WO2018185947A1 - Valve drive mechanism for internal combustion engine - Google Patents

Valve drive mechanism for internal combustion engine Download PDF

Info

Publication number
WO2018185947A1
WO2018185947A1 PCT/JP2017/021437 JP2017021437W WO2018185947A1 WO 2018185947 A1 WO2018185947 A1 WO 2018185947A1 JP 2017021437 W JP2017021437 W JP 2017021437W WO 2018185947 A1 WO2018185947 A1 WO 2018185947A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hydraulic
positive displacement
cam
internal combustion
Prior art date
Application number
PCT/JP2017/021437
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 井尻
Original Assignee
正裕 井尻
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正裕 井尻 filed Critical 正裕 井尻
Publication of WO2018185947A1 publication Critical patent/WO2018185947A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Abstract

[Problem] A reciprocating engine, in which hydraulic pressure generated by a positive displacement pump driven by an internal combustion engine causes a valve cylinder to cyclically actuate and a gas exchange valve to open and close, has problems in which, inter alia, a switching means is needed in a hydraulic pressure circuit because one valve actuation is performed per two rotations of a crankshaft, a radial arrangement is created when a hydraulic pressure passage is provided to a housing of the positive displacement pump, and the number of hydraulic pressure circuits that can be installed is limited. [Solution] A valve drive mechanism for an internal combustion engine, in which: the valve drive mechanism comprises an output means, a positive displacement hydraulic pressure supply means, and a rotation transmission means; the positive displacement hydraulic pressure supply means is provided with the positive displacement pump and a rotary joint; the positive displacement pump has a reference profile and a cam profile on the inner side of a tubular cam, and has a rotor provided with a plurality of vanes or plungers that slide over the inner peripheral surface of the cam, and hydraulic pressure relay paths for respective pumps; and the rotary joint has a circumferential endless groove provided to the outer peripheral surface of the rotor or the inner peripheral surface of a rotor housing.

Description

内燃機関の弁駆動機構Valve drive mechanism of internal combustion engine
本発明は、油圧によりガス交換弁を作動する4サイクル内燃機関の弁駆動機構に関するものである。 The present invention relates to a valve drive mechanism of a four-cycle internal combustion engine that operates a gas exchange valve by hydraulic pressure.
多気筒型内燃機関において、クランク軸からの動力で駆動する駆動カムにて作動する複数の油圧供給部材(油圧ポンプ等)を放射状に配置し、カムの共用により構造を簡素化して部品点数を少なくし、製造費の低減と信頼性を向上する内燃機関用排気弁駆動装置(特許文献1)があり、2サイクル内燃機関はクランク軸に駆動カムを設けることができるが、4サイクル機関では、電気的な油圧回路の切り替え手段が必要となる問題点と、ベーンポンプでは前記放射状配置の設置では油圧回路数が制約される問題点がある。4サイクルエンジンにおいて、クランクに同軸に駆動カムを設け、前記駆動カムの回転に伴ってバルブを開閉させる油圧駆動系を備えて、クランク軸の2回転につき1回動作させ、更に、制御弁にて出力側油路を入力側油路と低圧油路の両方に連通させることにより、バルブを任意のタイミングで閉弁できる4サイクルエンジン(特許文献2)があり、クランク軸に設けた複数の気筒のバルブを作動させる共通カムにより簡素な構成となるが、任意のタイミングで閉弁できるが等加速度運動とならないのでバルブの閉弁衝撃の抑制が困難で、制御弁がスプール式の場合はスプールの運動衝撃と3位置の往復運動となることによる応答性の問題により、高速運転が困難である。排気バルブのカムによって、ロッカーアーム部材を介してポンピングピストンを作動して発生する油圧にてピストンを作動して吸気弁を開閉し、前記ピストンをソレノイドで制御して任意のタイミングで閉じ、通路開口面積の変化によるクッション作用を有するマルチシリンダー内燃機関(特許文献3)があり、カムは排気バルブと共通で、油圧通路が短く、シリンダヘッドのユニット化ができるが、排気バルブのカムとロッカーアームが吸気バルブ毎に必要で、制御により任意のタイミングで閉弁できるが、前記制御によりバルブの閉弁速度が速くなり、クッション機構での緩衝では高速回転数で着座衝撃を十分に抑制することが困難である。  In a multi-cylinder internal combustion engine, a plurality of hydraulic pressure supply members (hydraulic pumps, etc.) that are actuated by a drive cam driven by power from the crankshaft are arranged radially, and the structure is simplified by sharing the cam and the number of parts is reduced. In addition, there is an exhaust valve driving device for an internal combustion engine (Patent Document 1) that reduces the manufacturing cost and improves the reliability, and a 2-cycle internal combustion engine can be provided with a drive cam on a crankshaft. There is a problem that a switching means for a hydraulic circuit is necessary, and a vane pump has a problem that the number of hydraulic circuits is restricted when the radial arrangement is installed. In a four-cycle engine, a drive cam is provided coaxially with the crank, and a hydraulic drive system is provided that opens and closes the valve as the drive cam rotates, and is operated once every two rotations of the crankshaft. There is a 4-cycle engine (Patent Document 2) in which a valve can be closed at an arbitrary timing by communicating an output-side oil passage with both an input-side oil passage and a low-pressure oil passage. A simple cam is used to operate the valve, but the valve can be closed at any timing, but it is difficult to suppress the valve closing impact because the valve does not move at a constant acceleration. High speed operation is difficult due to the impact and the responsiveness due to the reciprocation of the three positions. With the cam of the exhaust valve, the piston is operated by the hydraulic pressure generated by operating the pumping piston through the rocker arm member, and the intake valve is opened and closed. There is a multi-cylinder internal combustion engine (Patent Document 3) that has a cushioning action due to a change in area, and the cam is common with the exhaust valve, the hydraulic passage is short, and the cylinder head can be unitized, but the cam and rocker arm of the exhaust valve Necessary for each intake valve and can be closed at any timing by the control, but the valve closing speed of the valve is increased by the control, and cushioning with the cushion mechanism makes it difficult to sufficiently suppress the seating impact at a high speed. It is. *
カムシャフトに設けたカムと複数のベーンを有するマスタシリンダに油圧により作動接続するスレーブシリンダでガス交換弁を作動し、供給される油圧液量を制御装置の作動部材でコントロールし、往復動ピストン内燃機関のガス交換弁をハイドロリック的に制御するための装置(特許文献4)があり、前記装置は、圧力形成および量制御のため、ステータを取り囲むようにウォームねじ山を有する制御リングを配置し、ウォームにより量制御を行える。 ステータにベーンを設け、マスタシリンダから略放射状に油圧通路を設けるので油圧回路数が制限される問題点があり、ガス交換弁との接続距離が長くなり、前記制御装置はそれぞれの油圧通路に複雑な油圧調整機構が必要である。機関回転に同期する第1カムおよび第2カムと、前記カムに従動してシリンダ内を摺動する第1タペットおよび第2タペットと、前記タペットの進退により圧力が変化するシリンダ油圧室に受圧部を臨ませ、油圧に応じて弁を押圧するピストンと、運転状況に応じて前記カムの位相を可変とする位相調整手段とを備え、前記第1カムに応動して弁を開き、前記第2カムに応動して弁を閉じる内燃機関の弁駆動機構(特許文献5)がある。前記第1カムおよび第2カム等から成る前記弁駆動機構が制御する各弁に必要であり、装置が複雑で製造原価が高くなる問題点がある。  A gas cylinder is operated by a slave cylinder that is hydraulically connected to a master cylinder having a cam and a plurality of vanes provided on a camshaft, and the amount of hydraulic fluid supplied is controlled by an operating member of a control device, whereby a reciprocating piston internal combustion engine There is an apparatus (Patent Document 4) for hydraulically controlling a gas exchange valve of an engine, and the apparatus arranges a control ring having a worm screw thread so as to surround a stator for pressure formation and quantity control. The quantity can be controlled by the worm. Since the stator is provided with vanes and the hydraulic passages are provided substantially radially from the master cylinder, there is a problem that the number of hydraulic circuits is limited, and the connection distance to the gas exchange valve becomes long, and the control device is complicated in each hydraulic passage. A hydraulic adjustment mechanism is required. The first cam and the second cam synchronized with the engine rotation, the first tappet and the second tappet that slide in the cylinder following the cam, and the pressure receiving portion in the cylinder hydraulic chamber in which the pressure changes as the tappet advances and retreats. A piston that presses the valve according to the hydraulic pressure, and a phase adjusting means that makes the phase of the cam variable according to the operating condition, and opens the valve in response to the first cam, There is a valve drive mechanism (Patent Document 5) for an internal combustion engine that closes a valve in response to a cam. This is necessary for each valve controlled by the valve drive mechanism including the first cam and the second cam, and there is a problem that the device is complicated and the manufacturing cost increases. *
従来技術のOHV等のプッシュロッドを使用する弁駆動機構があり、プッシュロッドの熱膨張によるバルブクリアランスの異常、往復運動による高速化が困難等の問題点があるが、プッシュロッドを油圧に置き換えることにより、プッシュロッドのように座屈懸念が無く、油圧にて圧縮応力を伝達するので潤滑機能があり、金属性のプッシュロッドより油圧の油の比重が小さいので慣性が小さく、高速回転に対応できる利点がある。本願発明により、油圧によりガス交換弁を作動する4サイクル内燃機関において、内周面にカムプロフィールを設けた管状のカムと、前記カム内周面に摺動しながら回転するベーンまたはプランジャを放射状に設けたロータからなる容積型ポンプと、前記ロータに設けた回転継手(請求項1)、方向制御弁(請求項2)、前記カムを回動させる位相制御手段(請求項3)、および第2の容積型ポンプ(請求項4)により、前記文献の問題点を解消し、簡素な構造で内燃機関のガス交換弁の任意無段開閉制御ができ、更に油圧回路を追加することにより油圧回生手段による油圧ポンプ機能、油圧補助手段等によるラッシュアジャスタ機能を付加できる。 There is a valve drive mechanism that uses push rods such as OHV of the prior art, and there are problems such as abnormal valve clearance due to thermal expansion of the push rod and difficulty in speeding up due to reciprocating movement, but replacing the push rod with hydraulic pressure Therefore, there is no concern about buckling like a push rod, and there is a lubrication function because compressive stress is transmitted by hydraulic pressure. Since the specific gravity of hydraulic oil is smaller than that of a metallic push rod, the inertia is small and high speed rotation can be supported. There are advantages. According to the present invention, in a four-cycle internal combustion engine in which a gas exchange valve is operated by hydraulic pressure, a tubular cam having a cam profile on an inner peripheral surface, and a vane or a plunger that rotates while sliding on the inner peripheral surface of the cam are radially provided. A positive displacement pump comprising a rotor provided, a rotary joint provided in the rotor (Claim 1), a direction control valve (Claim 2), a phase control means for rotating the cam (Claim 3), and a second With the positive displacement pump (Claim 4), the problem of the above-mentioned literature can be solved, and the gas exchange valve of the internal combustion engine can be arbitrarily continuously opened and closed with a simple structure. The hydraulic pump function by, and the lash adjuster function by the hydraulic auxiliary means can be added.
特開昭63-1706号公報JP 63-1706 A 特開2013-133722号公報JP 2013-133722 A 特開2005-201259号公報Japanese Patent Laying-Open No. 2005-201259 特表2010-513767号公報Special table 2010-513767 gazette 特開昭55-096314号公報JP-A-55-096314
内燃機関で駆動するカム機構で駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダを周期的に作動させ、前記弁シリンダが1本または複数のガス交換弁を開閉作動する往復動機関は、前記カムをクランク軸で回転すると、クランク軸の2回転に1回の弁作動を行うために制御を伴う油圧回路の切替え手段が必要となる問題点がある。容積型ポンプのハウジングに直接油圧通路を設けると油圧通路が放射状の配置となり、構造上ベーンポンプやプランジャーポンプでは油圧回路の設置が制約される問題点がある。 A positive displacement pump driven by a cam mechanism driven by an internal combustion engine is provided, and a valve cylinder is periodically operated by a hydraulic pressure generated by the positive displacement pump, and the valve cylinder opens and closes one or more gas exchange valves. The reciprocating engine has a problem that when the cam is rotated by the crankshaft, a hydraulic circuit switching means with control is required to perform the valve operation once for every two rotations of the crankshaft. If the hydraulic passage is directly provided in the housing of the positive displacement pump, the hydraulic passage is arranged radially, and there is a problem that the installation of the hydraulic circuit is restricted due to the structure in the vane pump and the plunger pump.
請求項1は、4サイクル内燃機関にて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダを周期的に作動させ、前記弁シリンダが1本または複数のガス交換弁を開閉作動する往復動機関において、出力手段、容積型油圧供給手段、および回転伝動手段から成る内燃機関の弁駆動機構であって、前記出力手段は、前記弁シリンダと、クランク軸と、前記クランク軸に連動する少なくとも一つのピストンと、シリンダと、を備え、前記回転伝動手段は、前記クランク軸に設けた駆動車と、有効径が前記駆動車の2倍の前記容積型ポンプのロータに設けた従動車と、を備え、前記容積型油圧供給手段は、前記容積型ポンプと、回転継手と、を備え、前記容積型ポンプは、管状のカムの内側に、基準プロフィールと1個のカムプロフィールを設け、前記カムの内周面を摺動する複数のベーンまたはプランジャを前記ロータに設け、前記ロータは、前記複数のベーンまたはプランジャで発生する各油圧を移送する油圧中継路を備え、前記回転継手は、前記ロータの外周面またはロータハウジングの内周面に前記各油圧中継路に対応する周方向無端溝を設け、前記各周方向無端溝は前記弁シリンダと油圧通路にて連通する内燃機関の弁駆動機構である。  According to a first aspect of the present invention, a positive displacement pump driven by a four-cycle internal combustion engine is provided, and a valve cylinder is periodically operated by hydraulic pressure generated by the positive displacement pump, and the valve cylinder includes one or more gas exchange valves. In a reciprocating engine that opens and closes, a valve drive mechanism for an internal combustion engine comprising output means, positive displacement hydraulic supply means, and rotation transmission means, wherein the output means includes the valve cylinder, a crankshaft, and the crankshaft At least one piston interlocked with the cylinder, and the rotation transmission means is provided on a drive wheel provided on the crankshaft and on a rotor of the positive displacement pump whose effective diameter is twice that of the drive wheel. The positive displacement hydraulic supply means includes the positive displacement pump and a rotary joint. The positive displacement pump has a reference profile and one piece inside a tubular cam. A cam profile is provided, and a plurality of vanes or plungers that slide on an inner peripheral surface of the cam are provided in the rotor, and the rotor includes a hydraulic relay path that transfers each oil pressure generated by the plurality of vanes or plungers, The rotary joint is provided with circumferential endless grooves corresponding to the hydraulic relay passages on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing, and the circumferential endless grooves communicate with the valve cylinder through a hydraulic passage. It is a valve drive mechanism of an internal combustion engine. *
請求項2は、前記容積型油圧供給手段が、前記容積型ポンプと、前記回転継手の替わりに方向制御弁と、を備え、前記容積型ポンプは、前記管状のカムの内側に、基準プロフィールと少なくとも2個のカムプロフィールを周方向に等間隔に設け、前記方向制御弁は、前記ロータの外周面または前記ロータハウジングの内周面に前記各油圧中継路に対応する周方向有端溝を設け、前記弁シリンダは前記各周方向有端溝と油圧通路にて連通する請求項1に記載の内燃機関の弁駆動機構である。  According to a second aspect of the present invention, the positive displacement hydraulic supply means includes the positive displacement pump and a direction control valve instead of the rotary joint, and the positive displacement pump has a reference profile on the inner side of the tubular cam. At least two cam profiles are provided at equal intervals in the circumferential direction, and the directional control valve is provided with a circumferential end groove corresponding to each of the hydraulic relay passages on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing. The valve drive mechanism for an internal combustion engine according to claim 1, wherein the valve cylinder communicates with each circumferential end-end groove through a hydraulic passage. *
請求項3は、前記ロータの回転軸を中心に前記カムを回動させるアクチェータと、前記アクチェータの制御手段と、を備えた位相制御手段を設け、前記内燃機関の運転状況により前記アクチェータにて前記カムを回動し、前記ガス交換弁の開弁タイミング制御を行う請求項1または2に記載の内燃機関の弁駆動機構である。  According to a third aspect of the present invention, there is provided a phase control means including an actuator for rotating the cam around the rotation axis of the rotor, and a control means for the actuator, and the actuator according to an operating condition of the internal combustion engine The valve drive mechanism for an internal combustion engine according to claim 1 or 2, wherein a valve is turned to control timing for opening the gas exchange valve. *
請求項4は、前記ロータの軸方向に、前記カムと、前記ベーンまたは前記プランジャから成る2台の容積型ポンプを設け、少なくとも1台の前記容積型ポンプに前記位相制御手段を備え、前記2台の容積型ポンプのカムは少なくとも1個のカムプロフィールを備え、各々の容積型ポンプの前記ベーンまたは前記プランジャで発生する略同位相の油圧は前記油圧中継路にて連通し、前記各油圧中継路に空油変換器を設け、前記内燃機関の運転状況により前記位相制御手段にて前記カムを回動し、前記ガス交換弁の開閉調整を行う請求項3に記載の内燃機関の弁駆動機構である。 According to a fourth aspect of the present invention, two positive displacement pumps including the cam and the vane or the plunger are provided in the axial direction of the rotor, and at least one positive displacement pump is provided with the phase control means, The positive displacement pump cams have at least one cam profile, and hydraulic pressures of substantially the same phase generated by the vanes or the plungers of the positive displacement pumps communicate with each other through the hydraulic relay passages. 4. A valve drive mechanism for an internal combustion engine according to claim 3, wherein an air-oil converter is provided on a path, and the cam is rotated by the phase control means according to an operating state of the internal combustion engine to perform opening / closing adjustment of the gas exchange valve. It is.
本願発明の前記請求項1は、4サイクル内燃機関で駆動する容積型ポンプは、ロータと、管状のカムと、ロータの回転軸に設けたベーンまたはプランジャとで構成し、カムを共用して多数の油圧回路を配置できる簡素な構造で、油圧供給手段の信頼性が高く、小型で安価に製作できる効果がある。クランク軸に設けた駆動車と前記容積型ポンプに設けた従動車による二分の一の減速により、発生する油圧を対応する弁シリンダに供給するので、油圧回路の切替え手段が不要となる効果がある。ロータの外周面またはロータハウジングの内周面に設けた周方向無端溝から成る回転継手により、任意の角度に油圧配管を設けることができるので、油圧回路の制約となる放射状配置の問題点が解消できる。更に、油圧回生手段を設けることにより、弁シリンダの作動に寄与しないセルによる油圧が利用できるので、パワーステアリング、CVT、あるいは本願発明の請求項3または請求項4の位相制御手段の油圧として利用できる効果がある。前記弁シリンダの油圧回路に油圧補正手段を設けることにより、バルブクリアランスを自動的に無くすラッシュアジャスタ機能を付加できる効果がある。  In the first aspect of the present invention, the positive displacement pump driven by a four-cycle internal combustion engine is composed of a rotor, a tubular cam, and a vane or a plunger provided on the rotating shaft of the rotor, and a number of cams are shared. With a simple structure that can arrange the hydraulic circuit, the reliability of the hydraulic supply means is high, and there is an effect that it can be manufactured in a small size and at low cost. The hydraulic pressure generated is supplied to the corresponding valve cylinder by a half reduction by the drive vehicle provided on the crankshaft and the driven vehicle provided on the positive displacement pump, thereby eliminating the need for means for switching the hydraulic circuit. . Hydraulic joints can be installed at any angle using rotary joints consisting of endless grooves in the circumferential direction provided on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing, eliminating the problem of radial arrangement that restricts the hydraulic circuit it can. Furthermore, since the hydraulic pressure by the cell that does not contribute to the operation of the valve cylinder can be used by providing the hydraulic regeneration means, it can be used as the hydraulic pressure of the power steering, CVT, or phase control means of claim 3 or claim 4 of the present invention. effective. By providing a hydraulic pressure correction means in the hydraulic circuit of the valve cylinder, it is possible to add a lash adjuster function that automatically eliminates the valve clearance. *
本願発明の請求項2は、前記容積型油圧供給手段が、前記容積型ポンプと、方向制御弁を備え、前記容積型ポンプは、前記管状のカムの内側に、基準プロフィールと少なくとも2個のカムプロフィールを周方向に等間隔に設けるので、カムを共用して請求項1より更に多くの油圧回路を配置でき、簡素な構造で信頼性が高く、小型で安価に製作できる効果がある。 前記方向制御弁は、前記ロータの外周面またはロータハウジングの内周面に前記カムプロフィールで発生する油圧に対応する周方向有端溝を設け、前記複数のカムプロフィールと同じ位相で前記ロータハウジングの内周面の前記周方向有端溝に連通する位置に前記弁シリンダに連通する油圧通路を設けるので、電気的制御を必要としない前記方向制御弁により、一つのセルの油圧で複数の弁シリンダを油圧駆動でき、内燃機関の弁駆動機構が簡素な構成で信頼性が高く、小型で安価に製作できる効果がある。前記弁シリンダの油圧回路を開弁動作終了時に、前記方向制御弁にて油圧補助手段の油タンクに連通することにより、確実なラッシュアジャスタ機能が得られる効果がある。  According to a second aspect of the present invention, the positive displacement hydraulic supply means includes the positive displacement pump and a directional control valve, and the positive displacement pump has a reference profile and at least two cams inside the tubular cam. Since the profiles are provided at equal intervals in the circumferential direction, it is possible to arrange more hydraulic circuits than those of the first aspect by sharing the cam, and there is an effect that the structure is simple, the reliability is high, the size is small, and the cost is low. The directional control valve is provided with a circumferential end groove corresponding to the hydraulic pressure generated by the cam profile on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing, and the rotor housing has the same phase as the plurality of cam profiles. Since a hydraulic passage communicating with the valve cylinder is provided at a position communicating with the circumferential end groove on the inner peripheral surface, a plurality of valve cylinders can be operated with hydraulic pressure of one cell by the directional control valve that does not require electrical control. Can be hydraulically driven, and the valve drive mechanism of the internal combustion engine has a simple configuration, high reliability, and can be manufactured in a small and inexpensive manner. By connecting the hydraulic circuit of the valve cylinder to the oil tank of the hydraulic auxiliary means by the directional control valve when the valve opening operation is completed, there is an effect that a reliable lash adjuster function can be obtained. *
本願発明の請求項3の前記ロータの回転軸を中心に前記カムを回動させるアクチェータと、前記アクチェータの制御手段を備えた位相制御手段を設け、前記内燃機関の運転状況により前記アクチェータにて前記カムを回動して油圧発生の位相制御を行うので、簡素な構成で弁の開弁タイミングを制御できる内燃機関の弁駆動機構となり、信頼性が高く、小型で安価に製作できる効果がある。  According to a third aspect of the present invention, there is provided an actuator for rotating the cam around the rotation axis of the rotor, and a phase control means comprising a control means for the actuator. Since the phase of oil pressure generation is controlled by rotating the cam, the valve drive mechanism of the internal combustion engine can control the valve opening timing with a simple configuration, and there is an effect that it is highly reliable, small and inexpensive. *
本願発明の請求項4は、前記ロータの軸方向に、第2の容積型ポンプを設け、一方または両方の容積型ポンプに前記位相制御手段を備え、各々の容積型ポンプの発生する同位相の油圧を前記油圧中継路にて連通し、各々の前記油圧中継路に1個の空油変換器を設ける構成で、ガス交換弁の開閉タイミングおよび/または開閉量の調整ができる弁制御機構が、簡素な構成で信頼性が高く、小型で安価に製作できる効果がある。 前記アクチェータにて前記カムを回動して油圧発生の位相制御を行うことにより、前記内燃機関の運転状況に対応したガス交換弁の開閉制御を高い応答性で無段調整できるので、内燃機関の大幅な性能向上ができる効果がある。 According to a fourth aspect of the present invention, a second positive displacement pump is provided in the axial direction of the rotor, and one or both positive displacement pumps are provided with the phase control means, and the same phase generated by each positive displacement pump. A valve control mechanism that allows hydraulic pressure to be communicated through the hydraulic relay passages, and that one air-oil converter is provided in each of the hydraulic relay passages, and that can adjust the opening / closing timing and / or opening / closing amount of the gas exchange valve, The simple structure has high reliability, and has the effect of being small and inexpensive. By rotating the cam with the actuator and performing phase control of hydraulic pressure generation, the open / close control of the gas exchange valve corresponding to the operating state of the internal combustion engine can be adjusted continuously with high responsiveness. There is an effect that the performance can be greatly improved.
実施例1(請求項1対応)の、管状のカムを用いた容積型ポンプと回転継手から成る容積型油圧供給手段を備えた内燃機関の弁駆動機構の構成概念の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a configuration concept of a valve drive mechanism of an internal combustion engine provided with a positive displacement hydraulic supply means including a positive displacement pump using a tubular cam and a rotary joint according to a first embodiment (corresponding to claim 1). 前記実施例1(図1)の容積型油圧供給手段の、上図は全断面図、下図は本体各部の断面図、および周辺油圧回路図と付加できる油圧回生手段と油圧補助手段である。The upper view of the positive displacement hydraulic supply means of the first embodiment (FIG. 1) is a full sectional view, the lower view is a sectional view of each part of the main body, and a peripheral hydraulic circuit diagram. 実施2(請求項1対応)の、容積型ポンプをプランジャーポンプとする1気筒内燃機関の吸気と排気のガス交換弁の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the structure concept of the valve drive mechanism of the gas exchange valve of the intake and exhaust of 1 cylinder internal combustion engine which uses a positive displacement pump as a plunger pump of Example 2 (corresponding to claim 1). 前記実施例1および実施例2の内燃機関の、上図は全行程の弁のリフト量の特性図で、下図は弁作動行程の各位相の容積型ポンプの断面図による作動説明図である。In the internal combustion engines of the first and second embodiments, the upper diagram is a characteristic diagram of the lift amount of the valve in the entire stroke, and the lower diagram is an operation explanatory diagram based on the sectional view of the positive displacement pump in each phase of the valve actuation stroke. 実施例3(請求項1対応)の4気筒内燃機関の吸気弁の弁駆動機構の構成説明図である。FIG. 6 is a configuration explanatory diagram of a valve drive mechanism of an intake valve of a four-cylinder internal combustion engine according to a third embodiment (corresponding to claim 1). 前記実施例3(図5)の4気筒内燃機関の吸気弁の弁駆動機構の容積型油圧供給手段の配置斜視図とベーン部断面の部分拡大図である。It is the arrangement | positioning perspective view of the positive displacement type hydraulic supply means of the valve drive mechanism of the intake valve of the 4-cylinder internal combustion engine of the said Example 3 (FIG. 5), and the elements on larger scale of the vane part cross section. 実施例4(請求項2対応)のベーンポンプで発生する油圧が方向制御弁を介して各弁シリンダに供給される2気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the structure concept of the valve drive mechanism of the 2-cylinder internal combustion engine in which the hydraulic pressure which generate | occur | produces with the vane pump of Example 4 (corresponding to Claim 2) is supplied to each valve cylinder via a direction control valve. 前記実施例4(図7)の容積型油圧供給手段の、中図は全断面図、上図は容積型ポンプ部、下図は回転継手と各方向制御弁の断面図、および周辺油圧回路図である。In the positive displacement hydraulic supply means of the fourth embodiment (FIG. 7), the middle view is a full sectional view, the upper view is a positive displacement pump section, the lower view is a sectional view of a rotary joint and each direction control valve, and a peripheral hydraulic circuit diagram. is there. 前記実施例4(図8)の容積型油圧供給手段のロータに設けた周方向溝と各油圧通路接続部から成る回転継手と方向制御弁の斜視図である。It is a perspective view of the rotary joint and direction control valve which consist of the circumferential groove | channel provided in the rotor of the positive displacement hydraulic supply means of the said Example 4 (FIG. 8), and each hydraulic-path connection part. 前記実施例4の、上図は排気弁の弁リフト特性図で、E10(~30)は前記弁リフト特性図の各位相の容積型ポンプと方向制御弁の断面図による動作説明図である。In the fourth embodiment, the upper diagram is a valve lift characteristic diagram of the exhaust valve, and E10 (˜30) is an operation explanatory diagram based on the sectional view of the positive displacement pump and the directional control valve in each phase of the valve lift characteristic diagram. 実施例5(請求項2対応)の発生する油圧が方向制御弁を介して各弁シリンダに供給される4気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the structure concept of the valve drive mechanism of the 4-cylinder internal combustion engine in which the hydraulic pressure which Example 5 (corresponding to Claim 2) generate | occur | produces is supplied to each valve cylinder via a direction control valve. 前記実施例5(図11)の、油圧通路を一側面に配置した容積型油圧供給手段の全断面図と、上図はポンプ部、下図は回転継手部と各方向制御弁部の断面図である。In the fifth embodiment (FIG. 11), the whole sectional view of the displacement type hydraulic pressure supply means with the hydraulic passage arranged on one side, the upper figure is the pump part, the lower figure is the sectional view of the rotary joint part and each direction control valve part. is there. 実施例6(請求項2対応)の弁駆動機構で、8気筒内燃機関の排気と吸気の容積型油圧供給手段の配置斜視図と、矢視図Gの容積型ポンプ部の断面図である。FIG. 7 is a perspective view of a displacement type hydraulic pressure supply means for exhaust and intake of an 8-cylinder internal combustion engine and a cross-sectional view of a positive displacement pump part shown in an arrow G in the valve drive mechanism of Example 6 (corresponding to claim 2). 実施例7(請求項2対応)の、3個のカムプロフィールを備えた容積型油圧供給手段による、6気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the structure concept of the valve drive mechanism of the 6-cylinder internal combustion engine by the positive displacement type hydraulic pressure supply means provided with three cam profiles of Example 7 (corresponding to claim 2). 前記実施例7(図14)の、油圧配管を3方の側面に設けた容積型油圧供給手段の、上図は全断面図、およびポンプ部、回転継手部、各方向制御弁部の断面図である。In the seventh embodiment (FIG. 14), the upper view of the positive displacement hydraulic pressure supply means provided with hydraulic piping on three side surfaces is a full sectional view, and a sectional view of the pump portion, rotary joint portion, and each direction control valve portion. It is. 実施例8(請求項3対応)の、アクチェータによる位相制御手段を備えた容積型油圧供給手段による、2気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the structure concept of the valve drive mechanism of the two-cylinder internal combustion engine by the positive displacement type hydraulic supply means provided with the phase control means by an actuator of Example 8 (corresponding to claim 3). 実施例9(請求項3対応)の、ロータリシリンダを備えた容積型油圧供給手段の、上図は全断面図、下図はポンプ部の断面図、および周辺油圧回路図である。In the ninth embodiment (corresponding to claim 3), the upper figure is a full sectional view, the lower figure is a sectional view of a pump section, and a peripheral hydraulic circuit diagram of a positive displacement hydraulic supply means equipped with a rotary cylinder. 実施例10(請求項4対応)の、2組のベーンポンプの位相をモータで調整して吸気弁を開閉制御する3気筒内燃機関の弁駆動機構の構成概念の説明図である。FIG. 16 is an explanatory diagram of a configuration concept of a valve driving mechanism of a three-cylinder internal combustion engine that controls opening and closing of an intake valve by adjusting phases of two vane pumps by a motor in Example 10 (corresponding to claim 4). 前記実施例10(図18)の、上図は、カム、第2のカム、および弁シリンダの油圧特性図で、下図は、各位相での容積型ポンプの模式図による作動説明図である。In the tenth embodiment (FIG. 18), the upper diagram is a hydraulic characteristic diagram of the cam, the second cam, and the valve cylinder, and the lower diagram is an operation explanatory diagram of the positive displacement pump in each phase. 前記実施例10(図18、19)の内燃機関の弁駆動機構の、各カム位相制御と各制御パターン(1)~(3)の弁リフト特性図による制御動作説明図である。FIG. 18 is an explanatory diagram of a control operation of the valve drive mechanism of the internal combustion engine of the tenth embodiment (FIGS. 18 and 19) based on the cam phase control and the valve lift characteristic diagrams of the control patterns (1) to (3). 実施例11(請求項4対応)の、位相制御手段と2個のカムプロフィールを備えた容積型油圧供給手段による、4気筒内燃機関の弁駆動機構の構成図である。FIG. 16 is a configuration diagram of a valve drive mechanism of a four-cylinder internal combustion engine according to Example 11 (corresponding to claim 4), which is a positive displacement hydraulic supply means having phase control means and two cam profiles. 前記実施例11(図21)の、2個のロータリシリンダによる位相制御手段を備えた容積型油圧供給手段の全断面図、各ポンプ部の断面図、と周辺油圧回路図である。FIG. 22 is a full sectional view of a positive displacement hydraulic pressure supply means having phase control means by two rotary cylinders in the eleventh embodiment (FIG. 21), a sectional view of each pump section, and a peripheral hydraulic circuit diagram. 実施例12(請求項4対応)の、2組のプランジャーポンプを備えた容積型油圧供給手段による移動体の内燃機関の弁駆動機構の制御システムの構成説明図である。FIG. 16 is a configuration explanatory diagram of a control system for a valve drive mechanism of an internal combustion engine of a moving body by positive displacement hydraulic supply means having two sets of plunger pumps in Example 12 (corresponding to claim 4). 前記実施例12(図23)の内燃機関の弁駆動機構の制御フローチャートと、各制御サブルーチンの弁リフト特性図による開弁制御説明図である。FIG. 24 is a valve opening control explanatory diagram based on a control flowchart of the valve drive mechanism of the internal combustion engine of the twelfth embodiment (FIG. 23) and valve lift characteristics of each control subroutine.
前記図面(図1~24)に従って、本願発明の各実施例(実施例1~12)を、以下に説明する。 以下の説明において、容積型ポンプは構造が簡素なベーンポンプの実施例を優先して記載しているが、各実施例のベーンポンプを高圧の油圧に対応できるプランジャーポンプに置き換えることもできる。各実施例において、弁シリンダの作動に寄与しないセルの油圧は、油圧による回生ポンプとすることも、空気によるフリー空間とすることもできる。 Examples (Examples 1 to 12) of the present invention will be described below with reference to the drawings (FIGS. 1 to 24). In the following description, examples of vane pumps with a simple structure are given preferentially for positive displacement pumps, but the vane pumps of each example can be replaced with plunger pumps that can handle high pressure oil pressure. In each embodiment, the hydraulic pressure of the cell that does not contribute to the operation of the valve cylinder may be a regenerative pump by hydraulic pressure or a free space by air.
図1は、実施例1(請求項1対応)の、管状のカムを用いた容積型ポンプと回転継手から成る容積型油圧供給手段を備えた内燃機関の弁駆動機構の構成概念の説明図である。図1は、4サイクル内燃機関1にて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダ41(-1、-2)を周期的に作動させ、前記弁シリンダ41(-1、-2)が1本のガス交換弁45(-1、-2)を開閉作動する往復動機関において、出力手段4、容積型油圧供給手段7、および回転伝動手段6から成る内燃機関1の弁駆動機構であって、前記出力手段4は、前記弁シリンダ41(-1、-2)と、クランク軸49と、前記クランク軸49に連動する図示しない二つのピストンと、シリンダ46(-1、-2)と、を備え、前記回転伝動手段6は、前記クランク軸49に設けた駆動車62と、有効径が前記駆動車62の2倍の前記容積型ポンプのロータ72に設けた従動車61と、を備え、前記容積型油圧供給手段7は、前記容積型ポンプと、回転継手76と、を備え、前記容積型ポンプは、管状のカム71の内側に、基準プロフィール710と1個のカムプロフィール711を設け、前記カム71の内周面を摺動する4個のベーン73を前記ロータ72に設け、前記ロータ72は、前記4個のベーンで発生する各油圧を移送する油圧中継路721、722を備え、前記回転継手76は前記ロータ72の外周面またはロータハウジングの内周面に前記各油圧中継路721、722に対応する図示しない周方向無端溝を設け、前記弁シリンダ41(-1、-2)は前記各周方向無端溝と油圧通路78(-1、-2)にて連通する内燃機関1の弁駆動機構の構成概念の説明図である。 油圧補助手段8は、前記各油圧通路78(-1、-2)に連通する各油圧通路88(-1、-2)を備え、前記油圧通路88(-1、-2)は逆止弁83(-1、-2)を介して油タンク80に連通する。  FIG. 1 is an explanatory diagram of a configuration concept of a valve drive mechanism of an internal combustion engine according to a first embodiment (corresponding to claim 1) including a positive displacement pump using a tubular cam and a positive displacement hydraulic supply means including a rotary joint. is there. FIG. 1 includes a positive displacement pump driven by a four-cycle internal combustion engine 1, and periodically operates a valve cylinder 41 (-1, -2) by a hydraulic pressure generated by the positive displacement pump. -1, -2) is a reciprocating engine that opens and closes one gas exchange valve 45 (-1, -2), and is an internal combustion engine comprising an output means 4, a positive displacement hydraulic supply means 7, and a rotary transmission means 6. 1, the output means 4 includes a valve cylinder 41 (−1, −2), a crankshaft 49, two pistons (not shown) linked to the crankshaft 49, and a cylinder 46 ( -1 and -2), and the rotational transmission means 6 is provided on the drive wheel 62 provided on the crankshaft 49 and the rotor 72 of the positive displacement pump whose effective diameter is twice that of the drive wheel 62. Driven vehicle 61, and the positive displacement type The pressure supply means 7 includes the positive displacement pump and a rotary joint 76. The positive displacement pump is provided with a reference profile 710 and one cam profile 711 inside a tubular cam 71. Four vanes 73 sliding on the inner peripheral surface of the rotor 72 are provided in the rotor 72, and the rotor 72 includes hydraulic relay paths 721 and 722 for transferring hydraulic pressures generated by the four vanes, and the rotary joint 76 is provided with not-shown circumferential endless grooves corresponding to the hydraulic relay passages 721 and 722 on the outer peripheral surface of the rotor 72 or the inner peripheral surface of the rotor housing, and the valve cylinders 41 (-1, -2) FIG. 3 is an explanatory diagram of a configuration concept of a valve drive mechanism of an internal combustion engine 1 communicating with a circumferential endless groove through a hydraulic passage 78 (−1, −2). The hydraulic auxiliary means 8 includes hydraulic passages 88 (-1, 2) communicating with the hydraulic passages 78 (-1, -2), and the hydraulic passages 88 (-1, -2) are check valves. It communicates with the oil tank 80 through 83 (-1, -2). *
図1の内燃機関1の弁駆動機構の作用は、容積型油圧供給手段7の前記カム71、ロータ72、およびベーン73から成る容積型ポンプにおいて、前記カムプロフィール711により発生する油圧が、油圧中継路721、722、回転継手76、油圧通路78-1、78-2を通って、各々の弁シリンダ41(-1、-2)に供給され、周期的にガス交換弁45(-1、-2)が開弁し、油圧の漏れ等による負圧が発生する場合は、前記油圧補助手段8の油タンク80から前記負圧により油を補給する。前記ロータ72は、回転伝動手段6にて出力手段4のクランク軸49の回転数の二分の一に回転が減速されたているので、4サイクル内燃機関1の吸気行程または排気行程に対応して開弁する。 前記カムプロフィール711の設置角θ1と弁駆動油圧のベーン73の設置角θ2による開弁制御は、図4にて説明する。弁駆動に寄与しない油圧は、油圧中継路726、回転継手76を通って油圧補助手段8の油タンク80に連通し、油圧は常に大気圧に解放される。  The operation of the valve drive mechanism of the internal combustion engine 1 in FIG. 1 is that the hydraulic pressure generated by the cam profile 711 is hydraulically relayed in the positive displacement pump composed of the cam 71, the rotor 72, and the vane 73 of the positive displacement hydraulic supply means 7. Through the passages 721 and 722, the rotary joint 76, and the hydraulic passages 78-1 and 78-2, the gas is supplied to the respective valve cylinders 41 (-1, 2), and is periodically supplied to the gas exchange valves 45 (-1,-). When 2) is opened and negative pressure is generated due to hydraulic leakage or the like, oil is supplied from the oil tank 80 of the hydraulic auxiliary means 8 by the negative pressure. The rotation of the rotor 72 is decelerated to half the number of rotations of the crankshaft 49 of the output means 4 by the rotation transmission means 6, so that it corresponds to the intake stroke or the exhaust stroke of the four-cycle internal combustion engine 1. Open the valve. The valve opening control by the installation angle θ1 of the cam profile 711 and the installation angle θ2 of the vane 73 of the valve drive hydraulic pressure will be described with reference to FIG. The hydraulic pressure that does not contribute to the valve drive is communicated with the oil tank 80 of the hydraulic auxiliary means 8 through the hydraulic relay path 726 and the rotary joint 76, and the hydraulic pressure is always released to atmospheric pressure. *
図2は、前記実施例1(図1)の容積型油圧供給手段の、上図は全断面図、下図は本体各部の断面図、および周辺油圧回路図と付加できる油圧回生手段と油圧補助手段である。図2の容積型油圧供給手段7は、前記容積型ポンプであるカム71、ロータ72、およびベーン73と、回転継手76と、を備え、前記容積型ポンプは、管状のカム71の内側に、前記ロータ72の回転軸を中心とする基準プロフィール710と1個のカムプロフィール711を設け、前記カム71の内周面を摺動する4個のベーン73を前記ロータ72に備え、前記ロータ72は、前記4個のベーン73で発生する各油圧を移送する油圧中継路721、722、726を備え、前記回転継手76は、前記ロータの外周面に周方向無端溝768-3、ロータハウジングの内周面に周方向無端溝768(-1、-2)を備え、前記周方向無端溝768(-1、-2)は前記各油圧中継路721、722と前記各油圧に対応する図示しない前記弁シリンダに油圧を供給する各油圧通路78(-1、-2)とに連通する。 前記周方向無端溝768-3は、弁を作動するセル738(-1、-2)以外のセルに連通する油圧中継路726と、油圧回生手段9に連通する油圧通路79aに連通する。油圧補助手段8aは、前記逆止弁83aに並列に絞り弁81と逆止弁82を設けている。回生油圧の油圧通路98、99を設けた油圧回生手段9のリリーフ弁94の上流側に前記油圧通路79aは連通している。  2 is a full sectional view of the positive displacement hydraulic pressure supply means of the first embodiment (FIG. 1), the lower figure is a sectional view of each part of the main body, and a peripheral hydraulic circuit diagram. It is. 2 includes a cam 71, a rotor 72, and a vane 73, which are the positive displacement pump, and a rotary joint 76. The positive displacement pump is disposed inside the tubular cam 71. A reference profile 710 centered on the rotation axis of the rotor 72 and one cam profile 711 are provided, and four vanes 73 that slide on the inner peripheral surface of the cam 71 are provided in the rotor 72. , Hydraulic relay passages 721, 722, and 726 for transferring hydraulic pressures generated by the four vanes 73, and the rotary joint 76 has a circumferential endless groove 768-3 on the outer peripheral surface of the rotor, A circumferential endless groove 768 (-1, -2) is provided on the peripheral surface, and the circumferential endless groove 768 (-1, -2) corresponds to the hydraulic relay paths 721, 722 and the hydraulic pressures (not shown). valve Supplying hydraulic pressure to the cylinder each hydraulic passage 78 (-1, -2) to second communication. The circumferential endless groove 768-3 communicates with a hydraulic relay path 726 that communicates with a cell other than the cell 738 (-1, -2) that operates the valve, and a hydraulic passage 79a that communicates with the hydraulic regeneration means 9. The hydraulic auxiliary means 8a is provided with a throttle valve 81 and a check valve 82 in parallel with the check valve 83a. The hydraulic passage 79a communicates with the upstream side of the relief valve 94 of the hydraulic regeneration means 9 provided with the hydraulic passages 98 and 99 for the regenerative hydraulic pressure. *
図2の容積型油圧供給手段7の作用は、油圧発生作用は前記図1の作用と同じで、前記カム71、ロータ72、およびベーン73から成る容積型ポンプにおいて、前記カムプロフィール711によりセル738(-1.-2)の容積を縮小することにより発生する油圧が、油圧中継路721、722を通り、回転継手76である前記ロータ72内周面に設けた周方向無端溝768(-1、-2)に供給され、油圧通路78-1、78-2を通って、図示しない各々の弁シリンダ41(-1、-2)に供給され、周期的にガス交換弁45(-1、-2)を開弁する。 前記油圧補助手段8aにより、油圧の漏れ等による負圧が発生する場合は、前記油圧補助手段の油タンク80aから前記負圧により油を補給して油にキャビテーションによる気泡の発生を防止し、油圧の一部を前記絞り弁81と逆止弁82で油タンク80aに戻すリークダウンにより、バルブクリアランスを自動的に無くすラッシュアジャスタ機能が得られる。 前記カムプロフィール711によりセル738(-1.-2)以外のセルの容積を縮小することにより発生する油圧を、油圧中継路726、周方向無端溝768-3、油圧通路79aを通って、前記油圧回生手段9のリリーフ弁94の上流に供給し、各油圧通路98、99にて油圧を供給できる。この回生油圧は、リリーフ弁94にて圧力を制御し、逆止弁93、94にて逆流防止作用と油に負圧による気泡の発生防止作用がある。 2 is the same as the action of FIG. 1 in the action of generating the oil pressure. In the positive displacement pump including the cam 71, the rotor 72, and the vane 73, the cam profile 711 causes the cell 738. The hydraulic pressure generated by reducing the volume of (−1.-2) passes through the hydraulic relay passages 721 and 722, and the circumferential endless groove 768 (−1) provided on the inner peripheral surface of the rotor 72 that is the rotary joint 76. , -2), through hydraulic passages 78-1, 78-2, to each of the valve cylinders 41 (-1, -2) (not shown), and periodically for gas exchange valves 45 (-1, -2) is opened. When negative pressure is generated by hydraulic pressure leakage or the like by the hydraulic auxiliary means 8a, oil is supplied from the oil tank 80a of the hydraulic auxiliary means by the negative pressure to prevent generation of bubbles due to cavitation. A lash adjuster function that automatically eliminates the valve clearance is obtained by leaking down a part of the valve to the oil tank 80a by the throttle valve 81 and the check valve 82. The hydraulic pressure generated by reducing the volume of the cells other than the cell 738 (−1.−2) by the cam profile 711 passes through the hydraulic relay passage 726, the circumferential endless groove 768-3, and the hydraulic passage 79a. The hydraulic pressure can be supplied to the upstream side of the relief valve 94 of the hydraulic regenerative means 9 and supplied through the hydraulic passages 98 and 99. The regenerative hydraulic pressure is controlled by a relief valve 94, and the check valves 93 and 94 have a backflow prevention action and an oil generation prevention action due to negative pressure in the oil.
図3は、実施2(請求項1対応)の、容積型ポンプをプランジャーポンプとする1気筒内燃機関の吸気と排気のガス交換弁の弁駆動機構の構成概念の説明図である。 図3は、4サイクル内燃機関1pにて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダ411、412を周期的に作動させ、前記弁シリンダ411、412が1本のガス交換弁451、452を開閉作動する往復動機関において、出力手段4p、容積型油圧供給手段7p、および回転伝動手段6pから成る内燃機関の弁駆動機構であって、前記出力手段4pは、前記弁シリンダ411、412と、クランク軸49pと、前記クランク軸49pに連動する一つのピストン47と、シリンダ46と、を備え、前記回転伝動手段6pは、前記クランク軸49pに設けた駆動車62pと、有効径が前記駆動車の2倍の前記容積型ポンプのロータ72pに設けた従動車61pと、を備え、前記容積型油圧供給手段7pは、前記容積型ポンプと、回転継手76pと、を備え、前記容積型ポンプは、管状のカム71pの内側に、基準プロフィール710pと1個のカムプロフィール711pを設け、前記カム71pの内周面を摺動する2個のプランジャ74(-1、-2)を前記ロータ72pに設け、前記ロータ72pは、前記2個のプランジャ74(-1、-2)で発生する各油圧
を移送する油圧中継路721p、722pを備え、前記回転継手76pは、前記ロータ72pの外周面またはロータハウジングの内周面に前記各油圧中継路721p、722pに対応する図示しない周方向無端溝を設け、前記弁シリンダ411、412は前記各周方向無端溝と油圧通路781、782にて連通する内燃機関の弁駆動機構の構成概念の説明図である。 
FIG. 3 is an explanatory diagram of a configuration concept of a valve drive mechanism of an intake and exhaust gas exchange valve of a one-cylinder internal combustion engine in which a positive displacement pump is a plunger pump according to the second embodiment (corresponding to claim 1). FIG. 3 includes a positive displacement pump driven by a four-cycle internal combustion engine 1p, and periodically operates the valve cylinders 411 and 412 by the hydraulic pressure generated by the positive displacement pump. In a reciprocating engine that opens and closes gas exchange valves 451 and 452, a valve drive mechanism for an internal combustion engine comprising output means 4p, positive displacement hydraulic supply means 7p, and rotation transmission means 6p, wherein the output means 4p The valve cylinders 411 and 412, a crankshaft 49 p, one piston 47 interlocked with the crankshaft 49 p, and a cylinder 46, and the rotational transmission means 6 p includes a drive wheel 62 p provided on the crankshaft 49 p A driven wheel 61p provided on a rotor 72p of the positive displacement pump whose effective diameter is twice that of the driving vehicle, and the positive displacement hydraulic supply means 7p The positive displacement pump includes a rotary joint 76p, and the positive displacement pump is provided with a reference profile 710p and one cam profile 711p inside a tubular cam 71p, and slides the inner peripheral surface of the cam 71p. Two plungers 74 (−1, −2) that move are provided in the rotor 72p, and the rotor 72p transfers a hydraulic pressure generated by the two plungers 74 (−1, −2). 721p and 722p, the rotary joint 76p is provided with circumferential endless grooves (not shown) corresponding to the hydraulic relay passages 721p and 722p on the outer peripheral surface of the rotor 72p or the inner peripheral surface of the rotor housing, and the valve cylinder 411 Reference numeral 412 is an explanatory diagram of a configuration concept of a valve drive mechanism of an internal combustion engine communicating with the circumferential endless grooves through hydraulic passages 781 and 782.
図3の内燃機関1pの弁駆動機構の作用は、容積型油圧供給手段7pの前記カム71p、ロータ72p、およびベーン73pから成る容積型ポンプにおいて、前記カムプロフィール711pにより発生する油圧が、油圧中継路721p、722p、回転継手76p、油圧通路781、782を通って、各々の弁シリンダ411、412に供給され、周期的にガス交換弁451、452が開弁し、油圧の漏れ等による負圧が発生する場合は、前記油圧補助手段8pの油タンクから前記負圧により油を補給する。 前記油圧通路781、782の前記弁シリンダ411、412側に、図示しない冷却器を設ける事により、油の温度上昇と劣化を防止することができる。 前記ロータ72pは、回転伝動手段6にて出力手段4pのクランク軸49pの回転数の二分の一に回転が減速されたているので、4サイクル内燃機関1pの吸気行程または排気行程に対応して開弁する。前記カムプロフィール711pの設置角θ5と弁駆動油圧のプランジャ74(-1、-2)の設置角θ6による開弁制御は、図4にて説明する。  The operation of the valve drive mechanism of the internal combustion engine 1p in FIG. 3 is that the hydraulic pressure generated by the cam profile 711p is hydraulically relayed in the positive displacement pump composed of the cam 71p, the rotor 72p, and the vane 73p of the positive displacement hydraulic supply means 7p. The gas exchange valves 451 and 452 are periodically opened through the passages 721p and 722p, the rotary joint 76p and the hydraulic passages 781 and 782, and the gas exchange valves 451 and 452 are opened periodically. If this occurs, oil is replenished from the oil tank of the hydraulic auxiliary means 8p with the negative pressure. By providing a cooler (not shown) on the side of the valve cylinders 411 and 412 of the hydraulic passages 781 and 782, the temperature rise and deterioration of the oil can be prevented. The rotation of the rotor 72p is decelerated to half the number of rotations of the crankshaft 49p of the output means 4p by the rotation transmission means 6, so that it corresponds to the intake stroke or the exhaust stroke of the 4-cycle internal combustion engine 1p. Open the valve. Valve opening control based on the installation angle θ5 of the cam profile 711p and the installation angle θ6 of the plunger 74 (-1, -2) for valve drive hydraulic pressure will be described with reference to FIG. *
図4は、前記実施例1および実施例2の内燃機関の、上図は全行程の弁のリフト量の特性図で、下図は弁作動行程の各位相の容積型ポンプの断面図による作動説明図である。 図4の上図はベーンポンプによる前記実施例1、およびプランジャーポンプによる前記実施例2の4サイクルの弁のリフト量の特性図で、実施例1の弁リフト(A1、A2)は、2気筒内燃機関1の吸気(または排気)のガス交換弁45(-1、-2)であるので、弁リフトA1とA2はクランク角の2行程分(360°)の位相差があり、実施例2の弁リフト(P1、P2)は、1気筒内燃機関1pの排気と吸気のガス交換弁451、452であるので弁リフトP1とP2はクランク角の2行程分(360°)の位相差がある。 下図(A1)、(P1)に示すように各カムプロフィール711、771pを左右対称とすることにより、上図の各弁リフト特性図の上昇挙動と下降挙動は同じになり、更に、上昇挙動と下降挙動は、弁ストロークHの中央部を境に上下逆方向の放物線とするが、低速運転の内燃機関では正弦曲線でも、簡易S字曲線でもよい。各々のカムプロフィール711、711pの周方向断面形状を前記各弁リフト特性図に対応する形状にすることにより、弁挙動が等加速度となり、振動と着座衝撃を減少できるので高速運転が円滑にできる。前記実施例1は回転伝動手段6の減速比は二分の一であるので、弁の移動速度を抑制するために、各行程の全域で弁シリンダを移動させるので、(数1)θ1=θ2となり、クランク軸による各行程は180°であるので、(数2)2(θ1+θ2)=180°となり、前記(数1)を(数2)に代入すると、θ1=θ2=45°となる。前記実施例2も回転伝動手段6pの減速比は二分の一であるので、弁の移動速度を抑制するために、各行程(180°)の全域で弁シリンダを移動させるので、(数3)2θ5=180°となり、排気行程と吸気行程の各弁シリンダの位相差は1行程(180°)であるので、(数4)2θ6=180°であるので、θ6=90°となる。  上記説明は、回転伝動手段6、6pの減速比が二分の一の場合であるが、減速比が四分の一の場合は、前記θ1、θ2、θ5、θ6の角度を二分の一にできる。 以下の実施例は、ベーンポンプによる実施例を主に説明を行うが、各実施例はベーンポンプとプランジャーポンプの選択ができ、潤滑を重視する、または回生油圧を利用する場合はベーンポンプが有利で、高圧油圧にする場合はプランジャーポンプが適している。 ベーンポンプもプランジャーポンプもロータの高速回転時には遠心力が発生するが、低速回転時にカムの摺動面に付勢する弾性体(スプリング)を設けて略密閉状態を確保し、ベーンの往復運動による背圧処理の大気解放回路等が必要な場合があるが、従来のベーンポンプと方法が同じであるので図示および作用説明を省略する。 FIG. 4 is a characteristic diagram of the lift amount of the valve in the whole stroke of the internal combustion engine of the first embodiment and the second embodiment, and the lower diagram is a description of the operation by the sectional view of the positive displacement pump in each phase of the valve operation stroke. FIG. The upper diagram of FIG. 4 is a characteristic diagram of the valve lift amount of the four cycles of the first embodiment using the vane pump and the second embodiment using the plunger pump. The valve lifts (A1, A2) of the first embodiment are two cylinders. Since this is the gas exchange valve 45 (-1, -2) for the intake (or exhaust) of the internal combustion engine 1, the valve lifts A1 and A2 have a phase difference of two strokes (360 °) of the crank angle. Since the valve lifts (P1, P2) are the exhaust and intake gas exchange valves 451, 452 of the one-cylinder internal combustion engine 1p, the valve lifts P1, P2 have a phase difference of two strokes (360 °) of the crank angle. . By making the cam profiles 711 and 771p symmetrical to each other as shown in (A1) and (P1) below, the ascending behavior and descending behavior of each valve lift characteristic diagram in the above diagram become the same. The descending behavior is a parabola in an upside down direction with the center of the valve stroke H as a boundary, but may be a sine curve or a simple S-curve in an internal combustion engine operating at low speed. By making the circumferential cross-sectional shape of each cam profile 711, 711p into a shape corresponding to each valve lift characteristic diagram, the valve behavior becomes equal acceleration, and vibration and seating impact can be reduced, so that high-speed operation can be performed smoothly. In the first embodiment, since the reduction ratio of the rotational transmission means 6 is ½, the valve cylinder is moved over the entire stroke in order to suppress the moving speed of the valve, so (Equation 1) θ1 = θ2. Since each stroke by the crankshaft is 180 °, (Equation 2) 2 (θ1 + θ2) = 180 °, and when (Equation 1) is substituted into (Equation 2), θ1 = θ2 = 45 °. In the second embodiment as well, since the reduction ratio of the rotational transmission means 6p is ½, the valve cylinder is moved in the entire region of each stroke (180 °) in order to suppress the movement speed of the valve. Since 2θ5 = 180 ° and the phase difference of each valve cylinder in the exhaust stroke and the intake stroke is one stroke (180 °), (Equation 4) 2θ6 = 180 °, so θ6 = 90 °. The above description is for the case where the reduction ratio of the rotary transmission means 6 and 6p is ½, but when the reduction ratio is ¼, the angles of θ1, θ2, θ5, and θ6 can be halved. . In the following examples, the examples using the vane pump will be mainly described.In each example, the vane pump and the plunger pump can be selected, and when the emphasis is on lubrication or when the regenerative hydraulic pressure is used, the vane pump is advantageous. Plunger pumps are suitable for high pressure hydraulics. Both the vane pump and the plunger pump generate centrifugal force when the rotor rotates at high speed, but an elastic body (spring) that biases the sliding surface of the cam during low-speed rotation is provided to ensure a substantially sealed state, and due to the reciprocating motion of the vane. An air release circuit or the like for back pressure processing may be necessary, but the illustration and description of operation are omitted because the method is the same as that of a conventional vane pump.
図5は、実施例3(請求項1対応)の4気筒内燃機関の吸気弁の弁駆動機構の構成説明図である。 図5に示すように、4気筒内燃機関の吸気弁の弁駆動機構において、出力手段4b、容積型油圧供給手段7b、および回転伝動手段6bから成る内燃機関1bの弁駆動機構であって、前記容積型油圧供給手段7bは、前記容積型ポンプと、回転継手76bと、を備え、前記容積型ポンプは、管状のカム71bの内側に、前記ロータ72bの回転軸を中心とする基準プロフィール710bと1個のカムプロフィール711bを設け、前記カムの内周面を摺動する八枚のベーン73bを前記ロータ72bに備えた簡素な構造である。 カム71bの1個のカムプロフィール711bを共用して4組の油圧回路を配置できる簡素な構造で、油圧供給手段7bの信頼性が高く、小型で安価に製作できる効果がある。クランク軸49bに設けた駆動車と前記容積型ポンプに設けた従動車による二分の一の減速回転により発生する油圧を対応する弁シリンダに供給するので油圧回路の切替え手段が不要となる効果がある。 更に、油圧回生手段9bを設けることにより、弁シリンダの作動に寄与しないセルによる油圧を利用できるので、パワーステアリング、CVT、あるいは本願発明の請求項3または請求項4の位相制御手段の油圧として利用できる効果があり、本油圧が必要でない時には、方向制御弁96を作動し、回生油圧ポンプの駆動による動力損失の発生を抑制できる。 油圧補正手段8bの構成と作用は、前記実施例2と同じで、バルブクリアランスを自動的に無くすラッシュアジャスタ機能を付加できる効果がある。  FIG. 5 is a configuration explanatory view of the valve drive mechanism of the intake valve of the four-cylinder internal combustion engine of the third embodiment (corresponding to claim 1). As shown in FIG. 5, in the valve drive mechanism of the intake valve of the four-cylinder internal combustion engine, the valve drive mechanism of the internal combustion engine 1b comprising output means 4b, positive displacement hydraulic supply means 7b, and rotation transmission means 6b, The positive displacement hydraulic supply means 7b includes the positive displacement pump and a rotary joint 76b. The positive displacement pump has a reference profile 710b centered on the rotation axis of the rotor 72b inside a tubular cam 71b. The rotor 72b has a simple structure in which one cam profile 711b is provided and eight vanes 73b sliding on the inner peripheral surface of the cam are provided. The simple structure in which one cam profile 711b of the cam 71b can be shared and four sets of hydraulic circuits can be arranged, and the reliability of the hydraulic supply means 7b is high. Since the hydraulic pressure generated by the half-reduced rotation by the driving wheel provided on the crankshaft 49b and the driven wheel provided on the positive displacement pump is supplied to the corresponding valve cylinder, there is an effect that the switching means of the hydraulic circuit becomes unnecessary. . Further, by providing the hydraulic regeneration means 9b, the hydraulic pressure by the cell that does not contribute to the operation of the valve cylinder can be used. Therefore, it is used as the hydraulic pressure of the power steering, CVT, or the phase control means of claim 3 or claim 4 of the present invention. When the hydraulic pressure is not necessary, the directional control valve 96 can be operated to suppress the generation of power loss due to the driving of the regenerative hydraulic pump. The configuration and action of the hydraulic pressure correction means 8b are the same as those in the second embodiment, and there is an effect that a lash adjuster function for automatically eliminating the valve clearance can be added. *
図6は、前記実施例3(図5)の4気筒内燃機関の吸気弁の弁駆動機構の容積型油圧供給手段の配置斜視図とベーン部断面の部分拡大図である。 ロータ72bの外周面またはロータハウジングの内周面に設けた図示しない周方向無端溝から成る回転継手により、任意の角度に油圧配管を設けることができるので、図6に示すように前記油圧回路の放射状配置の制約の問題点が解消できる。 クランク軸49bと並行に容積型油圧供給手段7bを設け、弁シリンダ411(-1~4)と容積型油圧供給手段7bの配管が容易になり、各油圧通路781(b1~b4)が交差することなく配置できるので、配管ブロックによる一体化ができる。 図示しない排気の弁機構は、前記容積型油圧供給手段7bを設ける、または他の弁機構とすることもできる。 FIG. 6 is an arrangement perspective view of the positive displacement hydraulic supply means of the valve drive mechanism of the intake valve of the four-cylinder internal combustion engine of the third embodiment (FIG. 5) and a partially enlarged view of the vane section. Since the hydraulic piping can be provided at an arbitrary angle by a rotary joint comprising a circumferential endless groove (not shown) provided on the outer peripheral surface of the rotor 72b or the inner peripheral surface of the rotor housing, as shown in FIG. The problem of restriction of radial arrangement can be solved. Displacement type hydraulic pressure supply means 7b is provided in parallel with the crankshaft 49b, the piping of the valve cylinder 411 (-1 to 4) and positive displacement type hydraulic supply means 7b is facilitated, and the respective hydraulic passages 781 (b1 to b4) intersect. Since it can arrange | position without, integration by a piping block can be performed. The exhaust valve mechanism (not shown) may be provided with the positive displacement hydraulic pressure supply means 7b or another valve mechanism.
図7は、実施例4(請求項2対応)のベーンポンプで発生する油圧が方向制御弁を介して各弁シリンダに供給される2気筒内燃機関の弁駆動機構の構成概念の説明図である。 図7の容積型油圧供給手段7eが、前記容積型ポンプと、前記回転継手の替わりに方向制御弁77(-1、-2)と、を備え、前記容積型ポンプは、前記管状のカム71eの内側に、基準プロフィール710eと2個のカムプロフィール711eを周方向に等間隔に設け、前記方向制御弁77(-1、-2)は、前記ロータ72eの外周面または前記ロータハウジングの内周面に油圧中継路721e、722eに対応する図示しない周方向有端溝を設け、各弁シリンダ411(e1、e2)、412(e1、e2)は前記各周方向有端溝と油圧通路781(e1、e2)、782(e1、e2)にて連通することを特徴とする請求項1に記載の内燃機関の弁駆動機構。 回転伝動手段6e、回転継手76e、および油圧回生手段9eは前記実施例1(図1、図2)と構成が同じある。  FIG. 7 is an explanatory diagram of a configuration concept of a valve drive mechanism of a two-cylinder internal combustion engine in which hydraulic pressure generated by a vane pump according to a fourth embodiment (corresponding to claim 2) is supplied to each valve cylinder via a directional control valve. The positive displacement hydraulic supply means 7e of FIG. 7 includes the positive displacement pump and a direction control valve 77 (-1, -2) instead of the rotary joint, and the positive displacement pump includes the tubular cam 71e. A reference profile 710e and two cam profiles 711e are provided at equal intervals in the circumferential direction, and the directional control valve 77 (-1, -2) is provided on the outer peripheral surface of the rotor 72e or the inner periphery of the rotor housing. Circumferentially-end end grooves (not shown) corresponding to the hydraulic relay paths 721e and 722e are provided on the surface, and each of the valve cylinders 411 (e1, e2) and 412 (e1, e2) is connected to each of the end-end grooves and the hydraulic passage 781 ( 2. The valve drive mechanism for an internal combustion engine according to claim 1, wherein the valve drive mechanism communicates at e 1, e 2) and 782 (e 1, e 2). The rotation transmission means 6e, the rotary joint 76e, and the hydraulic regeneration means 9e have the same configuration as the first embodiment (FIGS. 1 and 2). *
図7の内燃機関1eの弁駆動機構の前記容積型油圧供給手段7eの作用は、前記実施例1と同様に回転伝動手段6eによりクランク軸49eの二分の一の回転数で回転するロータ72eに挟角がθ2e(=θ2)のベーン73eを設け、2個のカムプロフィール711eによりロータ72eの一回転に等間隔で2回発生する油圧中継路721eを通る油圧を、方向制御弁77-1により前記ロータ72eの回転に同期して切替え、排気の各弁シリンダ412(e1、e2)を交互に作動する。 ポンプの位相差(θ2e+θ3e)を前記実施例2に示す油圧ポンプの位相差(θ6)と同様にロータ回転角の90°とすることにより、前記カムプロフィール711eにより発生する油圧中継路722eを通る油圧を方向制御弁77-2により前記ロータ72eの回転に同期して切替えて吸気の弁シリンダ411(e1、e2)を交互に作動する。 回転継手76e、および油圧回生手段9eは前記実施例1(図1、図2)と作用が同じであるので説明は省略する。  The operation of the positive displacement hydraulic pressure supply means 7e of the valve drive mechanism of the internal combustion engine 1e in FIG. 7 is similar to the first embodiment in that the rotational transmission means 6e rotates the rotor 72e that rotates at half the rotational speed of the crankshaft 49e. A vane 73e with an included angle of θ2e (= θ2) is provided, and the hydraulic pressure passing through the hydraulic relay path 721e generated twice at equal intervals in one rotation of the rotor 72e by the two cam profiles 711e is controlled by the direction control valve 77-1. Switching is performed in synchronization with the rotation of the rotor 72e, and the exhaust valve cylinders 412 (e1, e2) are alternately operated. By setting the pump phase difference (θ2e + θ3e) to 90 ° of the rotor rotation angle in the same manner as the phase difference (θ6) of the hydraulic pump shown in the second embodiment, the hydraulic pressure passing through the hydraulic relay path 722e generated by the cam profile 711e. Are switched in synchronism with the rotation of the rotor 72e by the direction control valve 77-2 to alternately operate the intake valve cylinders 411 (e1, e2). Since the rotary joint 76e and the hydraulic regeneration means 9e have the same functions as those of the first embodiment (FIGS. 1 and 2), description thereof is omitted. *
図8は、前記実施例4(図7)の容積型油圧供給手段の、中図は全断面図、上図は容積型ポンプ部、下図は回転継手と各方向制御弁の断面図、および周辺油圧回路図である。 図8の、中図に示す容積型油圧供給手段7eが、上図に示す前記容積型ポンプであるベーンポンプと、前記回転継手の替わりに下図中と下図右に示す方向制御弁77(-1、-2)を備え、前記容積型ポンプは、前記管状のカム71eの内側に、基準プロフィール710eと2個のカムプロフィール711eを周方向に等間隔に設け、下図中と下図右に示す前記方向制御弁77(-1、-2)は、前記ロータ72eの外周面に前記カムプロフィール711eと同数の2個の周方向有端溝778(e1a、e2a)を設け、前記2個のカムプロフィール711eと同じ位相で前記ロータハウジング702eの内周面の前記周方向有端溝778(e1a、e2a)に連通する位置に前記図7の前記弁シリンダ411(e1、e2)、412(e1、e2)に連通する油圧通路781(e1、e2)、782(e1、e2)を設け、前記4個のベーン73eで発生する各弁作動油圧が、前記方向制御弁77(-1、-2)により対応する複数の前記弁シリンダ411(e1、e2)、412(e1、e2)に順次油圧を供給する内燃機関1eの弁駆動機構である。  FIG. 8 is a full sectional view of the positive displacement hydraulic pressure supply means of the fourth embodiment (FIG. 7), the upper view is a positive displacement pump section, the lower view is a sectional view of a rotary joint and each direction control valve, and the periphery. It is a hydraulic circuit diagram. The positive displacement hydraulic supply means 7e shown in the middle diagram of FIG. 8 includes a vane pump that is the positive displacement pump shown in the upper diagram, and a directional control valve 77 (-1, -2), the positive displacement pump is provided with a reference profile 710e and two cam profiles 711e at equal intervals in the circumferential direction inside the tubular cam 71e, and the direction control shown in the lower figure and right of the lower figure The valve 77 (-1, -2) is provided with two circumferential end grooves 778 (e1a, e2a) of the same number as the cam profile 711e on the outer peripheral surface of the rotor 72e, and the two cam profiles 711e In the same phase, the valve cylinders 411 (e1, e2), 412 (e) of FIG. 7 are arranged at positions that communicate with the circumferentially end groove 778 (e1a, e2a) on the inner peripheral surface of the rotor housing 702e. , E2) are provided with hydraulic passages 781 (e1, e2), 782 (e1, e2), and the respective valve operating hydraulic pressures generated by the four vanes 73e are controlled by the directional control valves 77 (-1, -2). The valve drive mechanism of the internal combustion engine 1e that sequentially supplies hydraulic pressure to the corresponding plurality of valve cylinders 411 (e1, e2), 412 (e1, e2). *
図8の容積型油圧供給手段7eの作用は、上図の容積型ポンプ部の断面図に示すように、前記実施例4の図7で説明したようにクランク軸49eの二分の一の回転数で回転するロータ72eに設けた挟角がθ2eのベーン73eを二組設けることにより各セル738(e1、e2)を構成し、前記セル738(e1、e2)が前記2個のカムプロフィール711(e1。e2)により発生する各々の油圧を各油圧中継路721e、722eに供給する。 従って、ロータ72eの一回転毎に等間隔で2回発生する前記油圧が各油圧中継路721e、722eに供給され、前記供給され油圧は中図に示す前記各油圧中継路721e、722eに対応する周方向有端溝778(e1a、e2a)に供給される。 下図中と下図右に示す前記各周方向有端溝778(e1a、e2a)に供給された前記油圧は、前記ロータ72eの回転に従って前記カム711e1の油圧発生位相に対応する油圧通路782e1、781e1と、前記カム711e2の油圧発生位相に対応する油圧通路782e2、781e2に油圧回路が交互に切替わるので、前記各シリンダ46(e1、e2)に設けた排気の各弁シリンダ412(e1、e2)に交互に油圧が供給され、等間隔で交互に開弁作動する。 前記カムプロフィール711(e1、e2)により発生する油圧中継路722eを通る油圧を方向制御弁77-2により、前記ロータ72eの回転に同期して切替えて吸気の弁シリンダ411(e1、e2)を交互に作動する。 ポンプのロータ位相差(θ2e+θ3e)を90°とすることにより、前記排気の各弁シリンダ412(e1、e2)の作動とクランク位相で180°遅角にて前記吸気の各弁シリンダ411(e1、e2)を作動する。 中図、下図中、下図右に示すように、前記周方向有端溝778(e1a、e2a)の残余の周方向部に周方向有端溝
778(e1b、e2b)を設け、前記周方向有端溝778(e1b、e2b)を油圧補助手段8eの油タンク80eに、油圧通路79e2、周方向無端溝768e2、および油圧中継路725を介して連通し、前記油圧作動時以外(ガス交換弁閉弁時)は油圧圧力を大気圧に解放することにより、確実なガス交換弁の着座ができるので、確実なラッシュアジャスタ機能を付加できる効果がある。 前記各セル738(e1、e2)の間のセルで発生する前記弁シリンダの作動に寄与しない油圧を油圧通路726e、周方向無端溝768e1、および油圧通路79e1を介して油圧回生手段9eに供給することにより、パワーステアリング、CVT、あるいは本願発明の請求項3または請求項4の位相制御手段等の油圧として利用できる効果がある。 
As shown in the sectional view of the positive displacement pump section in the upper diagram, the operation of the positive displacement hydraulic pressure supply means 7e in FIG. 8 is half the rotational speed of the crankshaft 49e as described with reference to FIG. Each of the cells 738 (e1, e2) is configured by providing two sets of vanes 73e having an included angle of θ2e provided on the rotor 72e rotating in the above-described manner, and the cells 738 (e1, e2) include the two cam profiles 711 ( The hydraulic pressures generated by e1 and e2) are supplied to the hydraulic relay paths 721e and 722e. Accordingly, the hydraulic pressure generated twice at equal intervals for each rotation of the rotor 72e is supplied to the hydraulic relay paths 721e and 722e, and the supplied hydraulic pressure corresponds to the hydraulic relay paths 721e and 722e shown in the middle figure. It is supplied to the circumferential end groove 778 (e1a, e2a). The hydraulic pressure supplied to the circumferentially-endped grooves 778 (e1a, e2a) shown in the lower and right sides of the lower diagram and hydraulic passages 782e1, 781e1 corresponding to the hydraulic pressure generation phase of the cam 711e1 according to the rotation of the rotor 72e Since the hydraulic circuit is alternately switched to the hydraulic passages 782e2, 781e2 corresponding to the hydraulic pressure generation phase of the cam 711e2, the exhaust valve cylinders 412 (e1, e2) provided in the cylinders 46 (e1, e2) are switched to each other. The hydraulic pressure is alternately supplied, and the valves are opened alternately at equal intervals. The hydraulic pressure passing through the hydraulic relay path 722e generated by the cam profile 711 (e1, e2) is switched in synchronization with the rotation of the rotor 72e by the direction control valve 77-2 to switch the intake valve cylinder 411 (e1, e2). It operates alternately. By setting the rotor phase difference (θ2e + θ3e) of the pump to 90 °, the intake valve cylinders 411 (e1, e2) are delayed by 180 ° in the operation and crank phases of the exhaust valve cylinders 412 (e1, e2). Activate e2). As shown in the middle figure, the lower figure, and the right side of the lower figure, a circumferential end groove 778 (e1b, e2b) is provided in the remaining circumferential direction portion of the circumferential end groove 778 (e1a, e2a). The end groove 778 (e1b, e2b) communicates with the oil tank 80e of the hydraulic auxiliary means 8e via the hydraulic passage 79e2, the circumferential endless groove 768e2, and the hydraulic relay path 725, except when the hydraulic pressure is activated (the gas exchange valve is closed). At the time of valve), by releasing the hydraulic pressure to atmospheric pressure, it is possible to reliably seat the gas exchange valve, so that it is possible to add a reliable lash adjuster function. The hydraulic pressure that does not contribute to the operation of the valve cylinder generated in the cells between the cells 738 (e1, e2) is supplied to the hydraulic regeneration means 9e via the hydraulic passage 726e, the circumferential endless groove 768e1, and the hydraulic passage 79e1. Thus, there is an effect that it can be used as hydraulic pressure for power steering, CVT, or the phase control means of claim 3 or claim 4 of the present invention.
図9は、前記実施例4(図8)の容積型油圧供給手段のロータに設けた各周方向溝と各油圧通路接続部から成る回転継手と方向制御弁の斜視図である。 前記容積型油圧供給手段7eのロータ72eは、ベーン73eを設けたポンプ部と前記油圧通路782(e1、e2)と連通する周方向有端溝778(e1a、e1b)から成る方向制御弁77-1と、前記油圧通路781(e1、e2)と連通する周方向有端溝778(e2a、e2b)から成る方向制御弁77-2を備え、油圧通路79e1と連通する周方向無端溝768e1から成る回転継手76e1と、同様の構造の転継手76e2を備えている。 ロータ72eに前記ポンプ部と前記方向制御弁を設けているので、4サイクル内燃機関のガス交換弁の作動を電気的な制御を必要としない簡素な構成でできるので、安価で信頼性が高く、高速回転に対応できる効果がある。  FIG. 9 is a perspective view of a rotary joint and a directional control valve each including a circumferential groove and a hydraulic passage connecting portion provided in a rotor of the positive displacement hydraulic supply means of the fourth embodiment (FIG. 8). The rotor 72e of the positive displacement hydraulic supply means 7e is a directional control valve 77- consisting of a pump portion provided with a vane 73e and a circumferential end groove 778 (e1a, e1b) communicating with the hydraulic passage 782 (e1, e2). 1 and a directional control valve 77-2 composed of a circumferentially end groove 778 (e2a, e2b) communicating with the hydraulic passage 781 (e1, e2), and a circumferential endless groove 768e1 communicating with the hydraulic passage 79e1. A rotary joint 76e1 and a roll joint 76e2 having the same structure are provided. Since the rotor 72e is provided with the pump unit and the directional control valve, the operation of the gas exchange valve of the four-cycle internal combustion engine can be performed with a simple configuration that does not require electrical control, and is therefore inexpensive and highly reliable. There is an effect that can correspond to high-speed rotation. *
図10は、前記実施例4の、上図は排気弁の弁リフト特性図で、E10(~30)は前記弁リフト特性図の各位相の容積型ポンプと方向制御弁の断面図による動作説明図である。 図10の上図(E)は、前記実施例4(図7)の2気筒4サイクル内燃機関1eの排気弁シリンダ412(e1、e2)の弁リフトの特性図で、横軸はクランク角、縦軸は弁のリフト量(h)である。 回転伝動手段6eにより前記実施例1(図4)と同様に、θ1e=θ2e=45°とし、ロータ72eに設けたベーン73eで形成されるセル738e5で発生する油圧は、油圧中継路721eを通って方向制御弁77-1である周方向有端溝778e1aに供給され、油圧回路の切替えにより油圧通路782e1、または油圧通路782e2を通って排気の弁シリンダ412(e1、e2)の一方に供給されて弁リフト動作を行うので、上図(E)に示すように。弁シリンダ412(e1、e2)は交互に弁リフト動作を行う。  FIG. 10 is a valve lift characteristic diagram of the exhaust valve according to the fourth embodiment, and E10 (˜30) is an explanation of the operation according to the sectional view of the positive displacement pump and the directional control valve in each phase of the valve lift characteristic diagram. FIG. The upper diagram (E) of FIG. 10 is a characteristic chart of the valve lift of the exhaust valve cylinder 412 (e1, e2) of the two-cylinder four-cycle internal combustion engine 1e of the fourth embodiment (FIG. 7). The vertical axis represents the lift amount (h) of the valve. As in the first embodiment (FIG. 4), the rotation transmission means 6e sets θ1e = θ2e = 45 °, and the hydraulic pressure generated in the cell 738e5 formed by the vane 73e provided in the rotor 72e passes through the hydraulic relay path 721e. And is supplied to one of the exhaust valve cylinders 412 (e1, e2) through the hydraulic passage 782e1 or the hydraulic passage 782e2 by switching the hydraulic circuit. As shown in the above figure (E). The valve cylinders 412 (e1, e2) perform valve lift operations alternately. *
図10の容積型ポンプと3位置の回転スライド式方向制御弁77-1の作用を以下に説明する。(E10)に示すように、セル738e5に油圧が発生しない時は、(E10a)に示すように前記方向制御弁77-1の前記油圧回路の切替えは、両方の弁シリンダ412(e1、e2)が待機時は油圧中継路725を介して図示しない油圧補助手段の油タンクに連通して油圧は大気圧となるので、ラッシュアジャスタ機能を付加できる効果がある。(E20)に示すように、ロータ72eが回転し、カムプロフィール711e1によりセル738e5が油圧発生時は、(E20a)に示すように、前記方向制御弁77-1は油圧通路782e1に前記油圧を供給して弁シリンダ412e1を作動し、待機中の油圧通路782e2の油圧は大気圧を継続する。(E30)に示すように、ロータ72eが更に回転し、カムプロフィール711e2によりセル738e6が油圧発生時は、前記油圧通路782(e1、e2)の両方の油圧回路が入れ替わり、弁シリンダ412e2を作動する。 吸気の弁シリンダ411(e1、e2)を油圧駆動するセル738e6の位相を、前記排気のセル738e5にロータ角にして90°遅らせることにより、吸気の弁シリンダ411(e1、e2)を同様に作動できる。 The operation of the positive displacement pump of FIG. 10 and the three-position rotary slide type directional control valve 77-1 will be described below. As shown in (E10), when no hydraulic pressure is generated in the cell 738e5, as shown in (E10a), the switching of the hydraulic circuit of the directional control valve 77-1 is performed by both valve cylinders 412 (e1, e2). However, at the time of standby, the hydraulic pressure becomes atmospheric pressure by communicating with an oil tank of hydraulic auxiliary means (not shown) via the hydraulic relay path 725, so that the lash adjuster function can be added. As shown in (E20), when the rotor 72e rotates and the cam profile 711e1 causes the cell 738e5 to generate hydraulic pressure, the directional control valve 77-1 supplies the hydraulic pressure to the hydraulic passage 782e1 as shown in (E20a). Then, the valve cylinder 412e1 is actuated, and the hydraulic pressure in the waiting hydraulic passage 782e2 continues atmospheric pressure. As shown in (E30), when the rotor 72e further rotates and the cell 738e6 generates hydraulic pressure by the cam profile 711e2, both hydraulic circuits of the hydraulic passages 782 (e1, e2) are switched to operate the valve cylinder 412e2. . The intake valve cylinder 411 (e1, e2) is similarly operated by delaying the phase of the cell 738e6 that hydraulically drives the intake valve cylinder 411 (e1, e2) by 90 degrees with respect to the exhaust cell 738e5 as a rotor angle. it can.
図11は、実施例5(請求項2対応)の発生する油圧が方向制御弁を介して各弁シリンダに供給される4気筒内燃機関の弁駆動機構の構成概念の説明図である。 図11の実施例5は、前記実施例4(図7)の容積型油圧供給手段7eのポンプ部のベーンと油圧中継路を180°位相シフトした油圧ポンプ回路を増設し、前記増設した油圧ポンプ回路に対応する4個の方向制御弁77(c1~c4)を設けた4気筒内燃機関1cの排気と吸気の弁駆動機構である。  FIG. 11 is an explanatory diagram of a configuration concept of a valve drive mechanism of a four-cylinder internal combustion engine in which hydraulic pressure generated in the fifth embodiment (corresponding to claim 2) is supplied to each valve cylinder via a directional control valve. In Example 5 of FIG. 11, a hydraulic pump circuit in which the vane of the pump portion of the positive displacement hydraulic supply means 7e of Example 4 (FIG. 7) and the hydraulic relay path are phase-shifted by 180 ° is added, and the added hydraulic pump This is a valve drive mechanism for exhaust and intake of a four-cylinder internal combustion engine 1c provided with four directional control valves 77 (c1 to c4) corresponding to the circuit. *
図12は、前記実施例5(図11)の、油圧通路を一側面に配置した容積型油圧供給手段の全断面図と、上図はポンプ部、下図は回転継手部と各方向制御弁部の断面図である。 図12の実施例5の容積型油圧供給手段7cは、前記実施例4(図8)の容積型油圧供給手段7eのポンプ部断面図(上図)のベーン73eと油圧中継路721e、722eを180°位相シフトした油圧ポンプ回路を増設し、前記増設した油圧ポンプ回路に対応する方向制御弁77(c1~c4)を設け、前記方向制御弁77(c1~c4)に対応する各弁シリンダに連通する油圧通路781(c1~c4)、782(c1~c4)を一方(下方)の側面に設けることにより、容積型油圧供給手段7cの油圧配管を最短距離でブロック化できる。 図12のロータ72cの断面図の(下図左)は、回生油圧を油圧中継路726c、回転継手76cの周方向無端溝768c1を通って79c1から油圧回生手段9cに供給する。 油圧中継路721cに対応する方向制御弁77c1の作用を、以下の(下図中)、(下図右)にて説明する。(下図中)は、弁シリンダ412c1の作動油圧を油圧中継路721c、周方向有端溝778c1aを通って油圧通路782c1に供給し、前記弁シリンダ412c1が休止時は、油圧通路79c2を介して油タンク80cに連通する周方向有端溝778c1bが前記油圧通路782c1に連通しラッシュアジャスタ効果が得られる。(下図右)は、前記弁シリンダ412c1(下図中)とロータ角で180°位相が異なる弁シリンダ412c4の作動油圧を油圧中継路721c、周方向有端溝778c1cを通って油圧通路782c4に供給し、前記弁シリンダ412c4が休止時は、油圧通路79c2を介して油タンク80cに連通する周方向有端溝778c1dが前記油圧通路782c4に連通しラッシュアジャスタ効果が得られる。 前記周方向有端溝778c1bと周方向有端溝778c1dはロータ72cの軸に並行に設けた溝により連通し、他の方向制御弁77(c2~c4)も前記説明と同様の構成である。 FIG. 12 is a full sectional view of the positive displacement hydraulic power supply means in which the hydraulic passage is arranged on one side surface of the fifth embodiment (FIG. 11), the upper figure is a pump part, the lower figure is a rotary joint part and each direction control valve part. FIG. The positive displacement hydraulic supply means 7c of the fifth embodiment shown in FIG. 12 includes a vane 73e and hydraulic relay paths 721e and 722e in the pump section sectional view (upper view) of the positive displacement hydraulic supply means 7e of the fourth embodiment (FIG. 8). A hydraulic pump circuit having a phase shift of 180 ° is added, directional control valves 77 (c1 to c4) corresponding to the added hydraulic pump circuit are provided, and each valve cylinder corresponding to the directional control valve 77 (c1 to c4) is provided. By providing the communicating hydraulic passages 781 (c1 to c4) and 782 (c1 to c4) on one (lower) side surface, the hydraulic piping of the positive displacement hydraulic supply means 7c can be blocked at the shortest distance. In the cross-sectional view of the rotor 72c in FIG. 12 (lower left in the figure), the regenerative hydraulic pressure is supplied from 79c1 to the hydraulic regenerative means 9c through the hydraulic relay path 726c and the circumferential endless groove 768c1 of the rotary joint 76c. The operation of the directional control valve 77c1 corresponding to the hydraulic relay path 721c will be described below (in the lower diagram) and (lower right). (In the figure below), the operating hydraulic pressure of the valve cylinder 412c1 is supplied to the hydraulic passage 782c1 through the hydraulic relay passage 721c and the circumferential end groove 778c1a, and when the valve cylinder 412c1 is at rest, the oil is supplied via the hydraulic passage 79c2. A circumferential end groove 778c1b communicating with the tank 80c communicates with the hydraulic passage 782c1 to obtain a lash adjuster effect. (Right in the lower diagram) supplies the hydraulic pressure of the valve cylinder 412c4, which is 180 ° out of phase with the valve cylinder 412c1 (in the lower diagram), to the hydraulic passage 782c4 through the hydraulic relay passage 721c and the circumferential end groove 778c1c. When the valve cylinder 412c4 is at rest, the circumferential end groove 778c1d communicating with the oil tank 80c via the hydraulic passage 79c2 communicates with the hydraulic passage 782c4, and the lash adjuster effect is obtained. The circumferential end groove 778c1b and the circumferential end groove 778c1d communicate with each other by a groove provided in parallel with the axis of the rotor 72c, and the other direction control valves 77 (c2 to c4) have the same configuration as described above.
図13は、実施例6(請求項2対応)の弁駆動機構で、8気筒内燃機関の排気と吸気の容積型油圧供給手段の配置斜視図と、矢視図Gの容積型ポンプ部の断面図である。 矢視図Gに示すように、前記実施例5の4気筒内燃機関の排気と吸気の弁駆動機構の容積型油圧供給手段7cのポンプ部断面図(図12(上図))の4個の油圧中継路(721c~724c)を45°位相シフトした位置にも油圧中継路設け、図13に示すように8気筒内燃機関1sの排気と吸気の弁駆動機構の容積型油圧供給手段7sを両側のV型シリンダーブロックの谷間に設ける。 図13の実施例6は、2個のカムプロフィール711sで8気筒の排気と吸気の16個の図示しないガス交換弁を作動できるので、弁駆動機構の可動部の集約化により小型で部品点数が少ない簡素な構造となり、安価で信頼性が高い弁駆動機構ができる。矢視図Gに示すように、前記2個のカムプロフィール711sを水平方向に配置し、図示しない弁シリンダに連通する各油圧通路を前記容積型油圧供給手段7sの水平方向の両側に配置できるので、最短距離での配管のブロック化が容易で、内燃機関1sの弁駆動機構を省スペースで安価に製作できる効果がある。 FIG. 13 shows an arrangement perspective view of a displacement type hydraulic pressure supply means for exhaust and intake air of an 8-cylinder internal combustion engine, and a cross section of the displacement type pump part shown in an arrow G in the valve drive mechanism of the sixth embodiment (corresponding to claim 2). FIG. As shown in the arrow view G, the four pump section sectional views (FIG. 12 (upper view)) of the positive displacement hydraulic supply means 7c of the exhaust and intake valve drive mechanism of the four-cylinder internal combustion engine of the fifth embodiment are shown. A hydraulic relay passage is also provided at a position where the hydraulic relay passages (721c to 724c) are phase shifted by 45 °, and as shown in FIG. 13, the displacement type hydraulic supply means 7s of the exhaust and intake valve drive mechanisms of the 8-cylinder internal combustion engine 1s are provided on both sides. Provided in the valley of the V-shaped cylinder block. In the sixth embodiment of FIG. 13, 16 gas exchange valves (not shown) for exhaust and intake of 8 cylinders can be operated by two cam profiles 711s, so that the movable part of the valve drive mechanism is integrated, and the number of parts is reduced. A simple structure with few, and a cheap and highly reliable valve drive mechanism can be achieved. As shown in the arrow view G, the two cam profiles 711s can be arranged in the horizontal direction, and the respective hydraulic passages communicating with a valve cylinder (not shown) can be arranged on both sides in the horizontal direction of the positive displacement hydraulic supply means 7s. It is easy to block the piping at the shortest distance, and there is an effect that the valve drive mechanism of the internal combustion engine 1s can be manufactured in a small space and at a low cost.
図14は、実施例7(請求項2対応)の、3個のカムプロフィールを備えた容積型油圧供給手段による、6気筒内燃機関の弁駆動機構の構成概念の説明図である。 図14の容積型油圧供給手段7dが、容積型ポンプと、回転継手の替わりに方向制御弁77(d1~d4)と、を備え、前記容積型ポンプは、前記管状のカム71dの内側に、基準プロフィールと3個のカムプロフィール711dを周方向に等間隔に設け、前記方向制御弁77(d1~d4)は、前記ロータの外周面または前記ロータハウジングの内周面に前記油圧中継路に対応する図示しない周方向有端溝を設け、吸気と排気の弁シリンダ411(d1~d6)、412(d1~d6)は前記各周方向有端溝と油圧通路781(d1~d6)、782(d1~d6)にて連通する請求項1に記載の内燃機関1dの弁駆動機構である。  FIG. 14 is an explanatory diagram of a configuration concept of a valve drive mechanism of a six-cylinder internal combustion engine according to a seventh embodiment (corresponding to claim 2) by a positive displacement hydraulic supply means having three cam profiles. 14 includes a positive displacement pump and directional control valves 77 (d1 to d4) instead of rotary joints, and the positive displacement pump is disposed inside the tubular cam 71d. A reference profile and three cam profiles 711d are provided at equal intervals in the circumferential direction, and the direction control valve 77 (d1 to d4) corresponds to the hydraulic relay path on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing. The intake and exhaust valve cylinders 411 (d1 to d6) and 412 (d1 to d6) are connected to the circumferential end grooves and hydraulic passages 781 (d1 to d6) and 782 ( The valve drive mechanism of the internal combustion engine 1d according to claim 1, wherein the valve drive mechanism communicates at d1 to d6). *
図15は、前記実施例7(図14)の、油圧配管を3方の側面に設けた容積型油圧供給手段の、上図は全断面図、およびポンプ部、回転継手部、各方向制御弁部の断面図である。 図15の容積型油圧供給手段7dが、カム71d、ロータ72d、およびベーン73dから成る容積型ポンプと、前記回転継手の替わりに方向制御弁77(d1~d4)と、を備え、前記容積型ポンプは、前記管状のカム71dの内側に、基準プロフィール710dと3個のカムプロフィール711(d1~d3)を周方向に等間隔に設け、前記方向制御弁77(d1~d4)は、前記ロータ72dの外周面に油圧中継路721d~724dに対応する周方向有端溝778d1a~778d4aを設け、前記弁シリンダ411(d1~d6)、412(d1~d6)は前記各周方向有端溝778d1a~778d4aと油圧通路781(d1~d6)、782(d1~d6)にて連通する請求項1に記載の内燃機関の弁駆動機構である。  FIG. 15 shows a positive displacement hydraulic supply means provided with hydraulic piping on three side surfaces in the seventh embodiment (FIG. 14), the upper figure is a full sectional view, a pump part, a rotary joint part, and each direction control valve. It is sectional drawing of a part. 15 includes a positive displacement pump including a cam 71d, a rotor 72d, and a vane 73d, and a directional control valve 77 (d1 to d4) instead of the rotary joint. The pump is provided with a reference profile 710d and three cam profiles 711 (d1 to d3) at equal intervals in the circumferential direction inside the tubular cam 71d, and the direction control valves 77 (d1 to d4) are arranged on the rotor. Circumferentially-end end grooves 778d1a to 778d4a corresponding to the hydraulic relay paths 721d to 724d are provided on the outer peripheral surface of 72d, and the valve cylinders 411 (d1 to d6) and 412 (d1 to d6) are provided with the respective end grooves 778d1a in the circumferential direction. 7. The valve drive mechanism for an internal combustion engine according to claim 1, wherein the valve drive mechanism is in communication with the hydraulic passages 781 (d1 to d6) and 782 (d1 to d6). *
図15の容積型油圧供給手段7dの作用は、中図左のポンプ部断面に示すように4組のベーンポンプで発生する油圧は、前記油圧中継路721d~724dを通って、対応する各方向制御弁77(d1~d4)の周方向有端溝778d1a~778d4aに供給され、中図右の方向制御弁77d3に示すように、前記カムプロフィール711(d1~d3)の位相に対応するロータハウジング702dの同位相の等間隔3側面に油圧通路782(d4、d5、d6)を設け、前記周方向有端溝778d3aがロータ72dの回転により、順次対応する弁シリンダの油圧通路782(d4、d5、d6)に連通して油圧を供給する。 下図左の周方向無端溝768d1は、図示しない油圧回生手段9dに、前記全断面図の周方向無端溝768d2は図示しない油圧補助手段8dの油タンク80dに連通する回転継手76dである。 前記周方向有端溝778d1a~778d4aの残余の周方向に設けた周方向有端溝778d1a~778d4aは、油圧中継路725dを介して前記周方向無端溝768d2に連通し、実施例4(図8)で説明したようにラッシュアジャスタ機能が得られる。 The action of the positive displacement hydraulic supply means 7d in FIG. 15 is that the hydraulic pressure generated by the four sets of vane pumps passes through the hydraulic relay paths 721d to 724d as shown in the cross section of the pump section on the left in the middle figure, and the corresponding direction control. The rotor housing 702d corresponding to the phase of the cam profile 711 (d1 to d3) is supplied to the circumferentially end groove 778d1a to 778d4a of the valve 77 (d1 to d4), and as shown in the direction control valve 77d3 on the right in the middle figure. Hydraulic passages 782 (d4, d5, d6) are provided on the three equally spaced side surfaces of the same phase, and the circumferentially end groove 778d3a is rotated in response to the rotation of the rotor 72d so that the hydraulic passages 782 (d4, d5, Hydraulic pressure is supplied in communication with d6). The circumferential endless groove 768d1 on the left in the lower figure is a rotary joint 76d communicating with a hydraulic regenerative means 9d (not shown), and the circumferential endless groove 768d2 in the full sectional view is communicated with an oil tank 80d of a hydraulic auxiliary means 8d (not shown). The circumferential end grooves 778d1a to 778d4a provided in the remaining circumferential direction of the circumferential end grooves 778d1a to 778d4a communicate with the circumferential endless groove 768d2 via the hydraulic relay path 725d, and the fourth embodiment (FIG. 8). As explained in), the lash adjuster function can be obtained.
図16は、実施例8(請求項3対応)の、アクチェータによる位相制御手段を備えた容積型油圧供給手段による、2気筒内燃機関の弁駆動機構の構成概念の説明図である。 図16は、ロータ72fの回転軸を中心にカム71fを回動させるアクチェータ51と、前記アクチェータ51の制御手段55と、を備えた位相制御手段5を設け、前記内燃機関1fの運転状況により前記アクチェータ51にて前記カム71fを回動し、ガス交換弁41(f1、f2)の開弁タイミングの調整制御を行う請求項1または2に記載の内燃機関1fの弁駆動機構である。  FIG. 16 is an explanatory diagram of a configuration concept of a valve drive mechanism of a two-cylinder internal combustion engine according to a eighth embodiment (corresponding to claim 3) by a positive displacement hydraulic supply means having a phase control means by an actuator. FIG. 16 is provided with a phase control means 5 including an actuator 51 for rotating a cam 71f around a rotation axis of a rotor 72f, and a control means 55 for the actuator 51. The phase control means 5 is provided depending on the operating condition of the internal combustion engine 1f. The valve drive mechanism for an internal combustion engine 1f according to claim 1 or 2, wherein the cam 51f is rotated by an actuator 51 to perform adjustment control of the valve opening timing of the gas exchange valve 41 (f1, f2). *
図16の容積型油圧供給手段7fの作用は、前記カム71f、ロータ72f、およびベーン73fから成る容積型ポンプにおいて、カム71fをアクチェータ51にて回動することにより、弁シリンダ41(f1、f2)に供給する油圧発生タイミングに位相進角または位相遅角を発生してガス交換のタイミングを調整し、ガス交換量および/またはガス交換率を制御する。 内燃機関1fの運転状況により、図示しないECUにより制御される制御手段55にて前記アクチェータ51を作動させることにより、前記制御を行う。 油圧圃場手段8f、油圧回生
手段9fの作用は、前記実施例と重複するので省略する。
The displacement type hydraulic pressure supply means 7f shown in FIG. 16 operates as follows. In the displacement type pump composed of the cam 71f, the rotor 72f, and the vane 73f, the cam cylinder 71f is rotated by the actuator 51, whereby the valve cylinder 41 (f1, f2 A phase advance angle or a phase delay angle is generated in the hydraulic pressure generation timing supplied to) to adjust the gas exchange timing to control the gas exchange amount and / or the gas exchange rate. The control is performed by operating the actuator 51 by the control means 55 controlled by an ECU (not shown) according to the operating condition of the internal combustion engine 1f. Since the operations of the hydraulic field unit 8f and the hydraulic regeneration unit 9f are the same as those in the above embodiment, a description thereof will be omitted.
図17は、実施例9(請求項3対応)の、ロータリシリンダを備えた容積型油圧供給手段の、上図は全断面図、下図はポンプ部の断面図、および周辺油圧回路図である。 図17は、前記ロータ72gの回転軸を中心に前記カム71gを回動させる機械的アクチェータであるロータリシリンダ511と、前記アクチェータの制御手段である制御弁551と、を備えた位相制御手段5gを設け、図示しない内燃機関の運転状況により前記アクチェータであるロータリシリンダ511にて前記カム71gを回動し、図示しないガス交換弁の開弁タイミング制御を行う請求項1または2に記載の内燃機関の弁駆動機構である。 前記ロータリシリンダ511は、全断面図(上図)に示すように、サイドハウジング701g、カムハウジング703、ロータハウジング702gにて形成される空間に、回動自在にカム71gを設け、ポンプ部の断面図(下図左)に示すように、前記カムハウジング703の内側を回動するロータハウジング702gし、両者は相手側の摺動面に略密封で接する複数の突起ブレード(ベーン)を交互に配置し、周方向にできる前記突起ブレード間の空間に、交互に油圧通路58g1と油圧通路58g2を連通して、ロータリシリンダ511を構成する。  FIG. 17 is a full sectional view of a positive displacement hydraulic supply means having a rotary cylinder according to the ninth embodiment (corresponding to claim 3), and a lower view is a sectional view of a pump part and a peripheral hydraulic circuit diagram. FIG. 17 shows a phase control means 5g having a rotary cylinder 511 which is a mechanical actuator for rotating the cam 71g around the rotation axis of the rotor 72g, and a control valve 551 which is a control means for the actuator. 3. The internal combustion engine according to claim 1, wherein the cam 71 g is rotated by a rotary cylinder 511 as the actuator according to an operating state of the internal combustion engine (not shown), and valve opening timing control of a gas exchange valve (not shown) is performed. It is a valve drive mechanism. The rotary cylinder 511 is provided with a cam 71g in a space formed by a side housing 701g, a cam housing 703, and a rotor housing 702g, as shown in a full sectional view (upper figure). As shown in the figure (lower left), the rotor housing 702g rotates inside the cam housing 703, and a plurality of projecting blades (vanes) that are in close contact with the sliding surface on the other side are arranged alternately. The rotary cylinder 511 is configured by alternately communicating the hydraulic passages 58g1 and 58g2 in the space between the protruding blades formed in the circumferential direction. *
図17の容積型油圧供給手段7gの作用は、油圧回生手段9gにて発生する油圧を、前記制御弁551にて制御し、前記油圧通路58g1、58g2を介して前記ロータリシリンダ511に供給してカム位相を変更することにより、弁シリンダの作動タイミングを調整する。 容積型油圧供給手段7gは、前記実施例1(図2)の容積型油圧供給手段7に位相制御手段5gを付加したもので、位相制御以外の作用の説明は省略する。 油圧回生手段9gに設けた制御弁95は、油圧回生を必要としない時の回転負荷を軽減できる。 17 operates by controlling the hydraulic pressure generated by the hydraulic regeneration means 9g by the control valve 551 and supplying it to the rotary cylinder 511 via the hydraulic passages 58g1 and 58g2. The operation timing of the valve cylinder is adjusted by changing the cam phase. The positive displacement hydraulic pressure supply means 7g is obtained by adding the phase control means 5g to the positive displacement pressure hydraulic supply means 7 of the first embodiment (FIG. 2), and description of operations other than the phase control is omitted. The control valve 95 provided in the hydraulic regeneration means 9g can reduce the rotational load when hydraulic regeneration is not required.
図18は、実施例10(請求項4対応)の、2組のベーンポンプの位相をモータで調整して吸気弁を開閉制御する3気筒内燃機関の弁駆動機構の構成概念の説明図である。 図18(請求項3対応)は、ロータ72pの回転軸を中心に前記カム71(p1、p2)を回動させる電気的アクチェータであるサーボモータ515(-1、-2)と、前記アクチェータの制御手段であるコントローラ556と、を備えた位相制御手段5pを設け、内燃機関1pの運転状況により前記アクチェータにて前記カム71(p1、p2)を回動し、前記ガス交換弁45(p1~p3)の開弁タイミングの調整制御を行う請求項1または2に記載の内燃機関の弁駆動機構である。 図18(請求項4対応)は、前記容積型ポンプと、第2の容積型ポンプを前記ロータ72pの軸方向に設け、少なくとも一方の前記容積型ポンプに前記位相制御手段5pを備え、各々の前記容積型ポンプの略同位相のベーンで発生する油圧を前記油圧中継路721p、722p、723pにて連通し、各々の前記油圧中継路に1個の空油変換器729(-1、-2、-3)を設け、前記内燃機関1pの運転状況により前記位相制御手段5pにて両方の前記カム71(p1、p2)を回動し、前記ガス交換弁45(p1~p3)の開弁タイミングおよび開度の調整制御を行う請求項3に記載の内燃機関の弁駆動機構である。  FIG. 18 is an explanatory diagram of a configuration concept of a valve drive mechanism of a three-cylinder internal combustion engine according to the tenth embodiment (corresponding to claim 4) that controls the opening and closing of the intake valve by adjusting the phases of the two vane pumps with a motor. FIG. 18 (corresponding to claim 3) shows a servo motor 515 (−1, −2) which is an electric actuator for rotating the cam 71 (p1, p2) around the rotation axis of the rotor 72p, A phase control means 5p including a controller 556 as a control means, and the cam 71 (p1, p2) is rotated by the actuator according to the operating condition of the internal combustion engine 1p, so that the gas exchange valve 45 (p1˜ The valve drive mechanism for an internal combustion engine according to claim 1 or 2, wherein the valve opening timing adjustment control of p3) is performed. 18 (corresponding to claim 4), the positive displacement pump and the second positive displacement pump are provided in the axial direction of the rotor 72p, and at least one positive displacement pump is provided with the phase control means 5p, The hydraulic pressure generated by the vanes of substantially the same phase of the positive displacement pump is communicated by the hydraulic relay paths 721p, 722p, and 723p, and one air-oil converter 729 (−1, −2) is connected to each of the hydraulic relay paths. -3), and both the cams 71 (p1, p2) are rotated by the phase control means 5p according to the operating condition of the internal combustion engine 1p, and the gas exchange valves 45 (p1-p3) are opened. 4. The valve drive mechanism for an internal combustion engine according to claim 3, wherein adjustment control of timing and opening is performed. *
図18の容積型油圧供給手段7pの作用は、前記位相制御手段5pのアクチェータであるサーボモータ515(-1、-2)によりウォーム516(-1、-2)を回転し、カム71(p1、p2)の外周に設けたウォーム歯車517(-1、-2)を回動することにより前記カム71(p1、p2)を回動して油圧発生の位相を制御する。 アクチェータである前記サーボモータは、ステッピングモータ等でもよい。 前記略同位相の2台の容積型ポンプの発生油圧の油圧合成(合成方法は図19にて説明する)により弁シリンダ411(p1~p3)の作動を調整制御して前記ガス交換弁45(p1~p3)の開弁タイミングおよび開度の調整制御を行う。 油圧合成により負圧が生じるとキャビテーションが発生するので、両方の油圧発生量、および前記空油変換器729(-1、-2、-3)の容量を同容量にする。 前記負圧の防止は、次の図19にて説明する。  18 operates by rotating the worm 516 (−1, −2) by the servo motor 515 (−1, −2) which is an actuator of the phase control unit 5p, and the cam 71 (p1). , P2), the cam 71 (p1, p2) is rotated by rotating the worm gear 517 (-1, -2) provided on the outer periphery of the outer periphery, and the phase of hydraulic pressure generation is controlled. The servo motor that is an actuator may be a stepping motor or the like. The operation of the valve cylinders 411 (p1 to p3) is adjusted and controlled by the hydraulic synthesis of the hydraulic pressures generated by the two positive displacement pumps in substantially the same phase (the synthesis method will be described with reference to FIG. 19). The valve opening timing and the opening degree adjustment control of p1 to p3) are performed. Since cavitation occurs when negative pressure is generated by hydraulic pressure synthesis, both the hydraulic pressure generation amount and the capacity of the air-oil converter 729 (−1, −2, −3) are set to the same capacity. The prevention of the negative pressure will be described with reference to FIG. *
図19は、前記実施例10(図18)の、上図は、カム、第2のカム、および弁シリンダの油圧特性図で、下図は、各位相での容積型ポンプの模式図による作動説明図である。 図19の上図(3図)は、横軸がクランク角、縦軸が油圧発生量(弁リフト量)の特性図で、太線部が2台の容積型ポンプのカム71p1、71p2の油圧発生量と両者の合成による前記容積型油圧供給手段7pの油圧発生量で、前記太線内の塗潰し部分が、油圧正圧部である正味油圧であり、前記太線内の残余の部分は、前記空油変換器729(-1、-2、-3)の油圧吸収作用による正味油圧に寄与しない油圧量である。 前記位相制御手段5pにより前記カム71(p1、p2)の位相の調整により油圧発生タイミングを調整し、図19、図20で説明する作用により、ガス交換弁の開弁タイミングおよび/または開度の調整制御を行う。  FIG. 19 is a hydraulic characteristic diagram of the cam, the second cam, and the valve cylinder of the embodiment 10 (FIG. 18), and the lower figure is an explanation of the operation according to the schematic diagram of the positive displacement pump in each phase. FIG. 19 is a characteristic diagram of the crank angle on the horizontal axis and the hydraulic pressure generation amount (valve lift amount) on the vertical axis, and the thick line portion indicates the hydraulic pressure generation of the cams 71p1 and 71p2 of the two positive displacement pumps. The amount of hydraulic pressure generated by the positive displacement hydraulic supply means 7p by the combination of the amount and the solid portion in the thick line is the net hydraulic pressure that is the hydraulic positive pressure portion, and the remaining portion in the thick line is the empty hydraulic pressure. This is the amount of oil pressure that does not contribute to the net oil pressure due to the oil pressure absorbing action of the oil converter 729 (−1, −2, −3). The hydraulic pressure generation timing is adjusted by adjusting the phase of the cam 71 (p1, p2) by the phase control means 5p, and the opening timing and / or the opening degree of the gas exchange valve are adjusted by the action described in FIGS. Perform adjustment control. *
図19の、容積型油圧供給手段7pの作用を、セル738(pa1、pa2)の作動説明図(p1~p5)に従って以下に説明する。(p1)では、前記カム71(p1、p2)により油圧は発生せず、図示しないラッシュアジャスタ機能により油圧が大気圧状態であるので、前記空油変換器729-1はスプリングにより油量が最少となる。(p2)では、前記カム71p1により発生した油圧は、前記空油変換器729-1のスプリングを付勢しながら流入し、油圧発生量と前記流入量が一致して前記空油変換器729-1の油量は最大値となるので、油圧の正圧はまだ発生しない。(p3)を含む前記(p2)から(p3)の間では、前記空油変換器729-1の油量は最大値の状態で増大しないので、最大値前記カム71p2の発生油圧量はすべて正圧油圧となり、(p3)で正圧油圧の最大となる。(p4)を含む前記(p3)から(p4)の間では、前記空油変換器729-1の油量は最大値の状態で、前記カム71p2の油圧量は変化しないので、前記カム71p2の油圧量の減少により正圧油圧量は減少し、(p4)にて正圧油圧は消滅する。(p5)を含む前記(p4)から(p5)の間では、前記(p4)にて正圧が消滅し、更に前記カム71p2の油圧量が減少して負圧になる代わりに、前記空油変換器729-1の湯量が減少し最小値となる。前記太線の曲線部は、カムプロフィール711(p1、p2)により設定された前述の衝撃を緩和する移動曲線で、同様に2点鎖線で示すように隣接するセル738pb、738pcも同様の移動曲線となる。  The operation of the positive displacement hydraulic pressure supply means 7p in FIG. 19 will be described below according to the operation explanatory diagrams (p1 to p5) of the cells 738 (pa1, pa2). At (p1), no hydraulic pressure is generated by the cam 71 (p1, p2), and the hydraulic pressure is at atmospheric pressure by a lash adjuster function (not shown), so that the air-oil converter 729-1 has a minimum amount of oil by a spring. It becomes. In (p2), the hydraulic pressure generated by the cam 71p1 flows in while urging the spring of the air-oil converter 729-1, and the amount of generated oil and the inflow amount coincide with each other so that the air-oil converter 729- Since the oil amount of 1 is the maximum value, no positive hydraulic pressure is generated yet. Between (p2) and (p3) including (p3), the oil amount of the air-oil converter 729-1 does not increase at the maximum value, so that the maximum hydraulic pressure generated by the cam 71p2 is all positive. It becomes the pressure oil pressure and becomes the maximum of the positive pressure oil pressure at (p3). Between (p3) and (p4) including (p4), the oil amount of the air-oil converter 729-1 is in the maximum value state, and the hydraulic pressure amount of the cam 71p2 does not change. The positive pressure hydraulic pressure decreases as the hydraulic pressure decreases, and the positive pressure hydraulic pressure disappears at (p4). Between (p4) and (p5) including (p5), the positive pressure disappears at (p4), and the hydraulic pressure of the cam 71p2 is reduced to become a negative pressure. The amount of hot water in the converter 729-1 is reduced to a minimum value. The thick curved lines are the movement curves that mitigate the aforementioned impact set by the cam profiles 711 (p1, p2). Similarly, as indicated by the two-dot chain line, the adjacent cells 738pb, 738pc are also similar movement curves. Become. *
図20は、前記実施例10(図18、19)の内燃機関の弁駆動機構の、各カム位相制御と各制御パターン(1)~(3)の弁リフト特性図による制御動作説明図である。図20は、横軸がクランク角、縦軸が弁のリフト量の特性図で、前記位相制御手段5pにより前記カム71(p1、p2)の位相の調整により油圧発生タイミングを調整し、前記容積型油圧供給手段7pの油圧の発生タイミングと発生量を制御して弁シリンダを作動し、ガス交換弁の開弁タイミングおよび/または開度の調整制御を行う。図20(上段)に示すように、開弁制御は前記カム71p2、閉弁制御は前記カム71p1の位相調整により行い、その調整の結果それぞれのセル738pa2、セル738pa1の油圧が変化する。図20(下段)に示すように、それぞれの前記セル738pa2、738pa1の油圧成分は、71p2の開弁成分と71p1の閉弁成分として作用し、各油圧成分の合成結果により、ガス交換弁45p1の開閉制御ができる。合成結果より、前記位相制御手段5pにより位相を変化させても、移動曲線が保持されるので、加減速緩和効果により、静粛で安定した高速回転にも対応できる弁駆動機構ができる。上記制御により、制御パターン(1)の場合は、前記カム71(p1、p2)の位相を同じ方向に調整し、ガス交換弁45p1の開閉時期の制御ができ、制御パターン(2)の場合は、前記カム71(p1、p2)の位相を逆方向に調整し、ガス交換弁45p1の開閉量の制御ができ、制御パターン(3)の場合は、前記カム71p1の位相のみを調整し、ガス交換弁45p1の閉弁時期の制御によりアトキンソン サイクル制御ができる。なお、制御パターン(3)のアトキンソン サイクル制御のみを目的とする場合は、カム71p2の位相調整は不要であるので、電気的アクチェータであるサーボモータ515-2を省略できる。 FIG. 20 is an explanatory diagram of the control operation of the valve drive mechanism of the internal combustion engine of the tenth embodiment (FIGS. 18 and 19) based on the cam phase control and the valve lift characteristic diagrams of the control patterns (1) to (3). . FIG. 20 is a characteristic diagram of the crank angle on the horizontal axis and the lift amount on the vertical axis. The hydraulic pressure generation timing is adjusted by adjusting the phase of the cam 71 (p1, p2) by the phase control means 5p, and the volume The valve cylinder is operated by controlling the generation timing and generation amount of the hydraulic pressure of the mold hydraulic pressure supply means 7p, and adjustment control of the valve opening timing and / or opening degree of the gas exchange valve is performed. As shown in FIG. 20 (upper stage), the valve opening control is performed by adjusting the phase of the cam 71p2, and the valve closing control is performed by adjusting the phase of the cam 71p1, and as a result of the adjustment, the hydraulic pressures of the respective cells 738pa2 and 738pa1 change. As shown in FIG. 20 (lower stage), the hydraulic components of the respective cells 738pa2 and 738pa1 act as a valve opening component of 71p2 and a valve closing component of 71p1, and the combined result of the hydraulic components determines the gas exchange valve 45p1. Open / close control is possible. As a result of the synthesis, even if the phase is changed by the phase control means 5p, the movement curve is maintained, so that a valve drive mechanism that can cope with quiet and stable high-speed rotation can be achieved by the acceleration / deceleration mitigation effect. With the above control, in the case of the control pattern (1), the phase of the cam 71 (p1, p2) can be adjusted in the same direction to control the opening / closing timing of the gas exchange valve 45p1, and in the case of the control pattern (2) The phase of the cam 71 (p1, p2) can be adjusted in the reverse direction to control the opening / closing amount of the gas exchange valve 45p1, and in the case of the control pattern (3), only the phase of the cam 71p1 is adjusted to Atkinson soot cycle control can be performed by controlling the closing timing of the exchange valve 45p1. Note that when only the Atkinson cycle control of the control pattern (3) is intended, the phase adjustment of the cam 71p2 is unnecessary, and thus the servo motor 515-2 that is an electric actuator can be omitted.
図21は、実施例11(請求項4対応)の、位相制御手段と2個のカムプロフィールを備えた容積型油圧供給手段による、4気筒内燃機関の弁駆動機構の構成図である。 図21は、容積型ポンプと、第2の容積型ポンプを前記ロータ72tの軸方向に設け、両方の前記容積型ポンプに前記位相制御手段5tを備え、各々の前記容積型ポンプの略同位相のベーン73(t1、t2)で発生する油圧を前記油圧中継路721t、722tにて連通し、各々の前記油圧中継路721t、722tに1個の空油変換器729(t1、t2)を設け、内燃機関1tの運転状況により前記位相制御手段5tにて両方の前記カム71を回動し、前記ガス交換弁451(t1~t4)の、開弁タイミングおよび開度の調整制御を行う請求項3に記載の内燃機関1tの弁駆動機構である。  FIG. 21 is a configuration diagram of a valve drive mechanism of a four-cylinder internal combustion engine according to the eleventh embodiment (corresponding to claim 4) by a positive displacement hydraulic supply means having a phase control means and two cam profiles. FIG. 21 shows that a positive displacement pump and a second positive displacement pump are provided in the axial direction of the rotor 72t, both positive displacement pumps are provided with the phase control means 5t, and the positive displacement pumps have substantially the same phase. The hydraulic pressure generated in the vane 73 (t1, t2) is communicated through the hydraulic relay paths 721t, 722t, and one air-oil converter 729 (t1, t2) is provided in each of the hydraulic relay paths 721t, 722t. Further, both the cams 71 are rotated by the phase control means 5t according to the operation state of the internal combustion engine 1t, and the valve opening timing and the opening degree adjustment control of the gas exchange valve 451 (t1 to t4) are performed. 3 is a valve drive mechanism of the internal combustion engine 1t. *
図21の容積型油圧供給手段7tの作用は、油圧回生手段9tで発生する油圧は各制御弁551(t1、t2)を介して各アクチェータ51(t1、t2)に供給される位相制御手段5tにより、カム71(t1、t2)の位相を調整する。 前記2個のカムプロフィール711(t1、t2)を備えた2台の容積型ポンプで発生する各々の油圧は、油圧中継路721t、722tに設けた方向制御弁77(t1、t2)により、ロータ72tの回転位相に対応する弁シリンダ411(t1~t4)に供給されるので、前記ガス交換弁451(t1~t4)の開弁タイミングおよび開度の調整制御ができる。 前記2個のカムプロフィールと前記方向制御弁77(t1、t2)の作用は前記実施例4~7、前記空油圧変換器729(t1、t2)の作用は前記実施例10と重複するので、説明を省略する。  The action of the positive displacement hydraulic supply means 7t in FIG. 21 is that the hydraulic pressure generated by the hydraulic regeneration means 9t is supplied to the actuators 51 (t1, t2) via the control valves 551 (t1, t2). Thus, the phase of the cam 71 (t1, t2) is adjusted. The respective hydraulic pressures generated by the two positive displacement pumps having the two cam profiles 711 (t1, t2) are rotated by the direction control valves 77 (t1, t2) provided in the hydraulic relay paths 721t, 722t. Since it is supplied to the valve cylinder 411 (t1 to t4) corresponding to the rotational phase of 72t, the valve opening timing and the opening degree of the gas exchange valve 451 (t1 to t4) can be adjusted. The operations of the two cam profiles and the directional control valve 77 (t1, t2) are the same as those of the fourth to seventh embodiments, and the action of the pneumatic / hydraulic converter 729 (t1, t2) is the same as the tenth embodiment. Description is omitted. *
図22は、前記実施例11(図21)の、2個のロータリシリンダによる位相制御手段を備えた容積型油圧供給手段の全断面図、各ポンプ部の断面図、と周辺油圧回路図である。図22の容積型油圧供給手段7tは、下図左の前記容積型ポンプと同じ構成の下図右の第2の容積型ポンプを前記ロータ72tの軸方向に設け、両方の前記容積型ポンプに前記位相制御手段5tである制御弁551(t1、t2)と、カム71(t1、t2)とカムハウジング703(t1、t2)から成るロータリシリンダ511(t1、t2)と、を備え、前記油圧回生手段9tで発生する油圧にて、前記ガス交換弁451(t1~t4)の開弁タイミングおよび開度の調整制御を行う。 前記ロータリシリンダ511(t1、t2)の構成、作用は前記実施例9の説明と重複するので、説明を省略する。 複数のカムプロフィール711により方向制御弁77の周方向有端溝778が干渉する場合は、前記実施例9のように、方向制御弁77をロータ72の軸方向に分割することにより前記干渉を防止できる。 FIG. 22 is a full sectional view of a positive displacement hydraulic pressure supply means equipped with phase control means by two rotary cylinders in the eleventh embodiment (FIG. 21), a sectional view of each pump section, and a peripheral hydraulic circuit diagram. . The positive displacement hydraulic supply means 7t of FIG. 22 is provided with a second positive displacement pump on the lower right side in the axial direction of the rotor 72t in the same configuration as the positive displacement pump on the left lower portion, and the phase is applied to both positive displacement pumps. A control valve 551 (t1, t2) which is a control means 5t, and a rotary cylinder 511 (t1, t2) comprising a cam 71 (t1, t2) and a cam housing 703 (t1, t2), and the hydraulic regeneration means The valve opening timing and opening degree of the gas exchange valve 451 (t1 to t4) are adjusted and controlled by the hydraulic pressure generated at 9t. Since the configuration and operation of the rotary cylinder 511 (t1, t2) are the same as those in the ninth embodiment, description thereof will be omitted. When the circumferential end groove 778 of the direction control valve 77 interferes with the plurality of cam profiles 711, the interference is prevented by dividing the direction control valve 77 in the axial direction of the rotor 72 as in the ninth embodiment. it can.
図23は、実施例12(請求項4対応)の2組のプランジャーポンプを備えた容積型油圧供給手段による移動体の内燃機関の弁駆動機構の制御システムの構成説明図である。 図23は、容積型ポンプである3個のプランジャから成る前記プランジャーポンプと、第2の容積型ポンプをロータ72kの軸方向に設け、両方の前記容積型ポンプに位相制御手段5kを備え、各々の前記容積型ポンプの略同位相のプランジャで発生する油圧は図示しない油圧中継路にて連通し、内燃機関1kの運転状況により前記位相制御手段5kにて両方のカム71(K1、k2)を回動し、ガス交換弁の開弁タイミングおよび開度の調整制御を行
う内燃機関1kの弁駆動機構の制御システムの構成説明図である。内燃機関1kの弁駆動機構等の電子制御装置であるECU12は、CPU(中央演算処理装置)、RAMとROMからなる記憶素子、入力ポート、出力ポート、およびDC電源で構成され、本図では前記入出力ポートの接続は、中継機器(アンプ等)は図示省略している。 前記実施例で説明したように、ロータ72kの回転により自動的に機械的制御である油圧シーケンス制御が行われ、図23の電気的な制御システムにて、前記位相制御手段5kを下記のように制御する。 
FIG. 23 is a configuration explanatory diagram of a control system for a valve drive mechanism of an internal combustion engine of a moving body by positive displacement hydraulic supply means having two plunger pumps of Example 12 (corresponding to claim 4). FIG. 23 shows the plunger pump composed of three plungers which are positive displacement pumps and a second positive displacement pump provided in the axial direction of the rotor 72k, and both positive displacement pumps are provided with phase control means 5k, The hydraulic pressure generated by the plungers of substantially the same phase of each of the positive displacement pumps is communicated through a hydraulic relay path (not shown), and both cams 71 (K1, k2) are controlled by the phase control means 5k depending on the operating condition of the internal combustion engine 1k. Is a configuration explanatory diagram of the control system of the valve drive mechanism of the internal combustion engine 1k that performs control to adjust the opening timing and opening of the gas exchange valve. The ECU 12, which is an electronic control device such as a valve drive mechanism of the internal combustion engine 1k, is composed of a CPU (Central Processing Unit), a storage element composed of a RAM and a ROM, an input port, an output port, and a DC power source. The connection of the entry output port is not shown for relay devices (such as amplifiers). As described in the above embodiment, hydraulic sequence control, which is mechanical control, is automatically performed by the rotation of the rotor 72k, and the phase control means 5k is set as follows in the electrical control system of FIG. Control.
前記制御システムの作用は、内燃機関1kの弁駆動機構である2組の前記プランジャーポンプを備えた容積型油圧供給手段7kから供給される油圧により、図示しない弁シリンダを作動してガス交換弁を開弁する。 アクセル開度センサ17等の入力情報を基に、前記ECU12の出力で前記位相制御手段5kの各制御弁55(k1、k2)を制御して各アクチェータ51(k1、k2)を作動し、前記カム71(k1、k2)の位相を調整し、前記弁シリンダで開弁する図示しないガス交換弁の開弁タイミングおよび開度の調整制御を行い、運転状況に適応した内燃機関1kの運転を行う。  The operation of the control system is to operate a valve cylinder (not shown) by a hydraulic pressure supplied from positive displacement hydraulic supply means 7k having two sets of plunger pumps that are valve drive mechanisms of the internal combustion engine 1k to operate a gas exchange valve. Open the valve. Based on the input information from the accelerator opening sensor 17, etc., the control valves 55 (k1, k2) of the phase control means 5k are controlled by the output of the ECU 12 to operate the actuators 51 (k1, k2), The phase of the cam 71 (k1, k2) is adjusted, and the valve opening timing and opening degree adjustment control of the gas exchange valve (not shown) opened by the valve cylinder is performed, and the internal combustion engine 1k adapted to the operating situation is operated. . *
図24は、前記実施例12(図23)の内燃機関の弁駆動機構の制御フローチャートと、各制御サブルーチンの弁リフト特性図による開弁制御説明図である。 内燃機関1kの弁駆動機構は、図23に示した入出力情報等により制御され、特に加速あるいは減速等の制御判断は、アクセルペダルあるいはブレーキペダル操作によるアクセル開度センサ17、ブレーキ開度センサ18からの入力情報や図示しない車速センサ等により、運転者の意思や内燃機関1kの運転状況を分析、判断、予測し、各運転サブルーチンを図24の制御フローチャートに従い実行する。  FIG. 24 is a valve opening control explanatory diagram based on a control flowchart of the valve drive mechanism of the internal combustion engine of the twelfth embodiment (FIG. 23) and valve lift characteristics of each control subroutine. The valve drive mechanism of the internal combustion engine 1k is controlled based on the input / output information shown in FIG. 23. In particular, the control determination such as acceleration or deceleration is performed by an accelerator opening sensor 17 or a brake opening sensor 18 by operating an accelerator pedal or a brake pedal. The driver's intention and the driving situation of the internal combustion engine 1k are analyzed, judged and predicted by input information from the vehicle, a vehicle speed sensor (not shown), etc., and each driving subroutine is executed according to the control flowchart of FIG. *
まず、ECU12は、運転指令がONであるかを判断する(ステップS601)。ここで、運転指令がONでないと判断した場合は、制御停止サブルーチン(ステップS612)を実行した後、RETURNにて、本処理ルーチンのSTARTに戻る。一方、運転指令がONであると判断した場合は、次に、暖機運転中であるかを判断する(ステップS602)。 ここで、暖機運転中でないと判断した場合は、通常設定サブルーチン(ステップS604)を実行した後、スロットルMAXであるかを判断する(ステップS605)。一方、暖機運転中と判断した場合は、暖機設定サブルーチン(ステップS603)を実行し、前記スロットルMAXであるかを判断する(ステップS605)。 具体的には、暖機設定サブルーチンでは、内燃機関1kの燃焼室の温度、潤滑油の供給状況等に対応し、特性図A(右図)に示すように燃焼性確保等の調整制御を行う。 ここで、スロットルMAXであると判断した場合は、全負荷運転サブルーチン(ステップS606)を実行し、前記ステップS601に戻る。 具体的には、全負荷運転サブルーチンでは、負荷、車速等の運転状況、内燃機関1kの温度上昇等により、特性図A(右図)に示すようにオーバーラップ等による出力増大のため吸気の充填量等の調整制御を行う。 一方、スロットルMAXでないと判断した場合は、スロットルONであるかを判断する(ステップS607)。 ここで、スロットルONであると判断した場合は、部分負荷運転サブルーチン(ステップS608)を実行し、前記ステップS601に戻る。 具体的には、部分負荷運転サブルーチンでは、負荷、車速等の運転状況、内燃機関1kの温度上昇等により、特性図A(右図)に示すようにアトキンソンサイクル制御による出力効率向上のため吸気の充填効率等の調整制御を行う。 一方、スロットルONでないと判断した場合は、ブレーキペダルONであるかを判断する(ステップS609)。 ここで、ブレーキペダルONであると判断した場合は、エンジンブレーキ制御サブルーチン(ステップS610)を実行し、前記ステップS601に戻る。具体的には、エンジンブレーキ制御サブルーチンでは、負荷、車速等の運転状況等により、特性図A(右図)に示すように燃料供給を停止し、吸気のポンピングロスの調整等のため吸気弁の調整制御を行う。 一方、ブレーキペダルONでないと判断した場合は、アイドリング制御サブルーチン(ステップS611)を実行し、ステップ601に戻る。 本制御フローチャートは、内燃機関1kの運転中は繰り返し実行される。  First, the ECU 12 determines whether the operation command is ON (step S601). If it is determined that the operation command is not ON, a control stop subroutine (step S612) is executed, and the process returns to START of this processing routine at RETURN. On the other hand, if it is determined that the operation command is ON, it is next determined whether the warm-up operation is being performed (step S602). If it is determined that the engine is not warming up, the normal setting subroutine (step S604) is executed, and then it is determined whether the throttle MAX is set (step S605). On the other hand, when it is determined that the warm-up operation is being performed, a warm-up setting subroutine (step S603) is executed to determine whether the throttle MAX is set (step S605). Specifically, in the warm-up setting subroutine, adjustment control such as ensuring combustibility is performed as shown in the characteristic diagram A (right diagram) in response to the temperature of the combustion chamber of the internal combustion engine 1k, the supply status of the lubricating oil, and the like. . Here, if it is determined that the throttle is at the maximum, the full load operation subroutine (step S606) is executed, and the process returns to step S601. Specifically, in the full-load operation subroutine, due to an increase in output due to overlap or the like, as shown in the characteristic diagram A (right diagram), due to operation conditions such as load and vehicle speed, temperature rise of the internal combustion engine 1k, etc., charging of intake air Adjustment control of quantity etc. is performed. On the other hand, when it is determined that the throttle is not the throttle MAX, it is determined whether the throttle is ON (step S607). Here, if it is determined that the throttle is ON, a partial load operation subroutine (step S608) is executed, and the process returns to step S601. Specifically, in the partial load operation subroutine, the intake air flow rate is improved in order to improve the output efficiency by the Atkinson cycle control as shown in the characteristic diagram A (right diagram) due to the operation condition such as the load, the vehicle speed, the temperature rise of the internal combustion engine 1k, and the like. Adjustment control such as filling efficiency is performed. On the other hand, if it is determined that the throttle is not ON, it is determined whether the brake pedal is ON (step S609). Here, if it is determined that the brake pedal is ON, an engine brake control subroutine (step S610) is executed, and the process returns to step S601. Specifically, in the engine brake control subroutine, the fuel supply is stopped as shown in the characteristic diagram A (right diagram) depending on the operating conditions such as the load and the vehicle speed, and the intake valve is adjusted to adjust the pumping loss of the intake air. Perform adjustment control. On the other hand, if it is determined that the brake pedal is not ON, an idling control subroutine (step S611) is executed, and the process returns to step 601. This control flowchart is repeatedly executed during operation of the internal combustion engine 1k. *
前記実施例1~12は、本願発明の一例を説明したもので、各実施例の容積型油圧ポンプは、ベーンポンプをプランジャーポンプに、あるいはその逆に置き換えられる。 吸気弁をベーンポンプ、排気弁を大きなベーンポンプまたは高圧に有利なプランジャーポンプとする混成対応ができ、従来のカム方式との併用もできる。 本願発明の位相制御手段により、吸気弁を開弁タイミングと開度の調整、排気弁を開度の調整のように選択的に弁駆動の制御ができる。 前記実施例1~12は、本願発明の一例を示すもので本願発明を制約するものではなく、当業者により変更および改良ができる。 Examples 1 to 12 described above are examples of the present invention. In the positive displacement hydraulic pump of each example, the vane pump is replaced with a plunger pump or vice versa. ∙ It can be combined with intake valves as vane pumps and exhaust valves as large vane pumps or plunger pumps that are advantageous for high pressure, and can be used in combination with conventional cam systems. The valve control of the intake valve can be selectively controlled by adjusting the opening timing and opening degree of the intake valve and the opening degree of the exhaust valve by the phase control means of the present invention. Examples 1 to 12 are examples of the present invention and do not limit the present invention, and can be changed and improved by those skilled in the art.
本願発明の内燃機関の弁駆動機構は油圧を利用するので、潤滑、ラッシュアジャスタ機能が容易に対応でき、カムを共用するので構成部品が少ない簡素な構造であり、内燃機関を小型化、軽量化できるので、自動車、船舶等の移動体に搭載する内燃機関に適する。 Since the valve drive mechanism of the internal combustion engine of the present invention uses hydraulic pressure, it can easily cope with lubrication and lash adjuster functions, and since it shares a cam, it has a simple structure with few components, making the internal combustion engine smaller and lighter Therefore, it is suitable for an internal combustion engine mounted on a moving body such as an automobile or a ship.
1 内燃機関4 出力手段5 位相制御手段6 回転伝動手段7 容積型油圧供給手段8 油圧補助手段9 油圧回生手段12 ECU(電子制御装置)15 カム角センサ16 クランク角センサ17 アクセル開度センサ18 ブレーキ開度センサ20 吸気21 吸気通路30 排気31 排気通路41 弁シリンダ42 弁ピストン43 スプリング45 ガス交換弁46 シリンダ47 ピストン48 コンロッド49 クランク軸51 アクチェータ54 逆止弁55 制御手段58 油圧通路(吐出)59 油圧通路(戻り)61 従動車62 駆動車63 伝動媒体70 ハウジング71 カム72 ロータ73 ベーン74 プランジャ76 回転継手77 方向制御弁(回転スライド式)78 油圧通路(弁駆動)79 油圧通路80 油タンク81 絞り弁82、83 逆止弁88 油圧通路92、93 逆止弁94 リリーフ弁95 制御弁96 方向制御弁98 油圧通路(吐出)99 油圧通路(戻り)411 弁シリンダ(吸気)412 弁シリンダ(排気)451 ガス交換弁(吸気)452 ガス交換弁(排気)511 ロータリシリンダ515 サーボモータ516 ウォーム517 ウォーム歯車551 制御弁556 コントローラ701 サイドハウジング702 ロータハウジング703 カムハウジング704 中間ハウジング710 基準プロフィール711 カムプロフィール715 カムシフト角センサ721 油圧中継路(第1油圧)722 油圧中継路(第2油圧)723 油圧中継路(第3油圧)724 油圧中継路(第4油圧)725 油圧中継路(大気圧)726 油圧中継路729 空油変換器738 セル768 周方向無端溝778 周方向有端溝781 油圧通路(吸気弁)782 油圧通路(排気弁) 1 internal combustion engine 4 output means 5 phase control means 6 rotation transmission means 7 positive displacement hydraulic supply means 8 hydraulic auxiliary means 9 hydraulic regeneration means 12 ECU (electronic control unit) 15 cam angle sensor 16 crank angle sensor 17 accelerator opening sensor 18 brake Opening sensor 20 Intake 21 Intake passage 30 Exhaust 31 Exhaust passage 41 Valve cylinder 42 Valve piston 43 Spring 45 Gas exchange valve 46 Cylinder 47 Piston 48 Connecting rod 49 Crankshaft 51 Actuator 54 Check valve 55 Control means 58 Hydraulic passage (discharge) 59 Hydraulic passage (return) 61, driven wheel 62, driving wheel 63, transmission medium 70, housing 71, cam 72, rotor 73, vane 74, plunger 76, rotary joint 77, directional control valve (rotating slide type) 78, hydraulic passage (valve drive) 79 Hydraulic passage 80 Oil tank 81 Throttle valves 82 and 83 Check valve 88 Hydraulic passages 92 and 93 Check valve 94 Relief valve 95 Control valve 96 Directional control valve 98 Hydraulic passage (discharge) 99 Hydraulic passage (return) 411 Valve cylinder (intake) ) 412 valve cylinder (exhaust) 451 gas exchange valve (intake) 452 gas exchange valve (exhaust) 511 rotary cylinder 515 servo motor 516 worm 517 worm gear 551 control valve 556 controller 701 side housing 702 rotor housing 703 cam housing 704 intermediate housing 710 Reference profile 711, cam profile 715, cam shift angle sensor 721, hydraulic relay path (first hydraulic pressure) 722, hydraulic relay path (second hydraulic pressure) 723, hydraulic relay path (third hydraulic pressure) 724, hydraulic relay path Fourth hydraulic) 725 Hydraulic relay path (atmospheric pressure) 726 Hydraulic relay path 729-hydraulic converter 738 cell 768 circumferential Mutanmizo 778 circumferential Yutanmizo 781 hydraulic passage (intake valves) 782 oil pressure passage (exhaust valve)

Claims (4)

  1. 4サイクル内燃機関にて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダを周期的に作動させ、前記弁シリンダが1本または複数のガス交換弁を開閉作動する往復動機関において、出力手段、容積型油圧供給手段、および回転伝動手段から成る内燃機関の弁駆動機構であって、前記出力手段は、前記弁シリンダと、クランク軸と、前記クランク軸に連動する少なくとも一つのピストンと、シリンダと、を備え、前記回転伝動手段は、前記クランク軸に設けた駆動車と、有効径が前記駆動車の2倍の前記容積型ポンプのロータに設けた従動車と、を備え、前記容積型油圧供給手段は、前記容積型ポンプと、回転継手と、を備え、前記容積型ポンプは、管状のカムの内側に、基準プロフィールと1個のカムプロフィールを設け、前記カムの内周面を摺動する複数のベーンまたはプランジャを前記ロータに設け、前記ロータは、前記複数のベーンまたはプランジャで発生する各油圧を移送する油圧中継路を備え、前記回転継手は、前記ロータの外周面またはロータハウジングの内周面に前記各油圧中継路に対応する周方向無端溝を設け、前記各周方向無端溝は前記弁シリンダと油圧通路にて連通することを特徴とする内燃機関の弁駆動機構。 A reciprocating motion comprising a positive displacement pump driven by a four-cycle internal combustion engine, wherein a valve cylinder is periodically operated by a hydraulic pressure generated by the positive displacement pump, and the valve cylinder opens and closes one or more gas exchange valves. In the engine, a valve drive mechanism for an internal combustion engine comprising output means, positive displacement hydraulic supply means, and rotation transmission means, wherein the output means includes at least one of the valve cylinder, the crankshaft, and the crankshaft. Two pistons and a cylinder, and the rotation transmission means includes: a driving wheel provided on the crankshaft; and a driven wheel provided on a rotor of the positive displacement pump whose effective diameter is twice that of the driving wheel. The positive displacement hydraulic supply means includes the positive displacement pump and a rotary joint. The positive displacement pump has a reference profile and one cam profile inside a tubular cam. A plurality of vanes or plungers that slide on the inner peripheral surface of the cam are provided in the rotor, and the rotor includes a hydraulic relay path that transfers each oil pressure generated by the plurality of vanes or plungers, The rotary joint is provided with circumferential endless grooves corresponding to the hydraulic relay passages on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing, and the circumferential endless grooves communicate with the valve cylinder through a hydraulic passage. A valve drive mechanism for an internal combustion engine.
  2. 前記容積型油圧供給手段が、前記容積型ポンプと、前記回転継手の替わりに方向制御弁と、を備え、前記容積型ポンプは、前記管状のカムの内側に、基準プロフィールと少なくとも2個のカムプロフィールを周方向に等間隔に設け、前記方向制御弁は、前記ロータの外周面または前記ロータハウジングの内周面に前記各油圧中継路に対応する周方向有端溝を設け、前記弁シリンダは前記各周方向有端溝と油圧通路にて連通することを特徴とする請求項1に記載の内燃機関の弁駆動機構。 The positive displacement hydraulic supply means includes the positive displacement pump and a directional control valve instead of the rotary joint. The positive displacement pump has a reference profile and at least two cams inside the tubular cam. Profiles are provided at equal intervals in the circumferential direction, and the directional control valve is provided with circumferential end grooves corresponding to the respective hydraulic relay passages on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing. 2. The valve drive mechanism for an internal combustion engine according to claim 1, wherein the valve is connected to each circumferential end-end groove through a hydraulic passage.
  3. 前記ロータの回転軸を中心に前記カムを回動させるアクチェータと、前記アクチェータの制御手段と、を備えた位相制御手段を設け、前記内燃機関の運転状況により前記アクチェータにて前記カムを回動し、前記ガス交換弁の開弁タイミングの調整制御を行うことを特徴とする請求項1または2に記載の内燃機関の弁駆動機構。 There is provided a phase control means comprising an actuator for rotating the cam about the rotation axis of the rotor, and a control means for the actuator, and the cam is rotated by the actuator according to the operating condition of the internal combustion engine. The valve drive mechanism for an internal combustion engine according to claim 1 or 2, wherein adjustment control of valve opening timing of the gas exchange valve is performed.
  4. 前記容積型ポンプと、第2の容積型ポンプを前記ロータの軸方向に設け、少なくとも一方の前記容積型ポンプに前記位相制御手段を備え、各々の前記容積型ポンプの略同位相のベーンまたはプランジャで発生する油圧を前記油圧中継路にて連通し、各々の前記油圧中継路に1個の空油変換器を設け、前記内燃機関の運転状況により前記位相制御手段にて少なくとも一つの前記カムを回動し、前記ガス交換弁の開弁タイミングおよび/または開度の調整制御を行うことを特徴とする請求項3に記載の内燃機関の弁駆動機構。 The positive displacement pump and the second positive displacement pump are provided in the axial direction of the rotor, and the phase control means is provided in at least one positive displacement pump, and a vane or a plunger having substantially the same phase of each positive displacement pump. The hydraulic pressure generated in the engine is communicated by the hydraulic relay passage, and one air-oil converter is provided in each hydraulic relay passage, and at least one of the cams is provided by the phase control means according to the operation state of the internal combustion engine. 4. The valve drive mechanism for an internal combustion engine according to claim 3, wherein the valve drive mechanism rotates and performs adjustment control of the opening timing and / or opening of the gas exchange valve.
PCT/JP2017/021437 2017-04-07 2017-06-09 Valve drive mechanism for internal combustion engine WO2018185947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076615A JP6190997B1 (en) 2017-04-07 2017-04-07 Valve drive mechanism of internal combustion engine
JP2017-076615 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018185947A1 true WO2018185947A1 (en) 2018-10-11

Family

ID=59798874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021437 WO2018185947A1 (en) 2017-04-07 2017-06-09 Valve drive mechanism for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6190997B1 (en)
WO (1) WO2018185947A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087052B (en) * 2017-12-13 2019-11-22 大连理工大学 A kind of hydraulic multi-mode Variabale valve actuation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242519A (en) * 1996-03-11 1997-09-16 Hitachi Ltd Valve driving device and engine
JP2010513767A (en) * 2006-12-13 2010-04-30 シエツフレル コマンディートゲゼルシャフト Device for hydraulically controlling a gas exchange valve of a reciprocating piston internal combustion engine
JP2013100763A (en) * 2011-11-08 2013-05-23 Suzuki Motor Corp Four-cycle engine
JP2013133722A (en) * 2011-12-26 2013-07-08 Suzuki Motor Corp Four-cycle engine
JP2015519510A (en) * 2012-06-18 2015-07-09 ブック, フランソワBOECK, Francois Direct timing system for internal combustion engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242519A (en) * 1996-03-11 1997-09-16 Hitachi Ltd Valve driving device and engine
JP2010513767A (en) * 2006-12-13 2010-04-30 シエツフレル コマンディートゲゼルシャフト Device for hydraulically controlling a gas exchange valve of a reciprocating piston internal combustion engine
JP2013100763A (en) * 2011-11-08 2013-05-23 Suzuki Motor Corp Four-cycle engine
JP2013133722A (en) * 2011-12-26 2013-07-08 Suzuki Motor Corp Four-cycle engine
JP2015519510A (en) * 2012-06-18 2015-07-09 ブック, フランソワBOECK, Francois Direct timing system for internal combustion engines

Also Published As

Publication number Publication date
JP6190997B1 (en) 2017-09-06
JP2018178798A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6163831B2 (en) Engine oil supply device
US8230830B2 (en) Electronically controlled hydraulic system for variable actuation of the valves of an internal combustion engine, with fast filling of the high pressure side of the system
US20060090718A1 (en) Internal-combustion engine having an electronically controlled hydraulic device for variably actuating intake valves
US6964270B2 (en) Dual mode EGR valve
US20070221149A1 (en) Auxiliary cam phaser hydraulic circuit and method of operation
CN103781999A (en) Systems and methods for variable valve actuation
JP6190997B1 (en) Valve drive mechanism of internal combustion engine
JP6551445B2 (en) Engine control device
AU2003269033B2 (en) Hydraulic valve actuator for reciprocating engine
CN108699924B (en) Device for actuating at least one valve in an internal combustion engine and internal combustion engine
ITTO20000131A1 (en) VALVES FOR ENDOTHERMAL MOTORS WITH VARIABLE LIFTS AND TIMINGS.
CN111512034A (en) Combustion machine
KR101855771B1 (en) Cylinder deactivation engine and hydraulic pressure control method thereof
CN106285828B (en) A kind of automobile engine variable valve lift system oil channel structures
JP2016104970A (en) Variable valve device of internal combustion engine
JP6235152B2 (en) Multifunctional variable valve drive system modularized for use in a 4-cylinder internal combustion engine
EP3444467B1 (en) Control system for internal combustion engines
EP3717762B1 (en) Method for controlling an internal combustion engine arrangement
CN101344023A (en) Integration type air valve timing continuous regulating mechanism of petrol engine
US7665432B2 (en) Valve actuation system and method of driving two slave pistons with one master piston
JP2021510190A (en) Vehicle pump assembly, pump assembly control system and its methods
Akal et al. A review of new technologies in valve systems of internal combustion engines and their effects
CN109469527B (en) Multi-mode valve mechanism and control method thereof
JP6607530B2 (en) Engine control device
JP2782312B2 (en) Variable intake valve closing timing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904782

Country of ref document: EP

Kind code of ref document: A1