JP2018178798A - Valve drive mechanism of internal combustion engine - Google Patents

Valve drive mechanism of internal combustion engine Download PDF

Info

Publication number
JP2018178798A
JP2018178798A JP2017076615A JP2017076615A JP2018178798A JP 2018178798 A JP2018178798 A JP 2018178798A JP 2017076615 A JP2017076615 A JP 2017076615A JP 2017076615 A JP2017076615 A JP 2017076615A JP 2018178798 A JP2018178798 A JP 2018178798A
Authority
JP
Japan
Prior art keywords
valve
hydraulic pressure
hydraulic
cam
positive displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017076615A
Other languages
Japanese (ja)
Other versions
JP6190997B1 (en
Inventor
正裕 井尻
Masahiro Ijiri
正裕 井尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017076615A priority Critical patent/JP6190997B1/en
Priority to PCT/JP2017/021437 priority patent/WO2018185947A1/en
Application granted granted Critical
Publication of JP6190997B1 publication Critical patent/JP6190997B1/en
Publication of JP2018178798A publication Critical patent/JP2018178798A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valve drive mechanism using oil pressure of a four-cycle internal combustion engine, having a simple structure and high reliability, and capable of being manufactured in a small-sized manner at low cost.SOLUTION: A valve drive mechanism of an internal combustion engine comprises output means, displacement oil pressure supply means and rotation transmission means. The displacement oil pressure supply means includes a displacement pump and a rotary joint. The displacement pump is provided with a reference profile and a cam profile inside a tubular cam. Hydraulic relay paths between a plurality of vanes or plungers and the respective pumps are provided in a rotor, the plurality of vanes or plungers sliding on an inner peripheral surface of the cam. The rotary joint is provided with a circumferential endless groove on an outer peripheral surface of the rotor or an inner peripheral surface of a rotor housing.SELECTED DRAWING: Figure 1

Description

本発明は、油圧によりガス交換弁を作動する4サイクル内燃機関の弁駆動機構に関するものである。   The present invention relates to a valve drive mechanism of a four-stroke internal combustion engine that operates gas exchange valves hydraulically.

多気筒型内燃機関において、クランク軸からの動力で駆動する駆動カムにて作動する複数の油圧供給部材(油圧ポンプ等)を放射状に配置し、カムの共用により構造を簡素化して部品点数を少なくし、製造費の低減と信頼性を向上する内燃機関用排気弁駆動装置(特許文献1)があり、2サイクル内燃機関はクランク軸に駆動カムを設けることができるが、4サイクル機関では、電気的な油圧回路の切り替え手段が必要となる問題点と、ベーンポンプでは前記放射状配置の設置では油圧回路数が制約される問題点がある。
4サイクルエンジンにおいて、クランクに同軸に駆動カムを設け、前記駆動カムの回転に伴ってバルブを開閉させる油圧駆動系を備えて、クランク軸の2回転につき1回動作させ、更に、制御弁にて出力側油路を入力側油路と低圧油路の両方に連通させることにより、バルブを任意のタイミングで閉弁できる4サイクルエンジン(特許文献2)があり、クランク軸に設けた複数の気筒のバルブを作動させる共通カムにより簡素な構成となるが、任意のタイミングで閉弁できるが等加速度運動とならないのでバルブの閉弁衝撃の抑制が困難で、制御弁がスプール式の場合はスプールの運動衝撃と3位置の往復運動となることによる応答性の問題により、高速運転が困難である。
排気バルブのカムによって、ロッカーアーム部材を介してポンピングピストンを作動して発生する油圧にてピストンを作動して吸気弁を開閉し、前記ピストンをソレノイドで制御して任意のタイミングで閉じ、通路開口面積の変化によるクッション作用を有するマルチシリンダー内燃機関(特許文献3)があり、カムは排気バルブと共通で、油圧通路が短く、シリンダヘッドのユニット化ができるが、排気バルブのカムとロッカーアームが吸気バルブ毎に必要で、制御により任意のタイミングで閉弁できるが、前記制御によりバルブの閉弁速度が速くなり、クッション機構での緩衝では高速回転数で着座衝撃を十分に抑制することが困難である。
In a multi-cylinder internal combustion engine, a plurality of hydraulic supply members (hydraulic pumps etc.) operated by a drive cam driven by power from a crankshaft are radially arranged, and the cam is shared to simplify the structure and reduce the number of parts. There is an exhaust valve drive system for internal combustion engine (patent document 1) that reduces manufacturing cost and improves reliability, and a two-stroke internal combustion engine can be provided with a drive cam on a crankshaft, but in a four-stroke engine In the vane pump, the radial arrangement has a problem that the number of hydraulic circuits is restricted.
In a 4-cycle engine, a drive cam is provided coaxially to the crank, and a hydraulic drive system is provided to open and close the valve according to the rotation of the drive cam. There is a four-stroke engine (Patent Document 2) which can close the valve at any timing by connecting the output side oil passage to both the input side oil passage and the low pressure oil passage. The common cam that operates the valve makes it a simple structure, but it can close the valve at any timing but does not become equal acceleration movement, so it is difficult to suppress the closing impact of the valve, and when the control valve is a spool type, the movement of the spool High speed operation is difficult due to the problem of responsiveness due to the impact and the reciprocation of three positions.
The cam of the exhaust valve operates the pumping piston through the rocker arm member to operate the piston with the generated hydraulic pressure to open and close the intake valve, and the piston is controlled by the solenoid to close at an arbitrary timing, opening the passage There is a multi-cylinder internal combustion engine (Patent Document 3) that has a cushioning effect due to a change in area. The cam is common with the exhaust valve, the hydraulic path is short, and the cylinder head can be unitized. Necessary for each intake valve, it can be closed at any timing by control, but the valve closing speed becomes faster by the above control, and it is difficult to sufficiently suppress the seating impact at high rotational speed by cushioning with cushioning mechanism It is.

カムシャフトに設けたカムと複数のベーンを有するマスタシリンダに油圧により作動接続するスレーブシリンダでガス交換弁を作動し、供給される油圧液量を制御装置の作動部材でコントロールし、往復動ピストン内燃機関のガス交換弁をハイドロリック的に制御するための装置(特許文献4)があり、前記装置は、圧力形成および量制御のため、ステータを取り囲むようにウォームねじ山を有する制御リングを配置し、ウォームにより量制御を行える。
ステータにベーンを設け、マスタシリンダから略放射状に油圧通路を設けるので油圧回路数が制限される問題点があり、ガス交換弁との接続距離が長くなり、前記制御装置はそれぞれの油圧通路に複雑な油圧調整機構が必要である。
機関回転に同期する第1カムおよび第2カムと、前記カムに従動してシリンダ内を摺動する第1タペットおよび第2タペットと、前記タペットの進退により圧力が変化するシリンダ油圧室に受圧部を臨ませ、油圧に応じて弁を押圧するピストンと、運転状況に応じて前記カムの位相を可変とする位相調整手段とを備え、前記第1カムに応動して弁を開き、前記第2カムに応動して弁を閉じる内燃機関の弁駆動機構(特許文献5)がある。
前記第1カムおよび第2カム等から成る前記弁駆動機構が制御する各弁に必要であり、装置が複雑で製造原価が高くなる問題点がある。
A gas exchange valve is operated by a slave cylinder hydraulically connected to a master cylinder having a cam provided on a camshaft and a plurality of vanes, and the amount of hydraulic fluid supplied is controlled by an actuating member of a control device. There is a device for hydraulically controlling a gas exchange valve of an engine (US Pat. No. 5,648,015), which arranges a control ring with a worm thread to surround the stator for pressure buildup and volume control. , Can control the amount by worm.
Since vanes are provided on the stator and hydraulic passages are provided substantially radially from the master cylinder, there is a problem that the number of hydraulic circuits is limited, the connection distance with the gas exchange valve becomes long, and the control device becomes complicated in each hydraulic passage. Hydraulic pressure adjustment mechanism is required.
The first cam and the second cam synchronized with the engine rotation, the first tappet and the second tappet sliding in the cylinder following the cam, and the pressure receiving portion of the cylinder hydraulic pressure chamber whose pressure changes as the tappet moves back and forth. A piston for pressing the valve according to the hydraulic pressure, and a phase adjusting means for changing the phase of the cam according to the operating condition, and the valve is opened in response to the first cam. There is a valve drive mechanism (patent document 5) of an internal combustion engine which closes the valve in response to the cam.
It is necessary for each valve controlled by the valve drive mechanism including the first cam and the second cam, etc., and there is a problem that the apparatus is complicated and the manufacturing cost becomes high.

従来技術のOHV等のプッシュロッドを使用する弁駆動機構があり、プッシュロッドの熱膨張によるバルブクリアランスの異常、往復運動による高速化が困難等の問題点があるが、プッシュロッドを油圧に置き換えることにより、プッシュロッドのように座屈懸念が無く、油圧にて圧縮応力を伝達するので潤滑機能があり、金属性のプッシュロッドより油圧の油の比重が小さいので慣性が小さく、高速回転に対応できる利点がある。
本願発明により、油圧によりガス交換弁を作動する4サイクル内燃機関において、内周面にカムプロフィールを設けた管状のカムと、前記カム内周面に摺動しながら回転するベーンまたはプランジャを放射状に設けたロータからなる容積型ポンプと、前記ロータに設けた回転継手(請求項1)、方向制御弁(請求項2)、前記カムを回動させる位相制御手段(請求項3)、および第2の容積型ポンプ(請求項4)により、前記文献の問題点を解消し、簡素な構造で内燃機関のガス交換弁の任意無段開閉制御ができ、更に油圧回路を追加することにより油圧回生手段による油圧ポンプ機能、油圧補助手段等によるラッシュアジャスタ機能を付加できる。
There is a valve drive mechanism that uses a push rod such as OHV of the prior art, there are problems such as abnormal valve clearance due to thermal expansion of the push rod and difficulty in speeding up due to reciprocation, etc. Therefore, there is no concern about buckling like push rods, and because it transmits a compressive stress by hydraulic pressure, it has a lubricating function, and since the specific gravity of hydraulic oil is smaller than that of metallic push rods, inertia is small and it can cope with high speed rotation. There is an advantage.
According to the present invention, in a four-cycle internal combustion engine hydraulically operating gas exchange valves, a tubular cam provided with a cam profile on its inner circumferential surface, and a vane or plunger radially rotating while sliding on the inner circumferential surface of the cam A positive displacement pump comprising a rotor, a rotary joint (claim 1) provided on the rotor, a direction control valve (claim 2), phase control means (claim 3) for pivoting the cam, and a second By the positive displacement pump (claim 4), the problems of the above-mentioned document can be solved and the stepless opening / closing control of the gas exchange valve of the internal combustion engine can be performed with a simple structure. It is possible to add the lash adjuster function by the hydraulic pump function by the

特開昭63−1706号公報Japanese Patent Application Laid-Open No. 63-1706 特開2013−133722号公報JP, 2013-133722, A 特開2005−201259号公報JP, 2005-201259, A 特表2010−513767号公報Japanese Patent Publication No. 2010-513767 特開昭55−096314号公報Japanese Patent Application Laid-Open No. 55-096314

内燃機関で駆動するカム機構で駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダを周期的に作動させ、前記弁シリンダが1本または複数のガス交換弁を開閉作動する往復動機関は、前記カムをクランク軸で回転すると、クランク軸の2回転に1回の弁作動を行うために制御を伴う油圧回路の切替え手段が必要となる問題点がある。
容積型ポンプのハウジングに直接油圧通路を設けると油圧通路が放射状の配置となり、構造上ベーンポンプやプランジャーポンプでは油圧回路の設置が制約される問題点がある。
A displacement pump is driven by a cam mechanism driven by an internal combustion engine, and the hydraulic pressure generated by the displacement pump periodically operates a valve cylinder, and the valve cylinder opens and closes one or more gas exchange valves. In a reciprocating engine, there is a problem that switching of the hydraulic circuit accompanied by control is necessary to perform valve operation once per two rotations of the crankshaft when the cam is rotated by the crankshaft.
If a hydraulic passage is provided directly in the housing of the positive displacement pump, the hydraulic passage is arranged radially, and there is a problem that the installation of the hydraulic circuit is restricted in the vane pump and the plunger pump in structure.

請求項1は、4サイクル内燃機関にて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダを周期的に作動させ、前記弁シリンダが1本または複数のガス交換弁を開閉作動する往復動機関において、出力手段、容積型油圧供給手段、および回転伝動手段から成る内燃機関の弁駆動機構であって、前記出力手段は、前記弁シリンダと、クランク軸と、前記クランク軸に連動する少なくとも一つのピストンと、シリンダと、を備え、前記回転伝動手段は、前記クランク軸に設けた駆動車と、有効径が前記駆動車の2倍の前記容積型ポンプのロータに設けた従動車と、を備え、前記容積型油圧供給手段は、前記容積型ポンプと、回転継手と、を備え、前記容積型ポンプは、管状のカムの内側に、基準プロフィールと1個のカムプロフィールを設け、前記カムの内周面を摺動する複数のベーンまたはプランジャを前記ロータに設け、前記ロータは、前記複数のベーンまたはプランジャで発生する各油圧を移送する油圧中継路を備え、前記回転継手は、前記ロータの外周面またはロータハウジングの内周面に前記各油圧中継路に対応する周方向無端溝を設け、前記各周方向無端溝は前記弁シリンダと油圧通路にて連通する内燃機関の弁駆動機構である。   The first aspect of the present invention comprises a positive displacement pump driven by a four-stroke internal combustion engine, wherein the hydraulic pressure generated by the positive displacement pump causes the valve cylinder to periodically operate, and the valve cylinder comprises one or more gas exchange valves. A valve drive mechanism of an internal combustion engine comprising an output means, a positive displacement hydraulic pressure supply means, and a rotational transmission means in a reciprocating engine which is operated to open and close, wherein the output means comprises the valve cylinder, a crankshaft, and the crankshaft And at least one piston interlocking with the cylinder, and the rotational transmission means is provided on a drive wheel provided on the crankshaft and a rotor of the positive displacement pump whose effective diameter is twice that of the drive wheel. A driven wheel, the positive displacement hydraulic supply means comprising the positive displacement pump and a rotary joint, wherein the positive displacement pump is provided with a reference profile inside a tubular cam A cam profile is provided, and a plurality of vanes or plungers sliding on an inner circumferential surface of the cam is provided on the rotor, and the rotor includes a hydraulic relay passage for transferring each hydraulic pressure generated by the plurality of vanes or plungers. The rotary joint is provided on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing with circumferential endless grooves corresponding to the respective hydraulic relay passages, and the circumferential endless grooves communicate with the valve cylinder in the hydraulic passage. It is a valve drive mechanism of an internal combustion engine.

請求項2は、前記容積型油圧供給手段が、前記容積型ポンプと、前記回転継手の替わりに方向制御弁と、を備え、前記容積型ポンプは、前記管状のカムの内側に、基準プロフィールと少なくとも2個のカムプロフィールを周方向に等間隔に設け、前記方向制御弁は、前記ロータの外周面または前記ロータハウジングの内周面に前記各油圧中継路に対応する周方向有端溝を設け、前記弁シリンダは前記各周方向有端溝と油圧通路にて連通する請求項1に記載の内燃機関の弁駆動機構である。   A second aspect of the present invention is characterized in that the positive displacement hydraulic pressure supply means comprises the positive displacement pump and a directional control valve instead of the rotary joint, and the positive displacement pump is provided with a reference profile inside the tubular cam. At least two cam profiles are provided at equal intervals in the circumferential direction, and the direction control valve is provided with circumferential end grooves corresponding to the respective hydraulic relay paths in the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing The valve drive mechanism of an internal combustion engine according to claim 1, wherein the valve cylinder communicates with the circumferential end groove in a hydraulic pressure passage.

請求項3は、前記ロータの回転軸を中心に前記カムを回動させるアクチェータと、前記アクチェータの制御手段と、を備えた位相制御手段を設け、前記内燃機関の運転状況により前記アクチェータにて前記カムを回動し、前記ガス交換弁の開弁タイミング制御を行う請求項1または2に記載の内燃機関の弁駆動機構である。   According to a third aspect of the present invention, there is provided a phase control means comprising an actuator for rotating the cam about the rotation shaft of the rotor and control means for the actuator, and the actuator controls the actuator according to the operating condition of the internal combustion engine. The valve drive mechanism for an internal combustion engine according to claim 1 or 2, wherein the cam is rotated to control the valve opening timing of the gas exchange valve.

請求項4は、前記ロータの軸方向に、前記カムと、前記ベーンまたは前記プランジャから成る2台の容積型ポンプを設け、少なくとも1台の前記容積型ポンプに前記位相制御手段を備え、前記2台の容積型ポンプのカムは少なくとも1個のカムプロフィールを備え、各々の容積型ポンプの前記ベーンまたは前記プランジャで発生する略同位相の油圧は前記油圧中継路にて連通し、前記各油圧中継路に空油変換器を設け、前記内燃機関の運転状況により前記位相制御手段にて前記カムを回動し、前記ガス交換弁の開閉調整を行う請求項3に記載の内燃機関の弁駆動機構である。   According to a fourth aspect of the present invention, in the axial direction of the rotor, two positive displacement pumps comprising the cam and the vane or the plunger are provided, and at least one positive displacement pump is provided with the phase control means. The cams of the one or more positive displacement pumps have at least one cam profile, and the substantially same phase hydraulic pressure generated by the vanes or the plungers of the respective positive displacement pumps communicate with the hydraulic relay passage, and the hydraulic relays 4. The valve drive mechanism for an internal combustion engine according to claim 3, wherein an air-to-oil converter is provided in the passage, and the cam is rotated by the phase control means according to the operating condition of the internal combustion engine to perform opening / closing adjustment of the gas exchange valve. It is.

本願発明の前記請求項1は、4サイクル内燃機関で駆動する容積型ポンプは、ロータと、管状のカムと、ロータの回転軸に設けたベーンまたはプランジャとで構成し、カムを共用して多数の油圧回路を配置できる簡素な構造で、油圧供給手段の信頼性が高く、小型で安価に製作できる効果がある。
クランク軸に設けた駆動車と前記容積型ポンプに設けた従動車による二分の一の減速により、発生する油圧を対応する弁シリンダに供給するので、油圧回路の切替え手段が不要となる効果がある。
ロータの外周面またはロータハウジングの内周面に設けた周方向無端溝から成る回転継手により、任意の角度に油圧配管を設けることができるので、油圧回路の制約となる放射状配置の問題点が解消できる。
更に、油圧回生手段を設けることにより、弁シリンダの作動に寄与しないセルによる油圧が利用できるので、パワーステアリング、CVT、あるいは本願発明の請求項3または請求項4の位相制御手段の油圧として利用できる効果がある。
前記弁シリンダの油圧回路に油圧補正手段を設けることにより、バルブクリアランスを自動的に無くすラッシュアジャスタ機能を付加できる効果がある。
According to the first aspect of the present invention, the positive displacement pump driven by the four-stroke internal combustion engine comprises a rotor, a tubular cam, and vanes or plungers provided on the rotary shaft of the rotor. In the simple structure in which the hydraulic circuit of the above can be arranged, the reliability of the hydraulic supply means is high, and there is an effect that it can be manufactured compactly and inexpensively.
Since the generated hydraulic pressure is supplied to the corresponding valve cylinder by the deceleration of the drive wheel provided on the crankshaft and the driven vehicle provided on the positive displacement pump to the corresponding valve cylinder, the switching means of the hydraulic circuit becomes unnecessary. .
The hydraulic joint can be provided at an arbitrary angle by the rotary joint consisting of circumferential endless grooves provided on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing, thereby eliminating the problem of radial arrangement which becomes a restriction of the hydraulic circuit. it can.
Furthermore, by providing the oil pressure regeneration means, the oil pressure by the cell not contributing to the operation of the valve cylinder can be used, so it can be used as power steering, CVT, or oil pressure of the phase control means of claim 3 or 4 of the present invention. effective.
By providing the hydraulic pressure correction means in the hydraulic circuit of the valve cylinder, it is possible to add a lash adjuster function that automatically eliminates the valve clearance.

本願発明の請求項2は、前記容積型油圧供給手段が、前記容積型ポンプと、方向制御弁を備え、前記容積型ポンプは、前記管状のカムの内側に、基準プロフィールと少なくとも2個のカムプロフィールを周方向に等間隔に設けるので、カムを共用して請求項1より更に多くの油圧回路を配置でき、簡素な構造で信頼性が高く、小型で安価に製作できる効果がある。
前記方向制御弁は、前記ロータの外周面またはロータハウジングの内周面に前記カムプロフィールで発生する油圧に対応する周方向有端溝を設け、前記複数のカムプロフィールと同じ位相で前記ロータハウジングの内周面の前記周方向有端溝に連通する位置に前記弁シリンダに連通する油圧通路を設けるので、電気的制御を必要としない前記方向制御弁により、一つのセルの油圧で複数の弁シリンダを油圧駆動でき、内燃機関の弁駆動機構が簡素な構成で信頼性が高く、小型で安価に製作できる効果がある。
前記弁シリンダの油圧回路を開弁動作終了時に、前記方向制御弁にて油圧補助手段の油タンクに連通することにより、確実なラッシュアジャスタ機能が得られる効果がある。
According to a second aspect of the present invention, the positive displacement hydraulic supply means comprises the positive displacement pump and a directional control valve, and the positive displacement pump comprises a reference profile and at least two cams inside the tubular cam. Since the profiles are provided equidistantly in the circumferential direction, the cam can be shared to arrange more hydraulic circuits than in claim 1 and there is an effect that it can be manufactured with a simple structure with high reliability, small size and low cost.
The directional control valve is provided with a circumferential end groove corresponding to the hydraulic pressure generated in the cam profile on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing, and the rotor housing is provided with the same phase as the cam profiles. Since a hydraulic passage communicating with the valve cylinder is provided at a position communicating with the circumferential end groove on the inner circumferential surface, the directional control valve which does not require electrical control allows a plurality of valve cylinders to be hydraulically operated by one cell. The valve drive mechanism of the internal combustion engine has a simple structure, has high reliability, and is small and inexpensive.
By communicating the hydraulic circuit of the valve cylinder with the oil tank of the hydraulic pressure auxiliary means by the directional control valve at the end of the valve opening operation, there is an effect that a reliable lash adjuster function can be obtained.

本願発明の請求項3の前記ロータの回転軸を中心に前記カムを回動させるアクチェータと、前記アクチェータの制御手段を備えた位相制御手段を設け、前記内燃機関の運転状況により前記アクチェータにて前記カムを回動して油圧発生の位相制御を行うので、簡素な構成で弁の開弁タイミングを制御できる内燃機関の弁駆動機構となり、信頼性が高く、小型で安価に製作できる効果がある。   An actuator for rotating the cam about the rotation axis of the rotor according to claim 3 of the present invention and a phase control means provided with control means for the actuator are provided, and the operating condition of the internal combustion engine causes the actuator to Since the cam is rotated to control the phase of hydraulic pressure generation, the valve drive mechanism of an internal combustion engine capable of controlling the valve opening timing of the valve with a simple configuration is provided, which has an effect of high reliability, small size and low cost.

本願発明の請求項4は、前記ロータの軸方向に、第2の容積型ポンプを設け、一方または両方の容積型ポンプに前記位相制御手段を備え、各々の容積型ポンプの発生する同位相の油圧を前記油圧中継路にて連通し、各々の前記油圧中継路に1個の空油変換器を設ける構成で、ガス交換弁の開閉タイミングおよび/または開閉量の調整ができる弁制御機構が、簡素な構成で信頼性が高く、小型で安価に製作できる効果がある。
前記アクチェータにて前記カムを回動して油圧発生の位相制御を行うことにより、前記内燃機関の運転状況に対応したガス交換弁の開閉制御を高い応答性で無段調整できるので、内燃機関の大幅な性能向上ができる効果がある。
A fourth aspect of the present invention is that in the axial direction of the rotor, a second positive displacement pump is provided, one or both positive displacement pumps are provided with the phase control means, and the same phase generated by each positive displacement pump is provided. The valve control mechanism is capable of adjusting the opening / closing timing and / or the opening / closing amount of the gas exchange valve in a configuration in which oil pressure is communicated with the oil pressure relay passage and one empty oil converter is provided in each of the oil pressure relay passages. It has the effect of high reliability, small size and low cost with simple configuration.
Since the opening and closing control of the gas exchange valve corresponding to the operating condition of the internal combustion engine can be steplessly adjusted with high responsiveness by performing phase control of hydraulic pressure generation by rotating the cam with the actuator, the internal combustion engine There is an effect that the performance can be greatly improved.

実施例1(請求項1対応)の、管状のカムを用いた容積型ポンプと回転継手から成る容積型油圧供給手段を備えた内燃機関の弁駆動機構の構成概念の説明図である。FIG. 1 is an explanatory view of a configuration concept of a valve drive mechanism of an internal combustion engine provided with a positive displacement type hydraulic pressure supplying means comprising a positive displacement pump using a tubular cam and a rotary joint according to Embodiment 1 (corresponding to claim 1). 前記実施例1(図1)の容積型油圧供給手段の、上図は全断面図、下図は本体各部の断面図、および周辺油圧回路図と付加できる油圧回生手段と油圧補助手段である。The upper view of the positive displacement hydraulic pressure supply means of the first embodiment (FIG. 1) is a full sectional view, the lower view is a cross sectional view of each part of the main body, and a peripheral hydraulic circuit diagram. 実施2(請求項1対応)の、容積型ポンプをプランジャーポンプとする1気筒内燃機関の吸気と排気のガス交換弁の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the construction concept of the valve drive mechanism of the gas exchange valve of intake and exhaust of 1 cylinder internal combustion engine which makes a positive displacement pump a plunger pump of implementation 2 (corresponding to claim 1). 前記実施例1および実施例2の内燃機関の、上図は全行程の弁のリフト量の特性図で、下図は弁作動行程の各位相の容積型ポンプの断面図による作動説明図である。The upper view of the internal combustion engine according to the first embodiment and the second embodiment is a characteristic diagram of the lift amount of the valve during the entire stroke, and the lower diagram is an operation explanatory diagram according to the sectional view of the positive displacement pump of each phase of the valve operation stroke. 実施例3(請求項1対応)の4気筒内燃機関の吸気弁の弁駆動機構の構成説明図である。It is structure explanatory drawing of the valve drive mechanism of the inlet valve of 4 cylinder internal combustion engine of Example 3 (corresponding to Claim 1). 前記実施例3(図5)の4気筒内燃機関の吸気弁の弁駆動機構の容積型油圧供給手段の配置斜視図とベーン部断面の部分拡大図である。It is an arrangement perspective view of volume type oil pressure supply means of a valve drive mechanism of an intake valve of a 4 cylinder internal-combustion engine of the 3rd embodiment (Drawing 5) of the 3rd embodiment (Drawing 5), and a elements on larger scale of vane section section. 実施例4(請求項2対応)のベーンポンプで発生する油圧が方向制御弁を介して各弁シリンダに供給される2気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the structural concept of the valve drive mechanism of 2 cylinder internal combustion engine with which the hydraulic pressure which generate | occur | produces with the vane pump of Example 4 (corresponding to claim 2) is supplied to each valve cylinder via a direction control valve. 前記実施例4(図7)の容積型油圧供給手段の、中図は全断面図、上図は容積型ポンプ部、下図は回転継手と各方向制御弁の断面図、および周辺油圧回路図である。The middle view of the positive displacement hydraulic pressure supply means of the fourth embodiment (FIG. 7) is a full sectional view, the upper view is a positive displacement pump portion, the lower view is a cross sectional view of the rotary joint and each directional control valve, and a peripheral hydraulic circuit diagram. is there. 前記実施例4(図8)の容積型油圧供給手段のロータに設けた周方向溝と各油圧通路接続部から成る回転継手と方向制御弁の斜視図である。It is a perspective view of the rotary joint and the directional control valve which consist of the circumferential direction groove | channel provided in the rotor of the positive displacement hydraulic pressure supply means of the said Example 4 (FIG. 8), and each hydraulic passage connection part. 前記実施例4の、上図は排気弁の弁リフト特性図で、E10(〜30)は前記弁リフト特性図の各位相の容積型ポンプと方向制御弁の断面図による動作説明図である。The upper view of the fourth embodiment is a valve lift characteristic view of the exhaust valve, and E10 (-30) is an operation explanatory view according to a sectional view of the positive displacement pump and the directional control valve of each phase of the valve lift characteristic view. 実施例5(請求項2対応)の発生する油圧が方向制御弁を介して各弁シリンダに供給される4気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the construction concept of the valve drive mechanism of 4 cylinder internal combustion engine with which the hydraulic pressure which generate | occur | produces Example 5 (corresponding to 2nd aspect) is supplied to each valve cylinder via a direction control valve. 前記実施例5(図11)の、油圧通路を一側面に配置した容積型油圧供給手段の全断面図と、上図はポンプ部、下図は回転継手部と各方向制御弁部の断面図である。11 is a full sectional view of the positive displacement hydraulic pressure supply means having a hydraulic passage arranged on one side according to the fifth embodiment (FIG. 11), the upper view is a pump portion, and the lower view is a cross sectional view of a rotary joint portion and each direction control valve portion. is there. 実施例6(請求項2対応)の弁駆動機構で、8気筒内燃機関の排気と吸気の容積型油圧供給手段の配置斜視図と、矢視図Gの容積型ポンプ部の断面図である。The valve drive mechanism of Example 6 (corresponding to claim 2), which is an arrangement perspective view of the displacement type hydraulic pressure supply means for the exhaust and intake of an 8-cylinder internal combustion engine, and a sectional view of the displacement type pump portion in arrow view G. 実施例7(請求項2対応)の、3個のカムプロフィールを備えた容積型油圧供給手段による、6気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the construction concept of the valve drive mechanism of 6 cylinder internal combustion engine by positive displacement type hydraulic pressure supply means provided with three cam profiles of Example 7 (corresponding to claim 2). 前記実施例7(図14)の、油圧配管を3方の側面に設けた容積型油圧供給手段の、上図は全断面図、およびポンプ部、回転継手部、各方向制御弁部の断面図である。The upper view is a full sectional view of the positive displacement type hydraulic pressure supplying means of the seventh embodiment (FIG. 14) in which hydraulic pipes are provided on three sides, and a sectional view of a pump portion, a rotary joint portion and each direction control valve portion It is. 実施例8(請求項3対応)の、アクチェータによる位相制御手段を備えた容積型油圧供給手段による、2気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the construction concept of the valve drive mechanism of 2 cylinder internal combustion engine by the positive displacement type hydraulic pressure supply means provided with the phase control means by an actuator of Example 8 (corresponding to claim 3). 実施例9(請求項3対応)の、ロータリシリンダを備えた容積型油圧供給手段の、上図は全断面図、下図はポンプ部の断面図、および周辺油圧回路図である。The upper view is a full sectional view, and the lower view is a sectional view of a pump portion and a peripheral hydraulic circuit diagram of the positive displacement type hydraulic pressure supplying means having a rotary cylinder according to a ninth embodiment (corresponding to claim 3). 実施例10(請求項4対応)の、2組のベーンポンプの位相をモータで調整して吸気弁を開閉制御する3気筒内燃機関の弁駆動機構の構成概念の説明図である。It is explanatory drawing of the structural concept of the valve drive mechanism of 3 cylinder internal combustion engine which adjusts the phase of two sets of vane pumps with a motor by Example 10 (corresponding to claim 4), and carries out opening / closing control of an inlet valve. 前記実施例10(図18)の、上図は、カム、第2のカム、および弁シリンダの油圧特性図で、下図は、各位相での容積型ポンプの模式図による作動説明図である。The upper view of the tenth embodiment (FIG. 18) is a hydraulic characteristic view of the cam, the second cam and the valve cylinder, and the lower view is an operation explanatory view according to a schematic view of the positive displacement pump in each phase. 前記実施例10(図18、19)の内燃機関の弁駆動機構の、各カム位相制御と各制御パターン(1)〜(3)の弁リフト特性図による制御動作説明図である。It is control operation explanatory drawing by the valve lift characteristic figure of each cam phase control and each control pattern (1)-(3) of the valve drive mechanism of the internal combustion engine of the said Example 10 (FIG. 18, 19). 実施例11(請求項4対応)の、位相制御手段と2個のカムプロフィールを備えた容積型油圧供給手段による、4気筒内燃機関の弁駆動機構の構成図である。FIG. 32 is a configuration diagram of a valve drive mechanism of a four-cylinder internal combustion engine according to Embodiment 11 (corresponding to claim 4) by means of phase control means and positive displacement hydraulic pressure supply means having two cam profiles. 前記実施例11(図21)の、2個のロータリシリンダによる位相制御手段を備えた容積型油圧供給手段の全断面図、各ポンプ部の断面図、と周辺油圧回路図である。21 is a full sectional view of a positive displacement hydraulic pressure supplying means provided with phase control means with two rotary cylinders, a sectional view of each pump portion, and a peripheral hydraulic circuit diagram according to Embodiment 11 (FIG. 21). FIG. 実施例12(請求項4対応)の、2組のプランジャーポンプを備えた容積型油圧供給手段による移動体の内燃機関の弁駆動機構の制御システムの構成説明図である。It is structure explanatory drawing of the control system of the valve drive mechanism of the internal combustion engine of the mobile by the displacement type hydraulic pressure supply means provided with 2 sets of plunger pumps of Example 12 (corresponding to claim 4). 前記実施例12(図23)の内燃機関の弁駆動機構の制御フローチャートと、各制御サブルーチンの弁リフト特性図による開弁制御説明図である。FIG. 24 is a control flowchart of a valve drive mechanism of an internal combustion engine of the twelfth embodiment (FIG. 23), and valve opening control explanatory views by valve lift characteristic diagrams of control subroutines.

前記図面(図1〜24)に従って、本願発明の各実施例(実施例1〜12)を、以下に説明する。
以下の説明において、容積型ポンプは構造が簡素なベーンポンプの実施例を優先して記載しているが、各実施例のベーンポンプを高圧の油圧に対応できるプランジャーポンプに置き換えることもできる。
各実施例において、弁シリンダの作動に寄与しないセルの油圧は、油圧による回生ポンプとすることも、空気によるフリー空間とすることもできる。
Each Example (Examples 1-12) of this invention is described below according to the said drawing (FIGS. 1-24).
In the following description, although the positive displacement pump is described with priority given to the embodiment of the vane pump having a simple structure, the vane pump of each embodiment can be replaced by a plunger pump capable of supporting high hydraulic pressure.
In each embodiment, the hydraulic pressure of the cell that does not contribute to the operation of the valve cylinder may be a hydraulic regenerative pump or a free space of air.

図1は、実施例1(請求項1対応)の、管状のカムを用いた容積型ポンプと回転継手から成る容積型油圧供給手段を備えた内燃機関の弁駆動機構の構成概念の説明図である。
図1は、4サイクル内燃機関1にて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダ41(−1、−2)を周期的に作動させ、前記弁シリンダ41(−1、−2)が1本のガス交換弁45(−1、−2)を開閉作動する往復動機関において、出力手段4、容積型油圧供給手段7、および回転伝動手段6から成る内燃機関1の弁駆動機構であって、前記出力手段4は、前記弁シリンダ41(−1、−2)と、クランク軸49と、前記クランク軸49に連動する図示しない二つのピストンと、シリンダ46(−1、−2)と、を備え、前記回転伝動手段6は、前記クランク軸49に設けた駆動車62と、有効径が前記駆動車62の2倍の前記容積型ポンプのロータ72に設けた従動車61と、を備え、前記容積型油圧供給手段7は、前記容積型ポンプと、回転継手76と、を備え、前記容積型ポンプは、管状のカム71の内側に、基準プロフィール710と1個のカムプロフィール711を設け、前記カム71の内周面を摺動する4個のベーン73を前記ロータ72に設け、前記ロータ72は、前記4個のベーンで発生する各油圧を移送する油圧中継路721、722を備え、前記回転継手76は前記ロータ72の外周面またはロータハウジングの内周面に前記各油圧中継路721、722に対応する図示しない周方向無端溝を設け、前記弁シリンダ41(−1、−2)は前記各周方向無端溝と油圧通路78(−1、−2)にて連通する内燃機関1の弁駆動機構の構成概念の説明図である。
油圧補助手段8は、前記各油圧通路78(−1、−2)に連通する各油圧通路88(−1、−2)を備え、前記油圧通路88(−1、−2)は逆止弁83(−1、−2)を介して油タンク80に連通する。
FIG. 1 is an explanatory view of a structural concept of a valve drive mechanism of an internal combustion engine having a positive displacement type hydraulic pressure supply means comprising a positive displacement pump using a tubular cam and a rotary joint according to the first embodiment (corresponding to claim 1). is there.
FIG. 1 is provided with a positive displacement pump driven by a four-stroke internal combustion engine 1, and the hydraulic pressure generated by the positive displacement pump causes the valve cylinder 41 (-1, -2) to periodically operate to In a reciprocating engine in which -1, -2) operates to open and close one gas exchange valve 45 (-1, -2), an internal combustion engine comprising output means 4, positive hydraulic pressure supply means 7, and rotational transmission means 6 1, the output unit 4 includes the valve cylinder 41 (−1, −2), a crankshaft 49, two pistons (not shown) interlocking with the crankshaft 49, and a cylinder 46 (not shown). -1, -2), and the rotational transmission means 6 is provided on the drive wheel 62 provided on the crankshaft 49 and the rotor 72 of the positive displacement pump whose effective diameter is twice that of the drive wheel 62. A driven wheel 61, and the volume type The pressure supply means 7 comprises the positive displacement pump and the rotary joint 76, the positive displacement pump providing a reference profile 710 and one cam profile 711 inside the tubular cam 71, the cam 71 The rotor 72 is provided with four vanes 73 sliding on the inner circumferential surface thereof, and the rotor 72 is provided with hydraulic relay paths 721 and 722 for transferring the hydraulic pressure generated by the four vanes, and the rotary joint 76 is provided on the outer peripheral surface of the rotor 72 or the inner peripheral surface of the rotor housing with a circumferential endless groove (not shown) corresponding to the hydraulic relay passages 721 and 722, and the valve cylinders 41 (-1, -2) It is explanatory drawing of the structural concept of the valve drive mechanism of the internal combustion engine 1 connected by the circumferential direction endless groove and hydraulic path 78 (-1, -2).
The hydraulic pressure auxiliary means 8 includes respective hydraulic pressure passages 88 (-1, -2) communicating with the hydraulic pressure passages 78 (-1, -2), and the hydraulic pressure passages 88 (-1, -2) are check valves. It communicates with the oil tank 80 via 83 (-1, -2).

図1の内燃機関1の弁駆動機構の作用は、容積型油圧供給手段7の前記カム71、ロータ72、およびベーン73から成る容積型ポンプにおいて、前記カムプロフィール711により発生する油圧が、油圧中継路721、722、回転継手76、油圧通路78−1、78−2を通って、各々の弁シリンダ41(−1、−2)に供給され、周期的にガス交換弁45(−1、−2)が開弁し、油圧の漏れ等による負圧が発生する場合は、前記油圧補助手段8の油タンク80から前記負圧により油を補給する。
前記ロータ72は、回転伝動手段6にて出力手段4のクランク軸49の回転数の二分の一に回転が減速されたているので、4サイクル内燃機関1の吸気行程または排気行程に対応して開弁する。
前記カムプロフィール711の設置角θ1と弁駆動油圧のベーン73の設置角θ2による開弁制御は、図4にて説明する。
弁駆動に寄与しない油圧は、油圧中継路726、回転継手76を通って油圧補助手段8の油タンク80に連通し、油圧は常に大気圧に解放される。
The function of the valve drive mechanism of the internal combustion engine 1 of FIG. 1 is that in the positive displacement pump comprising the cam 71, the rotor 72 and the vane 73 of the positive displacement hydraulic pressure supply means 7, the hydraulic pressure generated by the cam profile 711 is hydraulic relay The gas is supplied to the respective valve cylinders 41 (-1, -2) through the passages 721, 722, the rotary joint 76, and the hydraulic passages 78-1, 78-2, and the gas exchange valves 45 (-1,- When the valve 2) is opened and a negative pressure is generated due to a hydraulic pressure leak or the like, oil is supplied from the oil tank 80 of the hydraulic pressure auxiliary means 8 by the negative pressure.
The rotation of the rotor 72 is decelerated to a half of the rotational speed of the crankshaft 49 of the output means 4 by the rotational transmission means 6, so that it corresponds to the intake stroke or exhaust stroke of the four-stroke internal combustion engine 1. Open the valve.
The valve opening control based on the installation angle θ1 of the cam profile 711 and the installation angle θ2 of the vane 73 of the valve drive hydraulic pressure will be described with reference to FIG.
The hydraulic pressure which does not contribute to the valve drive is communicated to the oil tank 80 of the hydraulic auxiliary means 8 through the hydraulic relay passage 726 and the rotary joint 76, and the hydraulic pressure is always released to the atmospheric pressure.

図2は、前記実施例1(図1)の容積型油圧供給手段の、上図は全断面図、下図は本体各部の断面図、および周辺油圧回路図と付加できる油圧回生手段と油圧補助手段である。
図2の容積型油圧供給手段7は、前記容積型ポンプであるカム71、ロータ72、およびベーン73と、回転継手76と、を備え、前記容積型ポンプは、管状のカム71の内側に、前記ロータ72の回転軸を中心とする基準プロフィール710と1個のカムプロフィール711を設け、前記カム71の内周面を摺動する4個のベーン73を前記ロータ72に備え、前記ロータ72は、前記4個のベーン73で発生する各油圧を移送する油圧中継路721、722、726を備え、前記回転継手76は、前記ロータの外周面に周方向無端溝768−3、ロータハウジングの内周面に周方向無端溝768(−1、−2)を備え、前記周方向無端溝768(−1、−2)は前記各油圧中継路721、722と前記各油圧に対応する図示しない前記弁シリンダに油圧を供給する各油圧通路78(−1、−2)とに連通する。
前記周方向無端溝768−3は、弁を作動するセル738(−1、−2)以外のセルに連通する油圧中継路726と、油圧回生手段9に連通する油圧通路79aに連通する。
油圧補助手段8aは、前記逆止弁83aに並列に絞り弁81と逆止弁82を設けている。
回生油圧の油圧通路98、99を設けた油圧回生手段9のリリーフ弁94の上流側に前記油圧通路79aは連通している。
FIG. 2 is a full sectional view of the upper part of the positive displacement hydraulic pressure supply means of the first embodiment (FIG. 1), the lower part is a sectional view of each part of the main body, and a peripheral hydraulic circuit diagram. It is.
The positive displacement hydraulic pressure supply means 7 of FIG. 2 includes the positive displacement pump cam 71, the rotor 72, and the vane 73, and the rotary joint 76, and the positive displacement pump is disposed inside the tubular cam 71. A reference profile 710 centered on the rotation axis of the rotor 72 and a cam profile 711 are provided, and the rotor 72 is provided with four vanes 73 sliding on the inner circumferential surface of the cam 71, the rotor 72 being And hydraulic relay paths 721, 722, and 726 for transferring the respective hydraulic pressures generated by the four vanes 73, and the rotary joint 76 has a circumferential endless groove 768-3 in the outer peripheral surface of the rotor and the inside of the rotor housing. The circumferential endless groove 768 (-1, -2) is provided on the circumferential surface, and the circumferential endless groove 768 (-1, -2) is not shown corresponding to the respective hydraulic relay paths 721, 722 and the respective hydraulic pressure. valve Supplying hydraulic pressure to the cylinder each hydraulic passage 78 (-1, -2) to second communication.
The circumferential endless groove 768-3 communicates with the hydraulic relay passage 726 communicating with the cells other than the cell 738 (-1, -2) which operates the valve and the hydraulic passage 79a communicating with the hydraulic regenerating means 9.
The hydraulic pressure auxiliary means 8a is provided with a throttle valve 81 and a check valve 82 in parallel with the check valve 83a.
The hydraulic pressure passage 79a is in communication with the upstream side of the relief valve 94 of the hydraulic pressure regenerating means 9 provided with the hydraulic pressure passages 98 and 99 of the regenerative hydraulic pressure.

図2の容積型油圧供給手段7の作用は、油圧発生作用は前記図1の作用と同じで、前記カム71、ロータ72、およびベーン73から成る容積型ポンプにおいて、前記カムプロフィール711によりセル738(−1.−2)の容積を縮小することにより発生する油圧が、油圧中継路721、722を通り、回転継手76である前記ロータ72内周面に設けた周方向無端溝768(−1、−2)に供給され、油圧通路78−1、78−2を通って、図示しない各々の弁シリンダ41(−1、−2)に供給され、周期的にガス交換弁45(−1、−2)を開弁する。
前記油圧補助手段8aにより、油圧の漏れ等による負圧が発生する場合は、前記油圧補助手段の油タンク80aから前記負圧により油を補給して油にキャビテーションによる気泡の発生を防止し、油圧の一部を前記絞り弁81と逆止弁82で油タンク80aに戻すリークダウンにより、バルブクリアランスを自動的に無くすラッシュアジャスタ機能が得られる。
前記カムプロフィール711によりセル738(−1.−2)以外のセルの容積を縮小することにより発生する油圧を、油圧中継路726、周方向無端溝768−3、油圧通路79aを通って、前記油圧回生手段9のリリーフ弁94の上流に供給し、各油圧通路98、99にて油圧を供給できる。
この回生油圧は、リリーフ弁94にて圧力を制御し、逆止弁93、94にて逆流防止作用と油に負圧による気泡の発生防止作用がある。
The action of the positive displacement hydraulic supply means 7 of FIG. 2 is the same as that of FIG. 1 in the action of generating hydraulic pressure, and in the positive displacement pump comprising the cam 71, the rotor 72 and the vane 73 A hydraulic pressure generated by reducing the volume of (-1. 2.) passes through the hydraulic relay paths 721 and 722 and is provided on the inner peripheral surface of the rotor 72 which is the rotary joint 76, in the circumferential direction endless groove 768 (-1 , -2) and through hydraulic pressure passages 78-1 and 78-2 to respective valve cylinders 41 (-1, -2) not shown, and cyclically the gas exchange valve 45 (-1, -2). -2) Open the valve.
When a negative pressure is generated by a leak of hydraulic pressure or the like by the hydraulic pressure auxiliary means 8a, oil is replenished from the oil tank 80a of the hydraulic pressure auxiliary means by the negative pressure to prevent generation of air bubbles due to cavitation in the oil. Leak-down where a portion of the valve is returned to the oil tank 80a by the throttle valve 81 and the check valve 82 provides a lash adjuster function that eliminates the valve clearance automatically.
The hydraulic pressure generated by reducing the volume of the cells other than the cell 738 (-1. 2. 2) by the cam profile 711 passes through the hydraulic relay passage 726, the circumferential endless groove 768-3, and the hydraulic passage 79a. The hydraulic pressure can be supplied upstream of the relief valve 94 of the hydraulic pressure regenerating means 9 and hydraulic pressure can be supplied by the hydraulic pressure passages 98, 99.
The pressure of the regenerative oil pressure is controlled by the relief valve 94, and the check valves 93 and 94 have a backflow preventing action and an action for preventing the generation of air bubbles due to the negative pressure in the oil.

図3は、実施2(請求項1対応)の、容積型ポンプをプランジャーポンプとする1気筒内燃機関の吸気と排気のガス交換弁の弁駆動機構の構成概念の説明図である。
図3は、4サイクル内燃機関1pにて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダ411、412を周期的に作動させ、前記弁シリンダ411、412が1本のガス交換弁451、452を開閉作動する往復動機関において、出力手段4p、容積型油圧供給手段7p、および回転伝動手段6pから成る内燃機関の弁駆動機構であって、前記出力手段4pは、前記弁シリンダ411、412と、クランク軸49pと、前記クランク軸49pに連動する一つのピストン47と、シリンダ46と、を備え、前記回転伝動手段6pは、前記クランク軸49pに設けた駆動車62pと、有効径が前記駆動車の2倍の前記容積型ポンプのロータ72pに設けた従動車61pと、を備え、前記容積型油圧供給手段7pは、前記容積型ポンプと、回転継手76pと、を備え、前記容積型ポンプは、管状のカム71pの内側に、基準プロフィール710pと1個のカムプロフィール711pを設け、前記カム71pの内周面を摺動する2個のプランジャ74(-1、-2)を前記ロータ72pに設け、前記ロータ72pは、前記2個のプランジャ74(-1、-2)で発生する各油圧を移送する油圧中継路721p、722pを備え、前記回転継手76pは、前記ロータ72pの外周面またはロータハウジングの内周面に前記各油圧中継路721p、722pに対応する図示しない周方向無端溝を設け、前記弁シリンダ411、412は前記各周方向無端溝と油圧通路781、782にて連通する内燃機関の弁駆動機構の構成概念の説明図である。
FIG. 3 is an explanatory view of a configuration concept of a valve drive mechanism of an intake and exhaust gas exchange valve of a one-cylinder internal combustion engine in which a positive displacement pump is a plunger pump according to the second embodiment (corresponding to claim 1).
FIG. 3 is provided with a positive displacement pump driven by a four-stroke internal combustion engine 1p, and the hydraulic pressure generated by the positive displacement pump causes the valve cylinders 411 and 412 to operate periodically, and one of the valve cylinders 411 and 412 is provided. A reciprocating engine for opening and closing gas exchange valves 451 and 452, which is a valve drive mechanism of an internal combustion engine comprising an output means 4p, a positive displacement hydraulic pressure supply means 7p, and a rotary transmission means 6p, said output means 4p being A valve cylinder 411, 412, a crankshaft 49p, a piston 47 interlocking with the crankshaft 49p, and a cylinder 46, and the rotational transmission means 6p includes a drive wheel 62p provided on the crankshaft 49p. And a driven wheel 61p provided on a rotor 72p of the positive displacement pump whose effective diameter is twice that of the driving wheel, and the positive displacement oil pressure supplying means 7p The displacement pump includes the positive displacement pump and a rotary joint 76p, and the positive displacement pump is provided with a reference profile 710p and one cam profile 711p inside a tubular cam 71p, and the inner circumferential surface of the cam 71p is slid Two moving plungers 74 (-1, -2) are provided on the rotor 72p, and the rotor 72p is a hydraulic relay path for transferring each oil pressure generated by the two plungers 74 (-1, -2) 721p, 722p, the rotary joint 76p is provided with a circumferential endless groove (not shown) corresponding to the hydraulic relay paths 721p, 722p on the outer peripheral surface of the rotor 72p or the inner peripheral surface of the rotor housing; Reference numeral 412 is an explanatory view of a structural concept of a valve drive mechanism of an internal combustion engine which is communicated with the circumferential endless grooves at hydraulic passages 781 and 782.

図3の内燃機関1pの弁駆動機構の作用は、容積型油圧供給手段7pの前記カム71p、ロータ72p、およびベーン73pから成る容積型ポンプにおいて、前記カムプロフィール711pにより発生する油圧が、油圧中継路721p、722p、回転継手76p、油圧通路781、782を通って、各々の弁シリンダ411、412に供給され、周期的にガス交換弁451、452が開弁し、油圧の漏れ等による負圧が発生する場合は、前記油圧補助手段8pの油タンクから前記負圧により油を補給する。
前記油圧通路781、782の前記弁シリンダ411、412側に、図示しない冷却器を設ける事により、油の温度上昇と劣化を防止することができる。
前記ロータ72pは、回転伝動手段6にて出力手段4pのクランク軸49pの回転数の二分の一に回転が減速されたているので、4サイクル内燃機関1pの吸気行程または排気行程に対応して開弁する。
前記カムプロフィール711pの設置角θ5と弁駆動油圧のプランジャ74(−1、−2)の設置角θ6による開弁制御は、図4にて説明する。
The function of the valve drive mechanism of the internal combustion engine 1p of FIG. 3 is that in the positive displacement pump comprising the cam 71p, the rotor 72p and the vane 73p of the positive displacement hydraulic pressure supply means 7p, the hydraulic pressure generated by the cam profile 711p is hydraulic relay Gas is supplied to the respective valve cylinders 411 and 412 through the passages 721p and 722p, the rotary joint 76p, and the hydraulic passages 781 and 782, and the gas exchange valves 451 and 452 are periodically opened to cause negative pressure due to hydraulic pressure leakage etc. In the case where the above occurs, oil is replenished from the oil tank of the hydraulic pressure auxiliary means 8p by the negative pressure.
By providing a cooler (not shown) on the side of the valve cylinders 411 and 412 of the hydraulic pressure passages 781 and 782, it is possible to prevent the temperature rise and deterioration of the oil.
The rotation of the rotor 72p is reduced by a half of the rotational speed of the crankshaft 49p of the output means 4p by the rotation transmission means 6, so that the rotor 72p corresponds to the intake stroke or exhaust stroke of the four-stroke internal combustion engine 1p. Open the valve.
The valve opening control based on the installation angle θ5 of the cam profile 711p and the installation angle θ6 of the plunger 74 (-1, -2) of the valve driving hydraulic pressure will be described with reference to FIG.

図4は、前記実施例1および実施例2の内燃機関の、上図は全行程の弁のリフト量の特性図で、下図は弁作動行程の各位相の容積型ポンプの断面図による作動説明図である。
図4の上図はベーンポンプによる前記実施例1、およびプランジャーポンプによる前記実施例2の4サイクルの弁のリフト量の特性図で、実施例1の弁リフト(A1、A2)は、2気筒内燃機関1の吸気(または排気)のガス交換弁45(−1、−2)であるので、弁リフトA1とA2はクランク角の2行程分(360°)の位相差があり、実施例2の弁リフト(P1、P2)は、1気筒内燃機関1pの排気と吸気のガス交換弁451、452であるので弁リフトP1とP2はクランク角の2行程分(360°)の位相差がある。
下図(A1)、(P1)に示すように各カムプロフィール711、771pを左右対称とすることにより、上図の各弁リフト特性図の上昇挙動と下降挙動は同じになり、更に、上昇挙動と下降挙動は、弁ストロークHの中央部を境に上下逆方向の放物線とするが、低速運転の内燃機関では正弦曲線でも、簡易S字曲線でもよい。
各々のカムプロフィール711、711pの周方向断面形状を前記各弁リフト特性図に対応する形状にすることにより、弁挙動が等加速度となり、振動と着座衝撃を減少できるので高速運転が円滑にできる。
前記実施例1は回転伝動手段6の減速比は二分の一であるので、弁の移動速度を抑制するために、各行程の全域で弁シリンダを移動させるので、
(数1)
θ1=θ2
となり、クランク軸による各行程は180°であるので、
(数2)
2(θ1+θ2)=180°
となり、前記(数1)を(数2)に代入すると、
θ1=θ2=45°となる。
前記実施例2も回転伝動手段6pの減速比は二分の一であるので、弁の移動速度を抑制するために、各行程(180°)の全域で弁シリンダを移動させるので、
(数3)
2θ5=180°
となり、排気行程と吸気行程の各弁シリンダの位相差は1行程(180°)であるので、
(数4)
2θ6=180°
であるので、θ6=90°となる。

上記説明は、回転伝動手段6、6pの減速比が二分の一の場合であるが、減速比が四分の一の場合は、前記θ1、θ2、θ5、θ6の角度を二分の一にできる。
以下の実施例は、ベーンポンプによる実施例を主に説明を行うが、各実施例はベーンポンプとプランジャーポンプの選択ができ、潤滑を重視する、または回生油圧を利用する場合はベーンポンプが有利で、高圧油圧にする場合はプランジャーポンプが適している。
ベーンポンプもプランジャーポンプもロータの高速回転時には遠心力が発生するが、低速回転時にカムの摺動面に付勢する弾性体(スプリング)を設けて略密閉状態を確保し、ベーンの往復運動による背圧処理の大気解放回路等が必要な場合があるが、従来のベーンポンプと方法が同じであるので図示および作用説明を省略する。
FIG. 4 is a characteristic diagram of the lift amount of the valve in the entire stroke of the internal combustion engine of the first embodiment and the second embodiment, and the lower diagram is an operation explanation by the sectional view of the positive displacement pump of each phase of valve operation stroke. FIG.
The upper diagram in FIG. 4 is a characteristic diagram of the lift amount of the valve of the first embodiment by the vane pump and the valve of the four cycles of the second embodiment by the plunger pump. The valve lift (A1, A2) of the first embodiment has two cylinders. Since it is the gas exchange valve 45 (-1, -2) of the intake (or exhaust) of the internal combustion engine 1, the valve lifts A1 and A2 have a phase difference of two strokes (360 °) of the crank angle. The valve lifts (P1 and P2) are the exhaust and intake gas exchange valves 451 and 452 of the one-cylinder internal combustion engine 1p, so the valve lifts P1 and P2 have a phase difference of two strokes (360 °) of the crank angle. .
As shown in the lower diagrams (A1) and (P1), by making the cam profiles 711 and 771p symmetrical, the rising behavior and the falling behavior of each valve lift characteristic diagram in the above figure become the same, and further, the rising behavior and The descending behavior is a parabola in the upside-down direction with the central portion of the valve stroke H as a boundary, but may be a sine curve or a simple S-shaped curve in a low speed internal combustion engine.
By making the circumferential cross-sectional shapes of the respective cam profiles 711 and 711p into shapes corresponding to the respective valve lift characteristic charts, the valve behavior becomes equal acceleration, and vibration and seating impact can be reduced, so that high speed operation can be made smooth.
In the first embodiment, since the reduction ratio of the rotary transmission means 6 is one half, the valve cylinder is moved over the entire stroke to suppress the moving speed of the valve.
(1)
θ1 = θ2
Since each stroke by the crankshaft is 180 °,
(2)
2 (θ1 + θ2) = 180 °
And substituting (Equation 1) into (Equation 2),
It becomes θ1 = θ2 = 45 °.
Also in the second embodiment, the reduction ratio of the rotary transmission means 6p is one half, so the valve cylinder is moved over the entire stroke (180 °) in order to suppress the moving speed of the valve.
(Number 3)
2θ5 = 180 °
Since the phase difference between the valve cylinders of the exhaust stroke and the intake stroke is one stroke (180 °),
(Number 4)
2θ6 = 180 °
Therefore, θ6 = 90 °.

The above description is for the case where the reduction ratio of the rotary transmission means 6 and 6p is one half, but when the reduction ratio is one quarter, the angles θ1, θ2, θ5 and θ6 can be reduced to one half. .
The following embodiment mainly describes the embodiment using a vane pump, but in each embodiment, the vane pump and the plunger pump can be selected, the lubrication is important, or the vane pump is advantageous when utilizing the regenerative oil pressure, A plunger pump is suitable for high pressure hydraulics.
In both the vane pump and the plunger pump, centrifugal force is generated when the rotor rotates at high speed, but an elastic body (spring) is provided to urge the sliding surface of the cam when rotating at low speed to ensure a substantially sealed state. Although an air release circuit or the like for back pressure treatment may be required in some cases, since the method is the same as that of the conventional vane pump, the illustration and the description of the operation will be omitted.

図5は、実施例3(請求項1対応)の4気筒内燃機関の吸気弁の弁駆動機構の構成説明図である。
図5に示すように、4気筒内燃機関の吸気弁の弁駆動機構において、出力手段4b、容積型油圧供給手段7b、および回転伝動手段6bから成る内燃機関1bの弁駆動機構であって、前記容積型油圧供給手段7bは、前記容積型ポンプと、回転継手76bと、を備え、前記容積型ポンプは、管状のカム71bの内側に、前記ロータ72bの回転軸を中心とする基準プロフィール710bと1個のカムプロフィール711bを設け、前記カムの内周面を摺動する八枚のベーン73bを前記ロータ72bに備えた簡素な構造である。
カム71bの1個のカムプロフィール711bを共用して4組の油圧回路を配置できる簡素な構造で、油圧供給手段7bの信頼性が高く、小型で安価に製作できる効果がある。
クランク軸49bに設けた駆動車と前記容積型ポンプに設けた従動車による二分の一の減速回転により発生する油圧を対応する弁シリンダに供給するので油圧回路の切替え手段が不要となる効果がある。
更に、油圧回生手段9bを設けることにより、弁シリンダの作動に寄与しないセルによる油圧を利用できるので、パワーステアリング、CVT、あるいは本願発明の請求項3または請求項4の位相制御手段の油圧として利用できる効果があり、本油圧が必要でない時には、方向制御弁96を作動し、回生油圧ポンプの駆動による動力損失の発生を抑制できる。
油圧補正手段8bの構成と作用は、前記実施例2と同じで、バルブクリアランスを自動的に無くすラッシュアジャスタ機能を付加できる効果がある。
FIG. 5 is a configuration explanatory view of a valve drive mechanism of an intake valve of a four-cylinder internal combustion engine according to a third embodiment (corresponding to claim 1).
As shown in FIG. 5, in a valve drive mechanism of an intake valve of a four-cylinder internal combustion engine, the valve drive mechanism of an internal combustion engine 1b comprising an output means 4b, a positive displacement hydraulic pressure supply means 7b and a rotational transmission means 6b. The positive displacement hydraulic supply means 7b comprises the positive displacement pump and the rotary joint 76b, and the positive displacement pump is provided inside the tubular cam 71b with a reference profile 710b centered on the rotation axis of the rotor 72b. It has a simple structure in which one cam profile 711b is provided, and eight vanes 73b sliding on the inner peripheral surface of the cam are provided on the rotor 72b.
The simple structure can share one cam profile 711b of the cam 71b to arrange four sets of hydraulic circuits, so that there is an effect that the hydraulic supply means 7b has high reliability and can be manufactured compactly at low cost.
Since the hydraulic pressure generated by the decelerating rotation of the drive wheel provided on the crankshaft 49b and the half speed rotation by the driven vehicle provided on the positive displacement pump is supplied to the corresponding valve cylinder, the switching means of the hydraulic circuit becomes unnecessary. .
Further, by providing the oil pressure regeneration means 9b, the oil pressure by the cell which does not contribute to the operation of the valve cylinder can be used, so that it can be used as power steering, CVT, or oil pressure of phase control means of claim 3 or 4 of the present invention. When the hydraulic pressure is not required, the directional control valve 96 can be operated to suppress the occurrence of power loss due to the drive of the regenerative hydraulic pump.
The configuration and operation of the hydraulic pressure correction means 8b are the same as those of the second embodiment, and there is an effect that a lash adjuster function can be added to automatically eliminate the valve clearance.

図6は、前記実施例3(図5)の4気筒内燃機関の吸気弁の弁駆動機構の容積型油圧供給手段の配置斜視図とベーン部断面の部分拡大図である。
ロータ72bの外周面またはロータハウジングの内周面に設けた図示しない周方向無端溝から成る回転継手により、任意の角度に油圧配管を設けることができるので、図6に示すように前記油圧回路の放射状配置の制約の問題点が解消できる。
クランク軸49bと並行に容積型油圧供給手段7bを設け、弁シリンダ411(−1〜4)と容積型油圧供給手段7bの配管が容易になり、各油圧通路781(b1〜b4)が交差することなく配置できるので、配管ブロックによる一体化ができる。
図示しない排気の弁機構は、前記容積型油圧供給手段7bを設ける、または他の弁機構とすることもできる。
FIG. 6 is an arrangement perspective view of a positive displacement hydraulic pressure supply means and a partially enlarged view of the vane section of the valve drive mechanism of the intake valve of the four-cylinder internal combustion engine of the third embodiment (FIG. 5).
Since hydraulic piping can be provided at any angle by means of a rotary joint composed of a circumferential endless groove (not shown) provided on the outer peripheral surface of the rotor 72b or the inner peripheral surface of the rotor housing, as shown in FIG. The problem of the restriction of radial arrangement can be solved.
A positive displacement hydraulic pressure supply means 7b is provided in parallel with the crankshaft 49b, and piping of the valve cylinder 411 (-1 to 4) and the positive displacement hydraulic pressure supply means 7b becomes easy, and the respective hydraulic pressure passages 781 (b1 to b4) intersect Because it can be arranged without, it is possible to unify by piping block.
The exhaust valve mechanism (not shown) may be provided with the positive displacement hydraulic pressure supply means 7b or may be another valve mechanism.

図7は、実施例4(請求項2対応)のベーンポンプで発生する油圧が方向制御弁を介して各弁シリンダに供給される2気筒内燃機関の弁駆動機構の構成概念の説明図である。
図7の容積型油圧供給手段7eが、前記容積型ポンプと、前記回転継手の替わりに方向制御弁77(−1、−2)と、を備え、前記容積型ポンプは、前記管状のカム71eの内側に、基準プロフィール710eと2個のカムプロフィール711eを周方向に等間隔に設け、前記方向制御弁77(−1、−2)は、前記ロータ72eの外周面または前記ロータハウジングの内周面に油圧中継路721e、722eに対応する図示しない周方向有端溝を設け、各弁シリンダ411(e1、e2)、412(e1、e2)は前記各周方向有端溝と油圧通路781(e1、e2)、782(e1、e2)にて連通することを特徴とする請求項1に記載の内燃機関の弁駆動機構。
回転伝動手段6e、回転継手76e、および油圧回生手段9eは前記実施例1(図1、図2)と構成が同じある。
FIG. 7 is an explanatory view of a structural concept of a valve drive mechanism of a two-cylinder internal combustion engine in which the hydraulic pressure generated by the vane pump of the fourth embodiment (corresponding to claim 2) is supplied to each valve cylinder via a direction control valve.
The positive displacement hydraulic pressure supply means 7e of FIG. 7 includes the positive displacement pump and a directional control valve 77 (-1, -2) instead of the rotary joint, and the positive displacement pump includes the tubular cam 71e. The reference profile 710e and the two cam profiles 711e are provided at equal intervals in the circumferential direction on the inner side, and the directional control valve 77 (-1, -2) is the outer peripheral surface of the rotor 72e or the inner periphery of the rotor housing A circumferential end groove (not shown) corresponding to the hydraulic relay paths 721e and 722e is provided on the surface, and each of the valve cylinders 411 (e1, e2) and 412 (e1, e2) 2. The valve drive mechanism for an internal combustion engine according to claim 1, wherein the valve drive mechanism is in communication with e1, e2), 782 (e1, e2).
The rotary transmission means 6e, the rotary joint 76e, and the hydraulic pressure regenerating means 9e have the same configuration as that of the first embodiment (FIGS. 1 and 2).

図7の内燃機関1eの弁駆動機構の前記容積型油圧供給手段7eの作用は、前記実施例1と同様に回転伝動手段6eによりクランク軸49eの二分の一の回転数で回転するロータ72eに挟角がθ2e(=θ2)のベーン73eを設け、2個のカムプロフィール711eによりロータ72eの一回転に等間隔で2回発生する油圧中継路721eを通る油圧を、方向制御弁77−1により前記ロータ72eの回転に同期して切替え、排気の各弁シリンダ412(e1、e2)を交互に作動する。
ポンプの位相差(θ2e+θ3e)を前記実施例2に示す油圧ポンプの位相差(θ6)と同様にロータ回転角の90°とすることにより、前記カムプロフィール711eにより発生する油圧中継路722eを通る油圧を方向制御弁77−2により前記ロータ72eの回転に同期して切替えて吸気の弁シリンダ411(e1、e2)を交互に作動する。
回転継手76e、および油圧回生手段9eは前記実施例1(図1、図2)と作用が同じであるので説明は省略する。
The function of the positive displacement hydraulic pressure supply means 7e of the valve drive mechanism of the internal combustion engine 1e of FIG. 7 is the same as that of the first embodiment, in the rotor 72e rotating at a half rotation speed of the crankshaft 49e by the rotational transmission means 6e. A vane 73e with an included angle of θ2e (= θ2) is provided, and the oil pressure passing through the hydraulic relay passage 721e generated twice at equal intervals in one rotation of the rotor 72e by two cam profiles 711e is obtained by the direction control valve 77-1. The switching is performed in synchronization with the rotation of the rotor 72e, and the exhaust valve cylinders 412 (e1, e2) are alternately operated.
By setting the phase difference (θ2e + θ3e) of the pump to 90 ° of the rotor rotation angle similarly to the phase difference (θ6) of the hydraulic pump described in the second embodiment, the hydraulic pressure passing through the hydraulic relay passage 722e generated by the cam profile 711e Are switched in synchronization with the rotation of the rotor 72e by the directional control valve 77-2 to alternately operate the valve cylinders 411 (e1, e2) of the intake valve.
The rotary joint 76e and the hydraulic pressure regenerating means 9e have the same functions as those of the first embodiment (FIGS. 1 and 2), and therefore the description thereof is omitted.

図8は、前記実施例4(図7)の容積型油圧供給手段の、中図は全断面図、上図は容積型ポンプ部、下図は回転継手と各方向制御弁の断面図、および周辺油圧回路図である。
図8の、中図に示す容積型油圧供給手段7eが、上図に示す前記容積型ポンプであるベーンポンプと、前記回転継手の替わりに下図中と下図右に示す方向制御弁77(−1、−2)を備え、前記容積型ポンプは、前記管状のカム71eの内側に、基準プロフィール710eと2個のカムプロフィール711eを周方向に等間隔に設け、下図中と下図右に示す前記方向制御弁77(−1、−2)は、前記ロータ72eの外周面に前記カムプロフィール711eと同数の2個の周方向有端溝778(e1a、e2a)を設け、前記2個のカムプロフィール711eと同じ位相で前記ロータハウジング702eの内周面の前記周方向有端溝778(e1a、e2a)に連通する位置に前記図7の前記弁シリンダ411(e1、e2)、412(e1、e2)に連通する油圧通路781(e1、e2)、782(e1、e2)を設け、前記4個のベーン73eで発生する各弁作動油圧が、前記方向制御弁77(−1、−2)により対応する複数の前記弁シリンダ411(e1、e2)、412(e1、e2)に順次油圧を供給する内燃機関1eの弁駆動機構である。
FIG. 8 is a full sectional view of the middle section of the positive displacement hydraulic pressure supply means of the fourth embodiment (FIG. 7), the upper view is a positive displacement pump section, and the lower section is a sectional view of the rotary joint and each direction control valve It is a hydraulic circuit diagram.
In FIG. 8, the displacement type hydraulic pressure supply means 7 e shown in the middle view of FIG. 8 is a vane pump which is the displacement type pump shown in the upper view, and direction control valve 77 (−1, 2), wherein the positive displacement pump is provided with a reference profile 710e and two cam profiles 711e at equal intervals in the circumferential direction inside the tubular cam 71e, and the direction control shown in the lower figure and the lower figure right The valve 77 (-1, -2) is provided with two circumferential end grooves 778 (e1a, e2a) equal in number to the cam profile 711e on the outer peripheral surface of the rotor 72e, and the two cam profiles 711e and The valve cylinders 411 (e1, e2) and 412 (e1) of FIG. 7 are positioned in communication with the circumferential end groove 778 (e1a, e2a) on the inner peripheral surface of the rotor housing 702e in the same phase. The hydraulic pressure passages 781 (e1, e2) and 782 (e1, e2) communicating with e2) are provided, and each valve operating hydraulic pressure generated by the four vanes 73e is the direction control valve 77 (-1, -2) The valve drive mechanism of the internal combustion engine 1e sequentially supplies the hydraulic pressure to the plurality of corresponding valve cylinders 411 (e1, e2) and 412 (e1, e2).

図8の容積型油圧供給手段7eの作用は、上図の容積型ポンプ部の断面図に示すように、前記実施例4の図7で説明したようにクランク軸49eの二分の一の回転数で回転するロータ72eに設けた挟角がθ2eのベーン73eを二組設けることにより各セル738(e1、e2)を構成し、前記セル738(e1、e2)が前記2個のカムプロフィール711(e1。e2)により発生する各々の油圧を各油圧中継路721e、722eに供給する。
従って、ロータ72eの一回転毎に等間隔で2回発生する前記油圧が各油圧中継路721e、722eに供給され、前記供給され油圧は中図に示す前記各油圧中継路721e、722eに対応する周方向有端溝778(e1a、e2a)に供給される。
下図中と下図右に示す前記各周方向有端溝778(e1a、e2a)に供給された前記油圧は、前記ロータ72eの回転に従って前記カム711e1の油圧発生位相に対応する油圧通路782e1、781e1と、前記カム711e2の油圧発生位相に対応する油圧通路782e2、781e2に油圧回路が交互に切替わるので、前記各シリンダ46(e1、e2)に設けた排気の各弁シリンダ412(e1、e2)に交互に油圧が供給され、等間隔で交互に開弁作動する。
前記カムプロフィール711(e1、e2)により発生する油圧中継路722eを通る油圧を方向制御弁77−2により、前記ロータ72eの回転に同期して切替えて吸気の弁シリンダ411(e1、e2)を交互に作動する。
ポンプのロータ位相差(θ2e+θ3e)を90°とすることにより、前記排気の各弁シリンダ412(e1、e2)の作動とクランク位相で180°遅角にて前記吸気の各弁シリンダ411(e1、e2)を作動する。
中図、下図中、下図右に示すように、前記周方向有端溝778(e1a、e2a)の残余の周方向部に周方向有端溝778(e1b、e2b)を設け、前記周方向有端溝778(e1b、e2b)を油圧補助手段8eの油タンク80eに、油圧通路79e2、周方向無端溝768e2、および油圧中継路725を介して連通し、前記油圧作動時以外(ガス交換弁閉弁時)は油圧圧力を大気圧に解放することにより、確実なガス交換弁の着座ができるので、確実なラッシュアジャスタ機能を付加できる効果がある。
前記各セル738(e1、e2)の間のセルで発生する前記弁シリンダの作動に寄与しない油圧を油圧通路726e、周方向無端溝768e1、および油圧通路79e1を介して油圧回生手段9eに供給することにより、パワーステアリング、CVT、あるいは本願発明の請求項3または請求項4の位相制御手段等の油圧として利用できる効果がある。
The operation of the positive displacement hydraulic pressure supply means 7e of FIG. 8 is, as shown in the sectional view of the positive displacement pump portion in the upper figure, the half rotation speed of the crankshaft 49e as described in FIG. 7 of the fourth embodiment. The respective cells 738 (e1 and e2) are configured by providing two sets of vanes 73e with an included angle of θ2e provided to the rotor 72e that rotates at the same time, and the cells 738 (e1 and e2) have the two cam profiles 711 (the Each hydraulic pressure generated by e1, e2) is supplied to each hydraulic relay path 721e, 722e.
Therefore, the hydraulic pressure generated twice at equal intervals every rotation of the rotor 72e is supplied to the hydraulic relay paths 721e and 722e, and the supplied hydraulic pressure corresponds to the hydraulic relay paths 721e and 722e shown in the middle view. It is supplied to the circumferential direction end groove 778 (e1a, e2a).
The hydraulic pressure supplied to the circumferential end grooves 778 (e1a, e2a) shown in the lower drawing and the lower right in the lower drawing correspond to the hydraulic passages 782e1, 781e1 corresponding to the hydraulic generation phase of the cam 711e1 as the rotor 72e rotates. Since the hydraulic circuit is alternately switched to the hydraulic passages 782e2 and 781e2 corresponding to the hydraulic pressure generation phase of the cam 711e2, the exhaust valve cylinders 412 (e1, e2) provided in the cylinders 46 (e1, e2) are alternately switched. The hydraulic pressure is alternately supplied, and the valve opening operation is alternately performed at equal intervals.
The hydraulic pressure passing through the hydraulic relay passage 722e generated by the cam profile 711 (e1, e2) is switched in synchronization with the rotation of the rotor 72e by the directional control valve 77-2 to switch the valve cylinder 411 (e1, e2) of the intake valve. Operate alternately.
By setting the rotor phase difference (θ2e + θ3e) of the pump to 90 °, each intake valve cylinder 411 (e1, e2, with a 180 ° retarded angle between the operation of each exhaust valve cylinder 412 (e1, e2) and crank phase). Activate e2).
In the middle and lower figures, as shown in the lower right of the figure, a circumferential limit groove 778 (e1 b, e2 b) is provided in the remaining circumferential portion of the circumferential limit groove 778 (e1 a, e2 a). The end groove 778 (e1 b, e2 b) is communicated with the oil tank 80 e of the hydraulic auxiliary means 8 e via the hydraulic passage 79 e2, the circumferential endless groove 768 e2 and the hydraulic relay passage 725, except during hydraulic operation (gas exchange valve closed In the case of a valve), by releasing the hydraulic pressure to atmospheric pressure, a reliable gas exchange valve can be seated, so that there is an effect that a reliable lash adjuster function can be added.
The hydraulic pressure which does not contribute to the operation of the valve cylinder generated in the cells between the cells 738 (e1 and e2) is supplied to the hydraulic pressure regenerating means 9e via the hydraulic pressure passage 726e, the circumferential endless groove 768e1 and the hydraulic pressure passage 79e1. Accordingly, there is an effect that it can be used as power steering, CVT, or hydraulic pressure of the phase control means of claim 3 or 4 of the present invention.

図9は、前記実施例4(図8)の容積型油圧供給手段のロータに設けた各周方向溝と各油圧通路接続部から成る回転継手と方向制御弁の斜視図である。
前記容積型油圧供給手段7eのロータ72eは、ベーン73eを設けたポンプ部と前記油圧通路782(e1、e2)と連通する周方向有端溝778(e1a、e1b)から成る方向制御弁77−1と、前記油圧通路781(e1、e2)と連通する周方向有端溝778(e2a、e2b)から成る方向制御弁77−2を備え、油圧通路79e1と連通する周方向無端溝768e1から成る回転継手76e1と、同様の構造の転継手76e2を備えている。
ロータ72eに前記ポンプ部と前記方向制御弁を設けているので、4サイクル内燃機関のガス交換弁の作動を電気的な制御を必要としない簡素な構成でできるので、安価で信頼性が高く、高速回転に対応できる効果がある。
FIG. 9 is a perspective view of a rotary joint and directional control valves including circumferential grooves provided on the rotor of the positive displacement hydraulic pressure supply means of the fourth embodiment (FIG. 8) and hydraulic passage connection parts.
The rotor 72e of the positive displacement hydraulic pressure supply means 7e is a directional control valve 77 comprising a pump portion provided with vanes 73e and a circumferential end groove 778 (e1a, e1b) communicating with the hydraulic passage 782 (e1, e2). 1 and a directional control valve 77-2 comprising a circumferential end groove 778 (e2a, e2b) communicating with the hydraulic pressure passage 781 (e1, e2) and comprising a circumferential endless groove 768e1 communicating with the hydraulic pressure passage 79e1. The rotary joint 76e1 and the rolling joint 76e2 of the same structure are provided.
Since the pump unit and the directional control valve are provided in the rotor 72e, the gas exchange valve of the four-stroke internal combustion engine can be operated with a simple configuration that does not require electrical control, so it is inexpensive and highly reliable. There is an effect that can cope with high speed rotation.

図10は、前記実施例4の、上図は排気弁の弁リフト特性図で、E10(〜30)は前記弁リフト特性図の各位相の容積型ポンプと方向制御弁の断面図による動作説明図である。
図10の上図(E)は、前記実施例4(図7)の2気筒4サイクル内燃機関1eの排気弁シリンダ412(e1、e2)の弁リフトの特性図で、横軸はクランク角、縦軸は弁のリフト量(h)である。
回転伝動手段6eにより前記実施例1(図4)と同様に、θ1e=θ2e=45°とし、ロータ72eに設けたベーン73eで形成されるセル738e5で発生する油圧は、油圧中継路721eを通って方向制御弁77−1である周方向有端溝778e1aに供給され、油圧回路の切替えにより油圧通路782e1、または油圧通路782e2を通って排気の弁シリンダ412(e1、e2)の一方に供給されて弁リフト動作を行うので、上図(E)に示すように。弁シリンダ412(e1、e2)は交互に弁リフト動作を行う。
FIG. 10 is a valve lift characteristic diagram of the exhaust valve in the upper view of the fourth embodiment, and E10 (〜3030) is an operation explanation by a sectional view of the positive displacement pump and direction control valve of each phase of the valve lift characteristic diagram. FIG.
The upper diagram (E) of FIG. 10 is a characteristic diagram of the valve lift of the exhaust valve cylinder 412 (e1, e2) of the two-cylinder four-stroke internal combustion engine 1e of the fourth embodiment (FIG. 7). The vertical axis is the valve lift amount (h).
Similarly to the first embodiment (FIG. 4), the rotational transmission means 6e sets θ1e = θ2e = 45 °, and the hydraulic pressure generated in the cell 738e5 formed by the vanes 73e provided on the rotor 72e passes through the hydraulic relay path 721e. And is supplied to one of the exhaust valve cylinders 412 (e1, e2) through the hydraulic passage 782 e1 or hydraulic passage 782 e2 by switching the hydraulic circuit. Since the valve lift operation is performed, as shown in the upper figure (E). The valve cylinders 412 (e1, e2) alternately perform valve lift operations.

図10の容積型ポンプと3位置の回転スライド式方向制御弁77−1の作用を以下に説明する。
(E10)に示すように、セル738e5に油圧が発生しない時は、(E10a)に示すように前記方向制御弁77−1の前記油圧回路の切替えは、両方の弁シリンダ412(e1、e2)が待機時は油圧中継路725を介して図示しない油圧補助手段の油タンクに連通して油圧は大気圧となるので、ラッシュアジャスタ機能を付加できる効果がある。
(E20)に示すように、ロータ72eが回転し、カムプロフィール711e1によりセル738e5が油圧発生時は、(E20a)に示すように、前記方向制御弁77−1は油圧通路782e1に前記油圧を供給して弁シリンダ412e1を作動し、待機中の油圧通路782e2の油圧は大気圧を継続する。
(E30)に示すように、ロータ72eが更に回転し、カムプロフィール711e2によりセル738e6が油圧発生時は、前記油圧通路782(e1、e2)の両方の油圧回路が入れ替わり、弁シリンダ412e2を作動する。
吸気の弁シリンダ411(e1、e2)を油圧駆動するセル738e6の位相を、前記排気のセル738e5にロータ角にして90°遅らせることにより、吸気の弁シリンダ411(e1、e2)を同様に作動できる。
The operation of the positive displacement pump of FIG. 10 and the three-position rotary sliding directional control valve 77-1 will be described below.
As shown in (E10), when the hydraulic pressure is not generated in the cell 738e5, switching of the hydraulic circuit of the directional control valve 77-1 is performed in both valve cylinders 412 (e1, e2) as shown in (E10a). In the standby mode, the hydraulic pressure becomes atmospheric pressure by communicating with the oil tank of the hydraulic auxiliary means (not shown) via the hydraulic relay path 725, so that the lash adjuster function can be added.
As shown in (E20), when the rotor 72e rotates and the cell profile 738e5 generates oil pressure by the cam profile 711e1, as shown in (E20a), the direction control valve 77-1 supplies the oil pressure to the oil pressure passage 782e1. Then, the valve cylinder 412e1 is operated, and the hydraulic pressure of the waiting hydraulic passage 782e2 continues the atmospheric pressure.
As shown in (E30), when the rotor 72e is further rotated and the oil pressure of the cell 738e6 is generated by the cam profile 711e2, both hydraulic circuits of the hydraulic passage 782 (e1, e2) are replaced to operate the valve cylinder 412e2. .
The intake valve cylinder 411 (e1, e2) is similarly operated by delaying the phase of the cell 738e6 hydraulically driving the intake valve cylinder 411 (e1, e2) to the exhaust cell 738e5 by 90 ° as a rotor angle. it can.

図11は、実施例5(請求項2対応)の発生する油圧が方向制御弁を介して各弁シリンダに供給される4気筒内燃機関の弁駆動機構の構成概念の説明図である。
図11の実施例5は、前記実施例4(図7)の容積型油圧供給手段7eのポンプ部のベーンと油圧中継路を180°位相シフトした油圧ポンプ回路を増設し、前記増設した油圧ポンプ回路に対応する4個の方向制御弁77(c1〜c4)を設けた4気筒内燃機関1cの排気と吸気の弁駆動機構である。
FIG. 11 is an explanatory view of a structural concept of a valve drive mechanism of a four-cylinder internal combustion engine in which the hydraulic pressure generated in the fifth embodiment (corresponding to claim 2) is supplied to each valve cylinder via a direction control valve.
Embodiment 5 of FIG. 11 adds the hydraulic pump circuit in which the vanes of the pump portion of the positive displacement hydraulic pressure supply means 7e of the above-mentioned Embodiment 4 (FIG. 7) and the hydraulic relay path are phase shifted 180 degrees. An exhaust and intake valve drive mechanism of a four-cylinder internal combustion engine 1c provided with four directional control valves 77 (c1 to c4) corresponding to a circuit.

図12は、前記実施例5(図11)の、油圧通路を一側面に配置した容積型油圧供給手段の全断面図と、上図はポンプ部、下図は回転継手部と各方向制御弁部の断面図である。
図12の実施例5の容積型油圧供給手段7cは、前記実施例4(図8)の容積型油圧供給手段7eのポンプ部断面図(上図)のベーン73eと油圧中継路721e、722eを180°位相シフトした油圧ポンプ回路を増設し、前記増設した油圧ポンプ回路に対応する方向制御弁77(c1〜c4)を設け、前記方向制御弁77(c1〜c4)に対応する各弁シリンダに連通する油圧通路781(c1〜c4)、782(c1〜c4)を一方(下方)の側面に設けることにより、容積型油圧供給手段7cの油圧配管を最短距離でブロック化できる。
図12のロータ72cの断面図の(下図左)は、回生油圧を油圧中継路726c、回転継手76cの周方向無端溝768c1を通って79c1から油圧回生手段9cに供給する。
油圧中継路721cに対応する方向制御弁77c1の作用を、以下の(下図中)、(下図右)にて説明する。
(下図中)は、弁シリンダ412c1の作動油圧を油圧中継路721c、周方向有端溝778c1aを通って油圧通路782c1に供給し、前記弁シリンダ412c1が休止時は、油圧通路79c2を介して油タンク80cに連通する周方向有端溝778c1bが前記油圧通路782c1に連通しラッシュアジャスタ効果が得られる。
(下図右)は、前記弁シリンダ412c1(下図中)とロータ角で180°位相が異なる弁シリンダ412c4の作動油圧を油圧中継路721c、周方向有端溝778c1cを通って油圧通路782c4に供給し、前記弁シリンダ412c4が休止時は、油圧通路79c2を介して油タンク80cに連通する周方向有端溝778c1dが前記油圧通路782c4に連通しラッシュアジャスタ効果が得られる。
前記周方向有端溝778c1bと周方向有端溝778c1dはロータ72cの軸に並行に設けた溝により連通し、他の方向制御弁77(c2〜c4)も前記説明と同様の構成である。
FIG. 12 is a full sectional view of the positive displacement hydraulic pressure supply means arranged on one side surface of the hydraulic passage according to the fifth embodiment (FIG. 11), the upper view is a pump portion, and the lower view is a rotary joint portion and each direction control valve portion. FIG.
The positive displacement hydraulic pressure supply means 7c of the fifth embodiment of FIG. 12 is the same as the vane 73e and the hydraulic relay paths 721e and 722e of the pump section sectional view (upper view) of the positive displacement hydraulic pressure supply means 7e of the fourth embodiment (FIG. 8). A hydraulic pump circuit phase-shifted by 180 ° is added, a direction control valve 77 (c1 to c4) corresponding to the added hydraulic pump circuit is provided, and each valve cylinder corresponding to the direction control valve 77 (c1 to c4) By providing the communicating hydraulic passages 781 (c1 to c4) and 782 (c1 to c4) on one (downward) side surface, the hydraulic piping of the positive displacement hydraulic pressure supplying means 7c can be blocked in the shortest distance.
In the cross-sectional view of the rotor 72c in FIG. 12 (left in the lower figure), the regenerative hydraulic pressure is supplied from the 79c1 to the hydraulic regenerating means 9c through the hydraulic relay passage 726c and the circumferential endless groove 768c1 of the rotary joint 76c.
The operation of the direction control valve 77c1 corresponding to the hydraulic relay passage 721c will be described below (in the lower diagram) and (in the lower diagram right).
The hydraulic pressure of the valve cylinder 412c1 is supplied to the hydraulic passage 782c1 through the hydraulic relay passage 721c and the circumferential end groove 778c1a (in the lower diagram), and the oil is discharged through the hydraulic passage 79c2 when the valve cylinder 412c1 is at rest. A circumferential end groove 778c1b communicating with the tank 80c communicates with the hydraulic pressure passage 782c1 to obtain a lash adjuster effect.
The hydraulic oil pressure of the valve cylinder 412c4 whose phase is 180 ° different from that of the valve cylinder 412c1 (in the lower drawing) from the valve cylinder 412c1 (in the lower drawing) is supplied to the hydraulic passage 782c4 through the hydraulic relay passage 721c and the circumferential end groove 778c1c. When the valve cylinder 412c4 is at rest, the circumferential end groove 778c1d communicating with the oil tank 80c via the hydraulic pressure passage 79c2 is communicated with the hydraulic pressure passage 782c4 to obtain a lash adjuster effect.
The circumferential end groove 778c1b and the circumferential end groove 778c1d communicate with each other by a groove provided parallel to the axis of the rotor 72c, and the other directional control valves 77 (c2 to c4) have the same configuration as that described above.

図13は、実施例6(請求項2対応)の弁駆動機構で、8気筒内燃機関の排気と吸気の容積型油圧供給手段の配置斜視図と、矢視図Gの容積型ポンプ部の断面図である。
矢視図Gに示すように、前記実施例5の4気筒内燃機関の排気と吸気の弁駆動機構の容積型油圧供給手段7cのポンプ部断面図(図12(上図))の4個の油圧中継路(721c〜724c)を45°位相シフトした位置にも油圧中継路設け、図13に示すように8気筒内燃機関1sの排気と吸気の弁駆動機構の容積型油圧供給手段7sを両側のV型シリンダーブロックの谷間に設ける。
図13の実施例6は、2個のカムプロフィール711sで8気筒の排気と吸気の16個の図示しないガス交換弁を作動できるので、弁駆動機構の可動部の集約化により小型で部品点数が少ない簡素な構造となり、安価で信頼性が高い弁駆動機構ができる。
矢視図Gに示すように、前記2個のカムプロフィール711sを水平方向に配置し、図示しない弁シリンダに連通する各油圧通路を前記容積型油圧供給手段7sの水平方向の両側に配置できるので、最短距離での配管のブロック化が容易で、内燃機関1sの弁駆動機構を省スペースで安価に製作できる効果がある。
FIG. 13 shows a valve drive mechanism according to a sixth embodiment (corresponding to claim 2), including an arrangement perspective view of a displacement type hydraulic pressure supply means for the exhaust and intake of an 8-cylinder internal combustion engine and a cross section of the displacement type pump portion in arrow view G. FIG.
As shown by the arrow G, four of the pump section sectional view (FIG. 12 (upper view)) of the positive displacement hydraulic pressure supply means 7c of the exhaust and intake valve drive mechanism of the four-cylinder internal combustion engine of the fifth embodiment. The hydraulic relay paths (721c to 724c) are also provided at positions shifted in phase by 45 °, and as shown in FIG. 13, positive and negative hydraulic pressure supply means 7s of the exhaust and intake valve drive mechanisms of the eight cylinder internal combustion engine 1s are provided on both sides. Provided in the valley of the V-type cylinder block.
Example 6 of FIG. 13 can operate 16 gas exchange valves (not shown) of exhaust and intake of eight cylinders with two cam profiles 711s, so the integration of the movable parts of the valve drive mechanism makes it compact and has a small number of parts. The structure is small and simple, and an inexpensive and reliable valve drive mechanism can be obtained.
As shown in the arrow view G, the two cam profiles 711 s can be disposed in the horizontal direction, and each hydraulic passage communicating with the valve cylinder (not shown) can be disposed on both sides in the horizontal direction of the volumetric hydraulic supply means 7 s. It is easy to block piping at the shortest distance, and there is an effect that the valve drive mechanism of the internal combustion engine 1s can be manufactured inexpensively at a small space.

図14は、実施例7(請求項2対応)の、3個のカムプロフィールを備えた容積型油圧供給手段による、6気筒内燃機関の弁駆動機構の構成概念の説明図である。
図14の容積型油圧供給手段7dが、容積型ポンプと、回転継手の替わりに方向制御弁77(d1〜d4)と、を備え、前記容積型ポンプは、前記管状のカム71dの内側に、基準プロフィールと3個のカムプロフィール711dを周方向に等間隔に設け、前記方向制御弁77(d1〜d4)は、前記ロータの外周面または前記ロータハウジングの内周面に前記油圧中継路に対応する図示しない周方向有端溝を設け、吸気と排気の弁シリンダ411(d1〜d6)、412(d1〜d6)は前記各周方向有端溝と油圧通路781(d1〜d6)、782(d1〜d6)にて連通する請求項1に記載の内燃機関1dの弁駆動機構である。
FIG. 14 is an explanatory view of a structural concept of a valve drive mechanism of a six-cylinder internal combustion engine according to a seventh embodiment (corresponding to claim 2) of positive displacement hydraulic pressure supplying means having three cam profiles.
The positive displacement hydraulic pressure supply means 7d of FIG. 14 includes a positive displacement pump and directional control valves 77 (d1 to d4) instead of the rotary joint, and the positive displacement pump is disposed inside the tubular cam 71d. A reference profile and three cam profiles 711d are provided at equal intervals in the circumferential direction, and the directional control valve 77 (d1 to d4) corresponds to the hydraulic relay passage on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing The circumferential end grooves (not shown) are provided, and the intake and exhaust valve cylinders 411 (d1 to d6) and 412 (d1 to d6) are respectively provided with the circumferential end grooves and the hydraulic passages 781 (d1 to d6), 782 ( It is a valve drive mechanism of internal combustion engine 1d of Claim 1 communicated by d1-d6).

図15は、前記実施例7(図14)の、油圧配管を3方の側面に設けた容積型油圧供給手段の、上図は全断面図、およびポンプ部、回転継手部、各方向制御弁部の断面図である。
図15の容積型油圧供給手段7dが、カム71d、ロータ72d、およびベーン73dから成る容積型ポンプと、前記回転継手の替わりに方向制御弁77(d1〜d4)と、を備え、前記容積型ポンプは、前記管状のカム71dの内側に、基準プロフィール710dと3個のカムプロフィール711(d1〜d3)を周方向に等間隔に設け、前記方向制御弁77(d1〜d4)は、前記ロータ72dの外周面に油圧中継路721d〜724dに対応する周方向有端溝778d1a〜778d4aを設け、前記弁シリンダ411(d1〜d6)、412(d1〜d6)は前記各周方向有端溝778d1a〜778d4aと油圧通路781(d1〜d6)、782(d1〜d6)にて連通する請求項1に記載の内燃機関の弁駆動機構である。
FIG. 15 is a full sectional view of the positive hydraulic pressure supply means of the seventh embodiment (FIG. 14) in which hydraulic pipes are provided on three sides, and a pump section, a rotary joint, and each direction control valve. It is sectional drawing of a part.
The positive displacement hydraulic pressure supply means 7d shown in FIG. 15 includes a positive displacement pump comprising a cam 71d, a rotor 72d, and a vane 73d, and directional control valves 77 (d1 to d4) instead of the rotary joint. In the pump, a reference profile 710d and three cam profiles 711 (d1 to d3) are provided at equal intervals in the circumferential direction inside the tubular cam 71d, and the directional control valve 77 (d1 to d4) is the rotor The circumferential end grooves 778d1a to 778d4a corresponding to the hydraulic relay paths 721d to 724d are provided on the outer peripheral surface of 72d, and the valve cylinders 411 (d1 to d6) and 412 (d1 to d6) are the circumferential end grooves 778d1a. The valve drive mechanism of an internal combustion engine according to claim 1, which communicates with 〜778d4a at hydraulic pressure passages 781 (d1 to d6) and 782 (d1 to d6).

図15の容積型油圧供給手段7dの作用は、中図左のポンプ部断面に示すように4組のベーンポンプで発生する油圧は、前記油圧中継路721d〜724dを通って、対応する各方向制御弁77(d1〜d4)の周方向有端溝778d1a〜778d4aに供給され、中図右の方向制御弁77d3に示すように、前記カムプロフィール711(d1〜d3)の位相に対応するロータハウジング702dの同位相の等間隔3側面に油圧通路782(d4、d5、d6)を設け、前記周方向有端溝778d3aがロータ72dの回転により、順次対応する弁シリンダの油圧通路782(d4、d5、d6)に連通して油圧を供給する。
下図左の周方向無端溝768d1は、図示しない油圧回生手段9dに、前記全断面図の周方向無端溝768d2は図示しない油圧補助手段8dの油タンク80dに連通する回転継手76dである。
前記周方向有端溝778d1a〜778d4aの残余の周方向に設けた周方向有端溝778d1a〜778d4aは、油圧中継路725dを介して前記周方向無端溝768d2に連通し、実施例4(図8)で説明したようにラッシュアジャスタ機能が得られる。
The action of the positive displacement hydraulic pressure supply means 7d of FIG. 15 is that, as shown in the left cross section of the pump section in FIG. The rotor housing 702d is supplied to the circumferential end grooves 778d1a to 778d4a of the valve 77 (d1 to d4), and corresponds to the phase of the cam profile 711 (d1 to d3) as shown in the directional control valve 77d3 in the right of the drawing. The hydraulic passages 782 (d4, d5, d6) are provided on three side surfaces of the same phase at the same phase, and the circumferential end groove 778d3a sequentially corresponds to the hydraulic passages 782 (d4, d5, d5, d5) of the valve cylinder by the rotation of the rotor 72d. Supply hydraulic pressure in communication with d6).
The circumferential endless groove 768d1 on the left in the figure below is a rotary joint 76d communicating with the hydraulic pressure regenerating means 9d (not shown) and the circumferential endless groove 768d2 in the whole cross sectional view with the oil tank 80d of the hydraulic pressure assisting means 8d (not shown).
The circumferential end grooves 778d1a to 778d4a provided in the remaining circumferential direction of the circumferential end grooves 778d1a to 778d4a communicate with the circumferential endless groove 768d2 via the hydraulic relay passage 725d, and the fourth embodiment (FIG. The lash adjuster function is obtained as described in.

図16は、実施例8(請求項3対応)の、アクチェータによる位相制御手段を備えた容積型油圧供給手段による、2気筒内燃機関の弁駆動機構の構成概念の説明図である。
図16は、ロータ72fの回転軸を中心にカム71fを回動させるアクチェータ51と、前記アクチェータ51の制御手段55と、を備えた位相制御手段5を設け、前記内燃機関1fの運転状況により前記アクチェータ51にて前記カム71fを回動し、ガス交換弁41(f1、f2)の開弁タイミングの調整制御を行う請求項1または2に記載の内燃機関1fの弁駆動機構である。
FIG. 16 is an explanatory view of a structural concept of a valve drive mechanism of a two-cylinder internal combustion engine by means of a positive displacement hydraulic pressure supplying means provided with phase control means by an actuator according to an eighth embodiment (corresponding to claim 3).
FIG. 16 is provided with a phase control means 5 provided with an actuator 51 for rotating the cam 71f around the rotation axis of the rotor 72f, and a control means 55 of the actuator 51, and depending on the operating condition of the internal combustion engine 1f. The valve drive mechanism of an internal combustion engine 1f according to claim 1 or 2, wherein the cam 71f is rotated by an actuator 51 to adjust and control the valve opening timing of the gas exchange valve 41 (f1, f2).

図16の容積型油圧供給手段7fの作用は、前記カム71f、ロータ72f、およびベーン73fから成る容積型ポンプにおいて、カム71fをアクチェータ51にて回動することにより、弁シリンダ41(f1、f2)に供給する油圧発生タイミングに位相進角または位相遅角を発生してガス交換のタイミングを調整し、ガス交換量および/またはガス交換率を制御する。
内燃機関1fの運転状況により、図示しないECUにより制御される制御手段55にて前記アクチェータ51を作動させることにより、前記制御を行う。
油圧圃場手段8f、油圧回生手段9fの作用は、前記実施例と重複するので省略する。
The function of the positive displacement hydraulic pressure supply means 7f in FIG. 16 is that, in the positive displacement pump comprising the cam 71f, the rotor 72f, and the vane 73f, the valve cylinder 41 (f1, f2) is rotated by rotating the cam 71f with the actuator 51. The phase advance or phase retard is generated at the hydraulic pressure generation timing supplied to the) to adjust the timing of gas exchange, and control the amount of gas exchange and / or the rate of gas exchange.
The control is performed by operating the actuator 51 by the control means 55 controlled by the ECU (not shown) according to the operating condition of the internal combustion engine 1 f.
The functions of the hydraulic field means 8f and the hydraulic pressure regenerating means 9f are omitted because they are the same as those of the above embodiment.

図17は、実施例9(請求項3対応)の、ロータリシリンダを備えた容積型油圧供給手段の、上図は全断面図、下図はポンプ部の断面図、および周辺油圧回路図である。
図17は、前記ロータ72gの回転軸を中心に前記カム71gを回動させる機械的アクチェータであるロータリシリンダ511と、前記アクチェータの制御手段である制御弁551と、を備えた位相制御手段5gを設け、図示しない内燃機関の運転状況により前記アクチェータであるロータリシリンダ511にて前記カム71gを回動し、図示しないガス交換弁の開弁タイミング制御を行う請求項1または2に記載の内燃機関の弁駆動機構である。
前記ロータリシリンダ511は、全断面図(上図)に示すように、サイドハウジング701g、カムハウジング703、ロータハウジング702gにて形成される空間に、回動自在にカム71gを設け、ポンプ部の断面図(下図左)に示すように、前記カムハウジング703の内側を回動するロータハウジング702gし、両者は相手側の摺動面に略密封で接する複数の突起ブレード(ベーン)を交互に配置し、周方向にできる前記突起ブレード間の空間に、交互に油圧通路58g1と油圧通路58g2を連通して、ロータリシリンダ511を構成する。
FIG. 17 is a full sectional view of the displacement type hydraulic pressure supplying means having a rotary cylinder according to a ninth embodiment (corresponding to claim 3), and a lower view is a sectional view of a pump portion and a peripheral hydraulic circuit diagram.
FIG. 17 shows a phase control means 5g comprising a rotary cylinder 511, which is a mechanical actuator for rotating the cam 71g about the rotation axis of the rotor 72g, and a control valve 551, which is control means for the actuator. The internal combustion engine according to claim 1 or 2, wherein the cam 71g is rotated by the rotary cylinder 511, which is the actuator, according to the operating condition of the internal combustion engine (not shown) to control the valve opening timing of the gas exchange valve (not shown). It is a valve drive mechanism.
The rotary cylinder 511 has a cam 71g rotatably provided in a space formed by the side housing 701g, the cam housing 703, and the rotor housing 702g as shown in the entire cross sectional view (upper view), and the cross section of the pump portion As shown in the figure (left in the figure below), the rotor housing 702g which rotates the inside of the cam housing 703 is disposed alternately with a plurality of projecting blades (vanes) which contact the sliding surface on the other side substantially sealingly. The hydraulic passages 58g1 and 58g2 are alternately communicated with the spaces between the projecting blades, which can be circumferentially formed, to form a rotary cylinder 511.

図17の容積型油圧供給手段7gの作用は、油圧回生手段9gにて発生する油圧を、前記制御弁551にて制御し、前記油圧通路58g1、58g2を介して前記ロータリシリンダ511に供給してカム位相を変更することにより、弁シリンダの作動タイミングを調整する。
容積型油圧供給手段7gは、前記実施例1(図2)の容積型油圧供給手段7に位相制御手段5gを付加したもので、位相制御以外の作用の説明は省略する。
油圧回生手段9gに設けた制御弁95は、油圧回生を必要としない時の回転負荷を軽減できる。
The action of the positive displacement hydraulic pressure supply means 7g of FIG. 17 controls the hydraulic pressure generated by the hydraulic pressure regeneration means 9g by the control valve 551, and supplies it to the rotary cylinder 511 via the hydraulic pressure passages 58g1 and 58g2. By changing the cam phase, the operating timing of the valve cylinder is adjusted.
The positive displacement hydraulic pressure supply means 7g is obtained by adding the phase control means 5g to the positive displacement hydraulic pressure supply means 7 of the first embodiment (FIG. 2), and the explanation of the operation other than the phase control will be omitted.
The control valve 95 provided in the hydraulic pressure regenerating means 9g can reduce the rotational load when the hydraulic pressure regeneration is not required.

図18は、実施例10(請求項4対応)の、2組のベーンポンプの位相をモータで調整して吸気弁を開閉制御する3気筒内燃機関の弁駆動機構の構成概念の説明図である。
図18(請求項3対応)は、ロータ72pの回転軸を中心に前記カム71(p1、p2)を回動させる電気的アクチェータであるサーボモータ515(-1、-2)と、前記アクチェータの制御手段であるコントローラ556と、を備えた位相制御手段5pを設け、内燃機関1pの運転状況により前記アクチェータにて前記カム71(p1、p2)を回動し、前記ガス交換弁45(p1〜p3)の開弁タイミングの調整制御を行う請求項1または2に記載の内燃機関の弁駆動機構である。
図18(請求項4対応)は、前記容積型ポンプと、第2の容積型ポンプを前記ロータ72pの軸方向に設け、少なくとも一方の前記容積型ポンプに前記位相制御手段5pを備え、各々の前記容積型ポンプの略同位相のベーンで発生する油圧を前記油圧中継路721p、722p、723pにて連通し、各々の前記油圧中継路に1個の空油変換器729(-1、-2、-3)を設け、前記内燃機関1pの運転状況により前記位相制御手段5pにて両方の前記カム71(p1、p2)を回動し、前記ガス交換弁45(p1〜p3)の開弁タイミングおよび開度の調整制御を行う請求項3に記載の内燃機関の弁駆動機構である。
FIG. 18 is an explanatory view of a conceptual configuration of a valve drive mechanism of a three-cylinder internal combustion engine which adjusts the phases of two sets of vane pumps by a motor and controls opening and closing of an intake valve.
18 (corresponding to claim 3) shows a servomotor 515 (-1, -2) which is an electric actuator for rotating the cam 71 (p1, p2) about the rotation axis of the rotor 72p, and the actuator A phase control means 5p comprising a controller 556 as control means is provided, and the cam 71 (p1, p2) is rotated by the actuator according to the operating condition of the internal combustion engine 1p, and the gas exchange valve 45 (p1 to p1) is provided. The valve drive mechanism of an internal combustion engine according to claim 1 or 2, wherein adjustment control of the valve opening timing of p3) is performed.
In FIG. 18 (corresponding to claim 4), the positive displacement pump and the second positive displacement pump are provided in the axial direction of the rotor 72p, and at least one of the positive displacement pumps is provided with the phase control means 5p. The hydraulic relay paths 721p, 722p and 723p communicate the hydraulic pressure generated by the vanes of substantially the same phase of the positive displacement pump, and one air-to-oil converter 729 (-1, -2) is connected to each of the hydraulic relay paths. , -3), and both the cams 71 (p1, p2) are rotated by the phase control means 5p according to the operating condition of the internal combustion engine 1p, and the gas exchange valve 45 (p1 to p3) is opened. The valve drive mechanism for an internal combustion engine according to claim 3, wherein adjustment control of timing and opening degree is performed.

図18の容積型油圧供給手段7pの作用は、前記位相制御手段5pのアクチェータであるサーボモータ515(-1、-2)によりウォーム516(-1、-2)を回転し、カム71(p1、p2)の外周に設けたウォーム歯車517(-1、-2)を回動することにより前記カム71(p1、p2)を回動して油圧発生の位相を制御する。
アクチェータである前記サーボモータは、ステッピングモータ等でもよい。
前記略同位相の2台の容積型ポンプの発生油圧の油圧合成(合成方法は図19にて説明する)により弁シリンダ411(p1〜p3)の作動を調整制御して前記ガス交換弁45(p1〜p3)の開弁タイミングおよび開度の調整制御を行う。
油圧合成により負圧が生じるとキャビテーションが発生するので、両方の油圧発生量、および前記空油変換器729(-1、-2、-3)の容量を同容量にする。
前記負圧の防止は、次の図19にて説明する。
The action of the positive displacement hydraulic pressure supply means 7p of FIG. 18 is to rotate the worm 516 (-1, 2) by the servomotor 515 (-1, 2) which is the actuator of the phase control means 5p, and the cam 71 (p1). , P2) by rotating the worm gear 517 (-1, -2) provided on the outer circumference of the cam 71 (p1, p2) to control the phase of hydraulic pressure generation.
The servomotor, which is an actuator, may be a stepping motor or the like.
The gas exchange valve 45 is controlled by adjusting and controlling the operation of the valve cylinder 411 (p1 to p3) according to the hydraulic synthesis (the synthesis method will be described in FIG. 19) of the generated hydraulic pressure of the two positive displacement pumps of substantially the same phase. Adjustment control of the valve opening timing and the opening degree of p1 to p3) is performed.
Since cavitation occurs when a negative pressure is generated by hydraulic synthesis, both hydraulic pressure generation amounts and the capacities of the air-to-oil converters 729 (-1, -2, -3) are made equal.
The prevention of the negative pressure will be described with reference to FIG.

図19は、前記実施例10(図18)の、上図は、カム、第2のカム、および弁シリンダの油圧特性図で、下図は、各位相での容積型ポンプの模式図による作動説明図である。
図19の上図(3図)は、横軸がクランク角、縦軸が油圧発生量(弁リフト量)の特性図で、太線部が2台の容積型ポンプのカム71p1、71p2の油圧発生量と両者の合成による前記容積型油圧供給手段7pの油圧発生量で、前記太線内の塗潰し部分が、油圧正圧部である正味油圧であり、前記太線内の残余の部分は、前記空油変換器729(-1、-2、-3)の油圧吸収作用による正味油圧に寄与しない油圧量である。
前記位相制御手段5pにより前記カム71(p1、p2)の位相の調整により油圧発生タイミングを調整し、図19、図20で説明する作用により、ガス交換弁の開弁タイミングおよび/または開度の調整制御を行う。
FIG. 19 is a hydraulic characteristic diagram of the cam, the second cam, and the valve cylinder in the upper diagram of the tenth embodiment (FIG. 18), and the lower diagram is an operation explanation by the schematic diagram of the positive displacement pump in each phase. FIG.
In the upper diagram (Fig. 3) of Fig. 19, the horizontal axis is the crank angle, and the vertical axis is the characteristic of hydraulic pressure generation amount (valve lift amount). Oil pressure generation of cams 71p1 and 71p2 of two positive displacement pumps with thick line part The oil pressure generation amount of the positive displacement hydraulic pressure supply means 7p by the amount and the combination of the two, the painted portion in the thick line is a net oil pressure which is a hydraulic positive pressure portion, and the remaining portion in the thick line is the empty It is an oil pressure amount that does not contribute to the net oil pressure due to the oil pressure absorbing action of oil converter 729 (-1, -2, -3).
The oil pressure generation timing is adjusted by adjusting the phase of the cam 71 (p1, p2) by the phase control means 5p, and the valve exchange timing and / or degree of opening of the gas exchange valve are adjusted by the functions described in FIG. Perform adjustment control.

図19の、容積型油圧供給手段7pの作用を、セル781(pa1、pa2)の作動説明図(p1〜p5)に従って以下に説明する。
(p1)では、前記カム71(p1、p2)により油圧は発生せず、図示しないラッシュアジャスタ機能により油圧が大気圧状態であるので、前記空油変換器729-1はスプリングにより油量が最少となる。
(p2)では、前記カム71p1により発生した油圧は、前記空油変換器729-1のスプリングを付勢しながら流入し、油圧発生量と前記流入量が一致して前記空油変換器729-1の油量は最大値となるので、油圧の正圧はまだ発生しない。
(p3)を含む前記(p2)から(p3)の間では、前記空油変換器729-1の油量は最大値の状態で増大しないので、最大値前記カム71p2の発生油圧量はすべて正圧油圧となり、(p3)で正圧油圧の最大となる。
(p4)を含む前記(p3)から(p4)の間では、前記空油変換器729-1の油量は最大値の状態で、前記カム71p2の油圧量は変化しないので、前記カム71p2の油圧量の減少により正圧油圧量は減少し、(p4)にて正圧油圧は消滅する。
(p5)を含む前記(p4)から(p5)の間では、前記(p4)にて正圧が消滅し、更に前記カム71p2の油圧量が減少して負圧になる代わりに、前記空油変換器729-1の湯量が減少し最小値となる。
前記太線の曲線部は、カムプロフィール711(p1、p2)により設定された前述の衝撃を緩和する移動曲線で、同様に2点鎖線で示すように隣接するセル738pb、738pcも同様の移動曲線となる。
The operation of the positive displacement hydraulic pressure supply means 7p of FIG. 19 will be described below in accordance with the operation explanatory diagrams (p1 to p5) of the cells 781 (pa1 and pa2).
In (p1), no hydraulic pressure is generated by the cam 71 (p1, p2), and the hydraulic pressure is at atmospheric pressure by the lash adjuster function (not shown). It becomes.
In (p2), the hydraulic pressure generated by the cam 71p1 flows in while biasing the spring of the air-to-oil converter 729-1, and the hydraulic pressure generation amount and the flow-in amount coincide with each other. Since the amount of oil at 1 is at the maximum value, positive hydraulic pressure does not occur yet.
Between (p2) and (p3) including (p3), the oil amount of the air-to-oil converter 729-1 does not increase at the maximum value, so the generated oil amount of the cam 71p2 is all positive. It becomes a hydraulic pressure, and at (p3) it becomes the maximum of the positive hydraulic pressure.
Between (p3) and (p4) including (p4), the oil amount of the air-oil converter 729-1 is at the maximum value, and the oil amount of the cam 71p2 does not change. The decrease in hydraulic pressure reduces the positive hydraulic pressure, and the positive hydraulic pressure disappears at (p4).
Between (p4) and (p5) including (p5), the positive pressure disappears in (p4), and the oil pressure of the cam 71p2 decreases, and the air pressure decreases, and the air pressure decreases. The amount of water in the converter 729-1 is reduced to a minimum value.
The curved part of the thick line is the above-mentioned transfer curve for mitigating the impact set by the cam profile 711 (p1, p2), and the adjacent cells 738pb and 738pc also have the same transfer curve as shown by the two-dot chain line. Become.

図20は、前記実施例10(図18、19)の内燃機関の弁駆動機構の、各カム位相制御と各制御パターン(1)〜(3)の弁リフト特性図による制御動作説明図である。
図20は、横軸がクランク角、縦軸が弁のリフト量の特性図で、前記位相制御手段5pにより前記カム71(p1、p2)の位相の調整により油圧発生タイミングを調整し、前記容積型油圧供給手段7pの油圧の発生タイミングと発生量を制御して弁シリンダを作動し、ガス交換弁の開弁タイミングおよび/または開度の調整制御を行う。
図19(上段)に示すように、開弁制御は前記カム71p2、閉弁制御は前記カム71p1の位相調整により行い、その調整の結果それぞれのセル738pa2、セル738pa1の油圧が変化する。
図19(下段)に示すように、それぞれの前記セル738pa2、738pa1の油圧成分は、71p2の開弁成分と71p1の閉弁成分として作用し、各油圧成分の合成結果により、ガス交換弁45p1の開閉制御ができる。
合成結果より、前記位相制御手段5pにより位相を変化させても、移動曲線が保持されるので、加減速緩和効果により、静粛で安定した高速回転にも対応できる弁駆動機構ができる。
上記制御により、制御パターン(1)の場合は、前記カム71(p1、p2)の位相を同じ方向に調整し、ガス交換弁45p1の開閉時期の制御ができ、制御パターン(2)の場合は、前記カム71(p1、p2)の位相を逆方向に調整し、ガス交換弁45p1の開閉量の制御ができ、制御パターン(3)の場合は、前記カム71p1の位相のみを調整し、ガス交換弁45p1の閉弁時期の制御によりアトキンソン サイクル制御ができる。
なお、制御パターン(3)のアトキンソン サイクル制御のみを目的とする場合は、カム71p2の位相調整は不要であるので、電気的アクチェータであるサーボモータ515−2を省略できる。
FIG. 20 is a control operation explanatory view of each cam phase control and the valve lift characteristic chart of each control pattern (1) to (3) of the valve drive mechanism of the internal combustion engine of the tenth embodiment (FIGS. 18 and 19). .
FIG. 20 is a characteristic diagram of the crank angle on the horizontal axis and the lift amount of the valve on the vertical axis. The phase control means 5p adjusts the phase of the cam 71 (p1, p2) to adjust the hydraulic pressure generation timing, The valve cylinder is operated by controlling the generation timing and generation amount of the hydraulic pressure of the hydraulic pressure supply means 7p, and adjustment control of the opening timing and / or the opening degree of the gas exchange valve is performed.
As shown in FIG. 19 (upper stage), the valve opening control is performed by adjusting the phase of the cam 71p2 and the valve closing control is performed by adjusting the phase of the cam 71p1, and as a result of this adjustment, the oil pressure of each cell 738pa2 and cell 738pa1 changes.
As shown in FIG. 19 (lower stage), the hydraulic components of the cells 738pa2 and 738pa1 act as the valve-opening component of 71p2 and the valve-closing component of 71p1, and according to the synthesis result of each hydraulic component, the gas exchange valve 45p1 Open / close control can be performed.
According to the synthesis result, the movement curve is maintained even if the phase is changed by the phase control means 5p, so that the valve drive mechanism capable of coping with the quiet and stable high speed rotation can be achieved by the acceleration / deceleration relaxation effect.
By the above control, in the case of the control pattern (1), the phase of the cam 71 (p1, p2) can be adjusted in the same direction, and the opening / closing timing of the gas exchange valve 45p1 can be controlled, and in the case of the control pattern (2) The phase of the cam 71 (p1, p2) is adjusted in the reverse direction to control the opening / closing amount of the gas exchange valve 45p1. In the case of control pattern (3), only the phase of the cam 71p1 is adjusted Atkinson cycle control can be performed by controlling the closing timing of the replacement valve 45p1.
When only Atkinson cycle control of control pattern (3) is intended, the phase adjustment of the cam 71p2 is unnecessary, so the servomotor 515-2 which is an electrical actuator can be omitted.

図21は、実施例11(請求項4対応)の、位相制御手段と2個のカムプロフィールを備えた容積型油圧供給手段による、4気筒内燃機関の弁駆動機構の構成図である。
図21は、容積型ポンプと、第2の容積型ポンプを前記ロータ72tの軸方向に設け、両方の前記容積型ポンプに前記位相制御手段5tを備え、各々の前記容積型ポンプの略同位相のベーン73(t1、t2)で発生する油圧を前記油圧中継路721t、722tにて連通し、各々の前記油圧中継路721t、722tに1個の空油変換器729(t1、t2)を設け、内燃機関1tの運転状況により前記位相制御手段5tにて両方の前記カム71を回動し、前記ガス交換弁451(t1〜t4)の、開弁タイミングおよび開度の調整制御を行う請求項3に記載の内燃機関1tの弁駆動機構である。
FIG. 21 is a block diagram of a valve drive mechanism of a four-cylinder internal combustion engine according to Embodiment 11 (corresponding to claim 4) by means of phase control means and positive displacement hydraulic pressure supply means having two cam profiles.
In FIG. 21, a positive displacement pump and a second positive displacement pump are provided in the axial direction of the rotor 72t, and both positive displacement pumps are provided with the phase control means 5t, and substantially the same phase of each positive displacement pump is provided. The hydraulic pressure generated by the vane 73 (t1, t2) is communicated with the hydraulic relay paths 721t, 722t, and each of the hydraulic relay paths 721t, 722t is provided with one air-to-oil converter 729 (t1, t2). According to the operating condition of the internal combustion engine 1t, both the cams 71 are rotated by the phase control means 5t, and adjustment control of the valve opening timing and the opening degree of the gas exchange valve 451 (t1 to t4) is performed. 3 is a valve drive mechanism of the internal combustion engine 1t described in 3;

図21の容積型油圧供給手段7tの作用は、油圧回生手段9tで発生する油圧は各制御弁551(t1、t2)を介して各アクチェータ51(t1、t2)に供給される位相制御手段5tにより、カム71(t1、t2)の位相を調整する。
前記2個のカムプロフィール711(t1、t2)を備えた2台の容積型ポンプで発生する各々の油圧は、油圧中継路721t、722tに設けた方向制御弁77(t1、t2)により、ロータ72tの回転位相に対応する弁シリンダ411(t1〜t4)に供給されるので、前記ガス交換弁451(t1〜t4)の開弁タイミングおよび開度の調整制御ができる。
前記2個のカムプロフィールと前記方向制御弁77(t1、t2)の作用は前記実施例4〜7、前記空油圧変換器729(t1、t2)の作用は前記実施例10と重複するので、説明を省略する。
The function of the positive displacement hydraulic pressure supply means 7t in FIG. 21 is that the hydraulic pressure generated by the hydraulic pressure regeneration means 9t is supplied to the respective actuators 51 (t1, t2) via the respective control valves 551 (t1, t2). Thus, the phase of the cam 71 (t1, t2) is adjusted.
The hydraulic pressure generated by the two positive displacement pumps provided with the two cam profiles 711 (t1, t2) is controlled by the direction control valve 77 (t1, t2) provided in the hydraulic relay paths 721t, 722t. Since the valve cylinder 411 (t1 to t4) corresponding to the rotational phase of 72t is supplied, adjustment control of the valve opening timing and the opening degree of the gas exchange valve 451 (t1 to t4) can be performed.
The actions of the two cam profiles and the directional control valve 77 (t1, t2) are the same as those of the fourth to seventh embodiments, and the actions of the air-hydraulic converter 729 (t1, t2) are the same as those of the tenth embodiment. I omit explanation.

図22は、前記実施例11(図21)の、2個のロータリシリンダによる位相制御手段を備えた容積型油圧供給手段の全断面図、各ポンプ部の断面図、と周辺油圧回路図である。図22の容積型油圧供給手段7tは、下図左の前記容積型ポンプと同じ構成の下図右の第2の容積型ポンプを前記ロータ72tの軸方向に設け、両方の前記容積型ポンプに前記位相制御手段5tである制御弁551(t1、t2)と、カム71(t1、t2)とカムハウジング703(t1、t2)から成るロータリシリンダ511(t1、t2)と、を備え、前記油圧回生手段9tで発生する油圧にて、前記ガス交換弁451(t1〜t4)の開弁タイミングおよび開度の調整制御を行う。
前記ロータリシリンダ511(t1、t2)の構成、作用は前記実施例9の説明と重複するので、説明を省略する。
複数のカムプロフィール711により方向制御弁77の周方向有端溝778が干渉する場合は、前記実施例9のように、方向制御弁77をロータ72の軸方向に分割することにより前記干渉を防止できる。
FIG. 22 is a full sectional view of a positive displacement type hydraulic pressure supplying means provided with phase control means with two rotary cylinders, a sectional view of each pump portion, and a peripheral hydraulic circuit diagram according to Embodiment 11 (FIG. 21). . The displacement type hydraulic pressure supply means 7t of FIG. 22 is provided with a second displacement type pump of the same configuration as the displacement type pump on the left of the figure below and in the axial direction of the rotor 72t. The hydraulic pressure regenerating means is provided with a control valve 551 (t1, t2) which is control means 5t, and a rotary cylinder 511 (t1, t2) consisting of a cam 71 (t1, t2) and a cam housing 703 (t1, t2). Adjustment control of the valve opening timing and the opening degree of the gas exchange valve 451 (t1 to t4) is performed by the hydraulic pressure generated at 9 t.
The configuration and operation of the rotary cylinder 511 (t1, t2) overlap with the description of the ninth embodiment, so the description will be omitted.
When the circumferential direction end groove 778 of the directional control valve 77 interferes with a plurality of cam profiles 711, the interference is prevented by dividing the directional control valve 77 in the axial direction of the rotor 72 as in the ninth embodiment. it can.

図23は、実施例12(請求項4対応)の2組のプランジャーポンプを備えた容積型油圧供給手段による移動体の内燃機関の弁駆動機構の制御システムの構成説明図である。
図23は、容積型ポンプである3個のプランジャから成る前記プランジャーポンプと、第2の容積型ポンプをロータ72kの軸方向に設け、両方の前記容積型ポンプに位相制御手段5kを備え、各々の前記容積型ポンプの略同位相のプランジャで発生する油圧は図示しない油圧中継路にて連通し、内燃機関1kの運転状況により前記位相制御手段5kにて両方のカム71(K1、k2)を回動し、ガス交換弁の開弁タイミングおよび開度の調整制御を行う内燃機関1kの弁駆動機構の制御システムの構成説明図である。
内燃機関1kの弁駆動機構等の電子制御装置であるECU12は、CPU(中央演算処理装置)、RAMとROMからなる記憶素子、入力ポート、出力ポート、およびDC電源で構成され、本図では前記入出力ポートの接続は、中継機器(アンプ等)は図示省略している。
前記実施例で説明したように、ロータ72kの回転により自動的に機械的制御である油圧シーケンス制御が行われ、図23の電気的な制御システムにて、前記位相制御手段5kを下記のように制御する。
FIG. 23 is a configuration explanatory view of a control system of a valve drive mechanism of an internal combustion engine of a moving body by a displacement type hydraulic pressure supplying means provided with two sets of plunger pumps of the twelfth embodiment (corresponding to claim 4).
FIG. 23 shows that the plunger pump consisting of three plungers which is a positive displacement pump and the second positive displacement pump are provided in the axial direction of the rotor 72k, and both positive displacement pumps are provided with phase control means 5k. The hydraulic pressure generated by the plungers of substantially the same phase of each of the positive displacement pumps is communicated through a hydraulic relay path (not shown), and both cams 71 (K1, k2) are controlled by the phase control means 5k according to the operating condition of the internal combustion engine 1k FIG. 8 is a configuration explanatory view of a control system of a valve drive mechanism of an internal combustion engine 1k that performs adjustment control of the valve opening timing and the opening degree of the gas exchange valve by rotating
The ECU 12, which is an electronic control unit such as a valve drive mechanism of the internal combustion engine 1k, includes a CPU (central processing unit), a storage element including RAM and ROM, an input port, an output port, and a DC power source. For the connection of the entry output port, relay devices (such as amplifiers) are not shown.
As described in the above embodiment, the hydraulic sequence control which is mechanical control is automatically performed by the rotation of the rotor 72k, and in the electric control system of FIG. Control.

前記制御システムの作用は、内燃機関1kの弁駆動機構である2組の前記プランジャーポンプを備えた容積型油圧供給手段7kから供給される油圧により、図示しない弁シリンダを作動してガス交換弁を開弁する。
アクセル開度センサ17等の入力情報を基に、前記ECU12の出力で前記位相制御手段5kの各制御弁55(k1、k2)を制御して各アクチェータ51(k1、k2)を作動し、前記カム71(k1、k2)の位相を調整し、前記弁シリンダで開弁する図示しないガス交換弁の開弁タイミングおよび開度の調整制御を行い、運転状況に適応した内燃機関1kの運転を行う。
The function of the control system is to operate a valve cylinder (not shown) by a hydraulic pressure supplied from a positive displacement hydraulic pressure supply means 7k having two sets of plunger pumps which are valve drive mechanisms of an internal combustion engine 1k to operate a gas exchange valve. Open the valve.
The control valves 55 (k1, k2) of the phase control means 5k are controlled by the output of the ECU 12 based on the input information of the accelerator opening sensor 17 etc. to operate the actuators 51 (k1, k2). The phase of the cam 71 (k1, k2) is adjusted, the opening timing and opening degree of the gas exchange valve (not shown) opened by the valve cylinder are controlled, and the internal combustion engine 1k is operated according to the operating condition. .

図24は、前記実施例12(図23)の内燃機関の弁駆動機構の制御フローチャートと、各制御サブルーチンの弁リフト特性図による開弁制御説明図である。
内燃機関1kの弁駆動機構は、図23に示した入出力情報等により制御され、特に加速あるいは減速等の制御判断は、アクセルペダルあるいはブレーキペダル操作によるアクセル開度センサ17、ブレーキ開度センサ18からの入力情報や図示しない車速センサ等により、運転者の意思や内燃機関1kの運転状況を分析、判断、予測し、各運転サブルーチンを図24の制御フローチャートに従い実行する。
FIG. 24 is a control flow chart of a valve drive mechanism of an internal combustion engine of the twelfth embodiment (FIG. 23) and a valve open control explanatory view by valve lift characteristic diagrams of control subroutines.
The valve drive mechanism of the internal combustion engine 1k is controlled by the input / output information etc. shown in FIG. 23, and in particular the control judgment such as acceleration or deceleration is performed by the accelerator opening sensor 17 or the brake opening sensor 18 by the accelerator pedal or brake pedal operation. The driver's intention and the driving situation of the internal combustion engine 1k are analyzed, judged, predicted, and the respective driving subroutines are executed according to the control flowchart of FIG.

まず、ECU12は、運転指令がONであるかを判断する(ステップS601)。
ここで、運転指令がONでないと判断した場合は、制御停止サブルーチン(ステップS612)を実行した後、RETURNにて、本処理ルーチンのSTARTに戻る。
一方、運転指令がONであると判断した場合は、次に、暖機運転中であるかを判断する(ステップS602)。
ここで、暖機運転中でないと判断した場合は、通常設定サブルーチン(ステップS604)を実行した後、スロットルMAXであるかを判断する(ステップS605)。
一方、暖機運転中と判断した場合は、暖機設定サブルーチン(ステップS603)を実行し、前記スロットルMAXであるかを判断する(ステップS605)。
具体的には、暖機設定サブルーチンでは、内燃機関1kの燃焼室の温度、潤滑油の供給状況等に対応し、特性図A(右図)に示すように燃焼性確保等の調整制御を行う。
ここで、スロットルMAXであると判断した場合は、全負荷運転サブルーチン(ステップS606)を実行し、前記ステップS601に戻る。
具体的には、全負荷運転サブルーチンでは、負荷、車速等の運転状況、内燃機関1kの温度上昇等により、特性図A(右図)に示すようにオーバーラップ等による出力増大のため吸気の充填量等の調整制御を行う。
一方、スロットルMAXでないと判断した場合は、スロットルONであるかを判断する(ステップS607)。
ここで、スロットルONであると判断した場合は、部分負荷運転サブルーチン(ステップS608)を実行し、前記ステップS601に戻る。
具体的には、部分負荷運転サブルーチンでは、負荷、車速等の運転状況、内燃機関1kの温度上昇等により、特性図A(右図)に示すようにアトキンソンサイクル制御による出力効率向上のため吸気の充填効率等の調整制御を行う。
一方、スロットルONでないと判断した場合は、ブレーキペダルONであるかを判断する(ステップS609)。
ここで、ブレーキペダルONであると判断した場合は、エンジンブレーキ制御サブルーチン(ステップS610)を実行し、前記ステップS601に戻る。
具体的には、エンジンブレーキ制御サブルーチンでは、負荷、車速等の運転状況等により、特性図A(右図)に示すように燃料供給を停止し、吸気のポンピングロスの調整等のため吸気弁の調整制御を行う。
一方、ブレーキペダルONでないと判断した場合は、アイドリング制御サブルーチン(ステップS611)を実行し、ステップ601に戻る。
本制御フローチャートは、内燃機関1kの運転中は繰り返し実行される。
First, the ECU 12 determines whether the driving command is ON (step S601).
Here, if it is determined that the operation command is not ON, after executing the control stop subroutine (step S612), the process returns to START of this processing routine at RETURN.
On the other hand, if it is determined that the operation command is ON, it is then determined whether the warm-up operation is in progress (step S602).
Here, if it is determined that the warm-up operation is not being performed, it is determined whether the throttle MAX is set after the normal setting subroutine (step S604) is executed.
On the other hand, when it is determined that the warm-up operation is being performed, the warm-up setting subroutine (step S603) is executed to determine whether the throttle is the MAX (step S605).
Specifically, in the warm-up setting subroutine, adjustment control such as securing the combustibility is performed as shown in the characteristic diagram A (right figure) in accordance with the temperature of the combustion chamber of the internal combustion engine 1k, the supply condition of lubricating oil, etc. .
Here, if it is determined that the throttle is the maximum, the full load operation subroutine (step S606) is executed, and the process returns to the step S601.
Specifically, in the full load operation subroutine, as shown in the characteristic diagram A (right figure) due to operating conditions such as load and vehicle speed, temperature rise of the internal combustion engine 1k, etc., charging of intake air for output increase due to overlap etc. Adjust control of quantity etc.
On the other hand, if it is determined that the throttle is not MAX, it is determined whether the throttle is ON (step S607).
Here, if it is determined that the throttle is ON, the partial load operation subroutine (step S608) is executed, and the process returns to step S601.
Specifically, in the partial load operation subroutine, as shown in the characteristic diagram A (right figure) due to operating conditions such as load and vehicle speed, temperature rise of the internal combustion engine 1k, etc., intake efficiency is improved to improve output efficiency by Atkinson cycle control. Perform adjustment control such as filling efficiency.
On the other hand, if it is determined that the throttle is not ON, it is determined whether the brake pedal is ON (step S609).
Here, if it is determined that the brake pedal is ON, an engine brake control subroutine (step S610) is executed, and the process returns to step S601.
Specifically, in the engine brake control subroutine, the fuel supply is stopped as shown in the characteristic diagram A (right) according to the operating conditions such as load and vehicle speed, and the intake valve is adjusted to adjust the pumping loss of intake. Perform adjustment control.
On the other hand, when it is determined that the brake pedal is not ON, the idling control subroutine (step S611) is executed, and the process returns to step 601.
This control flowchart is repeatedly performed during operation of the internal combustion engine 1k.

前記実施例1〜12は、本願発明の一例を説明したもので、各実施例の容積型油圧ポンプは、ベーンポンプをプランジャーポンプに、あるいはその逆に置き換えられる。
吸気弁をベーンポンプ、排気弁を大きなベーンポンプまたは高圧に有利なプランジャーポンプとする混成対応ができ、従来のカム方式との併用もできる。
本願発明の位相制御手段により、吸気弁を開弁タイミングと開度の調整、排気弁を開度の調整のように選択的に弁駆動の制御ができる。
前記実施例1〜12は、本願発明の一例を示すもので本願発明を制約するものではなく、当業者により変更および改良ができる。
The embodiments 1 to 12 describe an example of the present invention, and the displacement type hydraulic pump of each embodiment is replaced with a vane pump by a plunger pump or vice versa.
The intake valve can be a vane pump, the exhaust valve can be a large vane pump or a plunger pump that is advantageous for high pressure, and it can be used in combination with a conventional cam system.
By means of the phase control means of the present invention, it is possible to selectively control the drive of the intake valve, such as adjusting the valve opening timing and the opening degree, and adjusting the exhaust valve such as the opening degree.
The examples 1 to 12 show an example of the present invention and do not limit the present invention, and those skilled in the art can make changes and improvements.

本願発明の内燃機関の弁駆動機構は油圧を利用するので、潤滑、ラッシュアジャスタ機能が容易に対応でき、カムを共用するので構成部品が少ない簡素な構造であり、内燃機関を小型化、軽量化できるので、自動車、船舶等の移動体に搭載する内燃機関に適する。   Since the valve drive mechanism of the internal combustion engine according to the present invention utilizes hydraulic pressure, the function of lubrication and lash adjuster can be easily coped, and since the cam is shared, it has a simple structure with few components, reducing the size and weight of the internal combustion engine As it can, it is suitable for internal combustion engines mounted on moving bodies such as cars and ships.

1 内燃機関
4 出力手段
5 位相制御手段
6 回転伝動手段
7 容積型油圧供給手段
8 油圧補助手段
9 油圧回生手段
12 ECU(電子制御装置)
15 カム角センサ
16 クランク角センサ
17 アクセル開度センサ
18 ブレーキ開度センサ
20 吸気
21 吸気通路
30 排気
31 排気通路
41 弁シリンダ
42 弁ピストン
43 スプリング
45 ガス交換弁
46 シリンダ
47 ピストン
48 コンロッド
49 クランク軸
51 アクチェータ
54 逆止弁
55 制御手段
58 油圧通路(吐出)
59 油圧通路(戻り)
61 従動車
62 駆動車
63 伝動媒体
70 ハウジング
71 カム
72 ロータ
73 ベーン
74 プランジャ
76 回転継手
77 方向制御弁(回転スライド式)
78 油圧通路(弁駆動)
79 油圧通路
80 油タンク
81 絞り弁
82、83 逆止弁
88 油圧通路
92、93 逆止弁
94 リリーフ弁
95 制御弁
96 方向制御弁
98 油圧通路(吐出)
99 油圧通路(戻り)
411 弁シリンダ(吸気)
412 弁シリンダ(排気)
451 ガス交換弁(吸気)
452 ガス交換弁(排気)
511 ロータリシリンダ
515 サーボモータ
516 ウォーム
517 ウォーム歯車
551 制御弁
556 コントローラ
701 サイドハウジング
702 ロータハウジング
703 カムハウジング
704 中間ハウジング
710 基準プロフィール
711 カムプロフィール
715 カムシフト角センサ
721 油圧中継路(第1油圧)
722 油圧中継路(第2油圧)
723 油圧中継路(第3油圧)
724 油圧中継路(第4油圧)
725 油圧中継路(大気圧)
726 油圧中継路
729 空油変換器
738 セル
768 周方向無端溝
778 周方向有端溝
781 油圧通路(吸気弁)
782 油圧通路(排気弁)
DESCRIPTION OF SYMBOLS 1 internal combustion engine 4 output means 5 phase control means 6 rotation transmission means 7 positive displacement hydraulic pressure supply means 8 hydraulic pressure auxiliary means 9 hydraulic pressure regeneration means 12 ECU (electronic control device)
Reference Signs List 15 cam angle sensor 16 crank angle sensor 17 accelerator opening sensor 18 brake opening sensor 20 intake 21 intake passage 30 exhaust 31 exhaust passage 41 valve cylinder 42 valve piston 43 spring 45 gas exchange valve 46 cylinder 47 piston 48 connecting rod 49 crank shaft 51 Actuator 54 Check valve 55 Control means 58 Hydraulic pressure passage (discharge)
59 Hydraulic passage (return)
61 Follower Car 62 Drive Car 63 Transmission Medium 70 Housing 71 Cam 72 Rotor 73 Vane 74 Plunger 76 Revolving Joint 77 Direction Control Valve (Rotating Slide Type)
78 Hydraulic passage (valve drive)
79 hydraulic passage 80 oil tank 81 throttle valve 82, 83 check valve 88 hydraulic passage 92, 93 check valve 94 relief valve 95 control valve 96 direction control valve 98 hydraulic passage (discharge)
99 Hydraulic passage (return)
411 valve cylinder (intake)
412 valve cylinder (exhaust)
451 Gas Exchange Valve (Intake)
452 Gas Exchange Valve (Exhaust)
511 rotary cylinder 515 servo motor 516 worm 517 worm gear 551 control valve 556 controller 701 side housing 702 rotor housing 703 cam housing 704 intermediate housing 710 reference profile 711 cam profile 715 cam shift angle sensor 721 hydraulic relay path (first hydraulic pressure)
722 Hydraulic relay route (second hydraulic pressure)
723 Hydraulic relay route (third hydraulic pressure)
724 Hydraulic relay route (4th hydraulic pressure)
725 Hydraulic relay (atmospheric pressure)
726 Hydraulic relay passage 729 air-to-oil converter 738 cell 768 circumferential endless groove 778 circumferential endless groove 781 hydraulic passage (intake valve)
782 Hydraulic passage (exhaust valve)

図19の、容積型油圧供給手段7pの作用を、セル738(pa1、pa2)の作動説明図(p1〜p5)に従って以下に説明する。
(p1)では、前記カム71(p1、p2)により油圧は発生せず、図示しないラッシュアジャスタ機能により油圧が大気圧状態であるので、前記空油変換器729-1はスプリングにより油量が最少となる。
(p2)では、前記カム71p1により発生した油圧は、前記空油変換器729-1のスプリングを付勢しながら流入し、油圧発生量と前記流入量が一致して前記空油変換器729-1の油量は最大値となるので、油圧の正圧はまだ発生しない。
(p3)を含む前記(p2)から(p3)の間では、前記空油変換器729-1の油量は最大値の状態で増大しないので、最大値前記カム71p2の発生油圧量はすべて正圧油圧となり、(p3)で正圧油圧の最大となる。
(p4)を含む前記(p3)から(p4)の間では、前記空油変換器729-1の油量は最大値の状態で、前記カム71p2の油圧量は変化しないので、前記カム71p2の油圧量の減少により正圧油圧量は減少し、(p4)にて正圧油圧は消滅する。
(p5)を含む前記(p4)から(p5)の間では、前記(p4)にて正圧が消滅し、更に前記カム71p2の油圧量が減少して負圧になる代わりに、前記空油変換器729-1の湯量が減少し最小値となる。
前記太線の曲線部は、カムプロフィール711(p1、p2)により設定された前述の衝撃を緩和する移動曲線で、同様に2点鎖線で示すように隣接するセル738pb、738pcも同様の移動曲線となる。
The operation of the positive displacement hydraulic pressure supply means 7p of FIG. 19 will be described below in accordance with the operation explanatory diagrams (p1 to p5) of the cell 738 (pa1 and pa2).
In (p1), no hydraulic pressure is generated by the cam 71 (p1, p2), and the hydraulic pressure is at atmospheric pressure by the lash adjuster function (not shown). It becomes.
In (p2), the hydraulic pressure generated by the cam 71p1 flows in while biasing the spring of the air-to-oil converter 729-1, and the hydraulic pressure generation amount and the flow-in amount coincide with each other. Since the amount of oil at 1 is at the maximum value, positive hydraulic pressure does not occur yet.
Between (p2) and (p3) including (p3), the oil amount of the air-to-oil converter 729-1 does not increase at the maximum value, so the generated oil amount of the cam 71p2 is all positive. It becomes a hydraulic pressure, and at (p3) it becomes the maximum of the positive hydraulic pressure.
Between (p3) and (p4) including (p4), the oil amount of the air-oil converter 729-1 is at the maximum value, and the oil amount of the cam 71p2 does not change. The decrease in hydraulic pressure reduces the positive hydraulic pressure, and the positive hydraulic pressure disappears at (p4).
Between (p4) and (p5) including (p5), the positive pressure disappears in (p4), and the oil pressure of the cam 71p2 decreases, and the air pressure decreases, and the air pressure decreases. The amount of water in the converter 729-1 is reduced to a minimum value.
The curved part of the thick line is the above-mentioned transfer curve for mitigating the impact set by the cam profile 711 (p1, p2), and the adjacent cells 738pb and 738pc also have the same transfer curve as shown by the two-dot chain line. Become.

図20は、前記実施例10(図18、19)の内燃機関の弁駆動機構の、各カム位相制御と各制御パターン(1)〜(3)の弁リフト特性図による制御動作説明図である。
図20は、横軸がクランク角、縦軸が弁のリフト量の特性図で、前記位相制御手段5pにより前記カム71(p1、p2)の位相の調整により油圧発生タイミングを調整し、前記容積型油圧供給手段7pの油圧の発生タイミングと発生量を制御して弁シリンダを作動し、ガス交換弁の開弁タイミングおよび/または開度の調整制御を行う。
図20(上段)に示すように、開弁制御は前記カム71p2、閉弁制御は前記カム71p1の位相調整により行い、その調整の結果それぞれのセル738pa2、セル738pa1の油圧が変化する。
図20(下段)に示すように、それぞれの前記セル738pa2、738pa1の油圧成分は、71p2の開弁成分と71p1の閉弁成分として作用し、各油圧成分の合成結果により、ガス交換弁45p1の開閉制御ができる。
合成結果より、前記位相制御手段5pにより位相を変化させても、移動曲線が保持されるので、加減速緩和効果により、静粛で安定した高速回転にも対応できる弁駆動機構ができる。
上記制御により、制御パターン(1)の場合は、前記カム71(p1、p2)の位相を同じ方向に調整し、ガス交換弁45p1の開閉時期の制御ができ、制御パターン(2)の場合は、前記カム71(p1、p2)の位相を逆方向に調整し、ガス交換弁45p1の開閉量の制御ができ、制御パターン(3)の場合は、前記カム71p1の位相のみを調整し、ガス交換弁45p1の閉弁時期の制御によりアトキンソン サイクル制御ができる。
なお、制御パターン(3)のアトキンソン サイクル制御のみを目的とする場合は、カム71p2の位相調整は不要であるので、電気的アクチェータであるサーボモータ515−2を省略できる。
FIG. 20 is a control operation explanatory view of each cam phase control and the valve lift characteristic chart of each control pattern (1) to (3) of the valve drive mechanism of the internal combustion engine of the tenth embodiment (FIGS. 18 and 19). .
FIG. 20 is a characteristic diagram of the crank angle on the horizontal axis and the lift amount of the valve on the vertical axis. The phase control means 5p adjusts the phase of the cam 71 (p1, p2) to adjust the hydraulic pressure generation timing, The valve cylinder is operated by controlling the generation timing and generation amount of the hydraulic pressure of the hydraulic pressure supply means 7p, and adjustment control of the opening timing and / or the opening degree of the gas exchange valve is performed.
As shown in FIG. 20 (upper stage), the valve opening control is performed by adjusting the phase of the cam 71p2 and the valve closing control is performed by adjusting the phase of the cam 71p1, and as a result of this adjustment, the hydraulic pressures of the respective cells 738pa2 and 738pa1 change.
As shown in FIG. 20 (lower part), the hydraulic components of the cells 738pa2 and 738pa1 act as the valve-opening component of 71p2 and the valve-closing component of 71p1, and according to the synthesis result of each hydraulic component, the gas exchange valve 45p1 Open / close control can be performed.
According to the synthesis result, the movement curve is maintained even if the phase is changed by the phase control means 5p, so that the valve drive mechanism capable of coping with the quiet and stable high speed rotation can be achieved by the acceleration / deceleration relaxation effect.
By the above control, in the case of the control pattern (1), the phase of the cam 71 (p1, p2) can be adjusted in the same direction, and the opening / closing timing of the gas exchange valve 45p1 can be controlled, and in the case of the control pattern (2) The phase of the cam 71 (p1, p2) is adjusted in the reverse direction to control the opening / closing amount of the gas exchange valve 45p1. In the case of control pattern (3), only the phase of the cam 71p1 is adjusted Atkinson cycle control can be performed by controlling the closing timing of the replacement valve 45p1.
When only Atkinson cycle control of control pattern (3) is intended, the phase adjustment of the cam 71p2 is unnecessary, so the servomotor 515-2 which is an electrical actuator can be omitted.

Claims (4)

4サイクル内燃機関にて駆動する容積型ポンプを備え、前記容積型ポンプが発生する油圧により弁シリンダを周期的に作動させ、前記弁シリンダが1本または複数のガス交換弁を開閉作動する往復動機関において、
出力手段、容積型油圧供給手段、および回転伝動手段から成る内燃機関の弁駆動機構であって、
前記出力手段は、
前記弁シリンダと、クランク軸と、前記クランク軸に連動する少なくとも一つのピストンと、シリンダと、を備え、
前記回転伝動手段は、
前記クランク軸に設けた駆動車と、有効径が前記駆動車の2倍の前記容積型ポンプのロータに設けた従動車と、を備え、
前記容積型油圧供給手段は、
前記容積型ポンプと、回転継手と、を備え、
前記容積型ポンプは、
管状のカムの内側に、基準プロフィールと1個のカムプロフィールを設け、前記カムの内周面を摺動する複数のベーンまたはプランジャを前記ロータに設け、
前記ロータは、前記複数のベーンまたはプランジャで発生する各油圧を移送する油圧中継路を備え、
前記回転継手は、前記ロータの外周面またはロータハウジングの内周面に前記各油圧中継路に対応する周方向無端溝を設け、
前記各周方向無端溝は前記弁シリンダと油圧通路にて連通することを特徴とする内燃機関の弁駆動機構。
Reciprocating motion comprising a positive displacement pump driven by a four-stroke internal combustion engine, wherein the hydraulic pressure generated by the positive displacement pump causes the valve cylinder to periodically operate and the valve cylinder opens and closes one or more gas exchange valves. In the institution,
A valve drive mechanism for an internal combustion engine, comprising an output means, a positive displacement hydraulic pressure supply means, and a rotational transmission means, comprising:
The output means is
The valve cylinder, a crankshaft, at least one piston interlocking with the crankshaft, and a cylinder;
The rotational transmission means is
And a driven vehicle provided on the crankshaft, and a driven vehicle provided on a rotor of the positive displacement pump whose effective diameter is twice that of the driving vehicle.
The positive displacement hydraulic pressure supply means
And a rotary joint.
The displacement pump is
Inside the tubular cam, a reference profile and a cam profile are provided, and a plurality of vanes or plungers sliding on the inner circumferential surface of the cam are provided on the rotor.
The rotor comprises a hydraulic relay passage for transferring each hydraulic pressure generated by the plurality of vanes or plungers,
The rotary joint is provided with circumferential endless grooves corresponding to the respective hydraulic relay passages in the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing,
A valve drive mechanism of an internal combustion engine, wherein each circumferential endless groove communicates with the valve cylinder through a hydraulic passage.
前記容積型油圧供給手段が、
前記容積型ポンプと、前記回転継手の替わりに方向制御弁と、を備え、
前記容積型ポンプは、
前記管状のカムの内側に、基準プロフィールと少なくとも2個のカムプロフィールを周方向に等間隔に設け、
前記方向制御弁は、前記ロータの外周面または前記ロータハウジングの内周面に前記各油圧中継路に対応する周方向有端溝を設け、
前記弁シリンダは前記各周方向有端溝と油圧通路にて連通することを特徴とする請求項1に記載の内燃機関の弁駆動機構。
The positive displacement hydraulic pressure supply means
The displacement pump, and a directional control valve instead of the rotary joint;
The displacement pump is
Inside the tubular cam, a reference profile and at least two cam profiles are circumferentially equally spaced,
The directional control valve is provided with a circumferential end groove corresponding to each hydraulic relay passage on the outer peripheral surface of the rotor or the inner peripheral surface of the rotor housing,
The valve drive mechanism of an internal combustion engine according to claim 1, wherein the valve cylinder communicates with each of the circumferential end grooves at a hydraulic pressure passage.
前記ロータの回転軸を中心に前記カムを回動させるアクチェータと、前記アクチェータの制御手段と、を備えた位相制御手段を設け、前記内燃機関の運転状況により前記アクチェータにて前記カムを回動し、前記ガス交換弁の開弁タイミングの調整制御を行うことを特徴とする請求項1または2に記載の内燃機関の弁駆動機構。 There is provided a phase control means provided with an actuator for rotating the cam about the rotation shaft of the rotor and control means for the actuator, and the cam is rotated by the actuator according to the operating condition of the internal combustion engine. The valve drive mechanism for an internal combustion engine according to claim 1 or 2, wherein adjustment control of the valve opening timing of the gas exchange valve is performed. 前記容積型ポンプと、第2の容積型ポンプを前記ロータの軸方向に設け、少なくとも一方の前記容積型ポンプに前記位相制御手段を備え、
各々の前記容積型ポンプの略同位相のベーンまたはプランジャで発生する油圧を前記油圧中継路にて連通し、各々の前記油圧中継路に1個の空油変換器を設け、
前記内燃機関の運転状況により前記位相制御手段にて少なくとも一つの前記カムを回動し、前記ガス交換弁の開弁タイミングおよび/または開度の調整制御を行うことを特徴とする請求項3に記載の内燃機関の弁駆動機構。
The positive displacement pump and the second positive displacement pump are provided in the axial direction of the rotor, and at least one of the positive displacement pumps is provided with the phase control means.
Hydraulic pressure generated by vanes or plungers having substantially the same phase of each of the positive displacement pumps is communicated with the hydraulic relay passage, and one air-to-oil converter is provided in each of the hydraulic relay passages;
4. The control method according to claim 3, wherein at least one of the cams is rotated by the phase control means according to the operating condition of the internal combustion engine, and adjustment control of the valve opening timing and / or the opening degree of the gas exchange valve is performed. Valve drive mechanism for an internal combustion engine as described.
JP2017076615A 2017-04-07 2017-04-07 Valve drive mechanism of internal combustion engine Active JP6190997B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017076615A JP6190997B1 (en) 2017-04-07 2017-04-07 Valve drive mechanism of internal combustion engine
PCT/JP2017/021437 WO2018185947A1 (en) 2017-04-07 2017-06-09 Valve drive mechanism for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076615A JP6190997B1 (en) 2017-04-07 2017-04-07 Valve drive mechanism of internal combustion engine

Publications (2)

Publication Number Publication Date
JP6190997B1 JP6190997B1 (en) 2017-09-06
JP2018178798A true JP2018178798A (en) 2018-11-15

Family

ID=59798874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076615A Active JP6190997B1 (en) 2017-04-07 2017-04-07 Valve drive mechanism of internal combustion engine

Country Status (2)

Country Link
JP (1) JP6190997B1 (en)
WO (1) WO2018185947A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087052B (en) * 2017-12-13 2019-11-22 大连理工大学 A kind of hydraulic multi-mode Variabale valve actuation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622322B2 (en) * 1996-03-11 2005-02-23 株式会社日立製作所 Valve drive device and engine
DE102006058691A1 (en) * 2006-12-13 2008-06-19 Schaeffler Kg Device for the hydraulic control of gas exchange valves of a reciprocating internal combustion engine
JP2013100763A (en) * 2011-11-08 2013-05-23 Suzuki Motor Corp Four-cycle engine
JP2013133722A (en) * 2011-12-26 2013-07-08 Suzuki Motor Corp Four-cycle engine
JP6392751B2 (en) * 2012-06-18 2018-09-19 ブック, フランソワBOECK, Francois Direct timing system for internal combustion engines

Also Published As

Publication number Publication date
WO2018185947A1 (en) 2018-10-11
JP6190997B1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6163831B2 (en) Engine oil supply device
CN1696476B (en) Control valve for a changing control time in an internal combustion engine
JP4154622B2 (en) Device for changing effective displacement and / or volume ratio during operation of a piston engine
JP4293273B2 (en) Valve operating device for internal combustion engine
US7171932B2 (en) Internal-combustion engine having an electronically controlled hydraulic device for variably actuating intake valves
CN110344908B (en) Hydraulic valve mechanism capable of realizing variable valve opening times and internal combustion engine
JP5966999B2 (en) Multi-cylinder engine controller
US6964270B2 (en) Dual mode EGR valve
CN104612773A (en) Gas intake and distribution system based on electric hydraulic control mode
CN103781999A (en) Systems and methods for variable valve actuation
JP6190997B1 (en) Valve drive mechanism of internal combustion engine
WO2006118063A1 (en) Valve moving device for internal combustion engine
JP6551445B2 (en) Engine control device
AU2003269033B2 (en) Hydraulic valve actuator for reciprocating engine
US20180363516A1 (en) Camless engine design
JP6020307B2 (en) Multi-cylinder engine controller
US11162436B2 (en) Camless engine valve control system
JP5177419B2 (en) Variable valve gear
JP5224052B2 (en) Variable valve gear
JP2009264153A (en) Variable cam phase internal combustion engine
JP6235152B2 (en) Multifunctional variable valve drive system modularized for use in a 4-cylinder internal combustion engine
CN101344023A (en) Integration type air valve timing continuous regulating mechanism of petrol engine
Akal et al. A review of new technologies in valve systems of internal combustion engines and their effects
CN101122244A (en) Rotary axle valve type engine valve train device
JP5790489B2 (en) Valve characteristic control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6190997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250