WO2018186104A1 - Method for quantifying urea and analyzing device - Google Patents

Method for quantifying urea and analyzing device Download PDF

Info

Publication number
WO2018186104A1
WO2018186104A1 PCT/JP2018/009051 JP2018009051W WO2018186104A1 WO 2018186104 A1 WO2018186104 A1 WO 2018186104A1 JP 2018009051 W JP2018009051 W JP 2018009051W WO 2018186104 A1 WO2018186104 A1 WO 2018186104A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
urea
water
antipyrine
storage tank
Prior art date
Application number
PCT/JP2018/009051
Other languages
French (fr)
Japanese (ja)
Inventor
一重 高橋
菅原 広
史生 須藤
勝久 島田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN201880021497.1A priority Critical patent/CN110462398B/en
Priority to KR1020197025303A priority patent/KR102304396B1/en
Publication of WO2018186104A1 publication Critical patent/WO2018186104A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a method and an analyzer for quantifying urea in water.
  • a quantitative method based on a colorimetric method using diacetyl monooxime is known.
  • this quantification method there is a method described in “Hygiene Test Method” (Non-Patent Document 1) issued by the Japanese Pharmaceutical Association.
  • other reagents for the purpose of accelerating the reaction such as a mixed solution of antipyrine and sulfuric acid, an aqueous solution of semicarbazide hydrochloride, an aqueous solution of mixed manganese chloride and potassium nitrate, sodium dihydrogen phosphate
  • a mixed solution of sulfuric acid and sulfuric acid can be used in combination.
  • diacetyl monooxime is dissolved in an acetic acid solution to prepare a diacetyl monooxime acetic acid solution, and antipyrine (1,5-dimethyl-2-phenyl-3-pyrazolone) is dissolved in, for example, sulfuric acid.
  • An antipyrine-containing reagent solution is prepared, a diacetyl monooxime acetic acid solution and an anripyrine-containing reagent solution are sequentially mixed with the sample water, the absorbance at a wavelength near 460 nm is measured, and quantification is performed by comparison with a standard solution.
  • the colorimetric urea determination method using diacetyl monooxime is intended for the determination of urea in swimming pool water and public bath water, for example, so that raw water supplied to the pure water production process, etc. Sensitivity is poor for quantitative determination of urea. Therefore, in Patent Document 1, by measuring the absorbance by applying flow injection analysis (FIA) based on a colorimetric method using diacetyl monooxime, urea is continuously added online in a concentration range of ppb or less to several ppm. A method for quantification is disclosed.
  • FIA flow injection analysis
  • Patent Document 1 The method described in Patent Document 1 is a method capable of continuously quantifying a small amount of urea online, but has a problem that the urea concentration cannot be stably measured over time.
  • An object of the present invention is to provide a method and an analysis apparatus capable of continuously quantifying urea on-line stably over a long period of time.
  • the inventors of the present invention when quantifying a trace amount of urea continuously on-line by a colorimetric method using diacetyl monooxime, by refrigerated storage of a reagent used for the reaction, particularly an antipyrine-containing reagent solution after preparation, The present inventors have found that the urea concentration can be quantified stably over a long period of time, and the present invention has been completed.
  • the method of the present invention is a method for quantifying urea in a sample water by a colorimetric method using diacetyl monooxime, wherein the reagent prepared for use in the reaction is refrigerated and the urea is quantified using the refrigerated reagent. It is characterized by doing.
  • the analyzer of the present invention is an analyzer for continuously quantifying urea in sample water by a colorimetric method using diacetyl monooxime, a storage tank for storing a reagent prepared for use in a reaction, and a storage tank And cooling means for cooling.
  • the temperature of the reagent in refrigeration of a reagent prepared for use in the reaction, it is preferable to maintain the temperature of the reagent at 20 ° C. or lower after the preparation of the reagent, and further to maintain at 3 ° C. or higher and 20 ° C. or lower. Preferably, it is more preferably maintained at 5 ° C. or more and 15 ° C. or less. These reagents are preferably stored in the dark. If the refrigeration temperature is too low, the reagent may freeze. In the determination of urea using diacetyl monooxime, a reagent for accelerating the reaction is used together with diacetyl monooxime, and it is preferable to use antipyrine as the reagent used in combination.
  • a diacetyl monooxime acetic acid solution and an antipyrine-containing reagent solution are used.
  • one or both of the diacetyl monooxime acetic acid solution and the antipyrine-containing reagent solution are used.
  • the antipyrine-containing reagent solution is, for example, a solution obtained by dissolving antipyrine in sulfuric acid.
  • the method of the present invention is suitable for, for example, continuously quantifying urea over a period of several days or more.
  • the urea is quantified by measuring the absorbance by applying the FIA method.
  • FIG. 1 shows the configuration of an analyzer according to an embodiment of the present invention.
  • the present invention will be described by taking as an example a case where the amount of urea contained in raw water used for pure water production or pure water itself is quantified online.
  • the water to be quantified by the present invention including urea is not limited to these, and the pure water used here is pure water when pure water is circulated and used. Also included is recovered water recovered from the process.
  • a raw water line 20 used for pure water production is provided.
  • the raw water is fed by a pump P0.
  • a sample pipe 21 branched from the raw water line 20 is provided.
  • the sample pipe 21 is a pipe of sample water branched from the raw water, and includes an on-off valve 22 and a flow meter FI.
  • a sampling valve 10 (also referred to as an injector or an injection valve) is provided at the tip of the sample pipe 21.
  • the portion downstream from the sampling valve 10 including the sampling valve 10 has a configuration as a flow injection analysis (FIA) apparatus and is actually a portion related to urea determination.
  • FIA flow injection analysis
  • the sampling valve 10 has a configuration generally used in the FIA method, and includes a six-way valve 11 and a sample loop 12.
  • the six-way valve 11 has six ports indicated by [1], [2], [3], [4], [5] and [6] in the figure.
  • the sample pipe 21 is connected to the port 2.
  • a pipe 23 to which carrier water is supplied via the pump P1 is connected to the port 6, and a pipe 25 for draining the sample water is connected to the port 3 via the pump P4.
  • a sample loop 12 for collecting a predetermined volume of sample water is connected between the port 1 and the port 4.
  • One end of a pipe 24 serving as an outlet of the sampling valve 11 is connected to the port 5.
  • Carrier water is water substantially free of urea.
  • the six-way valve 11 When the communication between the port X and the port Y in the six-way valve 11 is expressed as (XY), the six-way valve 11 is (1-2), (3-4), (5-6) The first state and the second state (2-3), (4-5), and (6-1) can be switched.
  • the connection relationship between the ports in the first state is indicated by a solid line
  • the connection between the ports in the second state is indicated by a dotted line.
  • the carrier water flows from the sampling valve 10 to the downstream side through the pipe 23 ⁇ the port 6 ⁇ the port 5 ⁇ the pipe 24.
  • the sample water flows through the sample pipe 21 ⁇ port 2 ⁇ port 1 ⁇ sample loop 12 ⁇ port 4 ⁇ port 3 and is discharged from the pipe 25.
  • the sample water flows through the sample pipe 21 ⁇ port 2 ⁇ port 3 and is discharged from the pipe 25, and the carrier water is pipe 23 ⁇ port 6 ⁇ port 1 ⁇ Sample loop 12 ⁇ Port 4 ⁇ Port 5 ⁇ Pipe 24 and then flow downstream.
  • the sample water that has already flowed in and filled the sample loop 12 in the first state flows into the pipe 24 from the port 5 prior to the carrier water, and goes downstream of the sampling valve 10. Flowing.
  • the volume of the sample water flowing in the pipe 24 is defined by the sample loop 12.
  • a predetermined volume of sample water can be repeatedly fed into the pipe 24.
  • Switching between the first state and the second state can be performed every predetermined time in consideration of a residence time necessary for a reaction described later and a time until urea is detected by the detector 32. It is also possible to perform switching by detecting that the sample water introduced into the detector 32 is discharged from the detector 32. In this way, urea can be continuously quantified by automatically switching between the first state and the second state.
  • the FIA method is applied to the determination of urea by a colorimetric method using diacetyl monooxime. Therefore, a diacetyl monooxime acetic acid solution (hereinafter also referred to as “reagent A”) and an antipyrine-containing reagent solution (hereinafter also referred to as “reagent B”) are used as reaction reagents used for the determination of urea. These reagents are stored in storage tanks 41 and 42 provided in the refrigerator 40, respectively.
  • the reagent A is prepared by dissolving diacetyl monooxime in an acetic acid solution. In this embodiment, the preparation itself is performed in the storage tank 41, or the reagent A is stored in the storage tank 41 after its preparation.
  • the reagent B is prepared by dissolving antipyrine in, for example, sulfuric acid, but the preparation itself is performed in the storage tank 42, or the reagent B is stored in the storage tank 42 after its preparation.
  • the refrigeration unit 40 shields the storage tanks 41 and 42 and cools the storage tanks 41 and 42, whereby the temperatures of the reagents A and B in the storage tanks 41 and 42 are 20 ° C. or less, preferably 3 ° C. or more and 20 ° C. Hereinafter, it is more preferably maintained at 5 ° C. or more and 15 ° C. or less.
  • the storage tank 41 for storing the reagent A is not necessarily arranged in the refrigeration unit 40 as long as it can be stored in a shaded manner.
  • Non-Patent Document 1 describes that an antipyrine sulfuric acid solution in which antipyrine is dissolved in sulfuric acid can be used for 2 to 3 months if stored in a brown bottle, and refrigerated because crystals precipitate and do not dissolve again even at room temperature. Although it is described that storage is not suitable, the present inventors have confirmed by experiment that the antipyrine sulfate solution prepared according to the method described in Non-Patent Document 1 does not crystallize even at 3 ° C.
  • One end of the pipe 26 is connected to the storage tank 41, and the other end of the pipe 26 is connected to the pipe 24 by the mixing unit 43.
  • the pipe 26 is provided with a pump P2 for feeding the reagent A into the pipe 24 at a predetermined flow rate.
  • one end of a pipe 27 is connected to the storage tank 42, and the other end of the pipe 27 is connected to the pipe 24 by a mixing unit 44.
  • the pipe 27 is provided with a pump P3 for feeding the reagent B into the pipe 24 at a predetermined flow rate.
  • the mixing units 43 and 44 have a function of uniformly mixing the reagent A and the reagent B with the liquid flow in the pipe 24, respectively.
  • the other end of the pipe 24 is connected to an inlet of a reaction coil 31 provided in the reaction thermostat 30.
  • the reaction coil 31 causes a color development reaction between urea and diacetyl monooxime in the presence of antipyrine in the inside thereof, and the length and the flow rate inside the reaction coil 31 are the residence time required for the reaction. It is appropriately selected depending on
  • the reaction thermostat 30 is for raising the temperature of the reaction coil 31 to a temperature suitable for the reaction, and for example, heats the reaction coil 31 to a temperature of 50 to 150 ° C., preferably 90 to 120 ° C. .
  • a detector 32 for measuring the absorbance of the color produced by the color reaction is connected. For example, the detector 32 determines the peak intensity or peak area of the absorbance near the wavelength of 460 nm. By using the absorbance when the carrier water is flowing as a baseline and obtaining a calibration curve from the absorbance with respect to a standard solution with a known urea concentration, the concentration of urea in the sample water can be obtained from the absorbance with respect to the sample water.
  • a back pressure coil 33 is provided for applying a back pressure to a pipe line extending from the pump P 1 to the detector 32 through the sampling valve 10, the pipe 24 and the reaction coil 31.
  • a pressure gauge PI is connected to a position between the outlet of the detector 32 and the inlet of the back pressure coil 33. The drainage of this FIA apparatus flows out from the outlet of the back pressure coil 33.
  • urea in the sample water can be measured online by the colorimetric method using diacetyl monooxime using the FIA method.
  • reagent A that is, diacetyl monooxime acetic acid solution
  • reagent B that is, antipyrine-containing reagent solution
  • an antipyrine-containing reagent solution is used as a reagent used in combination with diacetyl monooxime in a method for quantifying urea by a colorimetric method using diacetyl monooxime. It is not limited to an antipyrine-containing reagent solution.
  • Example 1 The apparatus shown in FIG. 1 was assembled. However, a portion from the line 20 to the flow meter FI was not provided, and a standard solution prepared with a urea concentration of 60 ppb could be continuously supplied to the sampling valve 10 as sample water. The urea concentration was continuously monitored for this standard solution. Here, it was examined how the urea concentration obtained as the measured value of the absorbance detection peak in the detector 32 changes when the standard solution is continuously measured.
  • reagent A ie, diacetyl monooxime acetic acid solution
  • antipyrine was taken and dissolved in 9 mol / L sulfuric acid, and the total amount was 100 mL.
  • Reagent B that is, antipyrine-containing reagent solution
  • each reagent was continuously supplied from the storage tanks 41 and 42 toward the pipe 24. .
  • the reagent was not replenished during the continuous measurement.
  • the reagent A storage tank 41 was maintained at room temperature.
  • reagent B experiments were conducted in two ways: when the storage temperature after preparation was 10 ° C and when it was 25 ° C. The change in urea concentration was confirmed by the peak intensity of absorbance at a wavelength of 460 nm. The results are shown in FIG. In FIG. 2, measured values when measuring the same standard solution with the peak intensity when measuring 60 ppb of urea standard solution immediately after preparing reagent A and reagent B and storing them in storage tanks 41 and 42, respectively, as 100%. Shows how it has changed over time.
  • the peak intensity gradually decreases, and the peak intensity reaches 72% during the 10-day operation for continuous measurement. Declined. In other words, urea cannot be quantified stably.
  • the antipyrine-containing reagent solution was refrigerated and maintained at 10 ° C, the peak intensity did not decrease even after 10 days of continuous operation, and it was found that continuous quantification of urea could be performed stably over a long period of time. It was.
  • Example 2 After preparing reagent B in the same manner as in Example 1, it was stored at 5 ° C, 10 ° C, 15 ° C, 20 ° C and 25 ° C for 10 days, respectively. And after this storage, the reagent B was supplied to the apparatus of FIG. Immediately after supplying reagent B to the apparatus, a standard solution with a urea concentration of 60 ppb was measured using this apparatus, and the peak intensity was determined. At that time, the peak intensity when the standard solution was measured immediately after the preparation of the reagent B was set to 100%. Reagent A was prepared in the same manner as in Example 1 and then stored at room temperature. The results are shown in Table 1.
  • the peak intensity is hardly reduced, and when stored at 15 ° C., the peak intensity is reduced by about 10%. It was observed. When stored at 20 ° C., the peak intensity decreased by about 20%, but at 25 ° C., the peak intensity decreased by nearly 30%. From these, in order to continuously measure a trace amount of urea concentration, at least the antipyrine-containing reagent solution of the reagents used in the reaction, here, diacetyl monooxime acetic acid solution and antipyrine-containing reagent solution should be stored in a refrigerator.
  • the temperature of the antipyrine-containing reagent solution is preferably maintained at 20 ° C or lower, more preferably maintained at 3 ° C or higher and 20 ° C or lower, and more preferably maintained at 5 ° C or higher and 15 ° C or lower. It was.
  • Example 3 A test similar to that of Example 2 was performed, except that the reagent A of Example 2 was stored at the same storage temperature as that of the reagent B of Example 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Provided is a method for quantifying urea in a sample solution with a colorimetric method using diacetylmonoxime, wherein a reagent formulated for use in reaction is refrigerated, and the refrigerated reagent is used to quantify urea. In particular, an antipyrine-containing reagent solution is maintained at, for example, 20oC or lower after being formulated and until the solution is used to quantify the urea.

Description

尿素の定量方法及び分析装置Urea determination method and analyzer
 本発明は、水中の尿素を定量する方法及び分析装置に関する。 The present invention relates to a method and an analyzer for quantifying urea in water.
 水中の微量の尿素を精度よく定量することに対する要求がある。例えば、純水製造システムによって原水から純水を製造する場合、純水製造システムを構成するイオン交換装置や紫外線酸化装置では原水中の尿素を除去することが困難であるため、予め尿素を除去した原水を純水製造システムに供給する必要がある。尿素の除去方法として、次亜臭素酸を生成する薬剤を原水に加えて次亜臭素酸により尿素を選択的に酸化する方法が知られているが、次亜臭素酸を生成する薬剤も純水製造システムに対する負荷となるので、薬剤投入量は少なければ少ない方がよい。したがって、原水中の尿素濃度を定量して尿素処理の必要性を判断し、処理が必要な場合は適切な薬剤を投入することが望まれている。さらに、純水製造システムから得られた純水中の尿素濃度を測定することについて要求もある。 There is a demand for accurately quantifying a small amount of urea in water. For example, when pure water is produced from raw water by a pure water production system, it is difficult to remove urea in the raw water with an ion exchange device or an ultraviolet oxidation device constituting the pure water production system. It is necessary to supply raw water to the pure water production system. As a method for removing urea, there is known a method in which a chemical that generates hypobromite is added to raw water and urea is selectively oxidized by hypobromous acid. However, a chemical that generates hypobromite is also purified water. Since it is a load on the manufacturing system, the smaller the amount of medicine input, the better. Therefore, it is desired to determine the necessity of urea treatment by quantifying the urea concentration in the raw water, and to supply an appropriate chemical when treatment is necessary. Further, there is a demand for measuring the urea concentration in pure water obtained from the pure water production system.
 尿素の定量法としては、ジアセチルモノオキシムを用いた比色法に基づく定量法が知られている。この定量法の一例として、日本薬学会が発行した「衛生試験法」(非特許文献1)に記載された方法がある。ジアセチルモノオキシムを用いる比色法では、反応を促進するなどの目的で他の試薬、例えば、アンチピリンと硫酸との混合溶液、塩酸セミカルバジド水溶液、塩化マンガンと硝酸カリウムを混合した水溶液、リン酸二水素ナトリウムと硫酸との混合溶液などを併用することができる。アンチピリンを併用する場合には、ジアセチルモノオキシムを酢酸溶液に溶解させてジアセチルモノオキシム酢酸溶液を調製し、アンチピリン(1,5-ジメチル-2-フェニル-3-ピラゾロン)を例えば硫酸に溶解させてアンチピリン含有試薬液を調製し、試料水に対してジアセチルモノオキシム酢酸溶液とアンリピリン含有試薬液とを順次混合し、波長460nm付近での吸光度を測定し、標準液との対照によって定量を行う。 As a urea quantitative method, a quantitative method based on a colorimetric method using diacetyl monooxime is known. As an example of this quantification method, there is a method described in “Hygiene Test Method” (Non-Patent Document 1) issued by the Japanese Pharmaceutical Association. In the colorimetric method using diacetyl monooxime, other reagents for the purpose of accelerating the reaction, such as a mixed solution of antipyrine and sulfuric acid, an aqueous solution of semicarbazide hydrochloride, an aqueous solution of mixed manganese chloride and potassium nitrate, sodium dihydrogen phosphate A mixed solution of sulfuric acid and sulfuric acid can be used in combination. When antipyrine is used in combination, diacetyl monooxime is dissolved in an acetic acid solution to prepare a diacetyl monooxime acetic acid solution, and antipyrine (1,5-dimethyl-2-phenyl-3-pyrazolone) is dissolved in, for example, sulfuric acid. An antipyrine-containing reagent solution is prepared, a diacetyl monooxime acetic acid solution and an anripyrine-containing reagent solution are sequentially mixed with the sample water, the absorbance at a wavelength near 460 nm is measured, and quantification is performed by comparison with a standard solution.
 ジアセチルモノオキシムを用いた比色法による尿素の定量方法は、例えば水泳プールの水や公衆浴場水における尿素の定量を目指して意図されたものであるので、純水製造プロセスに供給される原水などにおける尿素の定量を行うには感度が悪い。そこで特許文献1は、ジアセチルモノオキシムを用いる比色法に基づきながらフローインジェクション分析(FIA)を適用して吸光度を測定することにより、ppb以下から数ppmの濃度範囲で連続的にオンラインで尿素を定量する方法を開示している。 The colorimetric urea determination method using diacetyl monooxime is intended for the determination of urea in swimming pool water and public bath water, for example, so that raw water supplied to the pure water production process, etc. Sensitivity is poor for quantitative determination of urea. Therefore, in Patent Document 1, by measuring the absorbance by applying flow injection analysis (FIA) based on a colorimetric method using diacetyl monooxime, urea is continuously added online in a concentration range of ppb or less to several ppm. A method for quantification is disclosed.
特開2000-338099号公報JP 2000-338099 A
 特許文献1に記載された方法は、オンラインで連続的に微量の尿素の定量を行うことができる方法であるが、時間の経過とともに尿素濃度が安定して測定できなくなる、という課題がある。 The method described in Patent Document 1 is a method capable of continuously quantifying a small amount of urea online, but has a problem that the urea concentration cannot be stably measured over time.
 本発明の目的は、長期にわたって安定してオンラインでの尿素の連続的な定量を行うことができる方法及び分析装置を提供することにある。 An object of the present invention is to provide a method and an analysis apparatus capable of continuously quantifying urea on-line stably over a long period of time.
 本発明者らは、ジアセチルモノオキシムを用いる比色法によってオンラインで連続的に微量の尿素の定量を行うときに、反応に用いる試薬、特に調製後のアンチピリン含有試薬液を冷蔵保存することによって、長期間にわたり安定して尿素濃度を定量できることを見出し、本発明を完成させた。 The inventors of the present invention, when quantifying a trace amount of urea continuously on-line by a colorimetric method using diacetyl monooxime, by refrigerated storage of a reagent used for the reaction, particularly an antipyrine-containing reagent solution after preparation, The present inventors have found that the urea concentration can be quantified stably over a long period of time, and the present invention has been completed.
 したがって本発明の方法は、ジアセチルモノオキシムを用いる比色法によって試料水中の尿素を定量する方法において、反応に使用するために調製された試薬を冷蔵し、冷蔵された試薬を用いて尿素を定量することを特徴とする。 Therefore, the method of the present invention is a method for quantifying urea in a sample water by a colorimetric method using diacetyl monooxime, wherein the reagent prepared for use in the reaction is refrigerated and the urea is quantified using the refrigerated reagent. It is characterized by doing.
 また本発明の分析装置は、ジアセチルモノオキシムを用いる比色法によって試料水中の尿素を連続的に定量する分析装置であって、反応に使用するために調製された試薬を貯蔵する貯槽と、貯槽を冷却する冷却手段と、を備える。 The analyzer of the present invention is an analyzer for continuously quantifying urea in sample water by a colorimetric method using diacetyl monooxime, a storage tank for storing a reagent prepared for use in a reaction, and a storage tank And cooling means for cooling.
 本発明において、反応に使用するために調製された試薬の冷蔵では、その試薬の調製後、試薬の温度を20℃以下に維持することが好ましく、3℃以上20℃以下に維持することがさらに好ましく、5℃以上15℃以下に維持することがより好ましい。またこれらの試薬は、遮光保管することが好ましい。冷蔵温度が低過ぎる場合には試薬の凍結などの恐れがある。ジアセチルモノオキシムを用いる尿素の定量では、ジアセチルモノオキシムとともに、反応を促進するためなどの試薬を併用するが、この併用する試薬としては、アンチピリンを使用することが好ましい。アンチピリンを併用する場合には、ジアセチルモノオキシム酢酸溶液とアンチピリン含有試薬液とを使用するので、その場合には、本発明では、ジアセチルモノオキシム酢酸溶液とアンチピリン含有試薬液の一方、あるいは両方の試薬を冷蔵することになるが、特にアンチピリン含有試薬液を冷蔵保管することが好ましい。アンチピリン含有試薬液は、例えば、アンチピリンを硫酸に溶解させて得られる液である。 In the present invention, in refrigeration of a reagent prepared for use in the reaction, it is preferable to maintain the temperature of the reagent at 20 ° C. or lower after the preparation of the reagent, and further to maintain at 3 ° C. or higher and 20 ° C. or lower. Preferably, it is more preferably maintained at 5 ° C. or more and 15 ° C. or less. These reagents are preferably stored in the dark. If the refrigeration temperature is too low, the reagent may freeze. In the determination of urea using diacetyl monooxime, a reagent for accelerating the reaction is used together with diacetyl monooxime, and it is preferable to use antipyrine as the reagent used in combination. When antipyrine is used in combination, a diacetyl monooxime acetic acid solution and an antipyrine-containing reagent solution are used. In this case, in the present invention, one or both of the diacetyl monooxime acetic acid solution and the antipyrine-containing reagent solution are used. However, it is particularly preferable to store the antipyrine-containing reagent solution in a refrigerator. The antipyrine-containing reagent solution is, for example, a solution obtained by dissolving antipyrine in sulfuric acid.
 本発明の方法は、後述するように、例えば数日以上の期間にわたって尿素を連続的に定量するために適しており、特にFIA法を適用して吸光度の測定を行うことにより尿素を定量するのに適している。 As will be described later, the method of the present invention is suitable for, for example, continuously quantifying urea over a period of several days or more. In particular, the urea is quantified by measuring the absorbance by applying the FIA method. Suitable for
 本発明によれば、長期にわたって安定してオンラインでの尿素の連続的な定量を行うことが可能になる。 According to the present invention, it is possible to perform continuous online quantitative determination of urea stably over a long period of time.
本発明の実施の一形態の分析装置の構成を示す図である。It is a figure which shows the structure of the analyzer of one Embodiment of this invention. 実施例1における通水日数とピーク強度との関係を示すグラフである。It is a graph which shows the relationship between the water passage days in Example 1 and peak intensity.
 次に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明の実施の一形態の分析装置の構成を示している。ここでは、純水製造に用いる原水、あるいは純水そのものに含まれる尿素の量をオンラインで定量する場合を例に挙げて本発明を説明する。しかしながら、尿素を含んで本発明が定量対象とする水は、これらに限られるものではない、また、ここでいう純水製造の原水には、純水を循環利用する際に、純水を使用したプロセスから回収された回収水も含まれる。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of an analyzer according to an embodiment of the present invention. Here, the present invention will be described by taking as an example a case where the amount of urea contained in raw water used for pure water production or pure water itself is quantified online. However, the water to be quantified by the present invention including urea is not limited to these, and the pure water used here is pure water when pure water is circulated and used. Also included is recovered water recovered from the process.
 図1に示されるように、純水製造に用いる原水のライン20が設けられており、このライン20では、原水がポンプP0によって送水される。原水のライン20から分岐する試料配管21が設けられている。試料配管21は、原水から分岐した試料水の配管であり、開閉弁22、流量計FIを備えている。試料配管21の先端は、サンプリング弁10(インジェクター、インジェクション弁ともいう)が設けられている。サンプリング弁10を含めてサンプリング弁10から下流の部分は、フローインジェクション分析(FIA)装置としての構成を有して実際に尿素の定量に関わる部分となる。 As shown in FIG. 1, a raw water line 20 used for pure water production is provided. In this line 20, the raw water is fed by a pump P0. A sample pipe 21 branched from the raw water line 20 is provided. The sample pipe 21 is a pipe of sample water branched from the raw water, and includes an on-off valve 22 and a flow meter FI. A sampling valve 10 (also referred to as an injector or an injection valve) is provided at the tip of the sample pipe 21. The portion downstream from the sampling valve 10 including the sampling valve 10 has a configuration as a flow injection analysis (FIA) apparatus and is actually a portion related to urea determination.
 サンプリング弁10は、FIA法において一般的に用いられる構成のものであり、六方弁11とサンプルループ12とを備えている。六方弁11は、図において[1]、[2]、[3]、[4]、[5]及び[6]によって示される6個のポートを備えている。試料配管21はポート2に接続している。また、ポンプP1を介してキャリア水が供給される配管23がポート6に接続し、ポンプP4を介して試料水を排水するための配管25がポート3に接続している。ポート1とポート4との間には、所定容量の試料水を採取するためのサンプルループ12が接続している。ポート5には、サンプリング弁11の出口となる配管24の一端が接続している。キャリア水は、尿素を実質的に含まない水である。 The sampling valve 10 has a configuration generally used in the FIA method, and includes a six-way valve 11 and a sample loop 12. The six-way valve 11 has six ports indicated by [1], [2], [3], [4], [5] and [6] in the figure. The sample pipe 21 is connected to the port 2. A pipe 23 to which carrier water is supplied via the pump P1 is connected to the port 6, and a pipe 25 for draining the sample water is connected to the port 3 via the pump P4. A sample loop 12 for collecting a predetermined volume of sample water is connected between the port 1 and the port 4. One end of a pipe 24 serving as an outlet of the sampling valve 11 is connected to the port 5. Carrier water is water substantially free of urea.
 六方弁11においてポートXとポートYとが連通することを(X-Y)と表すこととすると、六方弁11は、(1-2)、(3-4)、(5-6)である第1の状態と、(2-3)、(4-5)、(6-1)である第2の状態とを切り替えられるようになっている。図1において、第1の状態でのポート間の接続関係は実線で示され、第2の状態でのポート間の接続は点線で示されている。第1の状態においてキャリア水は、配管23→ポート6→ポート5→配管24と流れてサンプリング弁10から下流側に流出する。試料水は、試料配管21→ポート2→ポート1→サンプルループ12→ポート4→ポート3と流れて配管25から排出される。この第1の状態から第2の状態に切り替わると、試料水は、試料配管21→ポート2→ポート3と流れて配管25から排出され、また、キャリア水は、配管23→ポート6→ポート1→サンプルループ12→ポート4→ポート5→配管24と流れ、下流側へ流出する。このとき、第1の状態であったときに既に流入してサンプルループ12内を満たしている試料水は、キャリア水に先立ってポート5から配管24へと流れ込み、サンプリング弁10の下流側へと流れる。配管24に流れる試料水の体積は、サンプルループ12によって規定される。したがって、第1の状態と第2の状態とを繰り返し切り替えることによって、例えば六方弁11を図示矢印方向に回転することによって、所定容量の試料水を繰り返して配管24に送り込むことができる。第1の状態と第2の状態との切り替えは、後述する反応に必要な滞留時間、検出器32で尿素が検出されるまでの時間を考慮して、所定の時間ごとに行うことができる。また、検出器32に導入した試料水が検出器32から排出されたことを検知して切り替えを行うこともできる。このように、第1の状態と第2の状態との切り替えを自動的に行うようにすることで、尿素を連続的に定量することができる。 When the communication between the port X and the port Y in the six-way valve 11 is expressed as (XY), the six-way valve 11 is (1-2), (3-4), (5-6) The first state and the second state (2-3), (4-5), and (6-1) can be switched. In FIG. 1, the connection relationship between the ports in the first state is indicated by a solid line, and the connection between the ports in the second state is indicated by a dotted line. In the first state, the carrier water flows from the sampling valve 10 to the downstream side through the pipe 23 → the port 6 → the port 5 → the pipe 24. The sample water flows through the sample pipe 21 → port 2 → port 1 → sample loop 12 → port 4 → port 3 and is discharged from the pipe 25. When the first state is switched to the second state, the sample water flows through the sample pipe 21 → port 2 → port 3 and is discharged from the pipe 25, and the carrier water is pipe 23 → port 6 → port 1 → Sample loop 12 → Port 4 → Port 5 → Pipe 24 and then flow downstream. At this time, the sample water that has already flowed in and filled the sample loop 12 in the first state flows into the pipe 24 from the port 5 prior to the carrier water, and goes downstream of the sampling valve 10. Flowing. The volume of the sample water flowing in the pipe 24 is defined by the sample loop 12. Accordingly, by repeatedly switching between the first state and the second state, for example, by rotating the six-way valve 11 in the direction of the arrow in the figure, a predetermined volume of sample water can be repeatedly fed into the pipe 24. Switching between the first state and the second state can be performed every predetermined time in consideration of a residence time necessary for a reaction described later and a time until urea is detected by the detector 32. It is also possible to perform switching by detecting that the sample water introduced into the detector 32 is discharged from the detector 32. In this way, urea can be continuously quantified by automatically switching between the first state and the second state.
 この分析装置では、ジアセチルモノオキシムを用いる比色法による尿素の定量に対してFIA法を適用する。そのため、尿素の定量に用いる反応試薬として、ジアセチルモノオキシム酢酸溶液(以下、試薬Aともいう)とアンチピリン含有試薬液(以下、試薬Bともいう)を使用する。これらの試薬は、それぞれ、冷蔵部40内に設けられた貯槽41,42に貯えられる。試薬Aは、ジアセチルモノオキシムを酢酸溶液に溶解させて調製されるが、本実施形態では、調製自体を貯槽41で行う、あるいは、試薬Aをその調製後、貯槽41に貯えるようにする。同様に、試薬Bは、アンチピリンを例えば硫酸に溶解させて調製されるが、調製自体を貯槽42で行う、あるいは、試薬Bをその調製後、貯槽42に貯えるようにする。冷蔵部40は、貯槽41,42を遮光するとともに、貯槽41,42を冷却し、これによって、貯槽41,42内の試薬A、試薬Bの温度を20℃以下、好ましくは3℃以上20℃以下、より好ましくは5℃以上15℃以下に維持する。なお、試薬Aを貯える貯槽41については、遮光保管できるもであれば、必ずしも冷蔵部40内に配置する必要はない。また、試薬の冷蔵温度は、5℃未満であっても、試薬において結晶の析出が生じなければ差し支えない。なお、非特許文献1には、アンチピリンを硫酸に溶解させたアンチピリン硫酸溶液について、褐色瓶に保管すれば2~3箇月は使用できることと、結晶が析出し室温に戻しても再溶解しないため冷蔵保管は適さないこととが記載されているが、本発明者らは、非特許文献1に記載された方法にしたがって調製されたアンチピリン硫酸溶液は3℃でも結晶化しないことを実験により確認した。 In this analyzer, the FIA method is applied to the determination of urea by a colorimetric method using diacetyl monooxime. Therefore, a diacetyl monooxime acetic acid solution (hereinafter also referred to as “reagent A”) and an antipyrine-containing reagent solution (hereinafter also referred to as “reagent B”) are used as reaction reagents used for the determination of urea. These reagents are stored in storage tanks 41 and 42 provided in the refrigerator 40, respectively. The reagent A is prepared by dissolving diacetyl monooxime in an acetic acid solution. In this embodiment, the preparation itself is performed in the storage tank 41, or the reagent A is stored in the storage tank 41 after its preparation. Similarly, the reagent B is prepared by dissolving antipyrine in, for example, sulfuric acid, but the preparation itself is performed in the storage tank 42, or the reagent B is stored in the storage tank 42 after its preparation. The refrigeration unit 40 shields the storage tanks 41 and 42 and cools the storage tanks 41 and 42, whereby the temperatures of the reagents A and B in the storage tanks 41 and 42 are 20 ° C. or less, preferably 3 ° C. or more and 20 ° C. Hereinafter, it is more preferably maintained at 5 ° C. or more and 15 ° C. or less. Note that the storage tank 41 for storing the reagent A is not necessarily arranged in the refrigeration unit 40 as long as it can be stored in a shaded manner. Further, even if the refrigeration temperature of the reagent is less than 5 ° C., there is no problem as long as crystals do not precipitate in the reagent. Non-Patent Document 1 describes that an antipyrine sulfuric acid solution in which antipyrine is dissolved in sulfuric acid can be used for 2 to 3 months if stored in a brown bottle, and refrigerated because crystals precipitate and do not dissolve again even at room temperature. Although it is described that storage is not suitable, the present inventors have confirmed by experiment that the antipyrine sulfate solution prepared according to the method described in Non-Patent Document 1 does not crystallize even at 3 ° C.
 貯槽41には配管26の一端が接続し、配管26の他端は混合部43により配管24に接続している。配管26には、試薬Aを所定の流量で配管24に送り込むためのポンプP2が設けられている。同様に貯槽42には配管27の一端が接続し、配管27の他端は混合部44により配管24に接続している。配管27には、試薬Bを所定の流量で配管24に送り込むためのポンプP3が設けられている。混合部43,44は、それぞれ、試薬A、試薬Bを配管24内の液体の流れに対して均一に混合する機能を有する。配管24の他端は、反応恒温槽30内に設けられた反応コイル31の入口に接続している。反応コイル31は、その内部においてアンチピリンの存在下での尿素とジアセチルモノオキシムとによる発色反応を起こさせるものであり、その長さと反応コイル31の内部での流速とは、反応に必要な滞留時間に応じて適宜に選択される。反応恒温槽30は、反応コイル31を反応に適した温度まで昇温するものであって、例えば、50℃以上150℃以下、好ましくは90℃以上120℃以下の温度に反応コイル31を加熱する。 One end of the pipe 26 is connected to the storage tank 41, and the other end of the pipe 26 is connected to the pipe 24 by the mixing unit 43. The pipe 26 is provided with a pump P2 for feeding the reagent A into the pipe 24 at a predetermined flow rate. Similarly, one end of a pipe 27 is connected to the storage tank 42, and the other end of the pipe 27 is connected to the pipe 24 by a mixing unit 44. The pipe 27 is provided with a pump P3 for feeding the reagent B into the pipe 24 at a predetermined flow rate. The mixing units 43 and 44 have a function of uniformly mixing the reagent A and the reagent B with the liquid flow in the pipe 24, respectively. The other end of the pipe 24 is connected to an inlet of a reaction coil 31 provided in the reaction thermostat 30. The reaction coil 31 causes a color development reaction between urea and diacetyl monooxime in the presence of antipyrine in the inside thereof, and the length and the flow rate inside the reaction coil 31 are the residence time required for the reaction. It is appropriately selected depending on The reaction thermostat 30 is for raising the temperature of the reaction coil 31 to a temperature suitable for the reaction, and for example, heats the reaction coil 31 to a temperature of 50 to 150 ° C., preferably 90 to 120 ° C. .
 反応コイル31の出口には、発色反応で生じた発色の吸光度を測定するための検出器32が接続されている。検出器32によって、例えば、波長460nm付近での吸光度のピーク強度あるいはピーク面積を求める。キャリア水が流れているときの吸光度をベースラインとし、尿素濃度が既知の標準液に対する吸光度から検量線を求めることにより、試料水に対する吸光度から試料水での尿素の濃度を求めることができる。検出器32の出口には、ポンプP1からサンプリング弁10、配管24及び反応コイル31を経て検出器32に至る管路に対して背圧を与える背圧コイル33が設けられている。検出器32の出口と背圧コイル33の入口との間の位置に対し、圧力計PIが接続している。背圧コイル33の出口から、このFIA装置の排液が流出する。 At the outlet of the reaction coil 31, a detector 32 for measuring the absorbance of the color produced by the color reaction is connected. For example, the detector 32 determines the peak intensity or peak area of the absorbance near the wavelength of 460 nm. By using the absorbance when the carrier water is flowing as a baseline and obtaining a calibration curve from the absorbance with respect to a standard solution with a known urea concentration, the concentration of urea in the sample water can be obtained from the absorbance with respect to the sample water. At the outlet of the detector 32, a back pressure coil 33 is provided for applying a back pressure to a pipe line extending from the pump P 1 to the detector 32 through the sampling valve 10, the pipe 24 and the reaction coil 31. A pressure gauge PI is connected to a position between the outlet of the detector 32 and the inlet of the back pressure coil 33. The drainage of this FIA apparatus flows out from the outlet of the back pressure coil 33.
 本実施形態の分析装置では、FIA法を利用し、ジアセチルモノオキシムを用いる比色法によって試料水中の尿素をオンラインで測定することができる。このとき、反応に用いる試薬A(すなわちジアセチルモノオキシム酢酸溶液)及び試薬B(すなわちアンチピリン含有試薬液)として、特に試薬Bについて、それらの試薬の調製後、20℃以下に維持されたものを使用することができる。その結果、後述する実施例から明らかになるように、長期にわたって安定して尿素の連続的な定量を行うことが可能になる。 In the analyzer of this embodiment, urea in the sample water can be measured online by the colorimetric method using diacetyl monooxime using the FIA method. At this time, as reagent A (that is, diacetyl monooxime acetic acid solution) and reagent B (that is, antipyrine-containing reagent solution) used in the reaction, those that are maintained at 20 ° C. or lower after the preparation of those reagents are used. can do. As a result, as will become clear from the examples described later, it is possible to perform continuous quantitative determination of urea stably over a long period of time.
 以上の説明では、ジアセチルモノオキシムを用いる比色法により尿素を定量する方法においてジアセチルモノオキシムと併用される試薬としてアンチピリン含有試薬液を用いる場合を説明したが、本発明では、併用される試薬はアンチピリン含有試薬液に限定されるものではない。 In the above description, the case where an antipyrine-containing reagent solution is used as a reagent used in combination with diacetyl monooxime in a method for quantifying urea by a colorimetric method using diacetyl monooxime has been described. It is not limited to an antipyrine-containing reagent solution.
 次に、本発明の効果を示すために発明者らが行った実験の結果を説明する。 Next, the results of experiments conducted by the inventors to show the effects of the present invention will be described.
 [実施例1]
 図1に示す装置を組み立てた。ただし、ライン20から流量計FIに至る部分は設けないで、尿素濃度を60ppbに調製した標準液を試料水としてサンプリング弁10に連続供給できるようにした。そしてこの標準液に関して尿素濃度の連続モニタリングを行った。ここでは、標準液について連続的に測定を行ったときに、検出器32における吸光度の検出ピークの測定値として得られる尿素濃度がどのように変化するかを調べた。本実施例では、ジアセチルモノオキシム2gを10%酢酸100mLに溶解させて試薬A(すなわちジアセチルモノオキシム酢酸溶液)を調製し、アンチピリン0.2gをとり、9mol/Lの硫酸に溶かし、全量を100mLとして試薬B(すなわちアンチピリン含有試薬液)を調製し、調製後直ちにそれらの試薬をそれぞれ貯槽41,42に貯え、貯槽41,42から各試薬を配管24に向けて連続的に供給するようにした。連続測定の最初に各試薬を貯槽41,42に注入した後は、連続測定中には試薬を補充しないようにした。また、試薬Aの貯槽41については常温に維持した。試薬Bについては、その調製後の保管温度を10℃とした場合と25℃とした場合の2通りについて実験を行った。尿素濃度の変化は、波長460nmでの吸光度のピーク強度で確認した。結果を図2に示す。図2では、試薬A及び試薬Bを調製してそれぞれ貯槽41,42に貯えた直後に60ppbの尿素標準液を測定した際のピーク強度を100%として、同じ標準液を測定したときの測定値が日時の経過とともにどのように変化したかを示している。
[Example 1]
The apparatus shown in FIG. 1 was assembled. However, a portion from the line 20 to the flow meter FI was not provided, and a standard solution prepared with a urea concentration of 60 ppb could be continuously supplied to the sampling valve 10 as sample water. The urea concentration was continuously monitored for this standard solution. Here, it was examined how the urea concentration obtained as the measured value of the absorbance detection peak in the detector 32 changes when the standard solution is continuously measured. In this example, 2 g of diacetyl monooxime was dissolved in 100 mL of 10% acetic acid to prepare reagent A (ie, diacetyl monooxime acetic acid solution), 0.2 g of antipyrine was taken and dissolved in 9 mol / L sulfuric acid, and the total amount was 100 mL. Reagent B (that is, antipyrine-containing reagent solution) was prepared, and immediately after the preparation, these reagents were respectively stored in the storage tanks 41 and 42, and each reagent was continuously supplied from the storage tanks 41 and 42 toward the pipe 24. . After each reagent was injected into the storage tanks 41 and 42 at the beginning of the continuous measurement, the reagent was not replenished during the continuous measurement. The reagent A storage tank 41 was maintained at room temperature. For reagent B, experiments were conducted in two ways: when the storage temperature after preparation was 10 ° C and when it was 25 ° C. The change in urea concentration was confirmed by the peak intensity of absorbance at a wavelength of 460 nm. The results are shown in FIG. In FIG. 2, measured values when measuring the same standard solution with the peak intensity when measuring 60 ppb of urea standard solution immediately after preparing reagent A and reagent B and storing them in storage tanks 41 and 42, respectively, as 100%. Shows how it has changed over time.
 図2に示すように、試薬Bすなわちアンチピリン含有試薬液を25℃に維持した場合には、徐々にピーク強度が低下し、連続測定のための10日間の運転の間にピーク強度が72%まで低下した。すなわち、尿素の定量を安定して行えなくなっていた。これに対しアンチピリン含有試薬液を冷蔵保管して10℃に維持した場合には、10日間の連続運転の後にもピーク強度が低下せず、長期にわたって安定して尿素の連続定量を行えることが分かった。 As shown in FIG. 2, when the reagent B, that is, the antipyrine-containing reagent solution is maintained at 25 ° C., the peak intensity gradually decreases, and the peak intensity reaches 72% during the 10-day operation for continuous measurement. Declined. In other words, urea cannot be quantified stably. In contrast, when the antipyrine-containing reagent solution was refrigerated and maintained at 10 ° C, the peak intensity did not decrease even after 10 days of continuous operation, and it was found that continuous quantification of urea could be performed stably over a long period of time. It was.
 [実施例2]
 実施例1と同様に試薬Bを調製後、5℃、10℃、15℃、20℃及び25℃でそれぞれ10日間保管した。そして、この保管の後に試薬Bを図1の装置に供給した。試薬Bを装置に供給したのち直ちにこの装置を用いて尿素濃度60ppbの標準液を測定し、そのピーク強度を求めた。その際、試薬Bの調製直後に標準液を測定したときのピーク強度を100%とした。試薬Aについては実施例1と同様に調製したのち、常温で保管したものを使用した。結果を表1に示す。
[Example 2]
After preparing reagent B in the same manner as in Example 1, it was stored at 5 ° C, 10 ° C, 15 ° C, 20 ° C and 25 ° C for 10 days, respectively. And after this storage, the reagent B was supplied to the apparatus of FIG. Immediately after supplying reagent B to the apparatus, a standard solution with a urea concentration of 60 ppb was measured using this apparatus, and the peak intensity was determined. At that time, the peak intensity when the standard solution was measured immediately after the preparation of the reagent B was set to 100%. Reagent A was prepared in the same manner as in Example 1 and then stored at room temperature. The results are shown in Table 1.
 表1に示されるように、保管温度が5℃の場合と10℃の場合にはピーク強度の低下はほとんど見られず、15℃で保管した場合には、約1割程度のピーク強度の低下が見られた。20℃で保管した場合には約2割のピーク強度の低下であったが、25℃では3割近くピーク強度が低下した。これらから、微量の尿素濃度を連続的に測定するためには、反応に用いる試薬、ここではジアセチルモノオキシム酢酸溶液及びアンチピリン含有試薬液のうち少なくともアンチピリン含有試薬液を冷蔵保存すべきであること、その場合、アンチピリン含有試薬液の温度を20℃以下に維持することが好ましく、3℃以上20℃以下に維持することがさらに好ましく、5℃以上15℃以下に維持することがより好ましいことが分かった。 As shown in Table 1, when the storage temperature is 5 ° C. and 10 ° C., the peak intensity is hardly reduced, and when stored at 15 ° C., the peak intensity is reduced by about 10%. It was observed. When stored at 20 ° C., the peak intensity decreased by about 20%, but at 25 ° C., the peak intensity decreased by nearly 30%. From these, in order to continuously measure a trace amount of urea concentration, at least the antipyrine-containing reagent solution of the reagents used in the reaction, here, diacetyl monooxime acetic acid solution and antipyrine-containing reagent solution should be stored in a refrigerator. In that case, the temperature of the antipyrine-containing reagent solution is preferably maintained at 20 ° C or lower, more preferably maintained at 3 ° C or higher and 20 ° C or lower, and more preferably maintained at 5 ° C or higher and 15 ° C or lower. It was.
 [実施例3]
 実施例2の試薬Aを実施例2の試薬Bと同様の保管温度にて保管したことを除いて、実施例2と同様の試験を行った。
[Example 3]
A test similar to that of Example 2 was performed, except that the reagent A of Example 2 was stored at the same storage temperature as that of the reagent B of Example 2.
 試薬Aと試薬Bの両方を冷蔵して測定を行った場合、試薬Bのみを冷蔵して測定を行った結果(表1)と同様の結果が得られた。 When both the reagent A and the reagent B were refrigerated and measured, the same result as that obtained when the reagent B alone was refrigerated (Table 1) was obtained.
 10  サンプリング弁
 11  サンプルループ
 31  反応コイル
 32  検出器
 33  背圧コイル
 40  冷蔵部
 41,42  貯槽
 43,44  混合部
DESCRIPTION OF SYMBOLS 10 Sampling valve 11 Sample loop 31 Reaction coil 32 Detector 33 Back pressure coil 40 Refrigeration part 41,42 Storage tank 43,44 Mixing part

Claims (10)

  1.  ジアセチルモノオキシムを用いる比色法によって試料水中の尿素を定量する方法において、
     反応に使用するために調製された試薬を冷蔵し、
     冷蔵された試薬を用いて尿素を定量することを特徴とする方法。
    In a method for quantifying urea in sample water by a colorimetric method using diacetyl monooxime,
    Refrigerate the reagents prepared for use in the reaction,
    A method characterized in that urea is quantified using a refrigerated reagent.
  2.  前記試薬の調製後、前記試薬の温度を20℃以下に維持する、請求項1に記載の方法。 The method according to claim 1, wherein the temperature of the reagent is maintained at 20 ° C or lower after the preparation of the reagent.
  3.  前記冷蔵される試薬がアンチピリン含有試薬液である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the refrigerated reagent is an antipyrine-containing reagent solution.
  4.  前記冷蔵された試薬を用いて尿素を連続的に定量する、請求項1乃至3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein urea is continuously quantified using the refrigerated reagent.
  5.  フローインジェクション分析法を適用して吸光度から尿素を定量する、請求項4に記載の方法。 The method according to claim 4, wherein urea is quantified from the absorbance by applying a flow injection analysis method.
  6.  前記試料水が純水製造に用いられる水または純水である、請求項1乃至5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the sample water is water used for producing pure water or pure water.
  7.  ジアセチルモノオキシムを用いる比色法によって試料水中の尿素を連続的に定量する分析装置であって、
     反応に使用するために調製された試薬を貯蔵する貯槽と、
     前記貯槽を冷却する冷却手段と、
     を備える、分析装置。
    An analyzer for continuously quantifying urea in sample water by a colorimetric method using diacetyl monooxime,
    A reservoir for storing reagents prepared for use in the reaction;
    Cooling means for cooling the storage tank;
    An analysis device comprising:
  8.  前記冷却手段は前記貯槽を20℃以下の温度に維持する、請求項7に記載の分析装置。 The analyzer according to claim 7, wherein the cooling means maintains the storage tank at a temperature of 20 ° C or lower.
  9.  前記冷却手段によって冷却される前記貯槽は、アンチピリン含有試薬液を貯蔵する貯槽である、請求項7または8に記載の分析装置。 The analyzer according to claim 7 or 8, wherein the storage tank cooled by the cooling means is a storage tank for storing an antipyrine-containing reagent solution.
  10.  キャリア水と試料水とが連続的に供給されて前記キャリア水を連続的に排出し、切り替え動作によって一定量の前記試料水を前記キャリア水に置き換えて排出するサンプリング弁と、
     前記サンプリング弁の下流に設けられて前記サンプリングから排出される水に前記貯槽から前記試薬が混合される混合部と、
     前記混合部の下流に設けられて前記試料水と前記試薬とが反応する反応コイルと、
     前記反応コイルの出口に接続された検出器と、
     をさらに有する請求項7乃至9のいずれか1項に記載の分析装置。
    A sampling valve that continuously feeds carrier water and sample water and continuously discharges the carrier water, and replaces and discharges a constant amount of the sample water with the carrier water by a switching operation;
    A mixing unit that is provided downstream of the sampling valve and that mixes the reagent from the storage tank with water discharged from the sampling;
    A reaction coil which is provided downstream of the mixing unit and in which the sample water and the reagent react;
    A detector connected to the outlet of the reaction coil;
    The analyzer according to any one of claims 7 to 9, further comprising:
PCT/JP2018/009051 2017-04-04 2018-03-08 Method for quantifying urea and analyzing device WO2018186104A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880021497.1A CN110462398B (en) 2017-04-04 2018-03-08 Method and analysis device for quantifying urea
KR1020197025303A KR102304396B1 (en) 2017-04-04 2018-03-08 Urea quantification method and analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-074300 2017-04-04
JP2017074300A JP6866211B2 (en) 2017-04-04 2017-04-04 Urea quantification method and analyzer

Publications (1)

Publication Number Publication Date
WO2018186104A1 true WO2018186104A1 (en) 2018-10-11

Family

ID=63712499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009051 WO2018186104A1 (en) 2017-04-04 2018-03-08 Method for quantifying urea and analyzing device

Country Status (5)

Country Link
JP (1) JP6866211B2 (en)
KR (1) KR102304396B1 (en)
CN (1) CN110462398B (en)
TW (1) TWI760465B (en)
WO (1) WO2018186104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107045A1 (en) * 2017-11-28 2019-06-06 オルガノ株式会社 Analysis method and analysis apparatus for urea

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366547A (en) * 2018-12-26 2020-07-03 贵州中烟工业有限责任公司 Detection method for determining α -amino nitrogen in tobacco or tobacco products by using continuous flow method
JP7198691B2 (en) * 2019-03-08 2023-01-04 オルガノ株式会社 Urea quantification method and analyzer
CN114761360B (en) * 2019-11-26 2024-03-26 奥加诺株式会社 Method for producing urea-free water, method for quantifying urea, and urea analysis device
KR102526333B1 (en) 2020-03-19 2023-04-26 인더스트리얼 테크놀로지 리서치 인스티튜트 Detection reagent, detection device, and method for detecting primary amide compound

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324050A (en) * 1993-05-13 1994-11-25 Hitachi Ltd Preservation of reagent
JPH08192154A (en) * 1995-01-17 1996-07-30 Kurita Water Ind Ltd Analysis of urea
JPH11118783A (en) * 1997-10-15 1999-04-30 Nichiro Corp Simply measuring color developing reagent of nitrite radical and method for simply measuring the radical
JP2000028533A (en) * 1998-04-23 2000-01-28 Shino Test:Kk Stable measurement reagent and measurement method therefor
JP2000338099A (en) * 1999-05-24 2000-12-08 Japan Organo Co Ltd Method for monitoring urea concentration and method and apparatus for making pure water using the method
JP3080458U (en) * 2001-03-21 2001-09-28 エイブル株式会社 Sampling system
JP2004003880A (en) * 2002-01-29 2004-01-08 Suido Kiko Kaisha Ltd Liquid dpd reagent, method for measuring concentration of residual chlorine, and phosphate buffer solution
JP2005298632A (en) * 2004-04-09 2005-10-27 Asahi Kasei Pharma Kk Method of improvement of stability of reagent
CN101320001A (en) * 2008-07-01 2008-12-10 洪陵成 High pressure flow injection rapid analysis system for permanganate index of water quality
US8969093B1 (en) * 2013-03-15 2015-03-03 University Of Memphis Research Foundation Calibration method and device for remote location testing instruments
WO2016132798A1 (en) * 2015-02-19 2016-08-25 株式会社 日立ハイテクノロジーズ Automated analysis device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040787A (en) * 1976-04-21 1977-08-09 The Dow Chemical Company Urea determination of biological fluids using diacetylmonoxime reaction
JPS5745461A (en) * 1980-09-03 1982-03-15 Hitachi Ltd Analytical apparatus of liquid sample
US4543337A (en) * 1984-03-30 1985-09-24 Technicon Instruments Corporation Stabilizer for urea nitrogen color reagent
JPH0623743B2 (en) * 1989-06-29 1994-03-30 株式会社島津製作所 Sample introduction device
US20070154976A1 (en) * 2003-11-19 2007-07-05 Daiichi Pure Chemicals Co., Ltd. Method of determining substrate contained in hemoglobin-containing sample
US7977103B2 (en) * 2006-04-20 2011-07-12 Kimberly-Clark Worldwide, Inc. Method for detecting the onset of ovulation
CN101738486B (en) * 2010-01-14 2013-04-03 北京吉天仪器有限公司 Fully-automatic analyzer and analysis method of urea in milk and milk products
CN203133096U (en) * 2013-03-21 2013-08-14 浙江大学 Full-automatic liquid sample collecting and feeding system without mixing and dead volume
CN104714042B (en) * 2013-12-16 2016-08-24 深圳市亚辉龙生物科技股份有限公司 A kind of Full-automatic chemiluminescence immunoassay analysis meter and using method thereof
CN204439561U (en) * 2015-03-05 2015-07-01 江苏苏净集团有限公司 A kind of urea automatic on-line pick-up unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324050A (en) * 1993-05-13 1994-11-25 Hitachi Ltd Preservation of reagent
JPH08192154A (en) * 1995-01-17 1996-07-30 Kurita Water Ind Ltd Analysis of urea
JPH11118783A (en) * 1997-10-15 1999-04-30 Nichiro Corp Simply measuring color developing reagent of nitrite radical and method for simply measuring the radical
JP2000028533A (en) * 1998-04-23 2000-01-28 Shino Test:Kk Stable measurement reagent and measurement method therefor
JP2000338099A (en) * 1999-05-24 2000-12-08 Japan Organo Co Ltd Method for monitoring urea concentration and method and apparatus for making pure water using the method
JP3080458U (en) * 2001-03-21 2001-09-28 エイブル株式会社 Sampling system
JP2004003880A (en) * 2002-01-29 2004-01-08 Suido Kiko Kaisha Ltd Liquid dpd reagent, method for measuring concentration of residual chlorine, and phosphate buffer solution
JP2005298632A (en) * 2004-04-09 2005-10-27 Asahi Kasei Pharma Kk Method of improvement of stability of reagent
CN101320001A (en) * 2008-07-01 2008-12-10 洪陵成 High pressure flow injection rapid analysis system for permanganate index of water quality
US8969093B1 (en) * 2013-03-15 2015-03-03 University Of Memphis Research Foundation Calibration method and device for remote location testing instruments
WO2016132798A1 (en) * 2015-02-19 2016-08-25 株式会社 日立ハイテクノロジーズ Automated analysis device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Hygiene test method Annotation (1990), Appendix (1995", PHARMACEUTICAL SOCIETY OF JAPAN, vol. 4.1.2.3, no. 13, 1995, pages 1028 *
LI, H. H.: "Determination of urea in swimming pool water by continuous flow injection analysis", J ENVIRON HEALTH, vol. 24, no. 3, March 2007 (2007-03-01), pages 176, 177 *
SHIMADA, KATSUHISA: "High sensitivity analysis of urea in ultrapure water by flow injection method", ABSTRACTS OF ANALYTICAL CHEMISTRY DISCUSSION LECTURE, vol. 73, 4 May 2013 (2013-05-04), pages 214 *
SHIMADA, KATSUHISA: "Urea analysis in water by flow injection spectrophotometry method", ABSTRACTS OF THE MEETING OF JAPAN ASSOCIATION FOR FLOW INJECTION ANALYSIS, vol. 49, 2 December 2011 (2011-12-02), pages 54, 55 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107045A1 (en) * 2017-11-28 2019-06-06 オルガノ株式会社 Analysis method and analysis apparatus for urea
US11860075B2 (en) 2017-11-28 2024-01-02 Organo Corporation Analyzing method and analyzing apparatus for urea

Also Published As

Publication number Publication date
JP2018179545A (en) 2018-11-15
TW201842333A (en) 2018-12-01
CN110462398B (en) 2022-09-20
TWI760465B (en) 2022-04-11
CN110462398A (en) 2019-11-15
KR20190108616A (en) 2019-09-24
KR102304396B1 (en) 2021-09-23
JP6866211B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2018186104A1 (en) Method for quantifying urea and analyzing device
JP2009288228A (en) Method and device for automatic analysis quantitative observation
TWI771528B (en) Urea analysis method and analysis device
JP6993924B2 (en) Urea analysis method and analyzer
WO2022035990A1 (en) Systems and methods for the direct measurement of glutaraldehyde based biocide concentration in seawater
JP7307812B2 (en) Method for quantifying urea and analyzer for urea
JP6982476B2 (en) Flow injection analysis method and equipment
JP6982477B2 (en) Flow injection analysis method and equipment
JP2000338099A (en) Method for monitoring urea concentration and method and apparatus for making pure water using the method
JP6974138B2 (en) Liquid analyzer and sampling device
JP7198691B2 (en) Urea quantification method and analyzer
JP2004301609A (en) Measuring method and device for arsenic concentration
JP2019095409A (en) Flow injection analysis method and device
JP2022175014A (en) Production method and production apparatus for urea-free water, and quantitative method and analyzer of urea
JP2001141733A (en) Device and method for automatic nitrogen concentration analysis
WO2023171235A1 (en) Method and apparatus for producing urea-free water, and method and apparatus for analyzing urea
JPH0351754A (en) Method and apparatus for measuring concentration of fluorine
US20230058190A1 (en) Stabilized reagent compositions, systems and methods using the same
JP2007263857A (en) Analysis-use sample preparing apparatus and analyzer
CN115078349A (en) Detection device and method for trace iron in water vapor system
JPH08285835A (en) Method and system for automatically analyzing total nitrogen and total phosphorus
JP2019113358A (en) Method for analysis and analyzer
JPH08136450A (en) Chemical composition monitoring method and its device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025303

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781627

Country of ref document: EP

Kind code of ref document: A1