WO2018186250A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2018186250A1
WO2018186250A1 PCT/JP2018/012670 JP2018012670W WO2018186250A1 WO 2018186250 A1 WO2018186250 A1 WO 2018186250A1 JP 2018012670 W JP2018012670 W JP 2018012670W WO 2018186250 A1 WO2018186250 A1 WO 2018186250A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
outdoor
underground
geothermal
Prior art date
Application number
PCT/JP2018/012670
Other languages
English (en)
French (fr)
Inventor
川邉 義和
広田 正宣
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019511180A priority Critical patent/JPWO2018186250A1/ja
Priority to CN201880004886.3A priority patent/CN110062866A/zh
Priority to EP18781524.6A priority patent/EP3608608A4/en
Publication of WO2018186250A1 publication Critical patent/WO2018186250A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T50/00Geothermal systems 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a technology for effectively using energy by using a plurality of heat sources such as underground heat in addition to air heat in an air conditioner that performs air conditioning using a refrigeration cycle and a heat pump cycle.
  • Improvement of the operation efficiency of such air conditioners has been realized mainly by improving the efficiency of compressors and blowers and improving the performance of heat exchangers.
  • the heat source of underground heat and unused river water can be easily downsized in combination with the refrigeration cycle or heat pump cycle.
  • the heat source of unused river water can be reduced to rivers, lakes and seas. The installation conditions are limited.
  • geothermal heat has less restrictions on installation conditions, and installation examples are increasing regardless of the region.
  • the number of construction starts for the use of geothermal heat has greatly increased against the backdrop of national and local government assistance, and the possibility of geothermal heat as a new heat source is expected.
  • geothermal heat has been deep underground than 30m, mainly large buildings and public buildings, but also developed technology for using geothermal heat in the ground shallower than 30m. As a result, the number of buildings that use geothermal heat is increasing.
  • the underground temperature is stable (around 15 ° C) around the yearly average temperature throughout the year below 10 meters below ground. Even at a depth of 1 to 2 m, it maintains a temperature of about 8 ° C in winter and about 25 ° C in summer, and can be used for cooling in summer and heating in winter.
  • the heat pump unit 51 includes a ground circulation pump 59 that constitutes the underground heat exchange unit 52 and a load-side circulation pump 60 that constitutes the load heat exchange unit 53. Further, the heat pump unit 51 includes an underground return temperature detection unit 61 disposed at the heat medium outlet of the underground circulation pump 59 and an underground return temperature detection unit 62 disposed at the heat medium inlet of the heat source side heat exchanger 57. A control unit 63 that controls these actuators and detection units is provided.
  • an underground heat exchanger 64, a heat source side heat exchanger 57, and an underground circulation pump 59 are connected in an annular shape to constitute an underground circulation circuit 65 in which a heat medium circulates.
  • An underground return temperature detector 61 is disposed at the heat medium outlet of the underground circulation pump 59, and an underground return temperature detector 62 is disposed at the heat medium inlet of the heat source side heat exchanger 57.
  • a load terminal 66, a load side circulation pump 60, a load side heat exchanger 55, and a thermal valve 67 are connected in an annular shape to constitute a load side circulation circuit 68 in which the heat medium circulates. .
  • the control unit 63 drives the compressor 54, the underground circulation pump 59, and the load-side circulation pump 60, and detects changes in detected temperatures of the underground return temperature detection unit 61 and the underground return temperature detection unit 62, By adjusting the circulation rate of the underground circulation pump 59, the heat collection from the underground is optimally performed without excess or deficiency, and the aim is to improve the efficiency of the overall underground heat pump.
  • the underground heat exchanger 64 has a capacity sufficient to cover all loads, that is, the amount of heat collected from the underground by the underground heat exchanger 64 is small. It is assumed that the price is high. Then, the flow rate of the underground heat circulation pump 59 is adjusted to improve the efficiency of the underground heat pump device.
  • the present invention prevents the excessive collection of geothermal heat, lack of air-conditioning capability, brine freezing or the like without making a large investment in the geothermal heat exchanger, and uses the geothermal heat with high reliability.
  • the air conditioner which can perform is provided.
  • the air conditioner of the present invention includes a compressor that compresses and sends out a refrigerant, an outdoor heat exchanger that exchanges heat between the outdoor air sent by the outdoor blower and the refrigerant, and heat between the refrigerant and the indoor air.
  • the indoor heat exchanger to be replaced constitutes a refrigeration cycle or a heat pump cycle, and includes a pump for circulating the heat medium.
  • a heat medium circulation system is comprised by the underground heat exchanger which heat-exchanges between a heat medium and underground, and the underground heat utilization heat exchanger which heat-exchanges between a heat medium and a refrigerant
  • the geothermal heat utilization heat exchanger is disposed between the outdoor heat exchanger and the indoor heat exchanger
  • the first throttle portion is disposed between the outdoor heat exchanger and the geothermal heat utilization heat exchanger
  • a second throttle part is disposed between the ground heat heat exchanger and the indoor heat exchanger. Furthermore, the first throttle unit and the second throttle unit are controlled to change the pressure of the refrigerant in the geothermal heat utilization heat exchanger.
  • the air conditioner of the present invention can downsize the underground heat exchanger, the installation cost can be reduced and the effective use of the underground heat can be performed with a small capital investment.
  • FIG. 1 is a configuration diagram of an air conditioning system using a heat utilization device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of a conventional air conditioner that uses geothermal heat.
  • FIG. 1 shows a configuration diagram of an air conditioner according to a first embodiment of the present invention.
  • the air conditioner according to the present embodiment performs cooling or heating by connecting an outdoor unit 1 and an indoor unit 2 in a ring shape by circulating a refrigerant.
  • the outdoor unit 1 is also connected to the underground heat collecting unit 3 in a ring shape by piping, and uses a ground heat by circulating a heat medium such as brine.
  • the refrigerant and the heat medium are not limited to a specific type, but will be described as a commonly used refrigerant and brine.
  • the indoor unit 2 is provided with an indoor fan 4 and an indoor heat exchanger 5 that performs cooling or heating by exchanging heat with room air sent by the indoor fan 4.
  • the outdoor unit 1 includes a compressor 6 that compresses and sends out refrigerant, an outdoor heat exchanger 8 that exchanges heat with outdoor air sent by an outdoor blower 7 in order to use air as a heat source, and an underground heat collecting unit 3.
  • the underground heat exchanger 9 and the underground heat utilization heat exchanger 10 constituting the heat circulation system are arranged.
  • the outdoor unit 1 is provided with a pump 11 for circulating the brine, and the underground heat utilization heat exchanger 10 performs heat exchange between the refrigerant and the brine.
  • the outdoor unit 1 includes a first four-way valve 12 that switches the refrigerant circulation direction, and a first bypass valve 14 that is arranged to bypass both the connection ports of the first expansion valve 13 and the first expansion valve 13.
  • the throttle part 15 and the second expansion valve 16 as the second throttle part are provided.
  • the air conditioner is a dedicated cooling or heating machine, the four-way valve 12 is not necessary.
  • the four-way valve 12 is connected to the gas side having a high ratio of the refrigerant suction port and the refrigerant discharge port of the compressor 6 and the gas refrigerant of the outdoor heat exchanger 8 and the gas side of the indoor heat exchanger 5, so that the cooling operation can be performed.
  • the compressor 6 sucks the refrigerant on the gas side of the indoor heat exchanger 5 from the suction port and discharges it from the discharge port to the gas side of the outdoor heat exchanger 8.
  • the liquid side having a high liquid refrigerant ratio in the outdoor heat exchanger 8 is connected to one of the first throttle parts 15, that is, one of the first expansion valve 13 and the bypass valve 14, and the other of the first throttle parts 15 is It is connected to the gas side of the geothermal heat exchanger 10.
  • the liquid side of the ground heat heat exchanger 10 is connected to one side of the second expansion valve 16, and the other side of the second expansion valve 16 is connected to the liquid side of the indoor heat exchanger 5 to condense and evaporate the refrigerant.
  • a repeating circulatory system is constructed.
  • a sensor 23 and an underground temperature sensor 24 are disposed. The whole air conditioner is controlled using these sensor information.
  • FIG. 1 shows a cooling operation state, and the refrigerant returned from the gas side of the indoor heat exchanger 5 via the low-pressure side path of the four-way valve 12 is compressed by the compressor 6 to become a high-temperature and high-pressure state. It is discharged to the high-pressure side path of the valve 12.
  • the refrigerant in a high temperature and high pressure state is sent to the gas side of the outdoor heat exchanger 8 and sent out from the liquid side while condensing, and at least of the first expansion valve 13 or the bypass valve 14 of the first throttle 15. Via either one of them, the pressure is reduced as necessary, and the refrigerant is sent to the refrigerant gas side of the geothermal heat exchanger 10.
  • the refrigerant is circulated by the pump 11 in the underground heat utilization heat exchanger 10 and comes out from the refrigerant liquid side while exchanging heat with the brine cooled by the underground heat exchanger 9 of the underground heat collecting unit 3.
  • the second expansion valve 16 To the second expansion valve 16.
  • the refrigerant leaves the outdoor unit 1 and is sent to the liquid side of the indoor heat exchanger 5 of the indoor unit 2.
  • the refrigerant evaporates, exchanges heat with room air, cools the air, and returns to the compressor 6 via the low-pressure side path of the four-way valve 12 again.
  • the path of the four-way valve 12 is switched, and the refrigerant discharged from the compressor 6 is sent from the four-way valve 12 to the gas side of the indoor heat exchanger 5.
  • coolant condenses with the indoor heat exchanger 5 is pressure-reduced with the 2nd expansion valve 16, and is sent to the refrigerant
  • the refrigerant is circulated by the pump 11 in the ground heat utilization heat exchanger 10, exchanges heat with the brine heated by the underground heat exchanger 9 of the underground heat collecting unit 3, and evaporates while being evaporated.
  • the first throttle portion 15 constituted by the first expansion valve 13 and the bypass valve 14.
  • the refrigerant exchanges heat with the outside air in the outdoor heat exchanger 8 to finish evaporation, and returns to the suction port of the compressor 6 via the four-way valve 12.
  • a hollow underground pile is filled to a depth of about 30 to 100 m, a polypropylene pipe is inserted inside, and concrete, water, brine or the like is filled. there were.
  • the pile driving was done using dedicated heavy machinery, which was expensive.
  • any configuration of the underground heat collecting unit 3 can be adopted and the effect can be exerted.
  • the construction cost can be reduced by directly burying a polypropylene pipe in a relatively shallow soil. The thing which restricts the laying area is used.
  • the underground heat utilization heat exchanger 10 is connected in series to the liquid side of the outdoor heat exchanger 8, and the outdoor heat exchanger 8 and the underground heat utilization heat exchanger 10 are used in combination.
  • coolant temperature in the underground heat utilization heat exchanger 10 is controlled by the one expansion part 15 and the 2nd expansion valve 16, and the amount of heat exchange with the underground is adjusted.
  • the total heat exchange amount between the outdoor heat exchanger 8 and the underground heat utilization heat exchanger 10, that is, the total heat exchange amount on the outdoor side is calculated according to the air conditioning load. Then, the use amount of the geothermal heat is determined from the calculated total heat exchange amount on the outdoor side, the outdoor air temperature, the brine return temperature to the geothermal heat use heat exchanger 10, and the like.
  • the first throttle unit 15 and the second expansion valve 16 adjust the heat exchange amount of the geothermal heat utilization heat exchanger 10 based on the determined geothermal heat utilization amount.
  • the output of the outdoor fan 7 is adjusted to an appropriate output based on the heat exchange amount in the outdoor heat exchanger 8 calculated in the process of this series of control and the output temperature of the outdoor air temperature sensor 18. As described above, it is possible to prevent the output of the outdoor blower 7 from being increased, and it is possible to suppress power consumption.
  • the amount of heat exchange between the outdoor heat exchanger 8 and the underground heat utilization heat exchanger 10 is calculated in the process of controlling the first throttle unit 15 and the second expansion valve 16.
  • the output of the pump 11 is adjusted according to the difference between the heat exchange amount and the output temperatures of the outdoor air temperature sensor 18 and the underground return temperature sensor 23.
  • the heat exchange amount with any outdoor air and the ground heat utilization amount are estimated from the output temperature of the outdoor air temperature sensor 18 and the heat exchange amount of the outdoor heat exchanger 8.
  • the output temperature of the underground return temperature sensor 23 is lower than the condensation temperature of the refrigerant.
  • the output temperature of the underground return temperature sensor 23 is higher than the temperature.
  • the first throttle portion 15 is constituted by the first expansion valve 13 and the bypass valve 14. Therefore, when a difference in the saturation temperature of the refrigerant is required between the outdoor heat exchanger 8 and the underground heat-use heat exchanger 10, the bypass valve 14 is closed and the opening degree of the first expansion valve 13 is adjusted. Thus, a desired saturation temperature difference can be easily provided.
  • the bypass valve 14 is fully opened, and the pressure loss at the first throttle 15 is minimized. can do.
  • the opening degree of the first expansion valve 13 is also fully opened, so that an air conditioner with less power consumption can be provided.
  • the refrigerant and the brine face each other so that the temperature of the refrigerant on the condensing side approaches the temperature of the brine returned from the ground.
  • a brine circulation system is configured to achieve this.
  • the refrigerant and brine flow in the same direction, which is not necessarily appropriate if only the geothermal heat exchanger 10 is considered.
  • there is an outdoor heat exchanger 8 downstream and since the underground heat-utilizing heat exchanger 10 and the outdoor heat exchanger 8 are used together, the refrigerant can be completely evaporated by the outdoor heat exchanger 8, so that the performance deteriorates. Is not invited.
  • the first disclosure includes a compressor that compresses and sends out refrigerant, an outdoor heat exchanger that exchanges heat between outdoor air and refrigerant sent by the outdoor blower, refrigerant and indoor air, and the like.
  • an indoor heat exchanger for exchanging heat between them constitute a refrigeration cycle or a heat pump cycle and a pump for circulating a heat medium.
  • a heat medium circulation system is comprised by the underground heat exchanger which heat-exchanges between a heat medium and underground, and the underground heat utilization heat exchanger which heat-exchanges between a heat medium and a refrigerant
  • the geothermal heat utilization heat exchanger is disposed between the outdoor heat exchanger and the indoor heat exchanger
  • the first throttle portion is disposed between the outdoor heat exchanger and the geothermal heat utilization heat exchanger
  • the second throttle Between the ground heat heat exchanger and the indoor heat exchanger, the second throttle, the underground return temperature detector for detecting the return temperature of the heat medium from the ground, and the outdoor that detects the temperature of the outdoor air Arrange the temperature detector.
  • the first throttle unit and the second throttle unit are controlled to change the pressure of the refrigerant in the geothermal heat utilization heat exchanger.
  • the geothermal heat exchanger can be reduced in size, the installation cost can be reduced, and the geothermal heat can be effectively used with less capital investment.
  • the second disclosure may adjust the rotation speed of the outdoor fan according to the heat exchange amount of the outdoor heat exchanger.
  • the amount may be adjusted.
  • the amount may be adjusted.
  • the first throttle unit includes an expansion valve and a bypass circuit having a bypass valve provided so as to bypass the expansion valve. It may be configured.
  • the amount of underground heat used can be adjusted with high accuracy, and the efficiency of the device can be increased.
  • the expansion valve when the underground heat is utilized to the maximum extent in the underground heat utilizing heat exchanger, the expansion valve may be fully opened and the bypass valve may be opened.
  • the heat medium circulated by the pump is a geothermal heat utilization heat exchanger, wherein the heat utilization from the outdoor heat exchanger is
  • the heat medium circulation system may be configured to flow in a direction opposite to the flow of the refrigerant flowing through the exchanger to the indoor heat exchanger.
  • the heat medium circulated by the pump flows from the outdoor heat exchanger through the geothermal heat exchanger to the indoor heat exchanger in the geothermal heat exchanger.
  • the heat medium circulation system may be configured to flow in a direction opposite to the flow of the refrigerant.
  • the heat medium circulated by the pump flows from the outdoor heat exchanger through the geothermal heat exchanger to the indoor heat exchanger in the geothermal heat exchanger.
  • the heat medium circulation system may be configured to flow in a direction opposite to the flow of the refrigerant.
  • the air conditioner according to the present invention provides an efficient device by appropriately and effectively using a heat source different from the outside air, and the technology is not limited to the air conditioner. It can be widely applied to the above and brings about an effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Central Air Conditioning (AREA)

Abstract

室外熱交換器(8)と室内熱交換器(5)の間に地中熱利用熱交換器(10)が配備される。また、室外熱交換器(8)と地中熱利用熱交換器(10)の間に、第一膨張弁(13)と第一膨張弁(13)の両接続口をバイパスするよう配備されたバイパス弁(14)で構成される第一の絞り部(15)が配備され、地中熱利用熱交換器(10)と室内熱交換器(5)の間に、第二膨張弁(16)が配備される。このことにより、第一の絞り部(15)、第二膨張弁(16)を制御して地中熱利用熱交換器(10)の冷媒温度を調整し、室外機(1)の熱負荷は確保しつつ地中熱利用量を適正に管理でき、地中採熱部(3)の規模が小さくても、地中熱を有効かつ安定に利用することができる。

Description

空気調和機
 本発明は、冷凍サイクルおよびヒートポンプサイクルを用いて空気調和を行なう空気調和機において、空気熱に加えて、地中熱など複数の熱源を利用してエネルギーの有効利用を図る技術に関するものである。
 近年は、地球温暖化防止の観点から空気調和機の運転効率が重要視されており、国策においても空気調和機の効率に対する規制が導入されている。その結果、20年前に比べると消費電力が半分以下となる空気調和機も販売されている。
 こうした空気調和機の運転効率の向上は、主に圧縮機や送風機の効率向上や熱交換器の高性能化によって実現されてきた。
 圧縮機や送風機においては、インバータ化に加えて、モーターのローターに高価な希土類の磁石を採用したり、モーター駆動方式を改良したりすることにより高速運転が困難であった巻数が多い仕様のステーターも使いこなすことができるようになってきた。このような取組みにより、圧縮機や送風機の期間消費電力の低減が実現されてきた。
 熱交換器については、空気調和機の性能向上のため投入量が年々増加する傾向にあり、空気調和機の大きさも大型化してきている。また単に熱交換器の投入量を増やすだけでなく、フィンの切起しや曲げ形状に工夫を凝らし熱交換性能に優れたフィンを開発したり、冷媒配管の細管化や管径変化の最適化により高性能化を図る技術を開発したりしている。
 こうした各要素の高性能化とは別に、空気熱の利用だけではなく、従来利用されていなかった熱源を利用することで、空気調和機の運転効率向上や電力消費量の削減の取り組みもなされている。
 太陽熱や、地中熱、未利用河川水などの自然の熱源、さらには工場などにおけるボイラーや発電機などの廃熱などの利用が盛んに試みられている。その中には、太陽熱や廃熱を暖房に利用することは言うに及ばず、吸収式冷凍機やデシカント空調機の熱源を冷房に利用する技術さえ開発されてきた。
 地中熱や未利用河川水の熱源については、冷凍サイクルやヒートポンプサイクルと組合せて小型化することが容易であるが、未利用河川水の熱源利用についてはその名の通り河川もしくは、湖沼や海が必要でありその設置条件は限られている。
 それに比べると地中熱は、設置条件の制約は緩く、地域を問わず設置例が増えている。特にここ数年は、国や自治体の補助などを背景に地中熱利用のための着工数が大幅に増えており、新しい熱源としての地中熱の可能性が期待されている。
 これまで、地中熱として利用されている領域は30mより深い地中であり、大型のビルや公共の建造物が主であったが、30mより浅い地中における地中熱の利用技術も開発が進み、戸建住宅なども地中熱利用の対象となり、地中熱を利用する建造物の数が増えている。
 地中温度は、地下10m以下においては、年間を通して年間平均気温付近で安定(15℃前後)している。1~2mの深さでも、冬は8℃程度、夏は25℃程度の温度を維持しており、夏は冷房、冬は暖房に利用することが可能である。
 地中温度は、平均気温を中心に緩やかに変動する一方、土壌の移動がないため地中における熱の移動は熱伝導が主であり、過剰に採熱すると温度が上昇あるいは低下して有効に利用できない状態になってしまう上、温度の回復に長い期間を必要とする。地下水脈があり、地下水が移動するような地中の環境ではかなり良好な条件を維持することができるが、地中熱の過剰採取は避けなければ適切な空調が行なえなくなることに変わりはない。
 地中熱の過剰採取を回避するための先行技術として、地中熱の採取のための熱媒を循環させるポンプの回転数を制御して熱媒の循環量を調整する地中熱ヒートポンプ装置がある(例えば、特許文献1参照)。そして、特許文献1に記載の地中熱ヒートポンプ装置は、図2に示すように、ヒートポンプユニット51と地中熱交換部52と負荷熱交換部53の3つの部分から構成されている。
 ヒートポンプユニット51では、圧縮機54、負荷側熱交換器55、膨張弁56、熱源側熱交換器57が環状に接続されて、冷媒が循環するヒートポンプ回路58を構成している。また、ヒートポンプユニット51には、地中熱交換部52を構成する地中循環ポンプ59や負荷熱交換部53を構成する負荷側循環ポンプ60を備える。さらに、ヒートポンプユニット51には、地中循環ポンプ59の熱媒出口に配備された地中往き温度検出部61、熱源側熱交換器57の熱媒入口に配備された地中戻り温度検出部62、これらのアクチュエータや検知部を統括する制御部63が備えられている。
 地中熱交換部52では、地中熱交換器64、熱源側熱交換器57、地中循環ポンプ59が環状に接続されて、熱媒の循環する地中循環回路65が構成されている。地中循環ポンプ59の熱媒出口には地中往き温度検出部61が配備され、熱源側熱交換器57の熱媒入口には地中戻り温度検出部62が配備されている。
 負荷熱交換部53では、負荷端末66、負荷側循環ポンプ60、負荷側熱交換器55、熱動弁67が環状に接続されて、熱媒の循環する負荷側循環回路68を構成している。
 制御部63は、圧縮機54、地中循環ポンプ59、負荷側循環ポンプ60を駆動させるとともに、地中往き温度検出部61や地中戻り温度検出部62の検出温度の変化を検知して、地中循環ポンプ59の循環量を調整することで、地中からの採熱を過不足なく最適に行ない、総合的な地中熱ヒートポンプの効率向上を目論んでいる。
特許第5356900号公報
 しかしながら、従来の地中熱ヒートポンプ装置においては、地中熱交換器64が負荷を全て賄うことができるだけの能力を有していること、すなわち地中熱交換器64による地中からの採熱量が高いことを前提としている。その上で、地中熱循環ポンプ59の流量を調整して地中熱ヒートポンプ装置の効率向上を図っている。
 地中熱交換器64に負荷を全て賄うことができるだけの採熱量を保障するためには、地中熱交換器64の基数を多めに設置する必要があり、初期の設備投資額が増大してしまう。
 初期の設備投資を抑えるため、地中熱交換器による地中からの採熱量を少なめにした設計を採用した場合、もし十分な地中熱が得られないと、負荷に応えることができなくなってしまい、空調であれば快適性を損なってしまう。無理に地中熱交換器による採熱を行なえば地中熱交換器の温度低下あるいは温度上昇を招き、性能の低下させてしまう。最悪の場合、熱媒配管あるいは熱交換器の凍結や圧縮機の異常温度上昇から設備の故障を招く可能性もある。
 本発明は、地中熱交換器への多大な投資を行なわなくても、地中熱の採熱過多、空調能力不足やブライン凍結あるいはなどを未然に防いで、信頼性の高い地中熱利用を行なうことのできる空気調和機を提供するものである。
 本発明の空気調和機は、冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と冷媒との間で熱交換する室外熱交換器と、冷媒と室内空気との間で熱交換する室内熱交換器とが冷凍サイクルあるいはヒートポンプサイクルを構成するとともに、熱媒体を循環させるポンプとを備える。また、熱媒体と地中との間で熱交換ずる地中熱交換器と、熱媒体と冷媒との間で熱交換する地中熱利用熱交換器とで熱媒体循環系を構成する。また、地中熱利用熱交換器を室外熱交換器と室内熱交換器との間に配置するとともに、室外熱交換器と地中熱利用熱交換器との間に第一の絞り部を、地中熱利用熱交換器と室内熱交換器の間に第二の絞り部を配置する。さらに、第一の絞り部と、第二の絞り部の制御を行い、地中熱利用熱交換器における冷媒の圧力を変化させる。
 これにより、室外熱交換器と地中熱利用熱交換器を熱源側に使用するため、地中熱交換器の規模を小さくすることができる。また、地中熱利用熱交換器における、冷媒の温度と熱媒体の温度差を任意に設定して、熱源側で放熱あるいは採熱する総熱量は一定に保ったまま、地中熱の利用量を調整することができる。
 本発明の空気調和機は、地中熱交換器を小型化することができるので、設置費用を抑えて、少ない設備投資で地中熱の有効利用を行なうことができる。
 さらに、地中熱の利用量を調整することができるので、地中の温度が変化して利用困難になる土壌の熱汚染や、空調能力の不足、ブライン凍結など装置の不具合を防ぎ、信頼性の高い装置を提供することができる。
図1は、本発明の第1の実施の形態における熱利用装置を用いた空調システムの構成図である。 図2は、従来の地中熱利用を行なう空気調和機の構成図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態における空気調和機の構成図を示すものである。
 図1に示すように、本実施の形態における空気調和機は、室外機1と、室内機2を配管で環状に接続して冷媒を循環させ、冷房あるいは暖房を行なう。また、室外機1は、地中採熱部3とも配管で環状に接続され、ブラインなどの熱媒体を循環させて地中熱を利用する。
 ここで、冷媒や熱媒体については、特定の種類に限定されるものではなく、一般的に用いられる冷媒、ブラインとして説明を行なう。
 室内機2には、室内送風機4と、室内送風機4によって送られた室内空気と熱交換して冷房あるいは暖房を行なう室内熱交換器5が配備されている。
 室外機1には、冷媒を圧縮して送り出す圧縮機6と、空気を熱源として利用するため室外送風機7によって送られた室外空気と熱交換する室外熱交換器8と、地中採熱部3の地中熱交換器9と熱循環系を構成する地中熱利用熱交換器10が配置されている。また、室外機1にはブラインを循環させるためのポンプ11が配備されていて、地中熱利用熱交換器10では冷媒とブラインとの間で熱交換を行なう。
 さらに、室外機1には、冷媒の循環方向を切り替える四方弁12と、第一膨張弁13と第一膨張弁13の両接続口をバイパスするよう配備されたバイパス弁14で構成される第一の絞り部15と、第二の絞り部である第二膨張弁16が配備されている。ただし、空気調和機が冷房あるいは暖房の専用機であれば、四方弁12は必要がない。
 四方弁12は、圧縮機6の冷媒吸入口および冷媒吐出口と室外熱交換器8のガス冷媒の比率が高いガス側および室内熱交換器5のガス側に接続されていて、冷房運転であれば室内熱交換器5のガス側の冷媒を圧縮機6が吸入口から吸い込んで吐出口から室外熱交換器8のガス側へ吐き出す。
 室外熱交換器8の液冷媒の比率が高い液側は、第一の絞り部15の一方、つまり、第一膨張弁13とバイパス弁14の一方につながり、第一の絞り部15の他方は地中熱利用熱交換器10のガス側につながっている。そして、地中熱利用熱交換器10の液側は第二膨張弁16の一方のつながり、第二膨張弁16の他方は室内熱交換器5の液側につながって、冷媒の凝縮、蒸発を繰り返す循環系が構成される。
 さらに、図1の空気調和機では、吐出温度センサ17、室外気温センサ18、第一配管温センサ19、第二配管温センサ20、室内熱交温度センサ21、室内気温センサ22、地中戻り温度センサ23、および地中往き温度センサ24が配置されている。これらのセンサ情報を用いて空気調和機全体の制御がなされている。
 図1は冷房運転状態を示しており、室内熱交換器5のガス側から四方弁12の低圧側経路を経由して戻ってきた冷媒は圧縮機6で圧縮され、高温高圧状態となって四方弁12の高圧側経路に吐出される。
 そして、高温高圧状態となった冷媒は、室外熱交換器8のガス側へ送られて凝縮しつつ液側から送り出され、第一の絞り部15の第一膨張弁13あるいはバイパス弁14の少なくともどちらか一方を経由し、必要に応じて減圧されて地中熱利用熱交換器10の冷媒ガス側へ送られる。
 そして、冷媒は、地中熱利用熱交換器10において、ポンプ11によって循環されて、地中採熱部3の地中熱交換器9で冷却されたブラインと熱交換しつつ冷媒液側から出ると第二膨張弁16へと向かう。
 第二膨張弁16で減圧された後は、冷媒は室外機1を出て室内機2の室内熱交換器5の液側へ送られる。
 室内熱交換器5において、冷媒は蒸発し、室内空気と熱交換して冷房を行ない、再び四方弁12の低圧側経路を経由して圧縮機6へ戻っていく。
 暖房運転の場合には、四方弁12の経路が切替わり、圧縮機6から吐出された冷媒は、四方弁12から室内熱交換器5のガス側へ送られる。そして、室内熱交換器5で冷媒は凝縮し、第二膨張弁16で減圧され、地中熱利用熱交換器10の冷媒液側へ送られる。
 そして、冷媒は、地中熱利用熱交換器10において、ポンプ11によって循環され、地中採熱部3の地中熱交換器9で暖められたブラインと熱交換し、蒸発しつつ冷媒ガス側から出ると、第一膨張弁13およびバイパス弁14で構成される第一の絞り部15へと向かう。
 第一の絞り部15を経て、冷媒は、室外熱交換器8で外気と熱交換して蒸発を終え、四方弁12を経由して圧縮機6の吸入口へと戻る。
 地中採熱部3の構成については、中空の地中杭を30mから100m程度の深さまで埋め、内部にポリプロピレン製の配管を挿入し、コンクリートや水あるいはブラインなどを充填するものが一般的であった。そして、杭の打ち込みは、専用の重機を使用して行なわれ、費用の掛る工事であった。
 最近は、ポリプロピレン製の配管を比較的浅い土壌に直に埋設するものや、井戸を掘削し井水を循環するものや、金属製の杭を打ち込む際に樹脂製のパイプを固定して杭の打ち込みと同時にパイプの埋設を行なうものなど様々な形態が、少ない工事費と地中熱の有効利用の実現を目指して提案されるようになった。
 本実施の形態では、地中採熱部3の構成がいかなるものでも採用でき、効果を発揮することができるが、ポリプロピレン製の配管を比較的浅い土壌に直に埋設して、工事費を抑えることを重視しており、敷設面積も制限するものを使用している。
 そのような条件下では、空調に必要な熱源を全て地中に求めると、地中が過熱あるいは過冷却されてしまい、熱源としての機能が低下してしまうことになる。
 そこで、本実施の形態では、室外熱交換器8の液側に地中熱利用熱交換器10を直列に接続し、室外熱交換器8と地中熱利用熱交換器10を併用し、第一の絞り部15と第二膨張弁16によって地中熱利用熱交換器10における冷媒温度を制御して地中との熱交換量を調整するものである。
 これにより、必要な熱源を確保し、かつ地中熱利用量も適切に管理することができる。その結果、少ない設備投資で信頼性の高い装置を設置し、地中熱の有効利用を図ることができる。
 また、本実施の形態においては、空調負荷に応じて室外熱交換器8と地中熱利用熱交換器10の熱交換量の合計、すなわち室外側の熱交換量の合計が算出される。そして、算出された室外側の熱交換量の合計と、室外の気温、地中熱利用熱交換器10へのブライン戻り温度などから地中熱の利用量を決定する。そして、決定された地中熱の利用量に基づいて第一の絞り部15と第二膨張弁16が地中熱利用熱交換器10の熱交換量を調整する。
 さらに、この一連の制御の過程で算出された室外熱交換器8における熱交換量と、室外気温センサ18の出力温度に基づいて、室外送風機7の出力を適正な出力に調整を行なえば、必要以上に室外送風機7の出力を上げることを防ぐことができ、電力の消費を抑えることができる。
 また、本実施の形態においては、先の第一の絞り部15と第二膨張弁16を制御する過程で、室外熱交換器8と地中熱利用熱交換器10での熱交換量が算出されるが、その熱交換量と、室外気温センサ18と地中戻り温度センサ23の出力温度の差に応じて、ポンプ11の出力を調整する。
 つまり、冷房運転の場合であれば、任意の室外空気との熱交換量と地中熱利用量に対して、室外気温センサ18の出力温度と室外熱交換器8の熱交換量から推定される冷媒の凝縮温度よりも地中戻り温度センサ23の出力温度が低い。冷媒の凝縮温度と地中戻り温度センサ23の出力温度の差が大きい場合には、ブラインの流量が少なめでも容易に熱交換ができるため、ポンプ11の出力を少なめにしてポンプの省エネを図り、逆にその差が小さい場合にはポンプ11の出力を多めにして熱交換量を確保し、圧縮機6の入力が減るように制御する。
 暖房の場合であれば、任意の室外空気との熱交換量と地中熱利用量に対して、室外気温センサ18の出力温度と室外熱交換器8の熱交換量から推定される冷媒の蒸発温度よりも地中戻り温度センサ23の出力温度が高い。冷媒の蒸発温度と地中戻り温度センサ23の出力温度の差が大きい場合には、ブラインの流量が少なめでも容易に熱交換ができるため、ポンプ11の出力を少なめにしてポンプの省エネを図り、逆にその差が小さい場合にはポンプ11の出力を多めにして熱交換量を確保し、圧縮機6の入力が減るように制御する。
 これにより、ポンプ11の出力を適切に抑え、消費電力の少ない空気調和機を提供することができる。
 また、本実施の形態においては、第一の絞り部15が、第一膨張弁13とバイパス弁14とで構成されている。そのため、室外熱交換器8と地中熱利用熱交換器10とで、冷媒の飽和温度に差が必要な場合には、バイパス弁14を閉じ、第一膨張弁13の開度を調整することで、容易に所望の飽和温度差を与えることができる。
 そして、熱交換量が多く、特に地中熱利用熱交換器10での熱交換量を多くしたい場合には、バイパス弁14を全開とし、第一の絞り部15での圧力損失をできる限り小さくすることができる。
 これにより、地中熱の利用量を抑制して有効に利用する一方で、地中熱の利用を増大させることを可能にし、より空気調和機の運転状況に応じた運転が可能となる。
 その結果、より消費電力の少ない空気調和機を提供することができる。
 このとき、バイパス弁14を全開とすることに加え、第一膨張弁13の開度も全開とすることで、さらに消費電力の少ない空気調和機を提供することができる。
 また、本実施の形態においては、地中熱利用熱交換器10において、冷房運転時に、凝縮側の冷媒の温度が地中から戻ったブラインの温度に近づくよう、冷媒とブラインが対向する流れとなるようにブラインの循環系が構成されている。これにより、冷媒のエンタルピーが小さくなり、最も運転性能を向上させることができる冷媒とブラインの流し方とすることができる。
 この構成では、暖房運転時には、冷媒とブラインは同方向に流れる関係となり、地中熱利用熱交換器10だけで考えれば必ずしも適切とは言えない。しかしながら、下流に室外熱交換器8があり、地中熱利用熱交換器10と室外熱交換器8を併用するため、室外熱交換器8で冷媒を蒸発させきることができるので、性能の低下を招くことがない。
 そして、この構成をとることで、冷房、暖房どちらでも地中熱利用熱交換器10と室外熱交換器8の接続を変更する必要がなくなり、接続切換用のバルブが不要となり、安価に空気調和機を構成することができる。
 以上説明したように、第1の開示は、冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と冷媒との間で熱交換する室外熱交換器と、冷媒と室内空気との間で熱交換する室内熱交換器とが冷凍サイクルあるいはヒートポンプサイクルを構成するとともに、熱媒体を循環させるポンプとを備える。また、熱媒体と地中との間で熱交換ずる地中熱交換器と、熱媒体と冷媒との間で熱交換する地中熱利用熱交換器とで熱媒体循環系を構成する。また、地中熱利用熱交換器を室外熱交換器と室内熱交換器との間に配置するとともに、室外熱交換器と地中熱利用熱交換器との間に第一の絞り部を、地中熱利用熱交換器と室内熱交換器の間に第二の絞り部と、熱媒体の地中からの戻り温度を検知する地中戻り温度検知部と、室外空気の温度を検知する室外気温検知部を配置する。さらに、第一の絞り部と、第二の絞り部の制御を行い、地中熱利用熱交換器における冷媒の圧力を変化させる。
 これにより、室外熱交換器と地中熱利用熱交換器を熱源側に使用するため、地中熱交換器の規模を抑えることができる。また、地中熱利用熱交換器における、冷媒の温度と熱媒体の温度差を任意に設定して、熱源側で放熱あるいは採熱する総熱量は一定に保ったまま、地中熱の利用量を調整することができる。
 従って、地中熱交換器を小型化することができるので、設置費用を抑えて、少ない設備投資で地中熱の有効利用を行なうことができる。
 さらに、地中熱の利用量を調整することができるので、地中の温度が変化して利用困難になる土壌の熱汚染や、空調能力の不足、ブライン凍結など装置の不具合を防ぎ、信頼性の高い装置を提供することができる。
 第2の開示は、第1の開示において、室外熱交換器の熱交換量に応じて、室外送風機の回転数を調整してもよい。
 これにより、室外送風機による不要な室外空気の搬送を減らすことができる。
 従って、室外送風機の消費電力を削減することができる。
 第3の開示は、第1の開示において、地中熱利用熱交換器の熱交換量と、地中戻り温度検知部の検知結果と、室外気温検知部の検知結果に応じて、ポンプの循環量を調整してもよい。
 これにより、ポンプによる熱媒体の不要な搬送を減らすことができる。
 従って、ポンプの消費電力を削減することができる。
 第4の開示は、第2の開示において、地中熱利用熱交換器の熱交換量と、地中戻り温度検知部の検知結果と、室外気温検知部の検知結果に応じて、ポンプの循環量を調整してもよい。
 これにより、ポンプによる熱媒体の不要な搬送を減らすことができる。
 従って、ポンプの消費電力を削減することができる。
 第5の開示は、第1の開示から第4の開示のいずれか一つにおいて、第一の絞り部が、膨張弁と、膨張弁をバイパスするように設けられたバイパス弁を有するバイパス回路から構成されてもよい。
 これにより、空調負荷や地中熱利用量に応じて精度良く、地中熱利用熱交換器における冷媒の圧力を変化させることができる。
 従って、地中熱利用量の調整を精度良く行い、装置の効率を高めることができる。
 第6の開示は、第5の発明において、地中熱利用熱交換器において地中熱を最大限に利用する際には膨張弁を全開とするとともにバイパス弁を開としてもよい。
 これにより、冷媒の流れに対し第一の絞り部の抵抗を最小限にすることで、地中熱利用熱交換器入口における、冷媒と熱媒体の温度差を最大にすることができる。
 従って、地中熱利用量が大きく性能の良い装置を提供することができる。
 第7の開示は、第1の開示から第4の開示のいずれか一つにおいて、ポンプによって循環される熱媒体が、地中熱利用熱交換器において、室外熱交換器から地中熱利用熱交換器を通り室内熱交換器へ流れる冷媒の流れに対して対向する方向に流れるよう、熱媒体循環系を構成としてもよい。
 これにより、熱媒体の流れる方向を切換えなくても、冷房運転時つまり冷媒が地中熱利用熱交換器において凝縮する際に良好な熱交換性能を得るとともに、暖房運転時つまり冷媒が地中熱利用熱交換器において蒸発する際の熱交換性能の低下も防ぐことができる。
 従って、使用する駆動部品の数を抑えて、部品コストの安価な装置を提供することができる。
 第8の開示は、第5の開示において、ポンプによって循環される熱媒体が、地中熱利用熱交換器において、室外熱交換器から地中熱利用熱交換器を通り室内熱交換器へ流れる冷媒の流れに対して対向する方向に流れるよう、熱媒体循環系を構成としてもよい。
 これにより、熱媒体の流れる方向を切換えなくても、冷房運転時つまり冷媒が地中熱利用熱交換器において凝縮する際に良好な熱交換性能を得るとともに、暖房運転時つまり冷媒が地中熱利用熱交換器において蒸発する際の熱交換性能の低下も防ぐことができる。
 従って、使用する駆動部品の数を抑えて、部品コストの安価な装置を提供することができる。
 第9の開示は、第6の開示において、ポンプによって循環される熱媒体が、地中熱利用熱交換器において、室外熱交換器から地中熱利用熱交換器を通り室内熱交換器へ流れる冷媒の流れに対して対向する方向に流れるよう、熱媒体循環系を構成としてもよい。
 これにより、熱媒体の流れる方向を切換えなくても、冷房運転時つまり冷媒が地中熱利用熱交換器において凝縮する際に良好な熱交換性能を得るとともに、暖房運転時つまり冷媒が地中熱利用熱交換器において蒸発する際の熱交換性能の低下も防ぐことができる。
 従って、使用する駆動部品の数を抑えて、部品コストの安価な装置を提供することができる。
 以上のように、本発明にかかる空気調和機は、外気とは異なる熱源を適切かつ有効に利用して、効率のよい装置を提供するもので、その技術は空気調和機だけに止まらず、給湯などにも広く適用することができ、効果をもたらすものである。
 1 室外機
 2 室内機
 3 地中採熱部
 4 室内送風機
 5 室内熱交換器
 6 圧縮機
 7 室外送風機
 8 室外熱交換器
 9 地中熱交換器
 10 地中熱利用熱交換器
 11 ポンプ
 12 四方弁
 13 第一膨張弁
 14 バイパス弁
 15 第一の絞り部
 16 第二膨張弁(第二の絞り部)
 17 吐出温度センサ
 18 室外気温センサ
 19 第一配管温センサ
 20 第二配管温センサ
 21 室内熱交温度センサ
 22 室内気温センサ
 23 地中戻り温度センサ
 24 地中往き温度センサ

Claims (9)

  1. 冷媒を圧縮して送り出す圧縮機と、室外送風機によって送られた室外空気と前記冷媒との間で熱交換する室外熱交換器と、前記冷媒と室内空気との間で熱交換する室内熱交換器とが冷凍サイクルあるいはヒートポンプサイクルを構成するとともに、熱媒体を循環させるポンプと、前記熱媒体と地中との間で熱交換する地中熱交換器と、前記熱媒体と前記冷媒との間で熱交換する地中熱利用熱交換器とで熱媒体循環系を構成し、前記地中熱利用熱交換器を前記室外熱交換器と前記室内熱交換器との間に配置するとともに、前記室外熱交換器と前記地中熱利用熱交換器との間に第一の絞り部を配置し、前記地中熱利用熱交換器と前記室内熱交換器の間に第二の絞り部と、前記熱媒体の前記地中からの戻り温度を検知する地中戻り温度検知部と、前記室外空気の温度を検知する室外気温検知部を配置するものであって、前記第一の絞り部と、前記第二の絞り部の制御を行い、前記地中熱利用熱交換器における前記冷媒の圧力を変化させることを特徴とする空気調和機。
  2. 前記室外熱交換器の熱交換量に応じて、前記室外送風機の回転数を調整することを特徴とする、請求項1に記載の空気調和機。
  3. 前記地中熱利用熱交換器の熱交換量と、前記地中戻り温度検知部の検知結果と、前記室外気温検知部の検知結果に基づいて、前記ポンプの循環量を調整することを特徴とする、請求項1に記載の空気調和機。
  4. 前記地中熱利用熱交換器の熱交換量と、前記地中戻り温度検知部の検知結果と、前記室外気温検知部の検知結果に基づいて、前記ポンプの循環量を調整することを特徴とする、請求項2に記載の空気調和機。
  5. 前記第一の絞り部が、膨張弁と、前記膨張弁をバイパスするように設けられたバイパス弁を有するバイパス回路から構成されることを特徴とする、請求項1から請求項4のいずれか一項に記載の空気調和機。
  6. 前記地中熱利用熱交換器において、地中熱を最大限に利用する際には前記膨張弁を全開とするとともに前記バイパス弁を開とすることを特徴とする、請求項5に記載の空気調和機。
  7. 前記ポンプによって循環される前記熱媒体が、前記地中熱利用熱交換器において、前記室外熱交換器から前記地中熱利用熱交換器を通り前記室内熱交換器へ流れる前記冷媒の流れに対して対向する方向に流れるよう、前記熱媒体循環系を構成することを特徴とする、請求項1から請求項4のいずれか一項に記載の空気調和機。
  8. 前記ポンプによって循環される前記熱媒体が、前記地中熱利用熱交換器において、前記室外熱交換器から前記地中熱利用熱交換器を通り前記室内熱交換器へ流れる前記冷媒の流れに対して対向する方向に流れるよう、前記熱媒体循環系を構成することを特徴とする、請求項5に記載の空気調和機。
  9. 前記ポンプによって循環される前記熱媒体が、前記地中熱利用熱交換器において、前記室外熱交換器から前記地中熱利用熱交換器を通り前記室内熱交換器へ流れる前記冷媒の流れに対して対向する方向に流れるよう、前記熱媒体循環系を構成することを特徴とする、請求項6に記載の空気調和機。
PCT/JP2018/012670 2017-04-06 2018-03-28 空気調和機 WO2018186250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019511180A JPWO2018186250A1 (ja) 2017-04-06 2018-03-28 空気調和機
CN201880004886.3A CN110062866A (zh) 2017-04-06 2018-03-28 空气调节机
EP18781524.6A EP3608608A4 (en) 2017-04-06 2018-03-28 AIR CONDITIONER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-075681 2017-04-06
JP2017075681 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186250A1 true WO2018186250A1 (ja) 2018-10-11

Family

ID=63712073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012670 WO2018186250A1 (ja) 2017-04-06 2018-03-28 空気調和機

Country Status (4)

Country Link
EP (1) EP3608608A4 (ja)
JP (1) JPWO2018186250A1 (ja)
CN (1) CN110062866A (ja)
WO (1) WO2018186250A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344599A (zh) * 2020-11-16 2021-02-09 吉林大学 一种中低温增强型地热复合热泵系统
CN115076814A (zh) * 2022-06-25 2022-09-20 中建七局第四建筑有限公司 一种地热能的室内温控系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132164U (ja) * 1981-02-12 1982-08-17
WO2006051617A1 (ja) * 2004-11-12 2006-05-18 Mayekawa Mfg.Co.,Ltd. Co2を冷媒としたヒートポンプ及びその運転方法
JP2006242502A (ja) * 2005-03-04 2006-09-14 Saginomiya Seisakusho Inc 複合弁およびヒートポンプ式空気調和装置およびその制御方法
US20070044494A1 (en) * 2005-08-31 2007-03-01 Ut-Battelle, Llc Super Energy Saver Heat Pump with Dynamic Hybrid Phase Change Material
JP2010216770A (ja) * 2009-03-18 2010-09-30 Toshiba Carrier Corp 空気調和装置
JP2012137290A (ja) * 2012-04-08 2012-07-19 Masahiro Izutsu 生活排水の総合的活用システム
JP5356900B2 (ja) 2009-04-20 2013-12-04 株式会社コロナ 地中熱ヒートポンプ装置
JP2013249974A (ja) * 2012-05-30 2013-12-12 Daikin Industries Ltd ヒートポンプ
JP2016176672A (ja) * 2015-03-23 2016-10-06 パナソニックIpマネジメント株式会社 空気調和機
JP2017026159A (ja) * 2013-12-04 2017-02-02 三菱電機株式会社 ヒートポンプ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284022A (ja) * 2005-03-31 2006-10-19 Toa Tone Boring:Kk 地中熱源ヒートポンプ装置
KR101175385B1 (ko) * 2006-06-16 2012-08-20 엘지전자 주식회사 지열을 이용한 공기조화기
JP2008275214A (ja) * 2007-04-26 2008-11-13 Osaka Gas Co Ltd 圧縮式ヒートポンプ装置
WO2013171803A1 (ja) * 2012-05-18 2013-11-21 三菱電機株式会社 ヒートポンプ装置
WO2014054178A1 (ja) * 2012-10-05 2014-04-10 三菱電機株式会社 ヒートポンプ装置
CN106482269A (zh) * 2016-12-22 2017-03-08 科莱纳新能源科技(上海)有限公司 一种新型的地源空气源一体化空调机组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132164U (ja) * 1981-02-12 1982-08-17
WO2006051617A1 (ja) * 2004-11-12 2006-05-18 Mayekawa Mfg.Co.,Ltd. Co2を冷媒としたヒートポンプ及びその運転方法
JP2006242502A (ja) * 2005-03-04 2006-09-14 Saginomiya Seisakusho Inc 複合弁およびヒートポンプ式空気調和装置およびその制御方法
US20070044494A1 (en) * 2005-08-31 2007-03-01 Ut-Battelle, Llc Super Energy Saver Heat Pump with Dynamic Hybrid Phase Change Material
JP2010216770A (ja) * 2009-03-18 2010-09-30 Toshiba Carrier Corp 空気調和装置
JP5356900B2 (ja) 2009-04-20 2013-12-04 株式会社コロナ 地中熱ヒートポンプ装置
JP2012137290A (ja) * 2012-04-08 2012-07-19 Masahiro Izutsu 生活排水の総合的活用システム
JP2013249974A (ja) * 2012-05-30 2013-12-12 Daikin Industries Ltd ヒートポンプ
JP2017026159A (ja) * 2013-12-04 2017-02-02 三菱電機株式会社 ヒートポンプ装置
JP2016176672A (ja) * 2015-03-23 2016-10-06 パナソニックIpマネジメント株式会社 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608608A4 *

Also Published As

Publication number Publication date
JPWO2018186250A1 (ja) 2020-02-13
EP3608608A1 (en) 2020-02-12
EP3608608A4 (en) 2020-04-01
CN110062866A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
US7617697B2 (en) In-ground geothermal heat pump system
KR101270616B1 (ko) 코제너레이션
JP5868498B2 (ja) ヒートポンプ装置
US6854283B2 (en) Determining method of high pressure of refrigeration cycle apparatus
JP3080558B2 (ja) 寒冷地向けヒートポンプ空調機
WO2014054178A1 (ja) ヒートポンプ装置
KR20070111919A (ko) 지열을 이용한 공기조화 시스템
JP6528078B2 (ja) 空気調和機
JP5775596B2 (ja) 給湯空調装置
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2011007476A (ja) 冷熱式、温熱式、冷・温熱式ヒートポンプシステム
JP2005274134A (ja) ヒートポンプ床暖房空調装置
WO2018186250A1 (ja) 空気調和機
CN1945174A (zh) 适合江、河、湖、海低水温的高效水源热泵机组
KR101673846B1 (ko) 히트펌프 시스템의 오일회수 운전제어방법 및 오일회수 운전제어기능을 갖는 히트펌프 시스템
JP2020008234A (ja) 空気調和機
JP2006010137A (ja) ヒートポンプシステム
KR101150659B1 (ko) 해양심층수를 이용한 아이스링크 냉각 및 공조 시스템
JP2010216784A (ja) 空気調和システム
JP4809055B2 (ja) エアコン他機能付加装置
JP2019045106A (ja) 空気調和機
KR101078070B1 (ko) 냉온수 및 냉난방 히트펌프시스템
JP6143682B2 (ja) 複合熱源ヒートポンプ装置
JP7359361B2 (ja) ヒートポンプ装置
CN1137352C (zh) 竖式地热蓄能空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018781524

Country of ref document: EP

Effective date: 20191106