JP2011110028A - Method and device for cultivating plant - Google Patents

Method and device for cultivating plant Download PDF

Info

Publication number
JP2011110028A
JP2011110028A JP2009272251A JP2009272251A JP2011110028A JP 2011110028 A JP2011110028 A JP 2011110028A JP 2009272251 A JP2009272251 A JP 2009272251A JP 2009272251 A JP2009272251 A JP 2009272251A JP 2011110028 A JP2011110028 A JP 2011110028A
Authority
JP
Japan
Prior art keywords
cultivation
liquid
carbon dioxide
plant
nanobubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009272251A
Other languages
Japanese (ja)
Inventor
Eishiro Sakatani
英志郎 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUJU KOGYO Co Ltd
Original Assignee
TOKUJU KOGYO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUJU KOGYO Co Ltd filed Critical TOKUJU KOGYO Co Ltd
Priority to JP2009272251A priority Critical patent/JP2011110028A/en
Publication of JP2011110028A publication Critical patent/JP2011110028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for cultivating plants, by supplying carbon dioxide nanobubbles to a cultivation liquid so as to promote plant photosynthesis. <P>SOLUTION: This method for cultivating plants includes growing by arranging a plant seedling 20 on a cultivation bed 3 floatingly arranged on a cultivation liquid 2, and supplying carbon dioxide nanobubbles to the cultivation liquid 2 to let the plant seedling 20 absorb from the root part 22. As a result of the structure, carbon dioxide nanobubbles are taken into the cell from the plant root, and by synergy with the absorption of carbon dioxide from leaf pores, the absorption amount of carbon dioxide to chlorophyl is increased to promote plant photosynthesis. The device for cultivating plants includes a cultivation water tank 1 into which the cultivation liquid 2 is charged, the cultivation bed 3 supporting the plant seedling 20, and a nanobubble feeding device 10 receiving the supply of carbon dioxide to generate nanobubbles, and supplying carbon dioxide nanobubbles to the cultivation liquid 2. As a result of this, carbon dioxide nanobubbles are efficiently supplied to the cultivation liquid 2, and the absorption amount of carbon dioxide is increased to promote plant photosynthesis. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本願発明は、水耕栽培において植物の光合成作用を高めてその生育の促進を図るようにした植物栽培方法及びこの栽培方法に適した植物栽培装置に関するものである。   The present invention relates to a plant cultivation method in which the photosynthetic action of plants is enhanced in hydroponics to promote the growth thereof, and a plant cultivation apparatus suitable for this cultivation method.

植物の生育は、葉細胞中の葉緑素において、太陽光から吸収した光エネルギーを使い、葉の気孔から吸収した大気中の二酸化炭素(CO2)と根から吸収した水を用いて酸素と糖類を作り出す、いわゆる光合成に支配される。従って、植物の生育を促進するためには、光合成作用を高めることが有効である(非特許文献1参照)。   Plant growth uses oxygen energy absorbed from sunlight in chlorophyll in leaf cells to produce oxygen and sugars using atmospheric carbon dioxide (CO2) absorbed from the pores of leaves and water absorbed from the roots. Dominated by so-called photosynthesis. Therefore, in order to promote the growth of plants, it is effective to enhance the photosynthetic action (see Non-Patent Document 1).

ところで、上掲の非特許文献1にも示されるように、植物の光合成は、光の強さ(光エネルギーの大きさ)、環境温度、環境中の二酸化炭素濃度によって変化することが知られている。また、光が強い条件下では、光合成速度には環境温度は殆ど関与せず、専ら光の強さと二酸化炭素濃度に支配され、強い光の下で二酸化炭素濃度を高めることで光合成速度が高められることも知られている。このことは、例えば、光の強さを適正に保持した場合、光合成速度は二酸化炭素濃度のみに支配され、二酸化炭素濃度が高いほど光合成速度が高められる(光合成が促進される)ということになる。   By the way, as also shown in the above-mentioned Non-Patent Document 1, it is known that the photosynthesis of plants varies depending on the intensity of light (the magnitude of light energy), the environmental temperature, and the concentration of carbon dioxide in the environment. Yes. Also, under strong light conditions, the ambient temperature is hardly involved in the photosynthetic rate, and it is governed exclusively by the intensity of light and the carbon dioxide concentration, and the photosynthesis rate is increased by increasing the carbon dioxide concentration under strong light. It is also known. This means that, for example, when the intensity of light is appropriately maintained, the photosynthesis rate is governed only by the carbon dioxide concentration, and the higher the carbon dioxide concentration, the higher the photosynthesis rate (the photosynthesis is promoted). .

このような栽培環境における二酸化炭素濃度を高める技術として、例えば、特許文献1には、イチゴ等のハウス栽培において、植物の栽培環境に二酸化炭素を供給してその濃度を高める技術が示されている。   As a technique for increasing the carbon dioxide concentration in such a cultivation environment, for example, Patent Document 1 discloses a technique for supplying carbon dioxide to a plant cultivation environment and increasing the concentration in house cultivation such as strawberries. .

また、特許文献2には、二酸化炭素濃度の高い空気を栽培液中に供給して、植物の根の周りの酸素濃度を高めると同時に、二酸化炭素によって栽培液の酸化を抑制(即ち、栽培液のPH調整)する技術が示されている。   In Patent Document 2, air having a high carbon dioxide concentration is supplied into the cultivation liquid to increase the oxygen concentration around the roots of the plant, and at the same time, the oxidation of the cultivation liquid is suppressed by carbon dioxide (that is, the cultivation liquid). The technique of adjusting the PH of the above is shown.

一方、非特許文献2には、マイクロバブル及びナノバブルの生成、及び液中にナノバブルを供給する技術が提案されている。ここで、マイクロバブルは直径が50μm以下の微細気泡である。また、ナノバブルは、マイクロバブルよりもさらに微細な気泡(直径が1μm以下)であって、マイクロバブルが水中で圧壊する過程において生成される。このナノバブルは非常に不安定であってナノバブルを長期に亘って液中に保持することが技術的に困難とされていたが、近年の研究によって、ナノバブルの安定化技術が開発されたことから、その活用法が求められている。   On the other hand, Non-Patent Document 2 proposes a technique for generating microbubbles and nanobubbles and supplying nanobubbles in a liquid. Here, the microbubble is a fine bubble having a diameter of 50 μm or less. Nanobubbles are finer bubbles (diameter of 1 μm or less) than microbubbles, and are generated in a process in which microbubbles are crushed in water. These nanobubbles were very unstable and it was technically difficult to keep the nanobubbles in the liquid for a long time, but in recent years, nanobubble stabilization technology has been developed, The utilization method is demanded.

なお、このようなナノバブルの安定性の原因については未だ研究段階にあって明確な結論はでていないものの、実験結果等から、非特許文献2においては以下のように推論している。   Although the cause of the stability of such nanobubbles is still in the research stage and no clear conclusion has been reached, non-patent document 2 infers from the experimental results as follows.

第1の推論は、電解質イオンを含む水の中でマイクロバブルの圧壊する過程で、水中のイオン類が気泡周囲に凝縮することで静電気的な反発力を生じて気泡が完全に消滅するのが抑制され、これによってナノバブルが安定的に存在するというものであり、第2の推論は、濃縮したイオン類が気泡を包み込む殻として作用することで、内部の気体の散逸が防止され、これによってナノバブルが安定的に存在するというものである。   The first reason is that in the process of crushing microbubbles in water containing electrolyte ions, ions in the water condense around the bubbles, creating an electrostatic repulsive force, and the bubbles completely disappear. The second reasoning is that the concentrated ions act as a shell that encloses the bubbles, thereby preventing the escape of the internal gas, thereby preventing the nanobubbles. Exists stably.

ナノバブルの安定化技術の開発に伴う上記要求に応えるべく、マイクロバブルとかナノバブルを水耕栽培に利用する技術が開発され、これが提案されるに至った(例えば、特許文献3、特許文献4参照)。   In order to meet the above-mentioned demands associated with the development of nanobubble stabilization technology, a technology for utilizing microbubbles or nanobubbles for hydroponics has been developed and has been proposed (see, for example, Patent Document 3 and Patent Document 4). .

特許文献3に示される技術は、空気をマイクロバブルとして栽培液に供給した場合における該栽培液に対する酸素の溶解度は、空気をそのまま栽培液に供給した場合における酸素の溶解度に比して、格段に高いとの知見に基づいて、空気をマイクロバブルとして栽培液に供給することで、該栽培液中の溶存酸素量を増加させて植物の根からの酸素吸入を促進させる技術である。   In the technique shown in Patent Document 3, the solubility of oxygen in the cultivation liquid when air is supplied to the cultivation liquid as microbubbles is significantly higher than the solubility of oxygen in the case where air is supplied to the cultivation liquid as it is. Based on the knowledge that it is high, it is a technology that promotes oxygen inhalation from the roots of plants by increasing the amount of dissolved oxygen in the cultivation liquid by supplying air as microbubbles to the cultivation liquid.

特許文献4に示される技術は、オゾンをマイクロバブルとかナノバブルとして栽培液中に供給し、オゾンの有する殺菌性を利用して栽培液の殺菌・除菌を行なう技術である。   The technique disclosed in Patent Document 4 is a technique in which ozone is supplied into the cultivation liquid as microbubbles or nanobubbles, and the cultivation liquid is sterilized and sterilized using the bactericidal properties of ozone.

NHK高校講座 生物 「第38回 第6部 環境と植物の反応 光合成と環境条件」 http://www.nhk.or.jp/kokokoza/tv/seibutsu/archive/resume038.htmlNHK High School Course Biology “38th Part 6 Environment and Plant Reactions Photosynthesis and Environmental Conditions” http://www.nhk.or.jp/kokokoza/tv/seibutsu/archive/resume038.html 独立行政法人産業総合研究所 プレスリリース 「世界で初めてナノバブルの製造・安定化技術を確立」 http://www.aist.go.jp/aist-j/press-relesse/pr2004/pr20040315/pr20040315.htmlNational Institute of Advanced Industrial Science and Technology Press Release "Establishing the world's first nanobubble production and stabilization technology" http://www.aist.go.jp/aist-j/press-relesse/pr2004/pr20040315/pr20040315.html

特開2009−213414号公報JP 2009-213414 A 特開平11−000066号公報JP-A-11-000066 特開2002−142582号公報JP 2002-142582 A 特開2008−206448号公報JP 2008-206448 A

ところで、植物の光合成を促進させるには、植物の葉への二酸化炭素の取込量を増加させることが有効であることは既述の通りであり、またその手法としては、栽培環境の二酸化炭素濃度を増加させる手法が主流であって、ナノバブルを利用して植物の根から二酸化炭素を取り込む技術は提案されていない。なお、ナノバブルを栽培液中に供給する技術はあるものの、ここに示されるものは、水への溶解度の高い酸素をナノバブルとして供給することで溶存酸素量を増加させるものであって、植物の光合成の促進に直接結びつくものではない。   By the way, as described above, it is effective to increase the amount of carbon dioxide taken into the leaves of the plant to promote the photosynthesis of the plant. Techniques for increasing the concentration are mainstream, and no technology for capturing carbon dioxide from plant roots using nanobubbles has been proposed. Although there are technologies for supplying nanobubbles into the cultivation liquid, what is shown here is to increase the amount of dissolved oxygen by supplying oxygen with high solubility in water as nanobubbles. It is not directly linked to the promotion of

そこで本願発明は、栽培液に二酸化炭素のナノバブルを供給することで、植物の光合成の促進を図るようにした植物栽培方法及び植物栽培装置を提供することを目的としてなされたものである。   Then, this invention is made | formed for the purpose of providing the plant cultivation method and plant cultivation apparatus which aimed at promotion of the photosynthesis of a plant by supplying the carbon dioxide nanobubble to a cultivation liquid.

本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。   In the present invention, the following configuration is adopted as a specific means for solving such a problem.

本願の第1の発明では、栽培液2の液面部分に配置された栽培床3にその根部22を上記栽培液2に浸漬させた状態で植物苗20を配置して上記植物苗20を生育させる植物栽培方法において、二酸化炭素のナノバブルを上記栽培液2に供給して上記植物苗20にその根部22から上記栽培液2中の水分、養分等とともに吸収させることを特徴としている。   In 1st invention of this application, the plant seedling 20 is arrange | positioned in the state which immersed the root part 22 in the said cultivation liquid 2 on the cultivation floor 3 arrange | positioned at the liquid level part of the cultivation liquid 2, and the said plant seedling 20 is grown. The plant cultivation method to be performed is characterized in that carbon dioxide nanobubbles are supplied to the cultivation liquid 2 and absorbed by the plant seedling 20 from the root portion 22 together with moisture, nutrients, and the like in the cultivation liquid 2.

本願の第2の発明では、上記第1の発明に係る植物栽培方法において、上記二酸化炭素のナノバブルを含んだナノバブル含有液11を生成し、このナノバブル含有液11を上記栽培液2に供給することを特徴としている。   In the second invention of the present application, in the plant cultivation method according to the first invention, the nanobubble-containing liquid 11 containing the carbon dioxide nanobubbles is generated, and the nanobubble-containing liquid 11 is supplied to the cultivation liquid 2. It is characterized by.

本願の第3の発明では、上記第1又は第2の発明に係る植物栽培方法において、上記植物苗20の上方側に配置した照明器9からの照明光を上記植物苗20に照射することを特徴としている。   In 3rd invention of this application, in the plant cultivation method which concerns on the said 1st or 2nd invention, irradiating the said plant seedling 20 with the illumination light from the illuminator 9 arrange | positioned above the said plant seedling 20 It is a feature.

本願の第4の発明に係る植物栽培装置では、栽培液2が投入された栽培水槽1と、上記栽培液2の液面部分に配置され且つ植物苗20をその根部22を上記栽培液2に浸漬させた状態で支持する栽培床3と、二酸化炭素の供給を受けてナノバブルを発生しこの二酸化炭素のナノバブルを上記栽培液2に供給するナノバブル供給装置10を備えたことを特徴としている。   In the plant cultivation apparatus which concerns on 4th invention of this application, it arrange | positions to the liquid level part of the cultivation tank 1 into which the cultivation liquid 2 was thrown in, and the said cultivation liquid 2, and the plant seedling 20 uses the root part 22 as the said cultivation liquid 2 It is characterized by comprising a cultivation bed 3 that is supported in an immersed state, and a nanobubble supply device 10 that receives supply of carbon dioxide to generate nanobubbles and supplies the carbon dioxide nanobubbles to the cultivation liquid 2.

本願発明では次のような効果が得られる。   In the present invention, the following effects can be obtained.

(a)本願の第1の発明に係る植物栽培方法によれば、栽培液2の液面部分に配置された栽培床3にその根部22を上記栽培液2に浸漬させた状態で植物苗20を配置して上記植物苗20を生育させる植物栽培方法において、二酸化炭素のナノバブルを上記栽培液2に供給して上記植物苗20にその根部22から上記栽培液2中の水分、養分等とともに吸収させるようにしている。   (A) According to the plant cultivation method according to the first invention of the present application, the plant seedling 20 in a state where the root portion 22 is immersed in the cultivation liquid 2 on the cultivation floor 3 arranged on the liquid surface portion of the cultivation liquid 2. In the plant cultivation method in which the plant seedling 20 is grown by arranging the carbon dioxide, the carbon dioxide nanobubbles are supplied to the culture solution 2 and absorbed into the plant seedling 20 from the root portion 22 together with moisture, nutrients, and the like in the culture solution 2. I try to let them.

この場合、ナノバブルはその安定性に優れ長期に亘って栽培液2中に残存し、しかもその直径が1μm以下と超微細であって、水、養分等とともに植物の根の細胞内に取り込まれ得ることから、葉の気孔からの二酸化炭素の吸入作用と、根からの二酸化炭素の吸入作用の相乗効果によって、葉緑素への二酸化炭素の吸収量が増加し、それだけ植物の光合成が促進され、結果的に植物の生育促進が図られることになる。   In this case, the nanobubbles are excellent in stability and remain in the culture solution 2 over a long period of time, and the diameter thereof is ultrafine, 1 μm or less, and can be taken into the plant root cells together with water, nutrients, and the like. Therefore, the synergistic effect of the inhalation action of carbon dioxide from the leaf pores and the inhalation action of carbon dioxide from the roots increases the amount of carbon dioxide absorbed into chlorophyll, and thus promotes plant photosynthesis, resulting in Therefore, the growth of plants will be promoted.

(b) 本願の第2の発明に係る植物栽培方法によれば、上記(a)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明では、二酸化炭素のナノバブルを含んだナノバブル含有液11を生成し、このナノバブル含有液11を上記栽培液2に供給するようにしているので、例えば、ナノバブルを栽培液2に直接供給する場合に比して、上記栽培液2内におけるナノバブルの分布状態が均等化され、栽培植物を可及的に均等に生育させることができ、延いては栽培植物の品質向上が期待できる。   (B) According to the plant cultivation method according to the second invention of the present application, the following specific effects can be obtained in addition to the effects described in (a) above. That is, in this invention, since the nanobubble containing liquid 11 containing the nanobubble of carbon dioxide is produced | generated and this nanobubble containing liquid 11 is supplied to the said cultivation liquid 2, for example, nanobubble is directly supplied to the cultivation liquid 2 Compared with the case where it does, the distribution state of the nano bubble in the said cultivation liquid 2 is equalized, a cultivated plant can be grown as uniformly as possible, and the improvement of the quality of a cultivated plant can be expected by extension.

(c) 本願の第3の発明に係る植物栽培方法によれば、上記(a)又は(b)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明では、植物苗20の上方側に配置した照明器9からの照明光を上記植物苗20に照射するようにしているので、屋内での植物栽培に適した植物栽培方法を提供できる。しかも、植物の光合成には、光エネルギーが大きく且つ二酸化炭素濃度が高いほど光合成速度が大きくなる、という特性があることから、二酸化炭素濃度と照明光の強さの関係を適宜設定することで、光合成速度を調整して植物の生育状態(例えば、植物の収穫時期)を管理することが容易となる。   (C) According to the plant cultivation method according to the third invention of the present application, the following specific effects can be obtained in addition to the effects described in the above (a) or (b). That is, in this invention, since the said plant seedling 20 is irradiated with the illumination light from the illuminator 9 arrange | positioned above the plant seedling 20, the plant cultivation method suitable for indoor plant cultivation can be provided. . In addition, the photosynthesis of plants has the property that the greater the light energy and the higher the carbon dioxide concentration, the greater the photosynthesis rate, so by appropriately setting the relationship between the carbon dioxide concentration and the intensity of illumination light, It becomes easy to adjust the photosynthetic rate and manage the growth state of the plant (for example, the harvest time of the plant).

(d) 本願の第4の発明に係る植物栽培装置によれば、栽培液2が投入された栽培水槽1と、上記栽培液2の液面部分に配置され且つ植物苗20をその根部22を上記栽培液2に浸漬させた状態で支持する栽培床3と、二酸化炭素の供給を受けてナノバブルを発生しこの二酸化炭素のナノバブルを上記栽培液2に供給するナノバブル供給装置10を備えているので、二酸化炭素のナノバブルを上記栽培水槽1内の上記栽培液2に効率良く供給することができる。この場合、ナノバブルはその安定性に優れ長期に亘って栽培液2中に残存し、しかもその直径が1μm以下と超微細であって、水、養分とともに植物の根の細胞内に取り込まれ得ることから、葉の気孔からの二酸化炭素の吸入作用と根からの二酸化炭素の吸入作用の相乗効果によって、葉緑素への二酸化炭素の吸収量が確実に増加し、それだけ植物の光合成が促進され、その結果、植物の生育促進効果の高い植物栽培装置を提供することができる。   (D) According to the plant cultivation apparatus according to the fourth invention of the present application, the cultivation water tank 1 into which the cultivation liquid 2 is introduced, and the root portion 22 of the plant seedling 20 disposed on the liquid surface portion of the cultivation liquid 2 are arranged. Since it has the cultivation bed 3 supported in the state immersed in the said cultivation liquid 2, and the nano bubble supply apparatus 10 which receives supply of a carbon dioxide, produces | generates a nano bubble, and supplies this nano bubble of a carbon dioxide to the said cultivation liquid 2 The carbon dioxide nanobubbles can be efficiently supplied to the cultivation liquid 2 in the cultivation water tank 1. In this case, the nanobubbles are excellent in stability and remain in the culture solution 2 for a long period of time, and the diameter thereof is ultrafine, 1 μm or less, and can be taken into the plant root cells together with water and nutrients. Therefore, the synergistic effect of carbon dioxide inhalation from the stomata of leaves and carbon dioxide from the roots surely increases the amount of carbon dioxide absorbed into chlorophyll, thus promoting plant photosynthesis. It is possible to provide a plant cultivation apparatus having a high plant growth promoting effect.

本願発明の実施の形態に係る植物栽培方法の実施に供される植物栽培装置のシステム図である。It is a system diagram of the plant cultivation apparatus provided for implementation of the plant cultivation method concerning an embodiment of the invention of this application.

以下、本願発明を好適な実施形態に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on preferred embodiments.

図1には、本願発明の実施形態に係る植物栽培方法の実施に供される植物栽培装置の一例として、栽培施設内で使用される植物栽培装置の全体システム構成を示しており、同図において符号1は所定大きさをもつ栽培水槽である。   In FIG. 1, the whole system structure of the plant cultivation apparatus used in a cultivation facility is shown as an example of the plant cultivation apparatus used for implementation of the plant cultivation method which concerns on embodiment of this invention, Reference numeral 1 denotes a cultivation tank having a predetermined size.

上記栽培水槽1内には所定量の栽培液2が投入されており、さらに、この栽培液2の液面側には栽培床3が浮上載置されている。   A predetermined amount of the cultivation liquid 2 is introduced into the cultivation tank 1, and a cultivation floor 3 is levitated on the liquid surface side of the cultivation liquid 2.

上記栽培床3は、所要の浮力をもつ板状体で構成され、その平面方向の内側には該栽培床3を板厚方向へ貫通して複数個の植物支持孔3aが所定間隔で設けられている。   The cultivated floor 3 is composed of a plate-like body having a required buoyancy, and a plurality of plant support holes 3a are provided at predetermined intervals through the cultivated floor 3 in the plate thickness direction inside the plane direction. ing.

上記栽培床3の上記植物支持孔3aには、植物苗20が植栽された苗カップ4が収納配置されている。上記植物苗20は、その葉部21が上記苗カップ4から上方へ延び上がる一方、その根部22は上記苗カップ4から下方へ延びて上記栽培液2にその全体が浸漬されている。   A seedling cup 4 in which a plant seedling 20 is planted is accommodated in the plant support hole 3 a of the cultivation floor 3. The plant seedling 20 has its leaf portion 21 extending upward from the seedling cup 4, while its root portion 22 extends downward from the seedling cup 4 and is entirely immersed in the culture solution 2.

また、上記栽培水槽1には、循環ポンプ32を備えるとともにその吸込端が貯留タンク31内の栽培液2中に位置する供液管5と、その吐出端が上記貯留タンク31に接続された排液管6が、それぞれ設けられており、上記循環ポンプ32の運転によって上記栽培液2は上記栽培水槽1と上記貯留液タンク31の間で循環される。なお、上記貯留液タンク31には後述のナノバブル供給装置10のナノバブル発生装置7からナノバブル含有液が供給されるため、実際的には、上記循環ポンプ32によって上記栽培水槽1に還流されるのは、栽培液2とナノバブル含有液の混合液12とされる。   The cultivating aquarium 1 includes a circulation pump 32 and a suction pipe whose suction end is located in the cultivating liquid 2 in the storage tank 31 and a discharge pipe whose discharge end is connected to the storage tank 31. Liquid pipes 6 are respectively provided, and the cultivation liquid 2 is circulated between the cultivation water tank 1 and the storage liquid tank 31 by the operation of the circulation pump 32. In addition, since the nanobubble containing liquid is supplied to the said storage liquid tank 31 from the nanobubble generator 7 of the nanobubble supply apparatus 10 mentioned later, it is actually returned to the said cultivation tank 1 by the said circulation pump 32. The mixed liquid 12 of the cultivation liquid 2 and the nanobubble-containing liquid is used.

一方、上記栽培水槽1には、次述のナノバブル供給装置10が付設されている。このナノバブル供給装置10は、上記貯留タンク31と、ナノバブル発生装置7と二酸化炭素供給源8、上記循環ポンプ32(特許請求の範囲中の「混合液供給部」に該当する)及び循環ポンプ33を備えて構成される。   On the other hand, the cultivating water tank 1 is provided with a nanobubble supply device 10 described below. The nanobubble supply device 10 includes the storage tank 31, the nanobubble generation device 7, the carbon dioxide supply source 8, the circulation pump 32 (corresponding to “mixed liquid supply unit” in the claims), and the circulation pump 33. It is prepared for.

上記ナノバブル発生装置7は、上記循環ポンプ33を備えた吸込管34から供給される上記貯留タンク31内の栽培液2と、二酸化炭素供給源8から供給される二酸化炭素を受けて、ナノバブル含有液11を生成し且つこのナノバブル含有液11を吐出管35を通して上記貯留タンク31の栽培液2に供給してこれに混合させる。従って、上記貯留タンク31内には上記栽培水槽1から還流した上記栽培液2と上記ナノバブル発生装置7から供給されるナノバブル含有液11が混合した混合液12とされる。   The nanobubble generator 7 receives the cultivating liquid 2 in the storage tank 31 supplied from the suction pipe 34 provided with the circulation pump 33 and the carbon dioxide supplied from the carbon dioxide supply source 8, and receives the nanobubble containing liquid. 11 and the nanobubble-containing liquid 11 is supplied to the cultivation liquid 2 in the storage tank 31 through the discharge pipe 35 and mixed therewith. Therefore, the storage tank 31 is a mixed liquid 12 in which the cultivation liquid 2 refluxed from the cultivation water tank 1 and the nanobubble-containing liquid 11 supplied from the nanobubble generator 7 are mixed.

そして、上記混合液12は、上記循環ポンプ32によって上記供液管5から上記栽培水槽1内に供給される。この結果、上記栽培水槽1内の栽培液2は、二酸化炭素ナノバブルが高濃度に混入した栽培液2となるが、この二酸化炭素ナノバブルは安定したものであって、その圧壊に至るまでの期間が長い(例えば、数ヶ月)ため、上記ナノバブル供給装置10を常時運転せずとも、上記栽培水槽1内の栽培液2は長期間に亘って高濃度の二酸化炭素ナノバブルを含んだ液として存在することになる。なお、上記循環ポンプ32は、特許請求の範囲中の「混合液供給部」に該当する。   The mixed liquid 12 is supplied from the liquid supply pipe 5 into the cultivation water tank 1 by the circulation pump 32. As a result, the cultivation liquid 2 in the cultivation water tank 1 becomes the cultivation liquid 2 in which carbon dioxide nanobubbles are mixed at a high concentration. However, the carbon dioxide nanobubbles are stable and have a period until the crushing. Because it is long (for example, several months), the cultivation liquid 2 in the cultivation water tank 1 exists as a liquid containing high-concentration carbon dioxide nanobubbles over a long period of time without always operating the nanobubble supply device 10. become. The circulation pump 32 corresponds to a “mixed liquid supply unit” in the claims.

このように二酸化炭素ナノバブルを含んだ栽培液2に浮かべられた上記栽培床3に上記植物苗20を載置し、且つ上記照明器9からの照明光を上記植物苗20に照射することで、該植物苗20の生育促進が図られる。   By placing the plant seedling 20 on the cultivation floor 3 floated on the cultivation liquid 2 containing carbon dioxide nanobubbles in this way, and irradiating the plant seedling 20 with illumination light from the illuminator 9, The growth of the plant seedling 20 is promoted.

即ち、上記植物苗20の根部22が浸漬される上記栽培水槽1の栽培液2が二酸化炭素ナノバブルを含む液であり、またこの二酸化炭素ナノバブルは安定性に優れ長期に亘って圧壊されることなく上記栽培液2中に残存し、しかもその直径が1μm以下と超微細であることから、水とか養分とともに上記植物苗20の根部22の表面から浸透圧等の作用によって根の細胞内に取り込まれる。細胞内に取り込まれた二酸化炭素ナノバブルは、その周囲に存在する電解質イオンの溶媒である水の量が、上記栽培液2内に在るときに比して激減することから、該二酸化炭素ナノバブルの周囲に凝縮していたイオン類の殻が崩壊消滅し、その内部の二酸化炭素が水、養分等とともに根部22から葉部21に移動し、これによって植物苗20の根部22からの二酸化炭素の吸入が実現される。   That is, the cultivation liquid 2 of the cultivation tank 1 in which the root portion 22 of the plant seedling 20 is immersed is a liquid containing carbon dioxide nanobubbles, and the carbon dioxide nanobubbles are excellent in stability and are not crushed for a long time. Since it remains in the cultivation liquid 2 and has an ultrafine diameter of 1 μm or less, it is taken into the root cells together with water and nutrients from the surface of the root portion 22 of the plant seedling 20 by an action such as osmotic pressure. . The carbon dioxide nanobubbles taken up into the cells are drastically reduced in comparison with the amount of water that is a solvent for the electrolyte ions present in the surroundings when the carbon dioxide nanobubbles are in the culture solution 2. The shell of ions condensed in the surroundings collapses and disappears, and carbon dioxide in the inside moves together with water, nutrients, and the like from the root portion 22 to the leaf portion 21, thereby inhaling carbon dioxide from the root portion 22 of the plant seedling 20. Is realized.

従って、上記植物苗20においては、自然界での本来的な二酸化炭素の吸入作用、即ち、葉部21の気孔からの二酸化炭素の吸入に加えて、上記根部22からも二酸化炭素が取り込まれるため、この根部22からの取り込み分だけ、上記植物苗20の葉部21への二酸化炭素の吸収量が格段に増加し、それだけ葉緑素における光合成が促進され、結果的に上記植物苗20の生育促進が図られるものである。   Therefore, in the plant seedling 20, in addition to the natural carbon dioxide inhalation action in nature, that is, inhalation of carbon dioxide from the pores of the leaf portion 21, carbon dioxide is also taken in from the root portion 22, The amount of carbon dioxide absorbed into the leaf portion 21 of the plant seedling 20 is significantly increased by the amount taken up from the root portion 22, and photosynthesis in the chlorophyll is promoted accordingly. As a result, the growth of the plant seedling 20 is promoted. It is

また、この場合、二酸化炭素のナノバブルを含んだナノバブル含有液11を直接上記栽培水槽1内の栽培液2に供給するのではなく、先ず上記貯留タンク31において上記栽培水槽1から還流する栽培液2に上記ナノバブル含有液11を供給して混合し、この混合液12を上記栽培水槽1内の栽培液2に供給することで、該栽培液2内における二酸化炭素ナノバブルの分布状態が可及的に均等化され、植物苗20を均等に生育させることができ、延いては植物苗20の品質向上が期待できる。   Moreover, in this case, instead of supplying the nanobubble-containing liquid 11 containing carbon dioxide nanobubbles directly to the cultivating liquid 2 in the cultivating aquarium 1, first, the cultivating liquid 2 that recirculates from the cultivating aquarium 1 in the storage tank 31. The nanobubble-containing liquid 11 is supplied and mixed, and the mixed liquid 12 is supplied to the cultivation liquid 2 in the cultivation water tank 1 so that the distribution state of carbon dioxide nanobubbles in the cultivation liquid 2 is as much as possible. It is equalized and the plant seedling 20 can be grown uniformly, and the quality improvement of the plant seedling 20 can be expected.

尚、本願発明は、この実施形態のように、二酸化炭素のナノバブルを含んだナノバブル含有液11を上記貯留タンク31内の栽培液2に供給し、該貯留タンク31を介して上記栽培水槽1内の栽培液2に供給する構成に限定されるものではなく、二酸化炭素のナノバブルを含んだナノバブル含有液11を上記栽培水槽1内の栽培液2に直接供給するように構成することもできる。   In addition, this invention supplies the nanobubble containing liquid 11 containing the nanobubble of carbon dioxide to the cultivation liquid 2 in the said storage tank 31 like this embodiment, and the inside of the said cultivation tank 1 through this storage tank 31 It is not limited to the structure supplied to the cultivation liquid 2 of this, It can also comprise so that the nanobubble containing liquid 11 containing the nanobubble of a carbon dioxide may be directly supplied to the cultivation liquid 2 in the said cultivation water tank 1. FIG.

さらに、この実施形態では、上記栽培水槽1内の栽培液2を、上記排液管6を介して上記貯留タンク31の還流させるように構成しているが、本願発明は係る構成に限定されるものではなく、例えば、上記栽培水槽1内の栽培液2を他の栽培水槽1間において循環させ、該各栽培水槽1における栽培液2の量が減じたとき、この減量分に対応する量だけ、上記貯留タンク31内の栽培液2を上記栽培水槽1に供給するように構成することもできる。   Furthermore, in this embodiment, although it is comprised so that the cultivation liquid 2 in the said cultivation water tank 1 may recirculate | reflux the said storage tank 31 through the said drainage pipe 6, this invention is limited to the structure which concerns. For example, when the cultivation liquid 2 in the cultivation water tank 1 is circulated between the other cultivation water tanks 1 and the amount of the cultivation liquid 2 in each cultivation water tank 1 is reduced, only the amount corresponding to the reduced amount is obtained. The cultivation liquid 2 in the storage tank 31 can be supplied to the cultivation tank 1.

1 ・・栽培水槽
2 ・・栽培液
3 ・・栽培床
4 ・・苗カップ
5 ・・供液管
6 ・・排液管
7 ・・ナノバブル発生装置
8 ・・二酸化炭素供給源
9 ・・照明器
10 ・・ナノバブル供給装置
11 ・・ナノバブル含有液
12 ・・混合液
20 ・・植物苗
21 ・・葉部
22 ・・根部
31 ・・貯留タンク
32 ・・循環ポンプ(混合液供給部)
33 ・・循環ポンプ
34 ・・吸込管
35 ・・吐出管
1 ・ ・ Cultivation tank 2 ・ ・ Cultivation liquid 3 ・ ・ Cultivation floor 4 ・ ・ Seedling cup 5 ・ ・ Liquid supply pipe 6 ・ ・ Drainage pipe 7 ・ ・ Nanobubble generator 8 ・ ・ Carbon dioxide supply source 9 ・ ・ Illuminator 10 .. Nano bubble supply device 11 .. Liquid containing nano bubbles 12 .. Liquid mixture 20 .. Plant seedling 21 .. Leaf part 22 .. Root part 31 .. Storage tank 32 .. Circulation pump (mixed liquid supply part)
33 ..Circulating pump 34 ..Suction pipe 35 ..Discharge pipe

Claims (4)

栽培液(2)の液面部分に配置された栽培床(3)にその根部(22)を上記栽培液(2)に浸漬させた状態で植物苗(20)を配置して上記植物苗(20)を生育させる植物栽培方法であって、
二酸化炭素のナノバブルを上記栽培液(2)に供給して上記植物苗(20)にその根部(22)から上記栽培液(2)中の水分、養分等とともに吸収させることを特徴とする植物栽培方法。
The plant seedling (20) is placed in a state where the root (22) is immersed in the cultivation liquid (2) on the cultivation floor (3) arranged on the liquid surface portion of the cultivation liquid (2), and the plant seedling ( 20) a plant cultivation method for growing
Plant cultivation characterized in that carbon dioxide nanobubbles are supplied to the cultivation liquid (2) and absorbed by the plant seedling (20) from the root (22) together with moisture, nutrients and the like in the cultivation liquid (2). Method.
請求項1において、
上記二酸化炭素のナノバブルを含んだナノバブル含有液(11)を生成し、このナノバブル含有液(11)を上記栽培液(2)に供給することを特徴とする植物栽培方法。
In claim 1,
The plant cultivation method characterized by producing | generating the nanobubble containing liquid (11) containing the nanobubble of the said carbon dioxide, and supplying this nanobubble containing liquid (11) to the said cultivation liquid (2).
請求項1又は2において、
上記植物苗(20)の上方側に配置した照明器(9)からの照明光を上記植物苗(20)に照射することを特徴とする植物栽培方法。
In claim 1 or 2,
The plant cultivation method characterized by irradiating the said plant seedling (20) with the illumination light from the illuminator (9) arrange | positioned above the said plant seedling (20).
栽培液(2)が投入された栽培水槽(1)と、
上記栽培液(2)の液面部分に配置され且つ植物苗(20)をその根部(22)を上記栽培液(2)に浸漬させた状態で支持する栽培床(3)と、
二酸化炭素の供給を受けてナノバブルを発生しこの二酸化炭素のナノバブルを上記栽培液(2)に供給するナノバブル供給装置(10)を備えたことを特徴とする植物栽培装置。
Cultivation tank (1) into which the cultivation liquid (2) has been introduced,
A cultivation bed (3) disposed in the liquid surface portion of the cultivation liquid (2) and supporting the plant seedling (20) in a state where the root (22) is immersed in the cultivation liquid (2);
A plant cultivation apparatus comprising a nanobubble supply device (10) that receives supply of carbon dioxide to generate nanobubbles and supplies the carbon dioxide nanobubbles to the cultivation liquid (2).
JP2009272251A 2009-11-30 2009-11-30 Method and device for cultivating plant Pending JP2011110028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272251A JP2011110028A (en) 2009-11-30 2009-11-30 Method and device for cultivating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272251A JP2011110028A (en) 2009-11-30 2009-11-30 Method and device for cultivating plant

Publications (1)

Publication Number Publication Date
JP2011110028A true JP2011110028A (en) 2011-06-09

Family

ID=44232855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272251A Pending JP2011110028A (en) 2009-11-30 2009-11-30 Method and device for cultivating plant

Country Status (1)

Country Link
JP (1) JP2011110028A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636487A (en) * 2013-12-27 2014-03-19 张建锋 Rooting method using system with upper and lower liquid outlet holes and electronic control device
CN103636507A (en) * 2013-12-27 2014-03-19 黄娟娟 Rooting method using system with circular arc-shaped pipe parts and electronic control device
CN103651090A (en) * 2013-12-27 2014-03-26 杨健儿 Rooting method adopting system with liquid outlet plates and electronic control device
CN103651089A (en) * 2013-12-27 2014-03-26 俞升洋 Rooting method adopting six-valve supply type system with liquid outlet plates
CN103718937A (en) * 2013-12-27 2014-04-16 俞群涛 Rooting method using six-valve supply type system with upper liquid draining holes and lower liquid draining holes
EP2761989A1 (en) 2013-02-04 2014-08-06 Showa Denko K.K. Method for cultivating plant
EP2761993A1 (en) 2013-02-04 2014-08-06 Showa Denko K.K. Method for cultivating plant
CN104957017A (en) * 2015-07-15 2015-10-07 广州市恒盛园林科技有限公司 Seedling method for bare-rooted soilless seedling of aquatic plant withe underleaf pearl
JP6254734B1 (en) * 2017-04-04 2017-12-27 オオノ開發株式会社 Plant hydroponic cultivation apparatus, plant hydroponic cultivation system, and cultivation method
JP2018171020A (en) * 2017-03-31 2018-11-08 株式会社フジタ Nanobubble-containing water feeding device, plant cultivation system, culture solution feeding device and hydroponic system
JP2018174912A (en) * 2017-11-30 2018-11-15 オオノ開發株式会社 Plant hydroponic apparatus, plant hydroponic system, and cultivation method
US10172294B2 (en) 2013-02-04 2019-01-08 Showa Denko K.K. Method for cultivating plant
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
JP2020061962A (en) * 2018-10-16 2020-04-23 有限会社タイヨー種苗 Crop greenhouse culture method
WO2021117593A1 (en) * 2019-12-09 2021-06-17 聡 安斎 Plant cultivation method and plant cultivation device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10172294B2 (en) 2013-02-04 2019-01-08 Showa Denko K.K. Method for cultivating plant
EP2761989A1 (en) 2013-02-04 2014-08-06 Showa Denko K.K. Method for cultivating plant
EP2761993A1 (en) 2013-02-04 2014-08-06 Showa Denko K.K. Method for cultivating plant
US9363951B2 (en) 2013-02-04 2016-06-14 Showa Denko K.K Method for cultivating plant
US9445549B2 (en) 2013-02-04 2016-09-20 Showa Denko K.K. Method for cultivating plant
CN103636507A (en) * 2013-12-27 2014-03-19 黄娟娟 Rooting method using system with circular arc-shaped pipe parts and electronic control device
CN103651090A (en) * 2013-12-27 2014-03-26 杨健儿 Rooting method adopting system with liquid outlet plates and electronic control device
CN103651089A (en) * 2013-12-27 2014-03-26 俞升洋 Rooting method adopting six-valve supply type system with liquid outlet plates
CN103718937A (en) * 2013-12-27 2014-04-16 俞群涛 Rooting method using six-valve supply type system with upper liquid draining holes and lower liquid draining holes
CN103636487A (en) * 2013-12-27 2014-03-19 张建锋 Rooting method using system with upper and lower liquid outlet holes and electronic control device
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
CN104957017A (en) * 2015-07-15 2015-10-07 广州市恒盛园林科技有限公司 Seedling method for bare-rooted soilless seedling of aquatic plant withe underleaf pearl
JP2018171020A (en) * 2017-03-31 2018-11-08 株式会社フジタ Nanobubble-containing water feeding device, plant cultivation system, culture solution feeding device and hydroponic system
JP2018174730A (en) * 2017-04-04 2018-11-15 オオノ開發株式会社 Plant hydroponic apparatus, plant hydroponic system, and cultivation method
WO2018186401A1 (en) * 2017-04-04 2018-10-11 オオノ開發株式会社 Plant hydroponic cultivation device, plant hydroponic cultivation system, and cultivation method
JP6254734B1 (en) * 2017-04-04 2017-12-27 オオノ開發株式会社 Plant hydroponic cultivation apparatus, plant hydroponic cultivation system, and cultivation method
JP2018174912A (en) * 2017-11-30 2018-11-15 オオノ開發株式会社 Plant hydroponic apparatus, plant hydroponic system, and cultivation method
JP2020061962A (en) * 2018-10-16 2020-04-23 有限会社タイヨー種苗 Crop greenhouse culture method
JP7080153B2 (en) 2018-10-16 2022-06-03 有限会社タイヨー種苗 How to grow crops in a house
WO2021117593A1 (en) * 2019-12-09 2021-06-17 聡 安斎 Plant cultivation method and plant cultivation device

Similar Documents

Publication Publication Date Title
JP2011110028A (en) Method and device for cultivating plant
US8950111B2 (en) Device for fixing biomass-based solar heat and carbon dioxide gas, and house equipped with same fixing device
CN106745766A (en) A kind of aquatic plant floating bed system of dependence solar energy aeration oxygenation
US8062880B2 (en) Biomass cultivation system and corresponding method of operation
JP2012504942A (en) Method and apparatus for treating exhaust gas, particularly CO2, using photosynthesis
JP5756620B2 (en) Water treatment method and water treatment apparatus for rearing water tank
CN1875691A (en) A plant quick propagation method
JP5713762B2 (en) Seaweed onshore aquaculture device and seaweed onshore aquaculture method
JP2017512456A (en) High density soilless plant growth system and method
JP5042585B2 (en) Water purification device and water purification method
RU2595670C2 (en) System for decomposition of organic compounds and operating method thereof
JP5899100B2 (en) Microalgae culture apparatus and microalgae culture method
KR100999299B1 (en) Combined Farming Apparatus and Method Converging Terrestrial Fish Farming and Crop Cultivation
CN105875279A (en) Floating type trinitarian photovoltaic greenhouse
CN108419660A (en) Culture apparatus
JP2011024475A (en) Hydroponic apparatus and hydroponic method
JP2010148433A (en) Method for fixing carbon dioxide gas and system thereof
JP5846891B2 (en) Plant cultivation equipment
JP2015097516A (en) Hydroponic culture method, and hydroponic culture apparatus
JP2009044985A (en) Hydroponics system
JP2010110225A (en) Method for promoting rooting in cutting of plant
KR102159475B1 (en) Hydroponics cultivation apparatus using aqua plasma method
JP5615501B2 (en) Plant cultivation equipment
JP2018174730A (en) Plant hydroponic apparatus, plant hydroponic system, and cultivation method
JP7194948B2 (en) Cultivation equipment and method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111220