 shown in FIG. 2 (the state in which the oxygen water W is supplied to the storage container 101), and FIG. 11 (a) and FIG. b) shows the XX line cross section and the YY line cross section of FIG. 4 (a), respectively.
  • FIG. 12 is a diagram illustrating a state in which the oxygen water W supplied to the storage container 101 of the plant hydroponic cultivation apparatus 100 flows into the storage tray 110.
  • FIGS. 12 (a) and 12 (b) The XX line cross section and the YY line cross section of Fig.4 (a) are shown.
  • the oxygen water W When the oxygen water W accumulates inside the storage tray 110, the oxygen water W enters the plant cultivation unit 123 from the liquid introduction hole 122 a of the cup-shaped body 122 of the cultivation unit 120 arranged in the storage tray 110. . Thereby, oxygen water W is supplied to the plant accommodated in the cup-shaped body 122.
  • the water supply unit 10 When the water supply unit 10 is stopped by the operation of the operator or the detection output of the water level detection sensor when the oxygen water W containing oxygen in an amount necessary for plant respiration is accumulated in the storage tray 110, the water is stored from the storage container 101. The inflow of oxygen water W into the tray 110 is also stopped.
  • FIG. 13 is a diagram for explaining a state in which the flow of the oxygen water W from the storage container 101 of the plant hydroponics apparatus 100 to the storage tray 110 is stopped, and FIGS. 13 (a) and 13 (b) are diagrams.
  • FIG. 4A shows a cross section taken along line XX and a cross section taken along line YY in FIG.
  • the plant hydroponics system 1000 will be in the standby state which can supply the 2nd liquid to the storage container 101 of the plant hydroponic cultivation apparatus 100.
  • the plant hydroponics system 1000 will be in the standby state which can supply the 2nd liquid to the storage container 101 of the plant hydroponic cultivation apparatus 100.
  • the open / close valves 104a1 and 104b1 of the first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b are closed to discharge the first carbonated water.
  • the open / close valve 105a1 of the pipe 105a is closed, and the open / close valve 105b1 of the second carbonated water discharge pipe 105b is opened.
  • the water level of the carbonated water Sw stored in the storage container 101 is set to a water level corresponding to a height at which one end of the second carbonated water discharge pipe 105 b protrudes from the bottom surface of the storage container 101.
  • FIG. 14 is a diagram for explaining an operating state of the plant hydroponic cultivation system 1000 shown in FIG. 2 (a state in which carbonated water is supplied to the container body 101), and FIG. 14 (a) and FIG. 14 (b) ) Show the structures of the XX line cross section and the YY line cross section of FIG.
  • the first oxygen-containing water discharge pipe 104a, the second oxygen-containing water discharge pipe 104b, the first carbonated water discharge pipe 105a, and the second carbonic acid connected to the storage container 101 are used. Since only the open / close valve 105b1 of the second carbonated water discharge pipe 105b of the water discharge pipe 105b is open, the carbonic acid carbonate is at a height at which one end of the second carbonated water discharge pipe 105b protrudes from the bottom surface of the storage container 101.
  • the water level of the water Sw is determined. In this case, the water level of the carbonated water Sw is a water level that does not exceed the height of the side wall of the storage tray 110.
  • the carbonated water Sw is not supplied to the cultivation unit 120 beyond the accommodation tray 110 as shown in FIG. 14, and the carbon dioxide evaporated around the accommodation tray 110 is accommodated in the plant cultivation unit 123 of the cultivation unit 120. It is absorbed from the leaves of plants that have been. For this reason, around the cultivation unit 120, the carbon dioxide concentration can be kept constant over a long period of time, and plant photosynthesis can be performed efficiently.
  • the supply of carbonated water Sw by the carbonated water supply pipe 103 is stopped, and the open / close valve 105a1 of the first carbonated water discharge pipe 105a is opened, so that the carbonic acid accumulated in the storage container 101.
  • Water Sw is discharged into the carbonated water tank 21.
  • the carbonated water Sw has an effect of sterilizing an apparatus such as a storage container. If necessary, carbonated water Sw may be supplied when sterilizing an apparatus such as a storage container.
  • the higher the carbon dioxide concentration the higher the sterilization effect can be obtained, so the carbon dioxide concentration may be increased.
  • ozone water Ow is supplied into the storage tray 110 by the first liquid supply mechanism M1.
  • the operator opens the open / close valve 104b1 of the second oxygen-containing water discharge pipe 104b, opens / closes the open / close valve 104a1 of the first oxygen-containing water discharge pipe 104a, and the open / close valve 105a1 of the first carbonated water discharge pipe 105a.
  • the opening / closing valve 105b1 of the second carbonated water discharge pipe 105b is closed.
  • the water level of the ozone water Ow collected in the storage container 101 is set by the dimension in which one end of the second oxygen-containing water discharge pipe 104b protrudes from the bottom surface of the storage container 101.
  • the oxygen-containing water generation unit 12 is activated with the oxygen generation unit 13 activated.
  • the ozone water Ow is supplied to the oxygen-containing water tank 11, and the ozone water Ow is accumulated in the oxygen-containing water tank 11.
  • the ozone water Ow accumulated in the oxygen-containing water tank 11 is sent out to the water supply pipe 102 by the water supply section 10, the ozone water Ow passes through the water supply pipe 102 and is formed into a liquid inflow hole 101b formed in the bottom surface portion of the storage container 101 (FIG. 9) to the inside of the storage container 101.
  • the water level of the ozone water Ow supplied to the storage container 101 from the liquid inflow hole 101 b on the bottom surface of the storage container 101 is the storage tray 110. Until it reaches the height of the side wall 112, it does not enter the inside of the storage tray 110. Thereafter, when the water level of the ozone water Ow supplied to the storage container 101 rises and exceeds the height of the side wall 112 of the storage tray 110, the ozone water Ow supplied into the storage container 101 becomes the side wall 112 of the storage tray 110. And flows into the storage tray 110, flows into the storage tray 110, and the ozone water Ow accumulates in the storage tray 110.
  • the ozone water Ow When the ozone water Ow accumulates inside the storage tray 110, the ozone water Ow enters the plant cultivation unit 123 from the liquid introduction hole 122a of the cup-shaped body 122 of the cultivation unit 120 disposed in the storage tray 110. . Thereby, ozone water Ow is supplied to the plant accommodated in the cup-shaped body 122, and sterilization is performed. Ozone water Ow also has the effect of sterilizing devices such as storage containers in addition to sterilizing plants. Instead of plant sterilization, ozone water Ow may be supplied as necessary when sterilizing an apparatus such as a storage container.
  • the plant hydroponics system 1000 will be in the standby state which can supply the liquid to the storage container 101 of the plant hydroponic cultivation apparatus 100.
  • the opening and closing valves of the first oxygen-containing water discharge pipe 104a, the second oxygen-containing water discharge pipe 104b, the first carbonated water discharge pipe 105a, and the second carbonated water discharge pipe 105b are opened and closed.
  • a sensor that detects the state of the plant for example, disease or growth failure
  • the control device mounted on the operation unit supplies ozone water Ow for sterilization to the plant based on the detection output, You may make it supply the solution used as a nutrient.
  • the first liquid supply mechanism M1 and the second liquid supply mechanism M2 may be exclusively driven. This makes it possible to avoid mixing the first liquid and the second liquid, which are different liquids.
  • the present invention more uniformly absorbs liquid by a plant and absorbs gas evaporated from the liquid according to the type of liquid to be cultivated. It is useful as what can implement

Abstract

A plant hydroponic cultivation device is achieved with which the absorption of liquid by the plants and the absorption of air vaporized from the liquid can be performed more uniformly, in accordance with the type of liquid supplied to plants being cultivated. A plant hydroponic cultivation device 100 comprising: a storage container 101 for accumulating liquid; a first liquid supply mechanism M1 that provides a first liquid to the storage container 101 at a first liquid level; and a second liquid supply mechanism M2 that provides a second liquid to the storage container 101 at a second liquid level.

Description

植物水耕栽培装置、植物水耕栽培システムおよび栽培方法Plant hydroponic cultivation apparatus, plant hydroponic cultivation system, and cultivation method
 本発明は、植物水耕栽培装置、植物水耕栽培システムおよび栽培方法に関し、特に、液体を溜める貯留容器に提供する液体の水位を液体の種類に応じて調整することに関するものである。 The present invention relates to a plant hydroponic cultivation apparatus, a plant hydroponic cultivation system, and a cultivation method, and particularly relates to adjusting the water level of a liquid provided to a storage container for storing a liquid according to the type of the liquid.
 従来から、植物栽培においては、栽培植物の収穫量を増大させるために、光合成量が増大するように二酸化炭素ガスを栽培植物に供給することが行われている(例えば、特許文献1を参照)。 Conventionally, in plant cultivation, in order to increase the yield of cultivated plants, carbon dioxide gas is supplied to the cultivated plants so that the amount of photosynthesis increases (see, for example, Patent Document 1). .
 たとえば、特許文献1には、炭酸水を作成群落上部からスプレー状に噴霧し、噴霧されたスプレー状の炭酸水をファンで送付して効率よく植物の葉に付着させるようにしたものがある。 For example, Patent Document 1 includes a technique in which carbonated water is sprayed from the upper part of the created community in a spray form, and the sprayed carbonated water is sent by a fan so as to adhere to plant leaves efficiently.
特開2008-199920号公報JP 2008-199920 A
 しかしながら、簡便かつより効率的な植物水耕栽培装置、植物水耕栽培システムおよび栽培方法が必要とされている。 However, there is a need for a simple and more efficient plant hydroponic cultivation apparatus, plant hydroponic cultivation system, and cultivation method.
 本発明者らは、鋭意研究開発の結果、植物に水分を供給するための液体の貯留容器に対して、異なる液体を異なる水位で簡便に提供することによって、簡便かつ効果的な植物水耕栽培を行うことができることを見出して、本発明を完成させた。 As a result of diligent research and development, the present inventors have provided simple and effective plant hydroponics by providing different liquids simply at different water levels for liquid storage containers for supplying water to plants. The present invention has been completed.
 本発明は、以下の項目を提供する。 The present invention provides the following items.
 (項目1)
 液体を溜めるための貯留容器と、
 第1液体を前記貯留容器に、第1水位で提供する第1液体供給機構と、
 第2液体を前記貯留容器に、第2水位で提供する第2液体供給機構と、
 を備える、植物水耕栽培装置。
(Item 1)
A storage container for storing liquid;
A first liquid supply mechanism for providing a first liquid to the storage container at a first water level;
A second liquid supply mechanism for providing a second liquid to the storage container at a second water level;
A plant hydroponic cultivation apparatus.
 (項目2)
 前記貯留容器は、その内部に植物を収容する収容容器が配置されるように構成されており、前記第1水位は、前記収容容器内に前記第1液体が浸入する水位であり、前記第2水位は、前記収容容器内に前記第2液体が浸入しない水位である、項目1に記載の植物水耕栽培装置。
(Item 2)
The storage container is configured such that a storage container for storing a plant is disposed therein, and the first water level is a water level at which the first liquid enters the storage container, and the second water level is Item 4. The plant hydroponic cultivation apparatus according to item 1, wherein the water level is a level at which the second liquid does not enter the container.
 (項目3)
前記第1液体供給機構は、前記貯留容器の底面から前記第1液体を供給するように構成されている、項目1または2に記載の植物水耕栽培装置。
(Item 3)
The plant hydroponic cultivation apparatus according to item 1 or 2, wherein the first liquid supply mechanism is configured to supply the first liquid from a bottom surface of the storage container.
 (項目4)
前記第2液体供給機構は、前記第1液体の供給位置よりも高い位置から第2気液を供給するように構成されている、項目1~3のいずれか1項に記載の植物水耕栽培装置。
(Item 4)
The plant hydroponics according to any one of items 1 to 3, wherein the second liquid supply mechanism is configured to supply the second gas-liquid from a position higher than the supply position of the first liquid. apparatus.
 (項目5)
前記第1液体は、第1気体を液体中に混合した第1気液であり、前記第2液体は、第2気体を液体中に混合した第2気液である、項目1~4のいずれか1項に記載の植物水耕栽培装置。
(Item 5)
Any of items 1 to 4, wherein the first liquid is a first gas-liquid in which a first gas is mixed in a liquid, and the second liquid is a second gas-liquid in which a second gas is mixed in a liquid. The plant hydroponics apparatus of Claim 1.
 (項目6)
前記第1気体が、酸素またはオゾンである、項目5に記載の植物水耕栽培装置。
(Item 6)
Item 6. The plant hydroponic cultivation apparatus according to Item 5, wherein the first gas is oxygen or ozone.
 (項目7)
前記第2気体が、二酸化炭素である、項目5または6に記載の植物水耕栽培装置。
(Item 7)
The plant hydroponic cultivation apparatus according to item 5 or 6, wherein the second gas is carbon dioxide.
 (項目8)
前記第1気体および/または第2気体がマイクロバブルの状態である、項目5~7のいずれか1項に記載の植物水耕栽培装置。
(Item 8)
Item 8. The plant hydroponic cultivation apparatus according to any one of Items 5 to 7, wherein the first gas and / or the second gas is in a microbubble state.
 (項目9)
前記第1気体および/または第2気体がナノバブルの状態である、項目5~7のいずれか1項に記載の植物水耕栽培装置。
(Item 9)
Item 8. The plant hydroponic cultivation apparatus according to any one of Items 5 to 7, wherein the first gas and / or the second gas is in a nanobubble state.
 (項目10)
前記第1液体供給機構と前記第2液体供給機構とを排他的に駆動するように制御する液体供給機構制御部を備える、項目1~9のいずれか1項に記載の植物水耕栽培装置。
(Item 10)
Item 10. The plant hydroponic cultivation apparatus according to any one of Items 1 to 9, further comprising a liquid supply mechanism control unit that controls the first liquid supply mechanism and the second liquid supply mechanism to be driven exclusively.
 (項目11)
前記第1液体供給機構が、酸素またはオゾンから第1気体を選択する第1気液制御部を備える、項目1~10のいずれか1項に記載の植物水耕栽培装置。
(Item 11)
The plant hydroponic cultivation apparatus according to any one of items 1 to 10, wherein the first liquid supply mechanism includes a first gas-liquid control unit that selects a first gas from oxygen or ozone.
 (項目12)
植物の状態を検出するためのセンサーを備える、項目1~11のいずれか1項に記載の植物水耕栽培装置。
(Item 12)
12. The plant hydroponic cultivation apparatus according to any one of items 1 to 11, comprising a sensor for detecting the state of the plant.
 (項目13)
前記貯留容器が、前記第1水位に対応する第1開口部と、前記第2水位に対応する第2開口部とを備える、項目1~12のいずれか1項に記載の植物水耕栽培装置。
(Item 13)
The plant hydroponic cultivation apparatus according to any one of items 1 to 12, wherein the storage container includes a first opening corresponding to the first water level and a second opening corresponding to the second water level. .
 (項目14)
前記第1開口部は、前記第2開口部よりも高い位置に設けられる、項目13に記載の植物水耕栽培装置。
(Item 14)
14. The plant hydroponic cultivation apparatus according to item 13, wherein the first opening is provided at a position higher than the second opening.
 (項目15)
植物を収容する収容容器と、
項目1~14のいずれか1項に記載の植物水耕栽培装置とを備える、植物水耕栽培システム。
(Item 15)
A storage container for storing plants;
A plant hydroponic cultivation system comprising the plant hydroponic cultivation apparatus according to any one of items 1 to 14.
 (項目16)
植物の栽培方法であって、
 項目1~14のいずれか1項に記載の植物水耕栽培装置、または項目15に記載の植物水耕栽培システムを用いて、植物を栽培する工程
を包含する、栽培方法。
(Item 16)
A plant cultivation method,
15. A cultivation method comprising a step of cultivating a plant using the plant hydroponic cultivation apparatus according to any one of items 1 to 14 or the plant hydroponic cultivation system according to item 15.
 本発明によれば、簡便かつより効率的な植物水耕栽培装置、植物水耕栽培システムおよび栽培方法が実現される。 According to the present invention, a simple and more efficient plant hydroponic cultivation apparatus, plant hydroponic cultivation system, and cultivation method are realized.
図1は、本発明の実施形態1による植物水耕栽培システム1000の構成を説明するためのブロック図である。FIG. 1 is a block diagram for explaining a configuration of a plant hydroponics system 1000 according to Embodiment 1 of the present invention. 図2は、図1に示す植物水耕栽培システム1000の外観を示す斜視図である。FIG. 2 is a perspective view showing an appearance of the plant hydroponics system 1000 shown in FIG. 図3は、図1に示す植物水耕栽培装置100の貯留容器101を透視して貯留容器101内に配置されている収容容器100aを示す斜視図である。FIG. 3 is a perspective view showing the storage container 100a disposed in the storage container 101 through the storage container 101 of the plant hydroponic cultivation apparatus 100 shown in FIG. 図4は、図2に示す植物水耕栽培システム1000の平面図であり、図4(a)および図4(b)はそれぞれ、図2に示す植物水耕栽培システム1000をA2方向およびB2方向から見た構造を示す。4 is a plan view of the plant hydroponics system 1000 shown in FIG. 2, and FIGS. 4 (a) and 4 (b) show the plant hydroponic system 1000 shown in FIG. 2 in the A2 direction and the B2 direction, respectively. The structure seen from is shown. 図5は、図4に示す収容容器100aを説明するための図であり、図5(a)は、収容容器100aを示す斜視図であり、図5(b)は、図5(a)に示す収容容器100aをB5方向から見た構造を示し、図5(c)および図5(d)はそれぞれ、図5(a)及び図5(b)に示す収容容器100aを透視して収容容器100aの内部での栽培ユニット120の配置を示す。5 is a view for explaining the container 100a shown in FIG. 4, FIG. 5 (a) is a perspective view showing the container 100a, and FIG. 5 (b) is shown in FIG. 5 (a). FIG. 5C and FIG. 5D show the storage container 100a shown in FIG. 5A and FIG. 5B, respectively, through the storage container 100a. The arrangement | positioning of the cultivation unit 120 in the inside of 100a is shown. 図6は、図5(a)に示す収容容器100aにおける収容トレイ110を説明するための図であり、図6(a)は、収容トレイ110を示す斜視図であり、図6(b)は、図6(a)に示す収容トレイ110をB6方向から見た構造を示し、図6(c)は、図6(a)のC-C線断面の構造を示す。6A and 6B are views for explaining the storage tray 110 in the storage container 100a shown in FIG. 5A, FIG. 6A is a perspective view showing the storage tray 110, and FIG. FIG. 6A shows the structure of the storage tray 110 viewed from the B6 direction, and FIG. 6C shows the structure taken along the line CC of FIG. 6A. 図7は、図5(a)に示す収容容器100aにおける栽培ユニット120を説明するための図であり、図7(a)は、栽培ユニット120を示す斜視図であり、図7(b)は、図7(a)に示す栽培ユニット120をB7方向から見た構造を示し、図7(c)は、図7(a)のC7-C7線断面の構造を示し、図7(d)は、図7(a)に示す栽培ユニット120をD7方向から見た構造を示す。FIG. 7 is a diagram for explaining the cultivation unit 120 in the container 100a shown in FIG. 5A, FIG. 7A is a perspective view showing the cultivation unit 120, and FIG. 7 (a) shows the structure of the cultivation unit 120 viewed from the B7 direction, FIG. 7 (c) shows the structure of the C7-C7 line cross section of FIG. 7 (a), and FIG. The structure which looked at the cultivation unit 120 shown to Fig.7 (a) from D7 direction is shown. 図8は、図2に示す植物水耕栽培システム1000の使用方法を説明するための図であり、収容容器100aを組み立てる様子を示す。FIG. 8 is a diagram for explaining a method of using the plant hydroponics system 1000 shown in FIG. 2 and shows a state where the container 100a is assembled. 図9は、図2に示す植物水耕栽培システム1000の使用方法を説明するための図であり、収容容器100aを植物水耕栽培装置100の貯留容器101に配列する様子を示す。FIG. 9 is a diagram for explaining how to use the plant hydroponics system 1000 shown in FIG. 2, and shows a state in which the storage container 100 a is arranged in the storage container 101 of the plant hydroponic cultivation apparatus 100. 図10は、図2に示す植物水耕栽培システム1000のスタンバイ状態(液体を供給する前の状態)を説明するための図であり、図10(a)および図10(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面の構造を示す。FIG. 10 is a diagram for explaining a standby state (state before supplying liquid) of the plant hydroponics system 1000 shown in FIG. 2, and FIG. 10 (a) and FIG. 10 (b) are respectively diagrams. 4 (a) shows the structure of the XX line cross section and the YY line cross section. 図11は、図2に示す植物水耕栽培システム1000の稼働状態(水Wが貯留容器101に供給されている状態)を説明するための図であり、図11(a)および図11(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面を示す。FIG. 11 is a diagram for explaining the operating state of the plant hydroponics system 1000 shown in FIG. 2 (the state in which the water W is supplied to the storage container 101). FIG. 11 (a) and FIG. 11 (b) ) Show the XX line cross section and the YY line cross section of FIG. 図12は、植物水耕栽培装置100の貯留容器101に供給された水Wが収容トレイ110の内側に流れ込む様子を示す図であり、図12(a)および図12(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面を示す。FIG. 12 is a diagram illustrating a state in which the water W supplied to the storage container 101 of the plant hydroponic cultivation apparatus 100 flows into the storage tray 110. FIGS. 12 (a) and 12 (b) are diagrams respectively. FIG. 4A shows a cross section taken along line XX and line YY. 図13は、植物水耕栽培装置100の貯留容器101から収容トレイ110への水の流れが停止した状態を説明するための図であり、図13(a)および図13(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面を示す。FIG. 13 is a diagram for explaining a state in which the flow of water from the storage container 101 of the plant hydroponics apparatus 100 to the storage tray 110 is stopped, and FIGS. 13 (a) and 13 (b) respectively. The XX line cross section and the YY line cross section of Fig.4 (a) are shown. 図14は、図2に示す植物水耕栽培システム1000の稼働状態(炭酸水が容器本体101に供給されている状態)を説明するための図であり、図14(a)および図14(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面の構造を示す。FIG. 14 is a diagram for explaining an operating state of the plant hydroponic cultivation system 1000 shown in FIG. 2 (a state in which carbonated water is supplied to the container body 101), and FIG. 14 (a) and FIG. 14 (b) ) Show the structures of the XX line cross section and the YY line cross section of FIG.
 以下に本発明を、必要に応じて、添付の図面を参照して例示の実施例により説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present invention will be described by way of example with reference to the accompanying drawings as necessary. Throughout this specification, it should be understood that expression in the singular also includes the concept of the plural unless specifically stated otherwise. In addition, it is to be understood that the terms used in the present specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
 (定義)
 本明細書において、「マイクロバブル」とは、概ね気泡径が直径約1~50μm以下の気泡をいう。
(Definition)
In the present specification, the term “microbubble” refers to a bubble having a bubble diameter of approximately 1 to 50 μm or less.
 本明細書において、「ナノバブル」とは、概ね気泡径が直径約1μm未満の気泡をいう。 In this specification, “nanobubble” means a bubble having a bubble diameter of less than about 1 μm.
 (貯留容器)
 本発明の貯留容器は、内部に植物収容容器を収納し、栽培される植物に供給される液体を貯留できる任意の容器であり得る。貯留容器は、代表的には上面が開口した容器であり、容器の形状および大きさは任意の形状および大きさであり得る。例えば、本発明の貯留容器の形状は直方体形状であってもよいし、円柱体形状であってもよい。1つの好ましい実施形態として、栽培する設置場所の形状および大きさに併せた形状とする。また本発明の貯留容器は、任意の材質のものであり得る。例えば、ステンレス鋼板などの金属であってもよいし、アクリルなどの樹脂で構成された樹脂製であってもよい。例えば、耐腐食性や加工容易性などの観点でステンレス鋼板を用いることが好ましいが、本発明はこれに限定されない。
(Storage container)
The storage container of the present invention may be any container that can store a liquid supplied to a plant to be cultivated by storing the plant storage container therein. The storage container is typically a container having an open upper surface, and the shape and size of the container may be any shape and size. For example, the shape of the storage container of the present invention may be a rectangular parallelepiped shape or a cylindrical shape. As one preferable embodiment, it is set to a shape that matches the shape and size of the installation location for cultivation. The storage container of the present invention may be made of any material. For example, a metal such as a stainless steel plate may be used, or a resin made of a resin such as acrylic may be used. For example, it is preferable to use a stainless steel plate from the viewpoint of corrosion resistance and ease of processing, but the present invention is not limited to this.
 本発明の貯留容器は、貯留された液体を排出するための任意の排出機構を備え得る。この排出機構は、貯留容器の底部に備えられた開口部であってもよいし、能動的に液体を排出するポンプのような装置であってもよい。 The storage container of the present invention may include an arbitrary discharge mechanism for discharging the stored liquid. The discharge mechanism may be an opening provided at the bottom of the storage container, or may be a device such as a pump that actively discharges liquid.
 (液体供給機構)
 本発明の装置は、第1水位で第1液体を、そして第2水位で第2液体を供給する任意の機構を含む。
(Liquid supply mechanism)
The apparatus of the present invention includes an optional mechanism for supplying a first liquid at a first water level and a second liquid at a second water level.
 代表的な実施形態において、本発明の装置は、第1水位で第1液体を供給する第1液体供給機構と、第2水位で第2液体を供給する第2液体供給機構とを含む。 In an exemplary embodiment, the apparatus of the present invention includes a first liquid supply mechanism that supplies a first liquid at a first water level and a second liquid supply mechanism that supplies a second liquid at a second water level.
 第1液体は、第1気体を混合させた第1気液であり得る。この第1気体は、植物の根から浸透させるのに適した気体であれば任意の気体であり得る。例えば、植物の呼吸に必要な酸素であってもよいし、植物の肥料の要素となる窒素であってもよいし、植物の殺菌効果を奏するに適したオゾンであってもよいし、酸素および窒素を含む空気であってもよい。液体は、代表的には水である。 The first liquid may be a first gas / liquid mixed with a first gas. The first gas may be any gas as long as it is suitable for permeating from the roots of plants. For example, it may be oxygen necessary for plant respiration, nitrogen as an element of plant fertilizer, ozone suitable for exerting a bactericidal effect on plants, oxygen and It may be air containing nitrogen. The liquid is typically water.
 1つの実施形態において、第1液体供給機構は、酸素が混合された水(「酸素水」という。)と、オゾンが混合された水(「オゾン水」という。)との双方を貯留容器に供給し得る。酸素は植物の生育に好ましく、オゾンは植物の殺菌に好ましい。このように酸素とオゾンとは目的・用途が異なるため、第1液体供給機構は、酸素水とオゾン水とを別個に供給するが、本発明はこれに限定されない。第1液体供給機構によって供給される第1液体の、酸素水とオゾン水との切り替えは、手動で行ってもよいし、任意のセンサーやタイマーによって自動で行ってもよい。第1液体機構における当該センサーは、代表的には、植物の疾患や根における病原体の存在を検出するものであり得る。 In one embodiment, the first liquid supply mechanism uses both water mixed with oxygen (referred to as “oxygen water”) and water mixed with ozone (referred to as “ozone water”) in a storage container. Can be supplied. Oxygen is preferred for plant growth and ozone is preferred for plant sterilization. Since oxygen and ozone have different purposes and applications, the first liquid supply mechanism supplies oxygen water and ozone water separately, but the present invention is not limited to this. Switching between the oxygen water and the ozone water of the first liquid supplied by the first liquid supply mechanism may be performed manually or automatically by an arbitrary sensor or timer. The sensor in the first fluid mechanism can typically detect plant disease or the presence of a pathogen in the root.
 1つの実施形態において、第1液体供給機構は、酸素濃度計測器によって計測された酸素濃度に応じて、供給する酸素水の酸素濃度を調整し得る。この酸素濃度計測器は、当該分野で公知の装置であり得る。酸素濃度計測器を有することにより、得られた計測結果に基づいて、液体供給機構によって供給される酸素水の所望の酸素濃度への調整が可能となるため、本発明の装置が酸素濃度計測器を有することが好ましい。 In one embodiment, the first liquid supply mechanism can adjust the oxygen concentration of the oxygen water to be supplied in accordance with the oxygen concentration measured by the oxygen concentration meter. This oxygen concentration measuring device may be a device known in the art. By having the oxygen concentration measuring device, the oxygen water supplied by the liquid supply mechanism can be adjusted to a desired oxygen concentration based on the obtained measurement result. It is preferable to have.
 1つの実施形態において、第1液体供給機構は、オゾン濃度計測器によって計測されたオゾン濃度に応じて、供給するオゾン水のオゾン濃度を調整し得る。このオゾン濃度計測器は、当該分野で公知の装置であり得る。代表的な実施形態において、オゾン濃度計測器は、生成されたオゾン水に含まれるオゾンを真空引きにより気化させて濃度を計測する装置である。オゾン濃度計測器を有することにより、得られた計測結果に基づいて、液体供給機構によって供給されるオゾン水の所望のオゾン濃度への調整が可能となるため、本発明の装置がオゾン濃度計測器を有することが好ましい。 In one embodiment, the first liquid supply mechanism can adjust the ozone concentration of the supplied ozone water according to the ozone concentration measured by the ozone concentration measuring instrument. This ozone concentration measuring device may be a device known in the art. In a typical embodiment, the ozone concentration measuring device is a device that measures the concentration by evaporating ozone contained in the generated ozone water by evacuation. By having an ozone concentration measuring device, it becomes possible to adjust the ozone concentration of ozone water supplied by the liquid supply mechanism to a desired ozone concentration based on the obtained measurement result, so the apparatus of the present invention is an ozone concentration measuring device. It is preferable to have.
 好ましい実施形態において、第1気液において、第1気体はマイクロバブルの状態で第1液体に混合されており、より好ましくは、第1気体はナノバブルの状態で第1液体に混合されている。第1液体に混合された第1気体の粒径をより小さくすることによって、第1気体(典型的には、酸素)の植物の根からの吸収が促進され、そして/または第1気体(典型的には、オゾン)による病原体の殺菌作用が増強され得る。また、酸素水またはオゾン水に含まれるマイクロバブルまたはナノバブルは、貯留容器内で圧壊する瞬間に活性酸素を発生させ、それによる殺菌効果も見込める。 In a preferred embodiment, in the first gas-liquid, the first gas is mixed with the first liquid in a microbubble state, and more preferably, the first gas is mixed with the first liquid in a nanobubble state. By reducing the particle size of the first gas mixed with the first liquid, absorption of the first gas (typically oxygen) from the plant roots is facilitated and / or the first gas (typically Specifically, the bactericidal action of the pathogen by ozone) can be enhanced. Further, microbubbles or nanobubbles contained in oxygen water or ozone water generate active oxygen at the moment of crushing in the storage container, and a sterilizing effect can be expected.
 第1気体がマイクロバブルまたはナノバブルの状態で第1液体に混合される実施形態においては、植物の根に第1気体が接触するまでバブルの状態を維持することが好ましいため、貯留容器の底部から第1液体を供給することが好ましい。底部から供給することにより、貯留容器内に供給される際に第1液体が貯留容器上に着水した際の衝撃で溶解した気泡が破損したり、空中を飛行時に空気を巻き込み大きな泡が発生することで微細気泡(マイクロバブルおよびナノバブル)が水面に浮上して消滅してしまうことを抑制することが可能となる。また、第1液体を貯留容器に向けて供給する供給口は、大きな開口(例えば、直径約10mm~約25mm)とし、供給口を通過する際の水圧(例えば、約0.01MPa~約0.1MPa)を低くすること、もしくは密閉容器を介して水圧を減圧することがさらに好ましい。このようにすることにより、小さい開口(例えば、直径約1mm程度)で高い水圧(例えば、約0.3MPa以上)で第1液体を供給する場合の、供給口を通過する際の微細気泡(マイクロバブルおよびナノバブル)の破損を抑制することが可能となるからである。 In the embodiment in which the first gas is mixed with the first liquid in the state of microbubbles or nanobubbles, it is preferable to maintain the bubble state until the first gas contacts the plant root, so that from the bottom of the storage container It is preferable to supply the first liquid. By supplying from the bottom, when the first liquid is supplied into the storage container, the dissolved bubbles are damaged by the impact when the first liquid reaches the storage container, or large bubbles are generated by entraining air during flight in the air By doing so, it is possible to suppress the fine bubbles (micro bubbles and nano bubbles) from floating and disappearing on the water surface. In addition, the supply port for supplying the first liquid toward the storage container is a large opening (for example, a diameter of about 10 mm to about 25 mm), and the water pressure (for example, about 0.01 MPa to about 0.00 mm) when passing through the supply port. More preferably, the pressure is reduced by 1 MPa) or the water pressure is reduced through a sealed container. In this way, when supplying the first liquid with a small opening (for example, a diameter of about 1 mm) and a high water pressure (for example, about 0.3 MPa or more), fine bubbles (micrometers) when passing through the supply port. This is because breakage of bubbles and nanobubbles can be suppressed.
 加えて、第1液体には、第1気体の他に、植物の根から吸収されて植物の生育を促進する任意の養分が含まれてもよい。 In addition, the first liquid may contain, in addition to the first gas, any nutrient that is absorbed from the root of the plant and promotes the growth of the plant.
 第2液体は、第2気体を混合させた第2気液であり得る。この第2気体は、植物の光合成に必要な二酸化炭素であり得る。液体は、代表的には水である。代表的な実施形態において、本発明の第2液体供給機構は、二酸化炭素が混合された水(「炭酸水」という。)を供給し得る。 The second liquid may be a second gas / liquid mixed with a second gas. This second gas may be carbon dioxide required for plant photosynthesis. The liquid is typically water. In an exemplary embodiment, the second liquid supply mechanism of the present invention can supply water mixed with carbon dioxide (referred to as “carbonated water”).
 好ましい実施形態において、第1気液と同様に第2気液においても、第2気体はマイクロバブルの状態で第2液体に混合されており、より好ましくは、第2気体はナノバブルの状態で第2液体に混合されている。第2気液が炭酸水である場合、より小さな粒径のバブルとして供給されるほど、空気に触れてもすぐには放出されず、炭酸水から二酸化炭素が徐々に発生することになる。そのため、栽培する植物の周囲に緩やかに、かつ長期間にわたって安定して少しずつ二酸化炭素が供給され得る。従来は、二酸化炭素を直接植物に向けて与えたり、炭酸水を植物に向けてスプレー状(ミスト状)で噴射する植物栽培装置が知られているが、このような従来の植物栽培装置と比較して、栽培する植物の周囲に緩やかに、長期間にわたって安定して少しずつ二酸化炭素が供給される点は本発明の1つの利点であり得る。 In a preferred embodiment, the second gas is mixed with the second liquid in the microbubble state in the second gas liquid as well as the first gas liquid, and more preferably, the second gas is in the nanobubble state. Two liquids are mixed. When the second gas-liquid is carbonated water, the more it is supplied as a bubble having a smaller particle size, the more quickly carbon dioxide is generated from the carbonated water without being released immediately even when it is exposed to the air. Therefore, carbon dioxide can be supplied little by little around the plant to be cultivated gradually and stably over a long period of time. Conventionally, plant cultivation devices that give carbon dioxide directly to plants or spray carbonated water to plants in a spray (mist form) are known, but compared with such conventional plant cultivation devices Thus, it can be one advantage of the present invention that carbon dioxide is gradually and stably supplied over a long period of time around the plant to be cultivated.
 第1気液(例えば、酸素水および/またはオゾン水)とは異なり、第2気液(例えば、炭酸水)は貯留容器への供給と同時に第2気体が植物の周囲に向けて放出され始めるのが好ましいため、貯留容器への供給時にバブルに衝撃を与えてもよい。二酸化炭素がマイクロバブルまたはナノバブルとして存在する実施形態において、炭酸水を滴下、吐出または放出することによって、貯留容器への供給時にバブルに衝撃が与えられ、二酸化炭素が水から放出されるため、好ましい。したがって、1つの具体的な実施形態において、第2気液供給機構による第2気液の供給口は、第1気液供給機構による第1気液の供給口よりも高い位置に存在する。 Unlike the first gas-liquid (for example, oxygen water and / or ozone water), the second gas-liquid (for example, carbonated water) starts to be released toward the periphery of the plant simultaneously with the supply to the storage container. Since it is preferable, an impact may be given to the bubble at the time of supply to the storage container. In embodiments where carbon dioxide is present as microbubbles or nanobubbles, dropping, discharging or releasing carbonated water impacts the bubbles when supplied to the storage container and is preferred because carbon dioxide is released from the water. . Therefore, in one specific embodiment, the second gas-liquid supply port by the second gas-liquid supply mechanism is present at a higher position than the first gas-liquid supply port by the first gas-liquid supply mechanism.
 好ましい実施形態においては、第2気液供給機構は、浮遊しない液滴によって貯留容器に供給し得る。大気中に浮遊するスプレー状またはミスト状の場合は第2気液が外気に触れることですぐに液体に含まれる二酸化炭素が液体から放出されてしまうが、浮遊しない液滴とすることで二酸化炭素の早すぎる放出が抑制される。そのため、液滴が外気に触れても、そこに含まれた二酸化炭素がすぐに放出されることなく、ゆっくりと放出される。本発明は、このように炭酸水から二酸化炭素をゆるやかに放出させることによって、長時間にわたり安定して二酸化炭素を植物に供給することを企図する。さらに第2気液供給機構は、炭酸水の温度を上昇させる加熱手段を備えていてもよい。加熱手段により炭酸水の温度を上昇させることにより、炭酸水から二酸化炭素の気化を促進することが可能となる。加熱手段は第2液体を加温できる任意の手段であり得る。例えば、一つの実施形態において、第2液体を送出するポンプが発する熱を利用して第2液体の温度を徐々に上昇させる加熱手段がある。 In a preferred embodiment, the second gas-liquid supply mechanism can supply the storage container with droplets that do not float. In the case of a spray or mist floating in the atmosphere, carbon dioxide contained in the liquid is immediately released from the liquid when the second gas-liquid touches the outside air. The release of too early is suppressed. Therefore, even if the droplet touches the outside air, the carbon dioxide contained therein is not released immediately but is released slowly. The present invention contemplates supplying carbon dioxide stably to plants over a long period of time by gradually releasing carbon dioxide from carbonated water. Furthermore, the second gas-liquid supply mechanism may include a heating unit that raises the temperature of the carbonated water. By raising the temperature of the carbonated water by the heating means, it is possible to promote the vaporization of carbon dioxide from the carbonated water. The heating means can be any means that can heat the second liquid. For example, in one embodiment, there is a heating unit that gradually raises the temperature of the second liquid using heat generated by a pump that delivers the second liquid.
 第2液体供給機構による第2液体である炭酸水の供給開始・停止の切り替えは、手動で行ってもよいし、任意のセンサーやタイマーによって自動で行ってもよい。第2液体機構における当該センサーは、代表的には、植物水耕栽培装置内の日射を測定する照度センサや二酸化炭素濃度を測定するCOセンサーなどであり得る。代表的な実施形態においては、例えば、タイマーにより予め設定した時間(例えば、朝6時から午後3時までの時間)、炭酸水の供給を行うように制御してもよい。第2液体供給機構によって供給される炭酸水における二酸化炭素の濃度は特に限定されないが、二酸化炭素濃度が高くなるとpHが低くなる。例えば、炭酸水濃度は約1000ppmでpH約4.5である。 Switching between the start and stop of the supply of carbonated water, which is the second liquid, by the second liquid supply mechanism may be performed manually or automatically by an arbitrary sensor or timer. The sensor in the second liquid mechanism may typically be an illuminance sensor that measures solar radiation in a plant hydroponic cultivation apparatus, a CO 2 sensor that measures carbon dioxide concentration, or the like. In a typical embodiment, for example, control may be performed so that carbonated water is supplied for a preset time by a timer (for example, a time from 6 am to 3 pm). The concentration of carbon dioxide in the carbonated water supplied by the second liquid supply mechanism is not particularly limited, but the pH decreases as the carbon dioxide concentration increases. For example, the carbonated water concentration is about 1000 ppm and the pH is about 4.5.
 本発明の液体供給機構は、第1液体と第2液体とをそれぞれ異なる水位(第1液体を第1水位で、第2液体を第2水位で)で供給し得る。第1液体が酸素水および/またはオゾン水であり、第2液体が炭酸水である本発明の好ましい実施形態においては、第1液体は植物の根に接触することが好ましく、第2液体は植物の根に接触しないことが好ましい。炭酸水は植物の根が酸素などを吸収するのを妨げ、根腐れなど傷つけてしまうリスクがあり得るからである。したがって、好ましい実施形態において、第1水位は、第1液体が植物を収容する収容容器内に侵入するような水位であり、第2水位は、第2液体が植物を収容する収容容器内には侵入しないような水位であり得る。 The liquid supply mechanism of the present invention can supply the first liquid and the second liquid at different water levels (the first liquid at the first water level and the second liquid at the second water level). In a preferred embodiment of the invention in which the first liquid is oxygen water and / or ozone water and the second liquid is carbonated water, the first liquid is preferably in contact with the plant root, and the second liquid is a plant. It is preferable not to contact the roots of This is because the carbonated water prevents the roots of plants from absorbing oxygen and may cause damage such as root rot. Therefore, in a preferred embodiment, the first water level is a level at which the first liquid enters the storage container containing the plant, and the second water level is in the storage container where the second liquid stores the plant. The water level may not enter.
 第1水位と第2水位との調整は、当該水位をそれぞれ超えないような位置に開口部を備えることによって達成されてもよいし、液体供給機構による第1液体または第2液体の供給量を調整することによって達成されてもよい。好ましい実施形態においては、第1水位に対応する位置に第1液体の排出のための開口部を設け、第2水位に対応する位置に第2液体の排出のための開口部を設けてもよい。代表的には、第1水位は第2水位よりも高い位置にあるが、好ましくはこれに限定されない。 The adjustment of the first water level and the second water level may be achieved by providing an opening at a position that does not exceed the water level, or the amount of the first liquid or the second liquid supplied by the liquid supply mechanism may be adjusted. It may be achieved by adjusting. In a preferred embodiment, an opening for discharging the first liquid may be provided at a position corresponding to the first water level, and an opening for discharging the second liquid may be provided at a position corresponding to the second water level. . Typically, the first water level is higher than the second water level, but is not limited to this.
 第1液体供給機構と第2液体供給機構とは、排他的に駆動するようにしてもよい。これにより異なる液体である第1液体と第2液体とが混ざり合うのを回避することが可能となる。2つの液体供給機構の排他的な駆動は公知の制御機構によって達成され得る。 The first liquid supply mechanism and the second liquid supply mechanism may be driven exclusively. This makes it possible to avoid mixing the first liquid and the second liquid, which are different liquids. Exclusive driving of the two liquid supply mechanisms can be achieved by known control mechanisms.
 (植物収容容器)
 本発明の植物を収容する容器は、水耕栽培に用いることができる任意の容器であり、少なくとも植物の根を内部に収容することができればどのようなものであってもよい。本発明の植物収容容器は、代表的には上面が開口した容器である。容器の形状および大きさは任意の形状および大きさであり得る。例えば、本発明の収容容器の形状は直方体状の形状であってもよいし、円柱体状の形状であってもよい。1つの好ましい実施形態において、収容容器の形状および大きさは、収容する植物の形状および大きさや収容容器を収納する貯留容器の形状および大きさに併せた形状および大きさとする。
(Plant container)
The container which accommodates the plant of this invention is arbitrary containers which can be used for hydroponics, and what kind of thing may be sufficient as long as the root of a plant can be accommodated inside. The plant storage container of the present invention is typically a container having an open top surface. The shape and size of the container can be any shape and size. For example, the shape of the storage container of the present invention may be a rectangular parallelepiped shape or a cylindrical shape. In one preferable embodiment, the shape and the size of the storage container are the same as the shape and the size of the plant to be stored and the shape and the size of the storage container for storing the storage container.
 また、収容容器は、一重の容器であってもよいし、第1液体を貯留する外容器と、外容器の中に収納され、植物の根を支持する内容器とを含む多重容器であってもよい。植物の根に対する通気性を確保して根腐れを防止するためや植物に対する第1液体の水位を調整可能とする観点などから、外容器と内容器とを含む多重容器とすることが好ましい。多重容器とした場合、内容器の底部には外容器に貯留される第1液体を植物の根に供給するための液体導入孔を有している。また、内容器は外容器に対して固定されていてもよいし、着脱可能であってもよい。植物の根切り作業などを容易に行うなどの観点で、内容器を外容器に対して着脱可能とすることが好ましい。外容器1つに内容器1つを収納するようにしてもよいし、外容器1つに複数の内容器を収納するようにしてもよい。 The storage container may be a single container, or a multiple container including an outer container that stores the first liquid and an inner container that is stored in the outer container and supports the roots of the plant. Also good. In order to prevent the root rot by ensuring air permeability to the roots of the plant, and from the viewpoint of making it possible to adjust the water level of the first liquid with respect to the plant, it is preferable to use a multiple container including an outer container and an inner container. In the case of multiple containers, the bottom of the inner container has a liquid introduction hole for supplying the first liquid stored in the outer container to the plant root. Moreover, the inner container may be fixed with respect to the outer container, or may be detachable. It is preferable to make the inner container detachable with respect to the outer container from the viewpoint of easily performing a plant root cutting operation or the like. One inner container may be stored in one outer container, or a plurality of inner containers may be stored in one outer container.
 本発明の収容容器は、植物に対する第1液体の水位調整手段を備えることが好ましい。この水位調整手段は、代表的には、外容器に対する内容器の相対的な高さを調整することによって、内容器に収容される植物と、外容器に貯留される第1液体との位置関係を調整するものであり得る。水位調整手段としては、植物の高さを規定する突起もしくは外容器および内容器とは別体のスペーサが挙げられるが、これらに限定されない。水位調整手段は、外容器の上面に設けられてもよいし、かつ/または内容器の下面に設けられてもよい。このような水位調整手段を設けることにより、植物の高さを第1液体の水位に対して適切な位置に配設することが可能となる。さらに、外容器には、外容器内に貯留された第1液体を排出するための排出穴を設けてもよい。本発明の収容容器は、任意の材質のものであり得る。例えば、ステンレス鋼板などの金属であってもよいし、アクリルなどの樹脂で構成された樹脂製であってもよい。例えば、耐腐食性や軽量などの観点で樹脂を用いることが好ましいが、本発明はこれに限定されない。 The container of the present invention preferably includes a first liquid water level adjusting means for the plant. Typically, the water level adjusting means adjusts the relative height of the inner container with respect to the outer container, whereby the positional relationship between the plant housed in the inner container and the first liquid stored in the outer container. Can be adjusted. Examples of the water level adjusting means include, but are not limited to, a protrusion that defines the height of the plant or a spacer that is separate from the outer container and the inner container. The water level adjusting means may be provided on the upper surface of the outer container and / or may be provided on the lower surface of the inner container. By providing such a water level adjusting means, it becomes possible to arrange the height of the plant at an appropriate position with respect to the water level of the first liquid. Further, the outer container may be provided with a discharge hole for discharging the first liquid stored in the outer container. The container of the present invention can be made of any material. For example, a metal such as a stainless steel plate may be used, or a resin made of a resin such as acrylic may be used. For example, it is preferable to use a resin from the viewpoint of corrosion resistance and light weight, but the present invention is not limited to this.
 (液体排出・循環機構)
 本発明の装置は、第1液体供給機構によって貯留容器(収容容器を含む)に供給された第1液体および第2液体供給機構によって貯留容器に供給された第2液体を排出する任意の機構を含む。第1液体の排出と第2液体の排出とは、同一の機構によって行ってもよいし別個の機構によって行ってもよい。第1液体および第2液体の排出のための機構は、底部の開口部や液体吸出し用ポンプなどが挙げられるが、これらに限定されない。
(Liquid discharge / circulation mechanism)
The apparatus of the present invention includes an arbitrary mechanism for discharging the first liquid supplied to the storage container (including the storage container) by the first liquid supply mechanism and the second liquid supplied to the storage container by the second liquid supply mechanism. Including. The discharge of the first liquid and the discharge of the second liquid may be performed by the same mechanism or by separate mechanisms. Examples of the mechanism for discharging the first liquid and the second liquid include, but are not limited to, an opening at the bottom and a liquid suction pump.
 好ましい実施形態においては、排出した第1液体および第2をそれぞれ第1液体供給機構および第2液体供給機構に循環させて、排出した液体を再利用し得る。このためには、第1液体の排出と第2液体の排出とは、それぞれ別個の機構によって行うことが好ましくあり得る。 In a preferred embodiment, the discharged first liquid and the second liquid can be circulated to the first liquid supply mechanism and the second liquid supply mechanism, respectively, so that the discharged liquid can be reused. For this purpose, it may be preferable to discharge the first liquid and the second liquid by separate mechanisms.
 第1液体排出機構から排出された第1液体および第2液体排出機構から排出された第2液体は、再利用可能とするために、それぞれ第1液体供給機構および第2液体供給機構に戻すようにしてもよいし、植物水耕栽培システムの外部に排出するようにしてもよい。 The first liquid discharged from the first liquid discharge mechanism and the second liquid discharged from the second liquid discharge mechanism are returned to the first liquid supply mechanism and the second liquid supply mechanism, respectively, so that they can be reused. Or you may make it discharge | emit outside the plant hydroponics system.
 上記のとおり、本発明はさらに、第1水位に対応する位置に第1液体の排出のための開口部を設け、第2水位に対応する位置に第2液体の排出のための開口部を設けてもよい。これらの開口部を設けることによって、第1水位を超えて供給された第1液体および第2水位を超えて供給された第2液体を排出することができ、意図した水位の調整が達成される。 As described above, the present invention further provides an opening for discharging the first liquid at a position corresponding to the first water level, and an opening for discharging the second liquid at a position corresponding to the second water level. May be. By providing these openings, the first liquid supplied over the first water level and the second liquid supplied over the second water level can be discharged, and the intended adjustment of the water level is achieved. .
 以下、本発明の具体的な実施形態について図面を参照しながら説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 (実施形態1)
 図1は、本発明の実施形態1による植物水耕栽培システム1000の構成を説明するためのブロック図である。発明者は、図1に示す植物水耕栽培システム1000を、「マルチステージ式ファインバブル栽培システム」と命名している。
(Embodiment 1)
FIG. 1 is a block diagram for explaining a configuration of a plant hydroponics system 1000 according to Embodiment 1 of the present invention. The inventor names the plant hydroponic cultivation system 1000 shown in FIG. 1 as a “multistage fine bubble cultivation system”.
 実施形態1の植物水耕栽培システム1000は、植物を収容する収容容器100aと、収容容器100aに収容された植物を水耕栽培する植物水耕栽培装置100とを有する。 The plant hydroponics system 1000 of Embodiment 1 includes a storage container 100a that stores plants, and a plant hydroponics apparatus 100 that hydroponically cultivates the plants stored in the storage container 100a.
 植物水耕栽培装置100は、酸素水W、オゾン水Ow、炭酸水Swなどの液体を溜めるための貯留容器101と、貯留容器101に第1水位で第1液体を提供する第1液体供給機構M1と、貯留容器101に第2水位で第2液体を提供する第2液体供給機構M2とを備えている。 The plant hydroponics apparatus 100 includes a storage container 101 for storing liquids such as oxygen water W, ozone water Ow, carbonated water Sw, and a first liquid supply mechanism that provides the storage container 101 with a first liquid at a first water level. M1 and a second liquid supply mechanism M2 that provides the storage container 101 with the second liquid at the second water level.
 第1液体供給機構M1は、第1気体を発生させる第1気体発生部13と、第1気体発生部13で発生する第1気体を外部から供給される水(液体)に混合させて第1液体を生成する第1液体生成部12と、第1液体を溜める第1液体タンク11と、第1液体タンク11に溜まった第1液体を貯留容器101に送水する送水部10とを有する。 The first liquid supply mechanism M1 is a first gas generation unit 13 that generates a first gas, and a first gas generated in the first gas generation unit 13 is mixed with water (liquid) supplied from the outside to be first. It has the 1st liquid production | generation part 12 which produces | generates a liquid, the 1st liquid tank 11 which stores a 1st liquid, and the water supply part 10 which supplies the 1st liquid collected in the 1st liquid tank 11 to the storage container 101.
 本実施形態においては、第1気体は酸素またはオゾンであり、第1液体は酸素水またはオゾン水の酸素含有水の場合について説明するが、本発明はこれに限定されない。ここで、第1液体タンク(酸素含有水タンク)11には貯留容器101から回収された第1液体および第1液体生成部(酸素含有水生成部)12から供給された酸素水Wまたはオゾン水Owが溜められ、第1液体タンク11と第1液体生成部12との間で酸素水Wまたはオゾン水Owが循環するようになっている。 In the present embodiment, a case where the first gas is oxygen or ozone and the first liquid is oxygen water or oxygen-containing water of ozone water will be described, but the present invention is not limited to this. Here, the first liquid tank (oxygen-containing water tank) 11 includes the first liquid recovered from the storage container 101 and the oxygen water W or ozone water supplied from the first liquid generator (oxygen-containing water generator) 12. Ow is accumulated, and oxygen water W or ozone water Ow circulates between the first liquid tank 11 and the first liquid generator 12.
 第2液体供給機構M2は、第2液体を貯留容器101に供給する第2液体供給部20を有する。さらに、第2液体供給機構M2は、貯留容器101から回収される第2液体を溜める第2液体タンク21を有していてもよい。本実施形態においては、第2気体として二酸化炭素であり、第2液体を炭酸水とした場合について説明するが、これに限定されない。ここで、貯留容器101から回収され、第2液体タンク21(炭酸水タンク)に溜まった炭酸水を第2液体供給部(炭酸水供給部)20に戻して循環利用できるようにしてもよい。循環させることで、炭酸ガスが溶解した炭酸水を有効に利用することができる。 The second liquid supply mechanism M2 includes a second liquid supply unit 20 that supplies the second liquid to the storage container 101. Further, the second liquid supply mechanism M2 may include a second liquid tank 21 that stores the second liquid recovered from the storage container 101. In the present embodiment, a case where carbon dioxide is used as the second gas and carbonated water is used as the second liquid will be described. However, the present invention is not limited to this. Here, the carbonated water collected from the storage container 101 and accumulated in the second liquid tank 21 (carbonated water tank) may be returned to the second liquid supply unit (carbonated water supply unit) 20 for circulation. By circulating, carbonated water in which carbon dioxide gas is dissolved can be used effectively.
 さらに、植物水耕栽培装置100は、第1液体供給機構M1および第2液体供給機構M2を動作させるための操作部30を有し、操作部30から第1気体発生部13、第1液体生成部12、送水部10、第2液体供給部20には、これらを動作させるための操作信号C13、C12、C10、C20が出力されるようになっている。 Further, the plant hydroponic cultivation apparatus 100 has an operation unit 30 for operating the first liquid supply mechanism M1 and the second liquid supply mechanism M2, and the first gas generation unit 13 and the first liquid generation from the operation unit 30. Operation signals C13, C12, C10, and C20 for operating them are output to the unit 12, the water supply unit 10, and the second liquid supply unit 20.
 さらに、貯留容器101は、貯留容器101内に収容容器100aを配置可能に構成されており、収容容器100aは、貯留容器101内に配置された収容容器100aに収容された植物に、貯留容器101に提供される液体が液体のままで、あるいは気体となって供給されるように構成されている。 Furthermore, the storage container 101 is configured so that the storage container 100a can be disposed in the storage container 101, and the storage container 100a is placed on the plant stored in the storage container 100a disposed in the storage container 101. The liquid to be provided is supplied as a liquid or as a gas.
 なお、貯留容器101には、各種液体の水位を検出する水位検出センサーが設けられていてもよく、その場合、水位検出センサーの出力信号に基づいて送水部10による酸素水Wあるいはオゾン水Owである酸素含有水の貯留容器101への供給および第2液体供給部20による炭酸水Swの貯留容器101への供給が制御されるように植物水耕栽培装置100を構成することが好ましい。 The storage container 101 may be provided with a water level detection sensor for detecting the water level of various liquids. In that case, oxygen water W or ozone water Ow by the water supply unit 10 based on an output signal of the water level detection sensor. It is preferable that the plant hydroponic cultivation apparatus 100 is configured such that supply of certain oxygen-containing water to the storage container 101 and supply of carbonated water Sw to the storage container 101 by the second liquid supply unit 20 are controlled.
 以下、植物水耕栽培システム1000の具体的な構成について説明する。 Hereinafter, a specific configuration of the plant hydroponics system 1000 will be described.
 図2~図4はそれぞれ、図1に示す植物水耕栽培システム1000の具体的構成を説明するための図であり、図2は、植物水耕栽培システム1000の外観を示す斜視図、図3は、植物水耕栽培装置100の貯留容器101を透視して貯留容器101の内部に配置されている収容容器100aを示す斜視図、図4(a)及び図4(b)はそれぞれ、図2に示す植物水耕栽培システム1000をA2方向およびB2方向から見た構造を示す平面図である。 2 to 4 are diagrams for explaining a specific configuration of the plant hydroponic cultivation system 1000 shown in FIG. 1, and FIG. 2 is a perspective view showing an external appearance of the plant hydroponic cultivation system 1000. FIG. FIG. 4 is a perspective view showing a storage container 100a disposed inside the storage container 101 through the storage container 101 of the plant hydroponic cultivation apparatus 100, and FIG. 4 (a) and FIG. It is a top view which shows the structure which looked at the plant hydroponics system 1000 shown to A2 direction and B2 direction.
 この貯留容器101は、容器脚部101aにより床面より一定高さに支持されている。貯留容器101には、長手方向に延びる対向する側壁に沿って炭酸水供給管103が取り付けられており、この炭酸水供給管103の一端は、連結ホースH1を介して炭酸水供給部20に連結されている。炭酸水供給部20には、炭酸ガスを水と混合して炭酸水Swを生成する炭酸混合機が用いられている。炭酸混合機には、微細気泡発生装置が設けられていてもよい。微細気泡発生装置は、微細気泡(マイクロバブルおよび/またはナノバブル)を発生する任意の装置であり得る。炭酸水に含む気体が微細気泡状態とすることにより、栽培する植物の周囲に緩やかに、長期間にわたって安定して少しずつ二酸化炭素を供給することが可能となる。さらに、貯留容器101のうちの炭酸混合機が配置されている側の端部の下側には炭酸水タンク21が配置されており、貯留容器101には、貯留容器101内から炭酸水Swを炭酸水タンク21に排出するための第1の第2液体排出部である第1の炭酸水排出管105aおよび第2の第2液体排出部である第2の炭酸水排出管105bが連結されている。第1の炭酸水排出管105aおよび第2の炭酸水排出管105bにより第2液体排出機構を構成する。 The storage container 101 is supported at a certain height from the floor surface by the container legs 101a. A carbonated water supply pipe 103 is attached to the storage container 101 along opposite side walls extending in the longitudinal direction, and one end of the carbonated water supply pipe 103 is connected to the carbonated water supply part 20 via a connection hose H1. Has been. The carbonated water supply unit 20 uses a carbonic acid mixer that mixes carbon dioxide gas with water to generate carbonated water Sw. The carbonic acid mixer may be provided with a fine bubble generator. The microbubble generator can be any device that generates microbubbles (microbubbles and / or nanobubbles). By making the gas contained in the carbonated water into a fine bubble state, carbon dioxide can be gradually and stably supplied around the plant to be cultivated over a long period of time. Further, a carbonated water tank 21 is disposed below the end of the storage container 101 on the side where the carbonated mixer is disposed, and carbonated water Sw is supplied from the storage container 101 to the storage container 101. A first carbonated water discharge pipe 105a which is a first second liquid discharge part for discharging to the carbonated water tank 21 and a second carbonated water discharge pipe 105b which is a second second liquid discharge part are connected. Yes. The first carbonated water discharge pipe 105a and the second carbonated water discharge pipe 105b constitute a second liquid discharge mechanism.
 ここで、第1の炭酸水排出管105aの貯留容器101に連結された開口端は、貯留容器101の底面と一致しており、第2の炭酸水排出管105bの貯留容器101に連結された開口端は、貯留容器101の底面より所定寸法だけ高い位置まで突出している。第1の炭酸水排出管105aおよび第2の炭酸水排出管105bにはそれぞれ第1の開閉バルブ105a1および第2の開閉バルブ105b1が取り付けられている。従って、第1の開閉バルブ105a1を開けることにより、第1の炭酸水排出管105aは、貯留容器101から炭酸水Swを抜き取るためのドレイン配管として機能し、第1の開閉バルブ105a1を閉じて第2の開閉バルブ105b1を開けることにより、第2の炭酸水排出管105bは、貯留容器101内での炭酸水Swの水位を一定高さ(第2の炭酸水排出管105bの一端が貯留容器101の底面より突出する高さ)に制限するオーバーフロー配管として機能する。なお、第1の開閉バルブ105a1および第2の開閉バルブ105bは電磁弁など電動式開閉バルブでもよいし、手動式の開閉バルブでもよい。 Here, the opening end connected to the storage container 101 of the first carbonated water discharge pipe 105a coincides with the bottom surface of the storage container 101 and is connected to the storage container 101 of the second carbonated water discharge pipe 105b. The open end protrudes to a position higher than the bottom surface of the storage container 101 by a predetermined dimension. A first opening / closing valve 105a1 and a second opening / closing valve 105b1 are attached to the first carbonated water discharge pipe 105a and the second carbonated water discharge pipe 105b, respectively. Accordingly, by opening the first on-off valve 105a1, the first carbonated water discharge pipe 105a functions as a drain pipe for extracting the carbonated water Sw from the storage container 101, and the first on-off valve 105a1 is closed to close the first on-off valve 105a1. By opening the second opening / closing valve 105b1, the second carbonated water discharge pipe 105b has a constant level of the carbonated water Sw in the storage container 101 (one end of the second carbonated water discharge pipe 105b is at the storage container 101). It functions as an overflow pipe that is restricted to a height that protrudes from the bottom surface. The first on-off valve 105a1 and the second on-off valve 105b may be an electric on-off valve such as an electromagnetic valve or a manual on-off valve.
 さらに、第1の炭酸水排出管105aおよび第2の炭酸水排出管105bの炭酸水タンク21側の端部に、葉やゴミなどの異物を除去する炭素水排出フィルタ105cを取り付けてもよい。 Furthermore, a carbon water discharge filter 105c that removes foreign matters such as leaves and dust may be attached to the ends of the first carbonated water discharge pipe 105a and the second carbonated water discharge pipe 105b on the carbonated water tank 21 side.
 さらに、貯留容器101の底面部の下側には、送水部10に接続された送水管102が取り付けられている。ここで、送水管102は、貯留容器101の長手方向に沿って延びる送水幹管102aと、送水幹管102aと貯留容器101の底面部に形成された液体流入穴101b(図9(a)参照)とを連結する送水枝管102cと、送水部10である送水ポンプに送水幹管102aを連結するための送水連結管102bと、送水幹管102aに接続された送水連結管102bとを有する。この送水連結管102bの一端は送水幹管102aに連結され、送水連結管102bの他端は、送水ポンプの吐出管10aに連結ホースH2を介して連結されている。送水連結管102bには開閉バルブ102b1が設けられており、送水ポンプの吐出管10aにも開閉バルブ10a1が設けられている。 Furthermore, a water supply pipe 102 connected to the water supply unit 10 is attached below the bottom surface of the storage container 101. Here, the water supply pipe 102 includes a water supply main pipe 102 a extending along the longitudinal direction of the storage container 101, and a liquid inflow hole 101 b formed in the bottom surface of the water supply main pipe 102 a and the storage container 101 (see FIG. 9A). ), A water supply connection pipe 102b for connecting the water supply main pipe 102a to the water supply pump which is the water supply unit 10, and a water supply connection pipe 102b connected to the water supply main pipe 102a. One end of the water supply connection pipe 102b is connected to the water supply main pipe 102a, and the other end of the water supply connection pipe 102b is connected to the discharge pipe 10a of the water supply pump via the connection hose H2. The water supply connecting pipe 102b is provided with an open / close valve 102b1, and the water supply pump discharge pipe 10a is also provided with an open / close valve 10a1.
 貯留容器101のうちの炭酸混合機が配置されている側の端部とは反対側の端部の下側には、酸素含有水タンク11が配置されており、貯留容器101には、貯留容器101内から酸素水Wまたはオゾン水Owを酸素含有水タンク11に排出するための第1の第1液体排出部である第1の酸素含有水排出管104aおよび第2の第1液体排出部である第2の酸素含有水排出管104bが連結されている。第1の酸素含有水排出管104aおよび第2の酸素含有水排出管104bにより、第1液体排出機構を構成している。 An oxygen-containing water tank 11 is disposed below the end of the storage container 101 opposite to the end on which the carbonic acid mixer is disposed, and the storage container 101 includes a storage container. In the first oxygen-containing water discharge pipe 104a and the second first liquid discharge portion, which are first first liquid discharge portions for discharging oxygen water W or ozone water Ow from the inside 101 to the oxygen-containing water tank 11. A certain second oxygen-containing water discharge pipe 104b is connected. The first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b constitute a first liquid discharge mechanism.
 ここで、第1の酸素含有水排出管104aの貯留容器101に連結された開口端は、貯留容器101の底面と一致しており、第2の酸素含有水排出管104bの貯留容器101に連結された開口端は、貯留容器101の底面より所定寸法だけ高い位置まで突出している。第1の酸素含有水排出管104aおよび第2の酸素含有水排出管104bにはそれぞれ第1の開閉バルブ104a1および第2の開閉バルブ104b1が取り付けられている。 Here, the open end connected to the storage container 101 of the first oxygen-containing water discharge pipe 104a coincides with the bottom surface of the storage container 101, and is connected to the storage container 101 of the second oxygen-containing water discharge pipe 104b. The opened end projects to a position higher than the bottom surface of the storage container 101 by a predetermined dimension. A first on-off valve 104a1 and a second on-off valve 104b1 are attached to the first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b, respectively.
 従って、第1の開閉バルブ104a1を開けることにより、第1のオゾン水排出管104aは、貯留容器101から酸素水Wあるいはオゾン水Owを抜き取るためのドレイン配管として機能し、第1の開閉バルブ104a1を閉じて第2の開閉バルブ104b1を開けることにより、第2の酸素含有水排出管104bは、貯留容器101内での酸素水Wあるいはオゾン水Owの水位を一定高さ(第2の酸素含有水排出管104bの一端が貯留容器101の底面より突出する高さ)に制限するオーバーフロー配管として機能する。なお、第1の開閉バルブ104a1および第2の開閉バルブ104b1は電磁弁など電動式開閉バルブでもよいし、手動式の開閉バルブでもよい。 Therefore, by opening the first opening / closing valve 104a1, the first ozone water discharge pipe 104a functions as a drain pipe for extracting the oxygen water W or the ozone water Ow from the storage container 101, and the first opening / closing valve 104a1. Is closed and the second on-off valve 104b1 is opened, so that the second oxygen-containing water discharge pipe 104b can keep the water level of the oxygen water W or the ozone water Ow in the storage container 101 at a certain level (second oxygen-containing water level). It functions as an overflow pipe that restricts one end of the water discharge pipe 104b to a height protruding from the bottom surface of the storage container 101). The first on-off valve 104a1 and the second on-off valve 104b1 may be an electric on-off valve such as an electromagnetic valve or a manual on-off valve.
 さらに、第1の酸素含有水排出管104aおよび第2の酸素含有水排出管104bの酸素含有水タンク11側の端部に、葉やゴミなどの異物を除去する酸素含有水排出フィルタ104cを取り付けてもよい。 Further, an oxygen-containing water discharge filter 104c that removes foreign matters such as leaves and dust is attached to the ends of the first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b on the oxygen-containing water tank 11 side. May be.
 酸素含有水タンク11には、酸素含有水吸入管11aおよび酸素含有水吐出管11bが取り付けられており、酸素含有水吐出管11bは、送水ポンプ10の吸水管10bに連結ホースH3により連結されている。酸素含有水タンク11の酸素含有水吸入管11aは、酸素含有水生成部12の酸素含有水吐出管12bに連結ホースH4により連結されている。酸素含有水吸入管11aおよび酸素含有水吐出管11bにはそれぞれ、開閉バルブ11a1および開閉バルブ11b1が設けられている。また、酸素含有水タンク11内には、微細気泡発生装置11cが設けられていてもよい。微細気泡発生装置11cは、微細気泡(マイクロバブルおよび/またはナノバブル)を発生する任意の装置であり得る。微細気泡発生装置11cで生成された微細気泡(マイクロバブルおよび/またはナノバブル)を含む酸素水Wあるいはオゾン水Owは、酸素含有水生成部12の酸素含有水回収管12aに連結ホースH5により連結されている。この酸素含有水生成部12には酸素発生部13から酸素ガスOgおよびオゾンガスが供給されるようになっている。 An oxygen-containing water suction pipe 11a and an oxygen-containing water discharge pipe 11b are attached to the oxygen-containing water tank 11, and the oxygen-containing water discharge pipe 11b is connected to the water absorption pipe 10b of the water pump 10 by a connection hose H3. Yes. The oxygen-containing water suction pipe 11a of the oxygen-containing water tank 11 is connected to the oxygen-containing water discharge pipe 12b of the oxygen-containing water generating unit 12 by a connection hose H4. An open / close valve 11a1 and an open / close valve 11b1 are provided in the oxygen-containing water suction pipe 11a and the oxygen-containing water discharge pipe 11b, respectively. A fine bubble generator 11 c may be provided in the oxygen-containing water tank 11. The fine bubble generating device 11c can be any device that generates fine bubbles (microbubbles and / or nanobubbles). Oxygen water W or ozone water Ow containing microbubbles (microbubbles and / or nanobubbles) generated by the microbubble generator 11c is connected to the oxygen-containing water recovery pipe 12a of the oxygen-containing water generator 12 by a connecting hose H5. ing. The oxygen-containing water generating unit 12 is supplied with oxygen gas Og and ozone gas from the oxygen generating unit 13.
 ここで、第2の酸素含有水排出管104bの貯留容器101に連結された開口端の位置、つまり、貯留容器101の底面からの高さは、第2の炭酸水排出管105bの貯留容器101に連結された開口端の位置、つまり、貯留容器101の底面からの高さより高い。 Here, the position of the open end connected to the storage container 101 of the second oxygen-containing water discharge pipe 104b, that is, the height from the bottom surface of the storage container 101 is the storage container 101 of the second carbonated water discharge pipe 105b. It is higher than the position of the open end connected to the bottom, that is, the height from the bottom surface of the storage container 101.
 これにより、貯留容器101に供給される酸素水Wあるいはオゾン水Owの水位は、貯留容器101に供給される炭酸水Swの水位よりも高くなり得る。 Thereby, the water level of the oxygen water W or the ozone water Ow supplied to the storage container 101 can be higher than the water level of the carbonated water Sw supplied to the storage container 101.
 〔収容容器100a〕
 図5は、図4に示す収容容器100aを説明するための図であり、図5(a)は、収容容器100aを示す斜視図であり、図5(b)は、図5(a)に示す収容容器100aをB5方向から見た構造を示し、図5(c)および図5(d)はそれぞれ、図5(a)及び図5(b)に示す収容容器100aを透視して収容容器100aの内部でのカップ状体122の配置を示す。
[Container 100a]
5 is a view for explaining the container 100a shown in FIG. 4, FIG. 5 (a) is a perspective view showing the container 100a, and FIG. 5 (b) is shown in FIG. 5 (a). FIG. 5C and FIG. 5D show the storage container 100a shown in FIG. 5A and FIG. 5B, respectively, through the storage container 100a. The arrangement | positioning of the cup-shaped body 122 in the inside of 100a is shown.
 収容容器100aは、複数のカップ状体122を有する栽培ユニット120(内容器)と、栽培ユニット120を載せる収容トレイ110(外容器)とを有する。栽培ユニット120が収容トレイ110に収容されるように栽培ユニット120を収容トレイ110上に載せることにより、収容された植物に液体を供給するための収容容器100aが形成される。 The storage container 100a includes a cultivation unit 120 (inner container) having a plurality of cup-shaped bodies 122 and a storage tray 110 (outer container) on which the cultivation unit 120 is placed. By placing the cultivation unit 120 on the accommodation tray 110 so that the cultivation unit 120 is accommodated in the accommodation tray 110, an accommodation container 100a for supplying liquid to the accommodated plant is formed.
 〔収容トレイ110〕
 図6は、図5(a)に示す収容容器100aにおける収容トレイ110を説明するための図であり、図6(a)は、収容トレイ110を示す斜視図であり、図6(b)は、図6(a)に示す収容トレイ110をB6方向から見た構造を示し、図6(c)は、図6(a)のC-C線断面の構造を示す。
[Accommodating tray 110]
6A and 6B are views for explaining the storage tray 110 in the storage container 100a shown in FIG. 5A, FIG. 6A is a perspective view showing the storage tray 110, and FIG. FIG. 6A shows the structure of the storage tray 110 viewed from the B6 direction, and FIG. 6C shows the structure taken along the line CC of FIG. 6A.
 収容トレイ110は、側壁部112と、側壁部112の下端に形成された底面部111と、側壁部112の上端縁に形成されたフランジ部113とを有し、収容トレイ110の上面は、栽培ユニット120を収容トレイ110の内部に出し入れするための開口となっている。収容トレイ110は、その内部に一定深さまで第1液体が溜まるように構成されている。 The storage tray 110 has a side wall portion 112, a bottom surface portion 111 formed at the lower end of the side wall portion 112, and a flange portion 113 formed at the upper end edge of the side wall portion 112, and the upper surface of the storage tray 110 is cultivated. An opening is provided to allow the unit 120 to be taken in and out of the storage tray 110. The storage tray 110 is configured such that the first liquid accumulates to a certain depth inside.
 この収容トレイ110の側壁部112の高さは、第2の炭酸水排出管105bの一端が貯留容器101の底面から突出する高さより高く、かつ、第2の酸素含有水排出管104bの一端が貯留容器101の底面から突出する高さより低い。これにより、貯留容器101に炭酸水Swを供給する場合に、第2の炭酸水排出管105bをオーバーフロー配管として機能させたとき、炭酸水Swが収容トレイ110の側壁部112を超えて収容トレイ110内に入り込むのを回避しつつ、収容トレイ110の周りでは炭酸水Swの水位を一定の水位に保つことができる。 The height of the side wall 112 of the storage tray 110 is higher than the height at which one end of the second carbonated water discharge pipe 105b protrudes from the bottom surface of the storage container 101, and one end of the second oxygen-containing water discharge pipe 104b is It is lower than the height protruding from the bottom surface of the storage container 101. Thereby, when supplying the carbonated water Sw to the storage container 101, when the second carbonated water discharge pipe 105 b functions as an overflow pipe, the carbonated water Sw exceeds the side wall portion 112 of the storage tray 110 and the storage tray 110. The water level of the carbonated water Sw can be maintained at a constant level around the storage tray 110 while avoiding entering the inside.
 また、貯留容器101に酸素水Wあるいはオゾン水Owを供給する場合に、第2の酸素含有水排出管104bをオーバーフロー配管として機能させたとき、貯留容器101に供給された酸素水Wあるいはオゾン水Owが収容トレイ110の側壁部112を超えて収容トレイ110内に侵入するようにすることができる。 In addition, when supplying the oxygen water W or the ozone water Ow to the storage container 101, the oxygen water W or the ozone water supplied to the storage container 101 when the second oxygen-containing water discharge pipe 104b functions as an overflow pipe. Ow can penetrate into the storage tray 110 beyond the side wall 112 of the storage tray 110.
 なお、収容トレイ110が酸素水Wあるいはオゾン水Owにより完全に水没した状態でも、第2の酸素含有水排出管104bはオーバーフロー配管として機能するので、酸素水Wあるいはオゾン水Owが貯留容器101からあふれ出ることはない。 Even when the storage tray 110 is completely submerged with the oxygen water W or the ozone water Ow, the second oxygen-containing water discharge pipe 104b functions as an overflow pipe, so that the oxygen water W or the ozone water Ow is discharged from the storage container 101. It will not overflow.
 〔栽培ユニット120〕
 図7は、図5(a)に示す収容容器100aにおける栽培ユニット120を説明するための図であり、図7(a)は、栽培ユニット120を示す斜視図であり、図7(b)は、図7(a)に示す栽培ユニット120をB7方向から見た構造を示し、図7(c)は、図7(a)のC7-C7線断面の構造を示し、図7(d)は、図7(a)に示す栽培ユニット120をD7方向から見た構造を示す。
[Cultivation unit 120]
FIG. 7 is a diagram for explaining the cultivation unit 120 in the container 100a shown in FIG. 5A, FIG. 7A is a perspective view showing the cultivation unit 120, and FIG. 7 (a) shows the structure of the cultivation unit 120 viewed from the B7 direction, FIG. 7 (c) shows the structure of the C7-C7 line cross section of FIG. 7 (a), and FIG. The structure which looked at the cultivation unit 120 shown to Fig.7 (a) from D7 direction is shown.
 栽培ユニット120を構成する板状体121には縦横に並ぶように複数の開口121aが形成されており、板状体121の下側には、複数の開口121aに対応する位置にカップ状体122が取り付けられており、カップ状体122の内部が植物栽培部123となっている。図7に示す実施形態において、栽培ユニットの大きさは、複数のカップ状体を収納可能な大きさである場合を示しているが、これに限定されない。例えば、栽培ユニットの大きさの大きさを、一つのカップ状体を収納可能な程度の大きさとしてもよい。カップ状体122の底面部にはカップ状体122の内部に第1液体(例えば、酸素水Wあるいはオゾン水Ow)を導入するための液体導入穴122aが形成されている。 A plurality of openings 121a are formed in the plate-like body 121 constituting the cultivation unit 120 so as to be arranged vertically and horizontally, and a cup-like body 122 is provided below the plate-like body 121 at a position corresponding to the plurality of openings 121a. Is attached, and the inside of the cup-shaped body 122 is a plant cultivation part 123. In the embodiment shown in FIG. 7, the size of the cultivation unit shows a case where a plurality of cup-shaped bodies can be stored, but is not limited thereto. For example, the size of the cultivation unit may be a size that can accommodate one cup-shaped body. A liquid introduction hole 122 a for introducing a first liquid (for example, oxygen water W or ozone water Ow) into the cup-like body 122 is formed on the bottom surface of the cup-like body 122.
 栽培ユニット120は、収容トレイ110上に栽培ユニット120を載置した状態では、収容トレイ110に溜まった第1液体がカップ状体122の液体導入穴122aから植物栽培部123に導入されるように構成されている。 In the state where the cultivation unit 120 is placed on the accommodation tray 110, the cultivation unit 120 is configured such that the first liquid accumulated in the accommodation tray 110 is introduced into the plant cultivation unit 123 from the liquid introduction hole 122 a of the cup-shaped body 122. It is configured.
 〔植物水耕栽培システム1000の使用方法〕
 図8および図9は、図2に示す植物水耕栽培システム1000の使用方法を説明するための図であり、図8は、収容容器100aを組み立てる作業を示し、図9は、収容容器100aを植物水耕栽培装置100の貯留容器101に配列する作業を示す。
[Usage method of plant hydroponics system 1000]
8 and 9 are diagrams for explaining a method of using the plant hydroponics system 1000 shown in FIG. 2, FIG. 8 shows an operation of assembling the storage container 100a, and FIG. 9 shows the storage container 100a. The operation | work arranged in the storage container 101 of the plant hydroponics apparatus 100 is shown.
 まず、栽培ユニット120の植物栽培部123に、例えば、イチゴやトマトなどの栽培する植物の根、茎、あるいは苗などを収容する。 First, for example, roots, stems, or seedlings of plants to be grown such as strawberries and tomatoes are accommodated in the plant cultivation unit 123 of the cultivation unit 120.
 次に、図8に示すように、収容トレイ110の内部に栽培ユニット120の複数のカップ状体122が収容されるように収容トレイ110上に栽培ユニット120を載せることにより、収容容器100aを組み立てる。 Next, as shown in FIG. 8, the container 100 a is assembled by placing the cultivation unit 120 on the accommodation tray 110 so that the plurality of cup-shaped bodies 122 of the cultivation unit 120 are accommodated inside the accommodation tray 110. .
 その後、図9に示すように、植物水耕栽培装置100の貯留容器101の底面上に収容容器100aを一定の間隔を空けて配置する。 Thereafter, as shown in FIG. 9, the storage container 100 a is arranged on the bottom surface of the storage container 101 of the plant hydroponic cultivation apparatus 100 with a certain interval.
 これにより、植物水耕栽培システム1000により植物の生育が可能な状態(スタンバイ状態)となる。 Thus, the plant hydroponics system 1000 is in a state where the plant can be grown (standby state).
 〔植物水耕栽培システム1000の動作〕
 図10は、図2に示す植物水耕栽培システム1000のスタンバイ状態(液体を供給する前の状態)を示す図であり、図10(a)および図10(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面を示す。
[Operation of plant hydroponics system 1000]
FIG. 10 is a diagram showing a standby state (state before supplying liquid) of the plant hydroponics system 1000 shown in FIG. 2, and FIG. 10 (a) and FIG. 10 (b) are respectively shown in FIG. XX line cross section and YY line cross section.
 植物水耕栽培システム1000のスタンバイ状態では、図10に示すように、植物水耕栽培装置100の貯留容器101には液体は供給されていない。 In the standby state of the plant hydroponics system 1000, as shown in FIG. 10, the liquid is not supplied to the storage container 101 of the plant hydroponics apparatus 100.
 第1液体供給機構M1から第1液体として酸素水を貯留容器101に供給する場合、このスタンバイ状態で、第1の炭酸水排出管105aの開閉バルブ105a1および第2の炭酸水排出管105bの開閉バルブ105b1を閉じ、第1の酸素含有水排出管104aの開閉バルブ104a1を閉じ、第2の酸素含有水排出管104bの開閉バルブ104b1を開ける。 When oxygen water is supplied from the first liquid supply mechanism M1 to the storage container 101 as the first liquid, the open / close valve 105a1 and the second carbonated water discharge pipe 105b of the first carbonated water discharge pipe 105a are opened and closed in this standby state. The valve 105b1 is closed, the open / close valve 104a1 of the first oxygen-containing water discharge pipe 104a is closed, and the open / close valve 104b1 of the second oxygen-containing water discharge pipe 104b is opened.
 その後、第1液体供給機構M1から第1液体として酸素水が貯留容器101に供給されるように操作者が操作部30を操作すると、酸素含有水生成部12が動作することで、水に酸素が混合された酸素水Wが酸素含有水タンク11に供給されて酸素含有水タンク11に酸素水が溜まる。 Thereafter, when the operator operates the operation unit 30 so that oxygen water is supplied to the storage container 101 as the first liquid from the first liquid supply mechanism M1, the oxygen-containing water generation unit 12 operates, so that oxygen is added to the water. Is supplied to the oxygen-containing water tank 11, and the oxygen water is accumulated in the oxygen-containing water tank 11.
 酸素含有水タンク11に溜まった酸素水が送水部10により送水管102に送り出されると、酸素水Wが送水管102を通って貯留容器101の底面部に形成された液体流入穴101b(図9参照)から貯留容器101の内部に供給される。これにより貯留容器101内には液体流入穴101bから酸素水Wが流れ込み、貯留容器101内に溜まった酸素水の水位が徐々に上昇することとなる。 When the oxygen water accumulated in the oxygen-containing water tank 11 is sent out to the water supply pipe 102 by the water supply part 10, the oxygen water W passes through the water supply pipe 102 and forms a liquid inflow hole 101b formed in the bottom surface part of the storage container 101 (FIG. 9). To the inside of the storage container 101. As a result, the oxygen water W flows into the storage container 101 from the liquid inflow hole 101b, and the water level of the oxygen water stored in the storage container 101 gradually rises.
 図11は、図2に示す植物水耕栽培システム1000の稼働状態(酸素水Wが貯留容器101に供給されている状態)を説明するための図であり、図11(a)および図11(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面を示す。 FIG. 11 is a diagram for explaining the operating state of the plant hydroponics system 1000 shown in FIG. 2 (the state in which the oxygen water W is supplied to the storage container 101), and FIG. 11 (a) and FIG. b) shows the XX line cross section and the YY line cross section of FIG. 4 (a), respectively.
 図11に示すように、貯留容器101の底面部の液体流入穴101bから貯留容器101に供給された酸素水Wの水位が、収容トレイ110の側壁部112の高さに達するまでは、酸素水Wは収容トレイ110の内側には入り込まない。その後、貯留容器101に供給された酸素水Wの水位が上がって収容トレイ110の側壁部112の高さを越えると、貯留容器101内に供給された酸素水Wが収容トレイ110の側壁部112を超えて収容トレイ110の内部に流れ込む。 As shown in FIG. 11, until the water level of the oxygen water W supplied to the storage container 101 from the liquid inflow hole 101 b on the bottom surface of the storage container 101 reaches the height of the side wall 112 of the storage tray 110, W does not enter the inside of the storage tray 110. Thereafter, when the level of the oxygen water W supplied to the storage container 101 rises and exceeds the height of the side wall 112 of the storage tray 110, the oxygen water W supplied into the storage container 101 becomes the side wall 112 of the storage tray 110. Over to the inside of the storage tray 110.
 図12は、植物水耕栽培装置100の貯留容器101に供給された酸素水Wが収容トレイ110の内側に流れ込む様子を示す図であり、図12(a)および図12(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面を示す。 FIG. 12 is a diagram illustrating a state in which the oxygen water W supplied to the storage container 101 of the plant hydroponic cultivation apparatus 100 flows into the storage tray 110. FIGS. 12 (a) and 12 (b) The XX line cross section and the YY line cross section of Fig.4 (a) are shown.
 図12(a)に示すように、貯留容器101に供給された酸素水Wの水位が収容トレイ110の側壁部112の高さを越えると、収容トレイ110の内部に流れ込んで収容トレイ110の内部に酸素水Wが溜まる。 As shown in FIG. 12A, when the level of the oxygen water W supplied to the storage container 101 exceeds the height of the side wall 112 of the storage tray 110, it flows into the storage tray 110 and the inside of the storage tray 110. Oxygen water W accumulates in the water.
 収容トレイ110の内部に酸素水Wが溜まると、収容トレイ110内に配置されている栽培ユニット120のカップ状体122の液体導入穴122aから植物栽培部123に酸素水Wが浸入することとなる。これによりカップ状体122に収容されている植物に酸素水Wが供給される。 When the oxygen water W accumulates inside the storage tray 110, the oxygen water W enters the plant cultivation unit 123 from the liquid introduction hole 122 a of the cup-shaped body 122 of the cultivation unit 120 arranged in the storage tray 110. . Thereby, oxygen water W is supplied to the plant accommodated in the cup-shaped body 122.
 植物の呼吸に必要な量の酸素を含んだ酸素水Wが収容トレイ110内に溜まった時点で、操作者の操作あるいは水位検出センサーの検出出力により送水部10が停止すると、貯留容器101から収容トレイ110内への酸素水Wの流入も止まる。 When the water supply unit 10 is stopped by the operation of the operator or the detection output of the water level detection sensor when the oxygen water W containing oxygen in an amount necessary for plant respiration is accumulated in the storage tray 110, the water is stored from the storage container 101. The inflow of oxygen water W into the tray 110 is also stopped.
 図13は、植物水耕栽培装置100の貯留容器101から収容トレイ110への酸素水Wの流れが停止した状態を説明するための図であり、図13(a)および図13(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面を示す。 FIG. 13 is a diagram for explaining a state in which the flow of the oxygen water W from the storage container 101 of the plant hydroponics apparatus 100 to the storage tray 110 is stopped, and FIGS. 13 (a) and 13 (b) are diagrams. FIG. 4A shows a cross section taken along line XX and a cross section taken along line YY in FIG.
 図13に示すように、送水部10の停止により貯留容器101に溜まった酸素水Wの水位が収容トレイ110の側壁の高さを下回ると、貯留容器101から収容トレイ110への酸素水Wの流入が停止する。その後、貯留容器101に溜まった酸素水Wは、第1の酸素含有水排出管104を通して酸素含有水タンク11に排出される。 As shown in FIG. 13, when the water level of the oxygen water W accumulated in the storage container 101 due to the stop of the water supply unit 10 falls below the height of the side wall of the storage tray 110, the oxygen water W from the storage container 101 to the storage tray 110 Inflow stops. Thereafter, the oxygen water W stored in the storage container 101 is discharged to the oxygen-containing water tank 11 through the first oxygen-containing water discharge pipe 104.
 これにより、植物水耕栽培システム1000は、図10に示すように、植物水耕栽培装置100の貯留容器101への第2液体の供給が可能なスタンバイ状態となる。 Thereby, as shown in FIG. 10, the plant hydroponics system 1000 will be in the standby state which can supply the 2nd liquid to the storage container 101 of the plant hydroponic cultivation apparatus 100. As shown in FIG.
 この状態で、炭酸水Swを貯留容器101に供給する場合、第1の酸素含有水排出管104aおよび第2の酸素含有水排出管104bの開閉バルブ104a1および104b1を閉じ、第1の炭酸水排出管105aの開閉バルブ105a1を閉じ、第2の炭酸水排出管105bの開閉バルブ105b1を開けておく。これにより、貯留容器101に溜まる炭酸水Swの水位が、第2の炭酸水排出管105bの一端が貯留容器101の底面より突出する高さに相当する水位に設定されることとなる。 In this state, when the carbonated water Sw is supplied to the storage container 101, the open / close valves 104a1 and 104b1 of the first oxygen-containing water discharge pipe 104a and the second oxygen-containing water discharge pipe 104b are closed to discharge the first carbonated water. The open / close valve 105a1 of the pipe 105a is closed, and the open / close valve 105b1 of the second carbonated water discharge pipe 105b is opened. Thereby, the water level of the carbonated water Sw stored in the storage container 101 is set to a water level corresponding to a height at which one end of the second carbonated water discharge pipe 105 b protrudes from the bottom surface of the storage container 101.
 その後、第2液体供給機構M2から第2液体として炭酸水Swが貯留容器101に供給されるように操作者が操作部30を操作すると、炭酸水供給部20としての炭素混合機が起動して炭酸水Swを炭酸水供給管103に送り出す。これにより炭酸水Swが炭酸水供給管103に形成された供給穴(図示せず)から滴下して貯留容器101内に溜まる。 Thereafter, when the operator operates the operation unit 30 so that carbonated water Sw is supplied to the storage container 101 as the second liquid from the second liquid supply mechanism M2, the carbon mixer as the carbonated water supply unit 20 is activated. The carbonated water Sw is sent out to the carbonated water supply pipe 103. As a result, carbonated water Sw drops from a supply hole (not shown) formed in the carbonated water supply pipe 103 and accumulates in the storage container 101.
 図14は、図2に示す植物水耕栽培システム1000の稼働状態(炭酸水が容器本体101に供給されている状態)を説明するための図であり、図14(a)および図14(b)はそれぞれ、図4(a)のX-X線断面及びY-Y線断面の構造を示す。 FIG. 14 is a diagram for explaining an operating state of the plant hydroponic cultivation system 1000 shown in FIG. 2 (a state in which carbonated water is supplied to the container body 101), and FIG. 14 (a) and FIG. 14 (b) ) Show the structures of the XX line cross section and the YY line cross section of FIG.
 炭酸水Swの貯留容器101への供給では、貯留容器101につながる第1の酸素含有水排出管104a、第2の酸素含有水排出管104b、第1の炭酸水排出管105aおよび第2の炭酸水排出管105bのうちの第2の炭酸水排出管105bの開閉バルブ105b1のみが開いているので、第2の炭酸水排出管105bの一端が貯留容器101の底面部から突出する高さで炭酸水Swの水位が決まる。この場合、炭酸水Swの水位は、収容トレイ110の側壁の高さを越えない水位となっている。 In supplying the carbonated water Sw to the storage container 101, the first oxygen-containing water discharge pipe 104a, the second oxygen-containing water discharge pipe 104b, the first carbonated water discharge pipe 105a, and the second carbonic acid connected to the storage container 101 are used. Since only the open / close valve 105b1 of the second carbonated water discharge pipe 105b of the water discharge pipe 105b is open, the carbonic acid carbonate is at a height at which one end of the second carbonated water discharge pipe 105b protrudes from the bottom surface of the storage container 101. The water level of the water Sw is determined. In this case, the water level of the carbonated water Sw is a water level that does not exceed the height of the side wall of the storage tray 110.
 従って、炭酸水Swは図14に示すように収容トレイ110を越えて栽培ユニット120に供給されることはなく、収容トレイ110の周りで蒸発した二酸化炭素が栽培ユニット120の植物栽培部123に収容されている植物の葉から吸収される。このため、栽培ユニット120の周辺では、長時間にわたって二酸化炭素濃度を一定に保つことができ、植物の光合成を効率よく行われることとなる。 Accordingly, the carbonated water Sw is not supplied to the cultivation unit 120 beyond the accommodation tray 110 as shown in FIG. 14, and the carbon dioxide evaporated around the accommodation tray 110 is accommodated in the plant cultivation unit 123 of the cultivation unit 120. It is absorbed from the leaves of plants that have been. For this reason, around the cultivation unit 120, the carbon dioxide concentration can be kept constant over a long period of time, and plant photosynthesis can be performed efficiently.
 植物の光合成の時間帯が過ぎると、炭酸水供給管103による炭酸水Swの供給が停止し、第1の炭酸水排出管105aの開閉バルブ105a1を開けることにより、貯留容器101に溜まっている炭酸水Swを炭酸水タンク21に排出する。炭酸水Swは貯留容器などの装置の殺菌する効果を奏する。必要に応じて、貯留容器などの装置の殺菌を行う場合に、炭酸水Swを供給してもよい。殺菌するために炭酸水を供給する場合、二酸化炭素濃度が高いほど殺菌効果を得ることができるため、二酸化炭素濃度を高くしてもよい。 When the time period for plant photosynthesis passes, the supply of carbonated water Sw by the carbonated water supply pipe 103 is stopped, and the open / close valve 105a1 of the first carbonated water discharge pipe 105a is opened, so that the carbonic acid accumulated in the storage container 101. Water Sw is discharged into the carbonated water tank 21. The carbonated water Sw has an effect of sterilizing an apparatus such as a storage container. If necessary, carbonated water Sw may be supplied when sterilizing an apparatus such as a storage container. When supplying carbonated water for sterilization, the higher the carbon dioxide concentration, the higher the sterilization effect can be obtained, so the carbon dioxide concentration may be increased.
 その後、植物の生育状態に応じて殺菌などの処理を行う場合は、第1液体供給機構M1により収容トレイ110の内部にオゾン水Owを供給する。 Thereafter, when processing such as sterilization is performed according to the growth state of the plant, ozone water Ow is supplied into the storage tray 110 by the first liquid supply mechanism M1.
 この場合、操作者は、第2の酸素含有水排出管104bの開閉バルブ104b1を開け、第1の酸素含有水排出管104aの開閉バルブ104a1、第1の炭酸水排出管105aの開閉バルブ105a1、および第2の炭酸水排出管105bの開閉バルブ105b1を閉じておく。これにより、貯留容器101に溜まるオゾン水Owの水位が第2の酸素含有水排出管104bの一端が貯留容器101の底面から突出する寸法により設定されることとなる。 In this case, the operator opens the open / close valve 104b1 of the second oxygen-containing water discharge pipe 104b, opens / closes the open / close valve 104a1 of the first oxygen-containing water discharge pipe 104a, and the open / close valve 105a1 of the first carbonated water discharge pipe 105a. The opening / closing valve 105b1 of the second carbonated water discharge pipe 105b is closed. Thereby, the water level of the ozone water Ow collected in the storage container 101 is set by the dimension in which one end of the second oxygen-containing water discharge pipe 104b protrudes from the bottom surface of the storage container 101.
 その後、操作者は、第1液体供給機構M1が収容トレイ110の内部にオゾン水Owを供給するように送水部10を操作すると、酸素発生部13が起動した状態で酸素含有水生成部12が動作することで、オゾン水Owが酸素含有水タンク11に供給されて酸素含有水タンク11にオゾン水Owが溜まる。 Thereafter, when the operator operates the water supply unit 10 so that the first liquid supply mechanism M1 supplies the ozone water Ow to the inside of the storage tray 110, the oxygen-containing water generation unit 12 is activated with the oxygen generation unit 13 activated. By operating, the ozone water Ow is supplied to the oxygen-containing water tank 11, and the ozone water Ow is accumulated in the oxygen-containing water tank 11.
 酸素含有水タンク11に溜まったオゾン水Owが送水部10により送水管102に送り出されると、オゾン水Owが送水管102を通って貯留容器101の底面部に形成された液体流入穴101b(図9参照)から貯留容器101の内部に供給される。 When the ozone water Ow accumulated in the oxygen-containing water tank 11 is sent out to the water supply pipe 102 by the water supply section 10, the ozone water Ow passes through the water supply pipe 102 and is formed into a liquid inflow hole 101b formed in the bottom surface portion of the storage container 101 (FIG. 9) to the inside of the storage container 101.
 この場合、酸素水Wの供給で説明したように、図11に示すように、貯留容器101の底面部の液体流入穴101bから貯留容器101に供給されたオゾン水Owの水位が、収容トレイ110の側壁部112の高さに達するまでは、収容トレイ110の内側には入り込まない。その後、貯留容器101に供給されたオゾン水Owの水位が上がって収容トレイ110の側壁部112の高さを越えると、貯留容器101内に供給されたオゾン水Owが収容トレイ110の側壁部112を超えて収容トレイ110の内部に流れ込み、収容トレイ110の内部に流れ込んで収容トレイ110の内部にオゾン水Owが溜まる。 In this case, as described in the supply of the oxygen water W, as shown in FIG. 11, the water level of the ozone water Ow supplied to the storage container 101 from the liquid inflow hole 101 b on the bottom surface of the storage container 101 is the storage tray 110. Until it reaches the height of the side wall 112, it does not enter the inside of the storage tray 110. Thereafter, when the water level of the ozone water Ow supplied to the storage container 101 rises and exceeds the height of the side wall 112 of the storage tray 110, the ozone water Ow supplied into the storage container 101 becomes the side wall 112 of the storage tray 110. And flows into the storage tray 110, flows into the storage tray 110, and the ozone water Ow accumulates in the storage tray 110.
 収容トレイ110の内部にオゾン水Owが溜まると、収容トレイ110内に配置されている栽培ユニット120のカップ状体122の液体導入穴122aから植物栽培部123にオゾン水Owが浸入することとなる。これによりカップ状体122に収容されている植物にオゾン水Owが供給され、殺菌が行われる。オゾン水Owは植物の殺菌以外に、貯留容器などの装置の殺菌効果も奏する。植物の殺菌に代えて、必要に応じて、貯留容器などの装置の殺菌を行う場合に、オゾン水Owを供給してもよい。 When the ozone water Ow accumulates inside the storage tray 110, the ozone water Ow enters the plant cultivation unit 123 from the liquid introduction hole 122a of the cup-shaped body 122 of the cultivation unit 120 disposed in the storage tray 110. . Thereby, ozone water Ow is supplied to the plant accommodated in the cup-shaped body 122, and sterilization is performed. Ozone water Ow also has the effect of sterilizing devices such as storage containers in addition to sterilizing plants. Instead of plant sterilization, ozone water Ow may be supplied as necessary when sterilizing an apparatus such as a storage container.
 植物の殺菌に必要な量のオゾンを含むオゾン水Owが収容トレイ110内に溜まった時点で、操作者の操作あるいは水位検出センサーの検出出力により送水部10が停止すると、貯留容器101から収容トレイ110内への水の流入も止まる。 When ozone water Ow containing an amount of ozone necessary for plant sterilization is accumulated in the storage tray 110, when the water supply unit 10 is stopped by the operation of the operator or the detection output of the water level detection sensor, the storage tray 101 starts the storage tray. Inflow of water into 110 is also stopped.
 図13に示すように、送水部10の停止により貯留容器101に溜まったオゾン水の水位が収容トレイ110の側壁の高さを下回ると、貯留容器101から収容トレイ110へのオゾン水の流入が停止する。その後、操作者が、第1の酸素含有水排出栓104aの開閉バルブ104a1を開けることにより、貯留容器101に溜まったオゾン水は、第1の酸素含有水排出管104aを通して酸素含有水タンク11に排出される。 As shown in FIG. 13, when the water level of the ozone water accumulated in the storage container 101 by the stop of the water supply unit 10 is lower than the height of the side wall of the storage tray 110, the inflow of ozone water from the storage container 101 to the storage tray 110 is performed. Stop. Thereafter, the operator opens the opening / closing valve 104a1 of the first oxygen-containing water discharge plug 104a, so that the ozone water accumulated in the storage container 101 is transferred to the oxygen-containing water tank 11 through the first oxygen-containing water discharge pipe 104a. Discharged.
 これにより、植物水耕栽培システム1000は、植物水耕栽培装置100の貯留容器101への液体の供給が可能なスタンバイ状態となる。 Thereby, the plant hydroponics system 1000 will be in the standby state which can supply the liquid to the storage container 101 of the plant hydroponic cultivation apparatus 100.
 なお、実施形態では、第1の酸素含有水排出管104a、第2の酸素含有水排出管104b、第1の炭酸水排出管105a、および第2の炭酸水排出管105bの開閉バルブの開閉や、送水部10および炭酸水供給部20の起動および停止を操作者が行う場合について説明したが、これらの操作は、タイマーや植物の状態を検知する各種センサーの出力に基づいて自動で行うようにしてもよい。 In the embodiment, the opening and closing valves of the first oxygen-containing water discharge pipe 104a, the second oxygen-containing water discharge pipe 104b, the first carbonated water discharge pipe 105a, and the second carbonated water discharge pipe 105b are opened and closed. The case where the operator starts and stops the water supply unit 10 and the carbonated water supply unit 20 has been described. However, these operations are automatically performed based on outputs of timers and various sensors that detect the state of the plant. May be.
 例えば、植物の状態(例えば、病気や成長不良)を検出するセンサーを設け、操作部に搭載された制御装置により、その検出出力に基づいて殺菌のためのオゾン水Owを植物に供給したり、養分となる溶液を供給したりするようにしてもよい。 For example, a sensor that detects the state of the plant (for example, disease or growth failure) is provided, and the control device mounted on the operation unit supplies ozone water Ow for sterilization to the plant based on the detection output, You may make it supply the solution used as a nutrient.
 また、貯留容器101への第1液体もしくは第2液体の供給を自動制御で行う場合は、第1液体供給機構M1と第2液体供給機構M2とを排他的に駆動するようにしてもよい。これにより異なる液体である第1液体と第2液体とが混ざり合うのを回避することが可能となる。 Further, when the first liquid or the second liquid is supplied to the storage container 101 by automatic control, the first liquid supply mechanism M1 and the second liquid supply mechanism M2 may be exclusively driven. This makes it possible to avoid mixing the first liquid and the second liquid, which are different liquids.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. It is understood that the documents cited in the present specification should be incorporated by reference into the present specification in the same manner as the content itself is specifically described in the present specification.
 本発明は、植物水耕栽培装置、植物水耕栽培システムおよび栽培方法の分野において、栽培する植物に提供する液体の種類に応じて植物による液体の吸収および液体から蒸発した気体の吸収をより均一に行われるようにすることができる植物水耕栽培装置、植物水耕栽培システムおよび栽培方法を実現することができるものとして有用である。 In the field of plant hydroponic cultivation apparatus, plant hydroponic cultivation system and cultivation method, the present invention more uniformly absorbs liquid by a plant and absorbs gas evaporated from the liquid according to the type of liquid to be cultivated. It is useful as what can implement | achieve the plant hydroponic cultivation apparatus, plant hydroponic cultivation system, and cultivation method which can be made to be performed.
 10 送水部
 10a 吸水管
 10a1 吸水管栓
 10b 水吐出管
 10b1 水吐出管栓
 11 酸素含有水タンク(第1液体タンク)
 11a 酸素含有水吸入管
 11a1 酸素含有水吸入管栓
 11b 酸素含有水吐出管
 11b1 酸素含有水吐出管栓
 11c 微細気泡発生装置
 12 酸素含有水生成部(第1液体生成部)
 12a 酸素含有水回収管
 12b 酸素含有水吐出管
 13 酸素発生部(第1気体生成部)
 20 炭酸水供給部(第2液体供給部)
 21 炭酸水タンク(第2液体タンク)
 30 操作部
 100 植物水耕栽培装置
 101 貯留容器
 101a 容器脚部
 101b 液体流入穴
 102 送水管
 102a 送水幹管
 102b 送水連結管
 102b1 送水連結管弁
 102c 送水枝管
 103 炭酸水供給管
 104a 第1の酸素含有水排出管
 104b 第2の酸素含有水排出管
 104c 酸素含有水排出フィルタ
 105a 第1の炭酸水排出管
 105a1、105b1 開閉バルブ
 105b 第2の炭酸水排出管
 105c 炭酸水排出フィルタ
 100a 収容容器
 110 収容トレイ(外容器)
 111 トレイ底面部
 112 トレイ側壁部
 113 トレイフランジ部
 120 栽培ユニット(内容器)
 121 板状体
 122 カップ状体
 122a 液体導入穴
 123 植物栽培部
 1000 植物水耕栽培システム
 C10、C11、C12、C20 制御信号
 H1~H5 連結ホース
 W 酸素水
 Ow オゾン水
 Sw 炭酸水
DESCRIPTION OF SYMBOLS 10 Water supply part 10a Water absorption pipe 10a1 Water absorption pipe stopper 10b Water discharge pipe 10b1 Water discharge pipe stopper 11 Oxygen containing water tank (1st liquid tank)
11a Oxygen-containing water suction pipe 11a1 Oxygen-containing water suction pipe stopper 11b Oxygen-containing water discharge pipe 11b1 Oxygen-containing water discharge pipe stopper 11c Fine bubble generator 12 Oxygen-containing water generation section (first liquid generation section)
12a Oxygen-containing water recovery pipe 12b Oxygen-containing water discharge pipe 13 Oxygen generator (first gas generator)
20 Carbonated water supply unit (second liquid supply unit)
21 Carbonated water tank (second liquid tank)
DESCRIPTION OF SYMBOLS 30 Operation part 100 Plant hydroponic cultivation apparatus 101 Storage container 101a Container leg part 101b Liquid inflow hole 102 Water supply pipe 102a Water supply trunk pipe 102b Water supply connection pipe 102b1 Water supply connection pipe valve 102c Water supply branch pipe 103 Carbonated water supply pipe 104a 1st oxygen Contained water discharge pipe 104b Second oxygen-containing water discharge pipe 104c Oxygen-containing water discharge filter 105a First carbonated water discharge pipe 105a1, 105b1 Open / close valve 105b Second carbonated water discharge pipe 105c Carbonated water discharge filter 100a Container 110 Tray (outer container)
111 Tray bottom part 112 Tray side wall part 113 Tray flange part 120 Cultivation unit (inner container)
121 Plate-shaped body 122 Cup-shaped body 122a Liquid introduction hole 123 Plant cultivation part 1000 Plant hydroponics system C10, C11, C12, C20 Control signal H1-H5 Connection hose W Oxygen water Ow Ozone water Sw Carbonated water

Claims (16)

  1.  液体を溜めるための貯留容器と、
     第1液体を前記貯留容器に、第1水位で提供する第1液体供給機構と、
     第2液体を前記貯留容器に、第2水位で提供する第2液体供給機構と、
     を備える、植物水耕栽培装置。
    A storage container for storing liquid;
    A first liquid supply mechanism for providing a first liquid to the storage container at a first water level;
    A second liquid supply mechanism for providing a second liquid to the storage container at a second water level;
    A plant hydroponic cultivation apparatus.
  2.  前記貯留容器は、その内部に植物を収容する収容容器が配置されるように構成されており、前記第1水位は、前記収容容器内に前記第1液体が浸入する水位であり、前記第2水位は、前記収容容器内に前記第2液体が浸入しない水位である、請求項1に記載の植物水耕栽培装置。 The storage container is configured such that a storage container for storing a plant is disposed therein, and the first water level is a water level at which the first liquid enters the storage container, and the second water level is The plant hydroponics apparatus according to claim 1, wherein the water level is a water level at which the second liquid does not enter the storage container.
  3. 前記第1液体供給機構は、前記貯留容器の底面から前記第1液体を供給するように構成されている、請求項1または2に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to claim 1 or 2, wherein the first liquid supply mechanism is configured to supply the first liquid from a bottom surface of the storage container.
  4. 前記第2液体供給機構は、前記第1液体の供給位置よりも高い位置から第2気液を供給するように構成されている、請求項1~3のいずれか1項に記載の植物水耕栽培装置。 The plant hydroponic according to any one of claims 1 to 3, wherein the second liquid supply mechanism is configured to supply the second gas / liquid from a position higher than a supply position of the first liquid. Cultivation equipment.
  5. 前記第1液体は、第1気体を液体中に混合した第1気液であり、前記第2液体は、第2気体を液体中に混合した第2気液である、請求項1~4のいずれか1項に記載の植物水耕栽培装置。 The first liquid according to claim 1, wherein the first liquid is a first gas-liquid in which a first gas is mixed in a liquid, and the second liquid is a second gas-liquid in which a second gas is mixed in the liquid. The plant hydroponics apparatus of any one of Claims.
  6. 前記第1気体が、酸素またはオゾンである、請求項5に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to claim 5, wherein the first gas is oxygen or ozone.
  7. 前記第2気体が、二酸化炭素である、請求項5または6に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to claim 5 or 6, wherein the second gas is carbon dioxide.
  8. 前記第1気体および/または第2気体がマイクロバブルの状態である、請求項5~7のいずれか1項に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to any one of claims 5 to 7, wherein the first gas and / or the second gas is in a microbubble state.
  9. 前記第1気体および/または第2気体がナノバブルの状態である、請求項5~7のいずれか1項に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to any one of claims 5 to 7, wherein the first gas and / or the second gas is in a nanobubble state.
  10. 前記第1液体供給機構と前記第2液体供給機構とを排他的に駆動するように制御する液体供給機構制御部を備える、請求項1~9のいずれか1項に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to any one of claims 1 to 9, further comprising a liquid supply mechanism control unit configured to control the first liquid supply mechanism and the second liquid supply mechanism to be exclusively driven. .
  11. 前記第1液体供給機構が、酸素またはオゾンから第1気体を選択する第1気液制御部を備える、請求項1~10のいずれか1項に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to any one of claims 1 to 10, wherein the first liquid supply mechanism includes a first gas-liquid control unit that selects a first gas from oxygen or ozone.
  12. 植物の状態を検出するためのセンサーを備える、請求項1~11のいずれか1項に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to any one of claims 1 to 11, further comprising a sensor for detecting a state of the plant.
  13. 前記貯留容器が、前記第1水位に対応する第1開口部と、前記第2水位に対応する第2開口部とを備える、請求項1~12のいずれか1項に記載の植物水耕栽培装置。 The plant hydroponics according to any one of claims 1 to 12, wherein the storage container includes a first opening corresponding to the first water level and a second opening corresponding to the second water level. apparatus.
  14. 前記第1開口部は、前記第2開口部よりも高い位置に設けられる、請求項13に記載の植物水耕栽培装置。 The plant hydroponic cultivation apparatus according to claim 13, wherein the first opening is provided at a position higher than the second opening.
  15. 植物を収容する収容容器と、
    請求項1~14のいずれか1項に記載の植物水耕栽培装置とを備える、植物水耕栽培システム。
    A storage container for storing plants;
    A plant hydroponic cultivation system comprising the plant hydroponic cultivation apparatus according to any one of claims 1 to 14.
  16. 植物の栽培方法であって、
     請求項1~14のいずれか1項に記載の植物水耕栽培装置、または請求項15に記載の植物水耕栽培システムを用いて、植物を栽培する工程
    を包含する、栽培方法。
    A plant cultivation method,
    A cultivation method comprising a step of cultivating a plant using the plant hydroponic cultivation apparatus according to any one of claims 1 to 14 or the plant hydroponic cultivation system according to claim 15.
PCT/JP2018/014276 2017-04-04 2018-04-03 Plant hydroponic cultivation device, plant hydroponic cultivation system, and cultivation method WO2018186401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074730A JP6254734B1 (en) 2017-04-04 2017-04-04 Plant hydroponic cultivation apparatus, plant hydroponic cultivation system, and cultivation method
JP2017-074730 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018186401A1 true WO2018186401A1 (en) 2018-10-11

Family

ID=60860172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014276 WO2018186401A1 (en) 2017-04-04 2018-04-03 Plant hydroponic cultivation device, plant hydroponic cultivation system, and cultivation method

Country Status (3)

Country Link
JP (1) JP6254734B1 (en)
TW (1) TW201838509A (en)
WO (1) WO2018186401A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714174B (en) * 2019-07-19 2020-12-21 林柏翰 Nanobubble manufacturing method and system thereof, and fertilizer manufacturing method and system thereof
KR102400629B1 (en) * 2021-10-27 2022-05-20 주식회사 지에스에프시스템 Plant cultivation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110028A (en) * 2009-11-30 2011-06-09 Tokuju Kogyo Co Ltd Method and device for cultivating plant
JP2015053888A (en) * 2013-09-11 2015-03-23 パナソニック株式会社 Hydroponic device
JP2015097509A (en) * 2013-11-19 2015-05-28 サンスター技研株式会社 Plant cultivation method using superfine particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110028A (en) * 2009-11-30 2011-06-09 Tokuju Kogyo Co Ltd Method and device for cultivating plant
JP2015053888A (en) * 2013-09-11 2015-03-23 パナソニック株式会社 Hydroponic device
JP2015097509A (en) * 2013-11-19 2015-05-28 サンスター技研株式会社 Plant cultivation method using superfine particles

Also Published As

Publication number Publication date
TW201838509A (en) 2018-11-01
JP6254734B1 (en) 2017-12-27
JP2018174730A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US10999985B2 (en) Fogponic plant growth system
JP4707769B1 (en) Agricultural liquid supply equipment
US9992940B2 (en) Hydroponic cultivation device
US20160212948A1 (en) Automated Greenhouse
CN106170201B (en) High-density soilless plant growth system and method
JP4754512B2 (en) Sanitizable hydroponics apparatus and hydroponics method
WO2018186401A1 (en) Plant hydroponic cultivation device, plant hydroponic cultivation system, and cultivation method
JP5735749B2 (en) Plant growing machine
JPH09285230A (en) Hydroponic apparatus
KR20160030999A (en) Hydroponic cultivation device and hydroponic cultivation method
KR101845132B1 (en) Apparatus for aeroponic cultivation of crops
JP2011110028A (en) Method and device for cultivating plant
KR20190022775A (en) Hydroponic cultivation device and hydroponic cultivation method
JP5345691B2 (en) Spray tillage cultivation equipment
EP2873724A1 (en) Incubator and method for decontaminating incubator
KR20160081120A (en) Automatically controlled growing conditions and plant nutrient solution supply plant cultivating device
JP4705501B2 (en) Vertical hydroponics equipment
TWM537792U (en) Organic soil aerosol culture device
JP2018174912A (en) Plant hydroponic apparatus, plant hydroponic system, and cultivation method
JP2012024012A (en) Hydroponic method and hydroponic device
JP5615501B2 (en) Plant cultivation equipment
KR20160058376A (en) Nutriculture system for leaf vegetables and fruit vegetables using micro and/or nano bubbles and apparatus used in the system for sterilizing nutrient solution using ozone
KR20220142156A (en) Cultivation apparatus with fog sterilizing device
JP2011172539A (en) Cultivation device
JP5113235B2 (en) Vertical hydroponics equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780591

Country of ref document: EP

Kind code of ref document: A1