WO2018184556A1 - 车辆检查系统 - Google Patents
车辆检查系统 Download PDFInfo
- Publication number
- WO2018184556A1 WO2018184556A1 PCT/CN2018/081849 CN2018081849W WO2018184556A1 WO 2018184556 A1 WO2018184556 A1 WO 2018184556A1 CN 2018081849 W CN2018081849 W CN 2018081849W WO 2018184556 A1 WO2018184556 A1 WO 2018184556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- section
- segment
- inspected
- self
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D11/00—Component parts of measuring arrangements not specially adapted for a specific variable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G25/00—Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement
- B65G25/04—Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement the carrier or impeller having identical forward and return paths of movement, e.g. reciprocating conveyors
- B65G25/08—Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement the carrier or impeller having identical forward and return paths of movement, e.g. reciprocating conveyors having impellers, e.g. pushers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2201/00—Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
- B65G2201/02—Articles
- B65G2201/0294—Vehicle bodies
Definitions
- the present invention relates to the field of image inspection equipment, and more particularly to a vehicle inspection system.
- the way in which the inspected vehicle passes in the vehicle inspection system is mainly divided into a driving pass mode and a drag mode.
- the driving pass mode means that the driver does not need to get off the vehicle during the inspection process, and directly drives the vehicle through the scanning area to simultaneously scan the vehicle and the vehicle. This mode has the advantages of high inspection efficiency and simple structure, but the vehicle personnel will receive certain radiation. Therefore, the driving adoption mode is limited in some countries and regions.
- the drag mode means that the vehicle inspection system is equipped with a special drag device. After the driver parks the inspected vehicle to the required position, the vehicle personnel leave the inspected vehicle, and the drag device transmits the inspected vehicle from the entrance side of the scanning area to the exit side. , complete the scanning process. The drag mode does not scan people, so it is more widely used.
- the imaging methods of the vehicle inspection system can be divided into side view imaging and top view imaging.
- Side view imaging means that the source of radiation and the detector are located on either side of the vehicle being inspected.
- Top view imaging means that the source of radiation is above the vehicle being inspected and the detector is located below the vehicle being inspected.
- Top-view imaging images are clear and have little overlap, and have gained greater development in recent years.
- the arrangement of the drag device is susceptible to the detector boom.
- the drag device passes through the scan area in the moving direction, the structure of the drag device itself affects the quality of the scanned image of the inspected vehicle.
- FIG. 1 is a scanned image of a vehicle of a vehicle inspection system in the prior art. As shown in FIG. 1, the image T of the drag device is superimposed on the image C of the inspected vehicle, which adversely affects the analysis of the articles carried in the inspected vehicle.
- the mainstream solution of the prior art is to adopt a two-stage drag device.
- the drag device 20' includes a first drag segment A and a second drag segment B which are sequentially disposed along the moving direction of the inspected vehicle 90', and are respectively disposed on the two scanning devices 10'.
- the inspected vehicle 90' is dragged by relay transfer.
- the first drag segment A pushes the rear wheel of the inspected vehicle 90' to advance, and the front portion scans through the scanning region.
- the second drag segment B starts, pushes the front wheel of the inspected vehicle 90' to continue to advance, and completes the scanning of the second half of the vehicle.
- the designer finds that the two-stage type drag device in the prior art can prevent the image of the drag device from being superimposed on the image of the inspected vehicle in the scanned image of the vehicle, but still has the following deficiencies.
- the two-stage drag device has a complicated structure and high cost; since the two-stage drag needs to accurately determine the timing at which the front wheel of the vehicle reaches the second drag segment, the control process is complicated; due to the variety of vehicles to be inspected, the wheel size, The structure is very different, so the handover process of the first drag segment and the second drag segment is often not smooth, thereby affecting image quality.
- the present invention provides a vehicle inspection system including a scanning device and a vehicle transmission device passing through a scanning area of the scanning device, the vehicle transmission device for driving the inspected vehicle through the scanning area, including along the inspected vehicle An initial driving segment located upstream of the scanning region and a self segment disposed downstream of the initial driving segment, the initial driving segment for driving the inspected vehicle to move to the scanning device and causing the
- the inspection vehicle has an initial speed when terminating the drive, and the self-segment is used to cause the inspected vehicle after the termination of the drive to move on the self-segment to move the inspected vehicle completely through the scanning device.
- the initial drive segment terminates driving when the portion of the inspected vehicle passes the scanning region.
- the initial drive segment is configured to drive the inspected vehicle to move to the scanning device, wherein the initial drive segment terminates driving and the inspected vehicle is before the inspected vehicle completely passes the scanning region
- the drive is terminated with an initial speed at which the inspected vehicle enters the self-propelled section and moves on the self-segment to move the inspected vehicle completely through the scanned area.
- the initial drive segment drives the inspected vehicle by pushing a front or rear wheel of the inspected vehicle.
- the initial drive segment is a one-sided drive segment that drives a left or right wheel of the inspected vehicle; or the initial drive segment is a left-hand wheel that drives the inspected vehicle And the double-sided drive section of the right wheel.
- the drive segment includes a transport surface carrying the inspected vehicle, a propulsion structure disposed on the transport surface for propelling the wheel, and is disposed on the push surface and located downstream of the propulsion structure a limit structure; wherein, when the initial driving segment drives the inspected vehicle, at least one side wheel of the inspected vehicle is carried on the conveying surface, and at least one wheel limit of the inspected vehicle is located at Between the propulsion structure and the limit structure.
- the stop structure includes a boss that protrudes from the conveying surface.
- the self-segment includes a downtilt section that slopes downward from an end proximate the initial drive section toward an end remote from the initial drive section.
- one end of the downtilt section adjacent the initial drive section is 15 cm to 25 cm higher than the end remote from the initial drive section.
- the downdip length is from 1.4 m to 2.0 m.
- the upper surface of the self-segment is a smooth surface, and the scanning area is disposed above the self-segment.
- the self-segment includes a plurality of parallel disposed conveyor rollers distributed along the direction of movement of the inspected vehicle at the top of the self-segment.
- the vehicle conveyor further includes a deceleration section disposed downstream of the self-segment along a direction of movement of the inspected vehicle.
- the deceleration section includes a horizontal section and at least one speed reduction belt disposed on the horizontal section; or the deceleration section includes an end from an end adjacent to the self section to an end away from the self section An upwardly inclined upwardly inclined section; or the decelerating section comprises a friction section laid from a granular material or a soft material.
- the vehicle transmission device only includes one driving segment of the initial driving segment, and is not provided in the form of two-stage driving, and the self-segment does not need a drag structure such as a motor or a plate chain compared to the driving segment. Therefore, the structure is simple and the cost is reduced. Since only the initial drive segment needs to be controlled when controlling the vehicle conveyor, the control process becomes simpler. Moreover, since there is no need to make the intersection of the two driving segments, the image quality is not affected due to the uneven transfer process.
- 1 is a scanned image of a vehicle of a vehicle inspection system in the prior art.
- FIG. 2 is a schematic view showing the structure of a vehicle inspection system having a two-stage vehicle conveying device in the prior art, in which the vehicle to be inspected is shown.
- FIG. 3 is a schematic structural view of a scanning device of the vehicle inspection system shown in FIG. 1.
- FIG. 4 is a schematic top plan view of the vehicle inspection system of FIG. 1.
- Fig. 5 is a schematic structural view of a vehicle inspection system according to a first embodiment of the present invention, showing the vehicle to be inspected.
- Figure 6 is a partially enlarged schematic view of Figure 5.
- Fig. 7 is a vehicle scan image of the vehicle inspection system shown in Fig. 5.
- Fig. 8 is a schematic structural view of a vehicle inspection system according to a second embodiment of the present invention, showing the vehicle to be inspected.
- Figure 9 is a top plan view showing a vehicle inspection system according to a second embodiment of the present invention.
- Fig. 10 is a view showing the configuration of a vehicle inspection system according to a third embodiment of the present invention, in which the vehicle to be inspected is shown.
- Figure 11 is a top plan view showing a vehicle inspection system according to a third embodiment of the present invention.
- orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplification of the description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the invention; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
- the vehicle inspection system of the present invention includes a scanning device 10 and a vehicle transmission device 20.
- the vehicle transport device 20 is used to drive the scanned area of the inspected vehicle 90 through the scanning device 10.
- the vehicle transport device 20 includes an initial drive section 21 located upstream of the scan area along the direction of movement of the inspected vehicle 90 and a self-segment 22 disposed downstream of the initial drive section 21.
- the initial drive section 21 is used to drive the inspected vehicle 90 to move toward the scanning device 10 and to have the initial speed of the inspected vehicle 90 when the drive is terminated.
- the self-segment 22 is used to cause the inspected vehicle 90 after the termination of driving to move on the self-segment 22 to cause the inspected vehicle 90 to completely pass through the scanning area.
- the vehicle transmission device 20 includes only one driving segment of the initial driving segment 21, and is not provided in the form of two-stage driving.
- the self-segment 22 does not require a drag structure such as a motor or a plate chain as compared with the driving segment.
- the structure is simple and the cost is reduced. Since only the initial drive section 21 needs to be controlled when controlling the vehicle conveyor 20, the control process becomes simpler. Moreover, since there is no need to make the intersection of the two driving segments, the image quality is not affected due to the uneven transfer process.
- 5 and 6 show the structure of a vehicle inspection system of a first embodiment of the present invention.
- the vehicle inspection system of the first embodiment includes a scanning device 10 and a vehicle conveyor 20.
- the vehicle transport device 20 is used to drive the scanned area of the inspected vehicle 90 through the scanning device 10.
- the vehicle conveyor 20 includes an initial drive section 21, a self-drive section 22, and a deceleration section 23.
- the initial drive section 21 is located upstream of the scanning area of the scanning device along the moving direction of the inspected vehicle 90.
- the initial drive section 21 is used to drive the inspected vehicle 90 to move toward the scanning device 10 and to have the initial speed of the inspected vehicle 90 when the drive is terminated. This initial speed provides the basic conditions for the inspected vehicle 90 to move on its own section 20 by itself.
- the initial drive section 21 terminates driving when the portion of the inspected vehicle 90 passes through the scanning area.
- This arrangement can make full use of the driving action of the initial driving section 21, so that the distance of the inspected vehicle 90 passing through the scanning area in the non-driven state is small, and therefore, it is advantageous to ensure that the inspected vehicle 90 completely passes through the scanning area.
- the initial drive section 21 may be driven in various forms, for example, the initial drive section 21 may drive the inspected vehicle 90 by pushing the front wheel of the inspected vehicle 90, or may drive the inspected vehicle 90 by pushing the rear wheel of the inspected vehicle 90.
- the initial driving segment 21 may be a one-side driving segment that drives the left or right wheel of the inspected vehicle, and the initial driving segment 21 may also be a double-sided driving segment that drives the left and right wheels of the inspected vehicle. .
- the initial drive section 21 employs a one-sided drive section that pushes the rear wheel of the vehicle. This drive method can save costs.
- the initial drive section 21 includes a transport surface that carries the inspected vehicle 90.
- the initial drive unit 21 is a one-side driven plate chain conveyor.
- the conveying surface of the initial drive section 21 is the plate chain surface of the plate chain conveyor.
- the initial drive section 21 also includes a propulsion structure disposed on the conveyor surface for propelling the wheel.
- the propulsion structure is a propeller that is fixedly disposed on the chain of the plate.
- the self-segment 22 is disposed downstream of the initial drive section 21.
- the self-segment 22 is used to cause the inspected vehicle 90 after the termination of driving to slide on the self-segment 22 to cause the inspected vehicle 90 to completely pass through the scanning area.
- the self-segment 22 includes a downtilt section that slopes downward from an end near the initial drive section 21 toward an end remote from the initial drive section 21.
- the downdip section allows the inspected vehicle 90 to move under the action of inertia under the action of inertia, which can alleviate the vehicle speed reduction caused by the frictional resistance, and is beneficial to ensure that the vehicle continues to maintain the forward movement, so that the tail of the vehicle can all slide through the scanning area. , complete the vehicle scan.
- the downtilt section may be disposed in some embodiments as being closer to the initial drive segment 21 than the end remote from the initial drive segment 21 by 15 cm to 25 cm. Properly setting the height of the downtilt section is beneficial to ensure that the tail of the vehicle passes through the scanning area.
- the length of the downdip section is from 1.4 m to 2.0 m in some embodiments. Properly setting the length of the downtilt section is beneficial to ensure that the tail of the vehicle passes through the scanning area.
- the overall traveling distance of the downtilt section and the gravity of the inspected vehicle 90 that can be utilized by the downdip section are controlled.
- Reasonably setting the slope, slope change or the number of segments of the downdip section is advantageous for controlling the change of the vehicle speed, preventing the vehicle speed from changing too fast when the inspected vehicle 90 passes through the scanning area, thereby facilitating the improvement of the quality of the scanned image of the vehicle.
- one end of the downtilt section near the initial drive section 21 may be 20 cm higher than the end away from the initial drive section 21.
- the length of the downdip section can be 1.8 m.
- the upper surface of the downdip section is a flat surface.
- the upper surface of the downtilt section can also be provided in other forms. Vehicle being inspected is inspected
- the vehicle conveyor deceleration section 23 is disposed downstream of the self-propelled section 22.
- the provision of the deceleration section 23 facilitates the rapid stop of the movement of the inspected vehicle 90, which facilitates the parking of the inspected vehicle at a designated location or area, and also facilitates the safety of the entire inspection process.
- the setting of the deceleration section 23 can be various.
- the deceleration section 23 in this embodiment includes a horizontal section and at least one speed reduction belt 231 disposed on the horizontal section.
- the three components of the vehicle transfer device 20, the initial drive section 21, the self-segment 22 and the deceleration section 23 are coupled to each other.
- the initial drive section 21 is located on the inlet side of the scanning area, the scanning area is disposed above the self-segment 22, the upper surface of the self-segment 22 is a smooth surface, and the deceleration section 23 is located on the exit side of the scanning area.
- the inspected vehicle 90 travels from the initial drive section 21 to the self-segment 22 and then to the deceleration section 23. During this process, various parts of the inspected vehicle 90 pass through the scanning area to achieve full vehicle scanning.
- the surface of the self-segment 22 is a smooth surface. Therefore, the influence of the vehicle conveying device on the scanned image of the vehicle is small, and the quality of the scanned image of the vehicle is high.
- Fig. 7 is a vehicle scan image of the vehicle inspection system of the embodiment of the present invention. As shown in FIG. 7, in the present embodiment, only the image C of the inspected vehicle is displayed on the scanned image of the vehicle, and the quality of the scanned image of the vehicle is not affected by the vehicle transmitting device.
- the driver will be inspected by the inspected vehicle 90 to the designated position, so that the entire vehicle is located on the entrance side of the scanning area, and the hand brake is released and the neutral position is hung.
- the vehicle transport device 20 is activated.
- the initial drive section 21 drags the rear wheel of the inspected vehicle 90 to advance, accelerates the inspected vehicle 90 to a certain speed, for example, 0.2 m/s, and moves at the speed, and the first half of the inspected vehicle 90 passes through the scanning area and performs imaging.
- the driving is stopped, and the inspected vehicle 90 having an initial speed of 0.2 m/s enters the self-segment 22 to slide. Since the self-segment 22 is a downdip section, the inspected vehicle 90 continues to move under the action of inertia and gravity, so that the second half gradually passes through the scanning area and performs imaging until the entire vehicle passes through the scanning area and forms a complete vehicle scan image. The inspected vehicle 90 then enters the deceleration section 23 and gradually decelerates to a standstill.
- the second embodiment differs from the first embodiment in the structure of the initial drive section 21 being different.
- the initial drive section 21 includes a conveying surface carrying the inspected vehicle 90, a propulsion structure 211 disposed on the conveying surface for pushing the wheel, and a limit disposed on the pushing surface and located downstream of the propulsion structure 211.
- Bit structure 212 wherein, when the initial driving segment 21 drives the inspected vehicle 90, the inspected vehicle 90 is carried on the conveying surface, and the wheel of the inspected vehicle 90 pushed by the propulsion structure 211 is limited between the propulsion structure 211 and the limiting structure 212.
- the setting of the limiting structure can prevent the driving speed of the inspected vehicle 90 from being unevenly moved during the dragging process, so that the vehicle speed is stable, and the scanned image can be more clear when the vehicle speed of the inspected vehicle 90 passes through the scanning area is stable;
- the limit structure can prevent the front wheel from entering the self-moving state in advance after reaching the downtilt section, so that the initial speed cannot be controlled by the initial driving section 21 at the required speed, thereby better controlling the vehicle scanning image. the quality of.
- the initial drive section 22 is a one-side drive section that drives the left side wheel.
- a single-sided chain conveyor is used as the driving section 22, and the surface of the chain is a conveying surface.
- the propulsion structure is a propeller disposed on the surface of the plate chain, and the constraining structure 212 is specifically a boss disposed on the surface of the plate chain.
- the limiting structure is set as a boss on the conveying surface, and the structure is simple to set up in the case of better limiting action.
- the left rear wheel is positioned between the pusher and the boss when the inspected vehicle 90 is conveyed. Since the plate chain of the chain conveyor continuously rotates, the boss automatically rotates with the chain chain when the chain rotates from the top to the bottom, thereby automatically releasing the restriction on the left rear wheel, thereby releasing the vehicle to be inspected.
- the limit is that the inspected vehicle 90 can move itself along the self-segment.
- the difference between the third embodiment and the second embodiment is that the structure of the initial driving section 21 is different, and the structure of the self-segment 22 is also different.
- the third embodiment is different from the initial driving section 21 of the second embodiment in that the initial driving section of the third embodiment simultaneously drives the left side wheel and the right side of the inspected vehicle 90. Double-sided drive section of the wheel.
- the initial drive section 21 is a double-sided driven plate chain conveyor comprising two conveyor chain chains arranged side by side.
- the two conveyor chain chains are each provided with a pusher as a push structure and a boss as a limit structure.
- the initial driving segment adopts the form of a double-side driving segment, which can make the vehicle speed of the inspected vehicle 90 more stable and the moving direction more accurate, and is advantageous for obtaining a clear image of the vehicle.
- the third embodiment is different from the self-propelled section 22 of the second embodiment in that the self-segment 22 of the third embodiment includes the self-segment 22 distributed along the moving direction of the inspected vehicle 90.
- a plurality of conveying rollers 221 arranged in parallel at the top.
- the inspected vehicle 90 can smoothly pass through the scanning area even in the state of the handbrake, thereby preventing the driver from getting used to pulling the vehicle before getting off the vehicle.
- the hand brake is inspected, the movement of the vehicle 90 may be unsatisfactory in the self-segment, which facilitates the smooth scanning of the vehicle.
- a plurality of conveying rollers 221 are disposed on the downtilt section.
- the transfer roller 221 is disposed on the downtilt section so that it can continue to move forward by the gravity of the inspected vehicle 90 on the basis of the initial speed, facilitating that the inspected vehicle 90 smoothly passes through the scanning area.
- the upper surface of the downtilt section may also be provided in other forms, for example, the upper surface of the downtilt section may be disposed relative to the first end of the connected downtilt section And an imaginary plane convex surface or a concave surface of the second end, or the like, or the downtilt section may include two or more downtilt sections separated by a horizontal section, or two or more downtilt sections including different slopes, and the like.
- the self-segment can also be set to other forms, for example, the self-segment can also be a horizontal section, as long as the initial driving speed of the initial driving section applied to the inspected vehicle and the horizontal section of the self-segment can ensure that the end of the inspected vehicle passes the scanning. The area is fine.
- a belt conveyor can also be used; or a chain roller conveyor can be used.
- the deceleration section may also include an updip section that slopes upward from one end adjacent the self section to an end that is away from the self section; or may include a friction section that is laid from a particulate material or a soft material.
- the particulate material can be, for example, sand.
- the soft material is, for example, rubber.
- the vehicle can be decelerated by the rolling friction of the vehicle itself after leaving the vehicle transmission device.
- the self-segment includes a plurality of conveying rollers
- the inspected vehicle can be required to pass the scanning area.
- the hand brake is pulled, the inspected vehicle can stop by itself when the inspected vehicle passes through the scanning area and the conveying capacity of the conveying roller is insufficient to overcome the braking force of the handbrake.
- the invention and its embodiments are particularly suitable for use in a top view imaging vehicle inspection system for a small car. However, it can also be applied to medium-sized vehicles or large vehicles, or other imaging methods of vehicle inspection systems other than top-view imaging.
- the embodiments of the present invention use a driving section of the initial driving section, and a self-segment, compared with the two-stage dragging apparatus of the top-view imaging vehicle inspection system applied to the small car in the prior art.
- the scanned image of the vehicle is not affected by the vehicle transmission device, and the overall structure is simple, the power consumption of the whole system is lower, and the manufacturing, maintenance and operation costs are lower; since only one driving segment needs to be controlled when controlling the vehicle transmission device, the control process is simple
- the use is more reliable and the scanned image quality of the vehicle is higher.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
一种车辆检查系统,包括扫描装置(10)和穿过扫描装置(10)的扫描区域的车辆传送装置(20),车辆传送装置(20)用于驱动被检查车辆(90)通过扫描区域,包括沿被检查车辆(90)的移动方向位于扫描区域的上游的初始驱动段(21)和设置于初始驱动段(21)下游的自行段(22),初始驱动段(21)用于驱动被检查车辆(90)向扫描装置移动(10)并使被检查车辆(90)在终止驱动时具有初始速度,自行段(22)用于使终止驱动后的被检查车辆(90)在自行段(22)上自行移动以使被检查车辆(90)完全通过扫描区域。车辆检查系统结构简单,成本降低。
Description
相关申请
本申请是以申请号为201710223124.X,申请日为2017年4月7日,发明名称为“车辆检查系统”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本申请中。
本发明涉及影像检查设备领域,特别涉及一种车辆检查系统。
车辆检查系统中被检查车辆的通过方式主要分为驾车通过模式和拖动模式。驾车通过模式是指检查过程中司机无需下车,直接驾驶车辆通过扫描区域,对车上人员及车辆同时进行扫描。此种模式具有检查效率高、结构简单的优点,但是车上人员会接受一定的射线辐射。因此,驾车通过模式在部分国家和地区的应用受到一定限制。拖动模式是指车辆检查系统配备特殊的拖动装置,司机将被检查车辆停放至要求位置后,车上人员离开被检查车辆,拖动装置将被检查车辆从扫描区域入口侧传送至出口侧,完成扫描过程。拖动模式不对人员进行扫描,因此应用更为广泛。
车辆检查系统的成像方式可分为侧视成像和顶视成像。侧视成像是指射线源和探测器分别位于被检查车辆的两侧。顶视成像是指射线源位于被检查车辆上方,探测器位于被检查车辆下方。
顶视成像图像清晰、重叠少,近年来获得更大发展。但是,在顶视成像的车辆检查系统中,由于拖动装置的运动方向与探测器的排布方向相垂直,因此拖动装置的布置易受到探测器臂架的影响。同时,当拖动装置沿运动方向经过扫描区域时,拖动装置本身的结构会影响被检查车辆的扫描图像的质量。
图1为现有技术中一种车辆检查系统的车辆扫描图像。如图1所示,拖动装置的图像T与被检查车辆的图像C叠加,对分析被检查车辆内携带的物品产生不利影响。
为了解决上述问题,实现扫描图像不受影响的目的,现有技术主流的应对方案是采用两段式拖动装置。
如图2至图4所示,拖动装置20'包括沿被检查车辆90'的移动方向依次设置的第 一拖动段A和第二拖动段B,分别布置于扫描装置10'的两侧,采用接力传送的方式拖动被检查车辆90'。开始扫描时,第一拖动段A推动被检查车辆90'后轮前进,车头部分通过扫描区域进行扫描,当被检查车辆90'前轮到达第二拖动段B时,第二拖动段B启动,推动被检查车辆90'前轮继续前进,完成车辆后半部分的扫描。
在实现本发明的过程中,设计人员发现,现有技术中两段式拖动装置虽然可以防止车辆扫描图像中在被检查车辆的图像上叠加拖动装置的图像,但仍具有如下不足之处:两段式拖动装置结构复杂,成本较高;由于两段拖动,需要准确判断车辆前轮到达第二拖动段的时机,控制过程较为复杂;由于被检查车辆种类多样,车轮大小、结构有很大不同,因此第一拖动段和第二拖动段的交接过程往往不易平稳,从而影响图像质量。
发明内容
本发明的目的在于提供一种车辆检查系统,旨在解决具有两段式拖动装置的车辆检查系统结构复杂、成本较高的问题。
本发明提供一种车辆检查系统,包括扫描装置和穿过所述扫描装置的扫描区域的车辆传送装置,所述车辆传送装置用于驱动被检查车辆通过所述扫描区域,包括沿被检查车辆的移动方向位于所述扫描区域的上游的初始驱动段和设置于所述初始驱动段下游的自行段,所述初始驱动段用于驱动所述被检查车辆向所述扫描装置移动并使所述被检查车辆在终止驱动时具有初始速度,所述自行段用于使终止驱动后的所述被检查车辆在所述自行段上自行移动以使所述被检查车辆完全通过所述扫描装置。
进一步地,所述初始驱动段在所述被检查车辆部分通过所述扫描区域时终止驱动。
所述初始驱动段用于驱动所述被检查车辆向所述扫描装置移动,其中,所述初始驱动段在所述被检查车辆完全通过所述扫描区域之前终止驱动并使所述被检查车辆在终止驱动时具有初始速度,所述被检查车辆在所述初始速度的作用下进入所述自行段并在所述自行段上自行移动以使所述被检查车辆完全通过所述扫描区域。
在一些实施例中,所述初始驱动段通过推动所述被检查车辆的前轮或后轮驱动所述被检查车辆。
在一些实施例中,所述初始驱动段为驱动所述被检查车辆的左侧车轮或右侧车轮的单侧驱动段;或者,所述初始驱动段为驱动所述被检查车辆的左侧车轮和右侧车轮 的双侧驱动段。
在一些实施例中,所述驱动段包括承载所述被检查车辆的输送表面、设置于所述输送表面上用于推动车轮的推进结构和设置于所述推送表面上并位于所述推进结构下游的限位结构;其中,所述初始驱动段驱动所述被检查车辆时,所述被检查车辆的至少一侧车轮承载于所述输送表面,且所述被检查车辆的至少一个车轮限位于所述推进结构和所述限位结构之间。
在一些实施例中,所述限位结构包括凸出于所述输送表面的凸台。
在一些实施例中,所述自行段包括从靠近所述初始驱动段的一端向远离所述初始驱动段的一端向下倾斜的下倾段。
在一些实施例中,所述下倾段靠近所述初始驱动段的一端比远离所述初始驱动段的一端高15cm至25cm。
在一些实施例中,所述下倾段的长度为1.4m~2.0m。
在一些实施例中,所述自行段的上表面为平滑表面,所述扫描区域设置于所述自行段上方。
在一些实施例中,所述自行段包括沿所述沿被检查车辆的移动方向分布于所述自行段的顶部的多个平行设置的传送辊。
在一些实施例中,所述车辆传送装置还包括沿所述被检查车辆的移动方向设置于所述自行段下游的减速段。
在一些实施例中,所述减速段包括水平段和设置于所述水平段上的至少一条减速带;或者,所述减速段包括从靠近所述自行段的一端至远离所述自行段的一端向上倾斜的上倾段;或者,所述减速段包括由颗粒状材料或软性材料铺设的摩擦段。
基于本发明提供的车辆检查系统,车辆传送装置仅包括初始驱动段一个驱动段,未设置为两段驱动的形式,其自行段相比于驱动段而言无需电机、板链等拖动结构,因此结构简单,成本降低。由于控制车辆传送装置时仅需对初始驱动段进行控制,控制过程变得更加简单。而且,由于无需进行两个驱动段的交接,也不会由于交接过程不平稳而影响图像质量。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中一种车辆检查系统的车辆扫描图像。
图2为现有技术中具有两段式车辆传送装置的车辆检查系统的结构示意图,其中示出了被检查车辆。
图3为图1所示的车辆检查系统的扫描装置的结构示意图。
图4为图1的车辆检查系统的俯视结构示意图。
图5为本发明第一实施例的车辆检查系统的结构示意图,其中示出了被检查车辆。
图6为图5的局部放大结构示意图。
图7为图5所示的车辆检查系统的车辆扫描图像。
图8为本发明第二实施例的车辆检查系统的结构示意图,其中示出了被检查车辆。
图9为本发明第二实施例的车辆检查系统的俯视结构示意图。
图10为本发明第三实施例的车辆检查系统的结构示意图,其中示出了被检查车辆。
图11为本发明第三实施例的车辆检查系统的俯视结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一 项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
图5、图6、图8至图11示出了本发明的车辆检查系统的结构。如图5、图6、图8至图11所示,本发明的车辆检查系统包括扫描装置10和车辆传送装置20。车辆传送装置20用于驱动被检查车辆90通过扫描装置10的扫描区域。车辆传送装置20包括沿被检查车辆90的移动方向位于扫描区域上游的初始驱动段21和设置于初始驱动段21下游的自行段22。初始驱动段21用于驱动被检查车辆90向扫描装置10移动并使被检查车辆90在终止驱动时具有初始速度。自行段22用于使终止驱动后的被检查车辆90在自行段22上自行移动以使被检查车辆90完全通过扫描区域。
该车辆检查系统中,车辆传送装置20仅包括初始驱动段21一个驱动段,未设置为两段驱动的形式,自行段22相比于驱动段而言无需电机、板链等拖动结构,因此,在车辆传送装置不影响车辆扫描图像的基础上,结构简单,成本降低。由于控制车辆传送装置20时仅需对初始驱动段21进行控制,控制过程变得更加简单。而且,由于无需进行两个驱动段的交接,也不会由于交接过程不平稳而影响图像质量。
以下结合图5至图11对本发明各实施例进行详细说明。
图5和图6示出了本发明第一实施例的车辆检查系统的结构。
如图5和图6所示,第一实施例的车辆检查系统包括扫描装置10和车辆传送装置20。
车辆传送装置20用于驱动被检查车辆90通过扫描装置10的扫描区域。车辆传送装置20包括初始驱动段21、自行段22和减速段23。
初始驱动段21沿被检查车辆90的移动方向位于扫描装置的扫描区域上游。初始驱动段21用于驱动被检查车辆90向扫描装置10移动并使被检查车辆90在终止驱动 时具有初始速度。该初始速度为被检查车辆90在自行段20上自行移动提供了基本条件。
第一实施例中,初始驱动段21在被检查车辆90部分通过扫描区域时终止驱动。该设置可以充分利用初始驱动段21的驱动作用,使被检查车辆90在无驱动的状态下通过扫描区域的距离较小,因此,利于确保被检查车辆90完全通过扫描区域。
初始驱动段21的驱动形式可以有多种,例如初始驱动段21可以通过推动被检查车辆90的前轮驱动被检查车辆90,也可以通过推动被检查车辆90的后轮驱动被检查车辆90。
另外,初始驱动段21可以为驱动被检查车辆的左侧车轮或右侧车轮的单侧驱动段,初始驱动段21也可以为驱动被检查车辆的左侧车轮和右侧车轮的双侧驱动段。
第一实施例中初始驱动段21采用推动车辆后轮的单侧驱动段。该驱动方式可以节约成本。
第一实施例中,初始驱动段21包括承载被检查车辆90的输送表面。具体地,初始驱动机21为一个单侧驱动的板链式输送机。初始驱动段21的输送表面为板链式输送机的板链表面。
初始驱动段21还包括设置于输送表面上用于推动车轮的推进结构。推进结构是固定设置于板链上的推进器。在输送承载于板链上的被检查车辆90时,推进器位于被检查车辆90的后轮后部,从而板链向前移动时,推进器推送被检查车辆90随同板链一起向前移动。
自行段22设置于初始驱动段21的下游。自行段22用于使终止驱动后的被检查车辆90在自行段22上滑行以使被检查车辆90完全通过扫描区域。
第一实施例中,自行段22包括从靠近初始驱动段21的一端向远离初始驱动段21的一端向下倾斜的下倾段。下倾段使被检查车辆90除了在惯性作用下运动,也在重力作用下运动,可以缓解由于摩擦阻力引起的车速减低,利于保证车辆继续维持向前运动,使车辆尾部能够全部滑行通过扫描区域,完成整车扫描。
下倾段在一些实施例中可以设置为靠近初始驱动段21的一端比远离初始驱动段21的一端高15cm至25cm。合理设置下倾段的高度利于保证车辆尾部通过扫描区域。
下倾段的长度在一些实施例中为1.4m~2.0m。合理设置下倾段的长度利于保证车辆尾部通过扫描区域。
在以上下倾段的两端的高度差和下倾段的长度确定以后,下倾段的整体行车距离 和下倾段可以利用的被检查车辆90重力即得到控制。合理设置下倾段的坡度、坡度变化或段数,利于控制车速变化,防止被检查车辆90通过扫描区域时车速变化过快,从而利于提高车辆扫描图像的质量。
第一实施例中,下倾段靠近初始驱动段21的一端可以比远离初始驱动段21的一端高20cm。下倾段的长度可以为1.8m。
本实施例中,下倾段的上表面是平面。当然,下倾段的上表面也可以设置为其它形式。被检查车辆被检查车辆
如图5和图6所示,车辆传送装置减速段23设置于自行段22的下游。设置减速段23利于被检查车辆90快速停止移动,利于被检查车辆停在指定的位置或区域,也利于提高检查全过程的安全性。
减速段23的设置形式可以有多种。本实施例中减速段23包括水平段和设置于水平段上的至少一条减速带231。车辆传送装置
如图5和图6所示,车辆传送装置20的三个组成部分初始驱动段21、自行段22和减速段23相互衔接。初始驱动段21位于扫描区域的入口侧,扫描区域设置于自行段22上方,自行段22的上表面为平滑表面,减速段23位于扫描区域的出口侧。被检查车辆90从初始驱动段21运行至自行段22,再运行至减速段23。在此过程中,被检查车辆90各个部分通过扫描区域,实现整车扫描。
由于扫描区域设置于自行段22上方,自行段22的表面为平滑表面,因此,车辆传送装置对车辆扫描图像的影响较小,车辆扫描图像的质量较高。
图7是本发明实施例的车辆检查系统的车辆扫描图像。如图7所示,本实施例中,车辆扫描图像上仅显示被检查车辆的图像C,车辆扫描图像的质量未受车辆传送装置的影响。
对被检查车辆90进行检查过程中,司机将被检查车辆90驾驶至指定位置,使整车位于扫描区域的入口侧,松手刹并挂空挡。司机及车上人员下车离开后,启动车辆传送装置20。初始驱动段21拖动被检查车辆90后轮前进,将被检查车辆90加速至一定速度,例如0.2m/s,并以该速度运动,被检查车辆90的前半部分通过扫描区域并进行成像。当被检查车辆90的后轮被推动至扫描区域附近时终止驱动,具有0.2m/s初始速度的被检查车辆90进入自行段22滑行。由于自行段22为下倾段,被检查车辆90在惯性作用下和重力作用下继续前行,使后半部分逐渐通过扫描区域并进行成像直至整车通过扫描区域并形成完整的车辆扫描图像。之后被检查车辆90进入到减 速段23逐渐减速到静止。
图8和图9示出了本发明第二实施例的车辆检查系统的结构。
第二实施例与第一实施例的不同处在于初始驱动段21的结构不同。
如图8和图9所示,初始驱动段21包括承载被检查车辆90的输送表面、设置于输送表面上用于推动车轮的推进结构211和设置于推送表面上并位于推进结构211下游的限位结构212。其中,初始驱动段21驱动被检查车辆90时,被检查车辆90承载于输送表面,且被推进结构211推送的被检查车辆90的车轮限位于推进结构211和限位结构212之间。
限位结构的设置可以防止被检查车辆90在拖动过程中前后窜动导致的拖动速度不均匀,使车速稳定,而在被检查车辆90通过扫描区域时车速稳定则扫描图像可以更加清晰;另外,限位结构还可防止前轮到到达下倾段后提前脱离初始驱动段21进入自行移动状态而使初始速度不能被初始驱动段21控制在需要的速度,从而较好地控制车辆扫描图像的质量。
如图9所示,本实施例中,初始驱动段22为驱动左侧车轮的单侧驱动段。本实施例中,单侧板链式输送机作为驱动段22,板链表面为输送表面。推进结构为设置在板链表面的推进器,而限位结构212具体地为设置于板链表面的凸台。限位结构设置为输送表面上的凸台,在起到较好的限位作用的情况下,结构设置简单。
本申请中,输送被检查车辆90时,输送被检查车辆90时左侧后轮位于推进器和凸台之间。由于板链式输送机的板链不断转动,凸台在板链从上向下转动时自动时根随板链向下转动,从而自动解除对左侧后轮的限制,从而解除对被检查车辆的限制,被检查车辆90可以沿自行段自行移动。
第二实施例中未说明的部分可以参考本发明其余部分的相关说明。
图10和图11示出了本发明第三实施例的车辆检查系统的结构。
第三实施例与第二实施例的不同处在于初始驱动段21的结构不同、自行段22的结构也不同。
如图10和图11所示,第三实施例与第二实施例的初始驱动段21的不同之处在于第三实施例的初始驱动段为同时驱动被检查车辆90的左侧车轮和右侧车轮的双侧驱动段。
本实施例中具体地,初始驱动段21为双侧驱动的板链式输送机,包括左右并排布置的两个输送板链。同时,两个输送板链上各自设置有作为推送结构的推送器和作 为限位结构的凸台。输送被检查车辆90时,两侧车轮分别对应地承载于两个输送板链上,左侧后轮和右侧后轮各自位于对应的输送板链的推进器和凸台之间。初始驱动段采用双侧驱动段的形式,可以使被检查车辆90的车速更加稳定,移动方向更加准确,利于获得清晰的车辆所描图像。
如图10和图11所示,第三实施例与第二实施例的自行段22的不同之处在于第三实施例的自行段22包括沿被检查车辆90的移动方向分布于自行段22的顶部的多个平行设置的传送辊221。在自行段22设置多个传送辊221时,由于传送辊可以转动,因此,可以使被检查车辆90即使在拉手刹的状态下亦可顺利通过扫描区域,从而避免司机下车前出于习惯拉下手刹时被检查车辆90在自行段可能产生的移动不畅现象,利于车辆顺利进行扫描。
如图10所示,本实施例中在一些实施例中,多个传送辊221布置于下倾段上。传送辊221布置于下倾段上可以在初始速度的基础上利用被检查车辆90的重力使其继续向前移动,利于被检查车辆90顺利通过扫描区域。
第三实施例中未说明的部分可以参考本发明其余部分的相关说明。
以上实施例不应对本发明构成限制。例如:
在一些替代实施例中,自行段设置有下倾段时,下倾段的上表面也可以设置为其它形式,例如,下倾段的上表面可以设置为相对于连接下倾段的第一端和第二端的假想平面上凸的表面或下凹的表面等,或者下倾段可以包括通过水平段分隔的两个以上下倾分段,或包括坡度不同的两个以上下倾分段等。
另外,自行段也可以设置为其它形式,例如自行段也可以为水平段,只要初始驱动段施加给被检查车辆的初始速度和作为自行段的水平段的参数能保证被检查车辆的末端通过扫描区域即可。
初始驱动段的具体实现方式可以有多种。例如,也可以采用带式输送机;或者可以采用链辊式输送机。
在其它未图示的实施例中,减速段也可以包括从靠近自行段的一端至远离自行段的一端向上倾斜的上倾段;或者可以包括由颗粒状材料或软性材料铺设的摩擦段。颗粒状材料例如可以为沙土。软性材料例如为橡胶。
另外,设置减速段不是必需地,例如,可以依靠车辆自身滚动摩擦使被检查车辆在离开车辆传送装置后自行减速,再例如,自行段包括多个传送辊时,可以要求被检查车辆通过扫描区域时拉上手刹,这样,被检查车辆经过扫描区域后,当传送辊的传 送能力不足以克服手刹的制动力时,被检查车辆即能自行停止。
本发明及其实施例尤其适用于小型车的顶视成像车辆检查系统中。但也可以应用于中型车或大型车,或顶视成像以外的其它成像方式的车辆检查系统。
根据以上描述可知,本发明各实施例与现有技术中应用于小型车的顶视成像车辆检查系统的两段式拖动装置相比,采用了初始驱动段一个驱动段,配以自行段,车辆扫描图像不受车辆传送装置的影响,而且整体结构简单,整个系统的用电负荷更低,制造、维护和运行成本更低;由于控制车辆传送装置时仅需控制一个驱动段,控制过程简单;同时无需监测车辆前轮到达情况,不会受到不同车轮大小、轮距长短的影响,使用更加可靠,车辆扫描图像质量较高。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。
Claims (13)
- 一种车辆检查系统,包括:扫描装置(10);和车辆传送装置(20),穿过所述扫描装置(10)的扫描区域,用于驱动被检查车辆(90)通过所述扫描区域,包括:初始驱动段(21),沿被检查车辆(90)的移动方向位于所述扫描区域的上游,用于驱动所述被检查车辆(90)向所述扫描装置(10)移动并使所述被检查车辆(90)在终止驱动时具有初始速度;和自行段(22),设置于所述初始驱动段(21)下游,用于使终止驱动后的所述被检查车辆(90)在所述自行段(22)上自行移动以使所述被检查车辆(90)完全通过所述扫描区域。
- 根据权利要求1所述的车辆检查系统,其特征在于,所述初始驱动段(21)在所述被检查车辆(90)部分通过所述扫描区域时终止驱动。
- 根据权利要求1所述的车辆检查系统,其特征在于,所述初始驱动段(21)通过推动所述被检查车辆(90)的前轮或后轮驱动所述被检查车辆(90)。
- 根据权利要求1所述的车辆检查系统,其特征在于,所述初始驱动段(21)为驱动所述被检查车辆的左侧车轮或右侧车轮的单侧驱动段;或者,所述初始驱动段(21)为驱动所述被检查车辆的左侧车轮和右侧车轮的双侧驱动段。
- 根据权利要求1所述的车辆检查系统,其特征在于,所述初始驱动段(21)包括承载所述被检查车辆(90)的输送表面、设置于所述输送表面上用于推动车轮的推进结构(211)和设置于所述推送表面上并位于所述推进结构(211)下游的限位结构(212);其中,所述初始驱动段(21)驱动所述被检查车辆(90)时,所述被检查车辆(90)的至少一侧车轮承载于所述输送表面,且所述被检查车辆(90)的至少一个车轮限位于所述推进结构(211)和所述限位结构(212)之间。
- 根据权利要求5所述的车辆检查系统,其特征在于,所述限位结构包括凸出于所述输送表面的凸台。
- 根据权利要求1所述的车辆检查系统,其特征在于,所述自行段(22)包括从靠近所述初始驱动段(21)的一端向远离所述初始驱动段(21)的一端向下倾斜的下倾段。
- 根据权利要求7所述的车辆检查系统,其特征在于,所述下倾段靠近所述初始驱动段(21)的一端比远离所述初始驱动段(21)的一端高15cm至25cm。
- 根据权利要求7所述的车辆检查系统,其特征在于,所述下倾段的长度为1.4m~2.0m。
- 根据权利要求1至9中任一项所述的车辆检查系统,其特征在于,所述自行段(22)的上表面为平滑表面,所述扫描区域设置于所述自行段(22)上方。
- 根据权利要求1至9中任一项所述的车辆检查系统,其特征在于,所述自行段(22)包括沿所述沿被检查车辆(90)的移动方向分布于所述自行段(22)的顶部的多个平行设置的传送辊(221)。
- 根据权利要求1至9中任一项所述的车辆检查系统,其特征在于,所述车辆传送装置(20)还包括沿所述被检查车辆(90)的移动方向设置于所述自行段(22)下游的减速段(23)。
- 根据权利要求12所述的车辆检查系统,其特征在于,所述减速段(23)包括水平段和设置于所述水平段上的至少一条减速带(231);或者,所述减速段包括从靠近所述自行段(22)的一端至远离所述自行段(22)的一端向上倾斜的上倾段;或者,所述减速段包括由颗粒状材料或软性材料铺设的摩擦段。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18780998.3A EP3608638A4 (en) | 2017-04-07 | 2018-04-04 | VEHICLE INSPECTION SYSTEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710223124.X | 2017-04-07 | ||
CN201710223124.XA CN106840235A (zh) | 2017-04-07 | 2017-04-07 | 车辆检查系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018184556A1 true WO2018184556A1 (zh) | 2018-10-11 |
Family
ID=59148019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/081849 WO2018184556A1 (zh) | 2017-04-07 | 2018-04-04 | 车辆检查系统 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3608638A4 (zh) |
CN (1) | CN106840235A (zh) |
WO (1) | WO2018184556A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106840235A (zh) * | 2017-04-07 | 2017-06-13 | 清华大学 | 车辆检查系统 |
CN107271465B (zh) * | 2017-07-27 | 2024-03-05 | 同方威视技术股份有限公司 | 车辆检查系统的输送设备和车辆检查系统 |
CN113744517B (zh) * | 2020-05-29 | 2022-09-27 | 同方威视技术股份有限公司 | 车辆检查系统及其方法 |
CN113820139B (zh) * | 2020-06-18 | 2022-12-06 | 同方威视技术股份有限公司 | 自动引导系统和方法以及车辆检查系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204237158U (zh) * | 2014-08-22 | 2015-04-01 | 清华大学 | 车辆检查系统 |
JP5902108B2 (ja) * | 2013-02-07 | 2016-04-13 | 株式会社Ihi検査計測 | X線検査用車両搬送装置 |
CN106093087A (zh) * | 2016-08-18 | 2016-11-09 | 清华大学 | 一种固定式透射辐射成像的车辆自行拖动扫描系统 |
CN205941409U (zh) * | 2016-08-18 | 2017-02-08 | 清华大学 | 一种固定式透射辐射成像的车辆自行拖动扫描系统 |
CN106840235A (zh) * | 2017-04-07 | 2017-06-13 | 清华大学 | 车辆检查系统 |
CN206919910U (zh) * | 2017-04-07 | 2018-01-23 | 清华大学 | 车辆检查系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102107777B (zh) * | 2009-12-24 | 2012-12-12 | 同方威视技术股份有限公司 | 车辆输送装置和具有该车辆输送装置的车辆辐射检测系统 |
CN105438756B (zh) * | 2014-08-22 | 2019-03-29 | 清华大学 | 一种小型车辆检查系统 |
-
2017
- 2017-04-07 CN CN201710223124.XA patent/CN106840235A/zh active Pending
-
2018
- 2018-04-04 WO PCT/CN2018/081849 patent/WO2018184556A1/zh active Application Filing
- 2018-04-04 EP EP18780998.3A patent/EP3608638A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5902108B2 (ja) * | 2013-02-07 | 2016-04-13 | 株式会社Ihi検査計測 | X線検査用車両搬送装置 |
CN204237158U (zh) * | 2014-08-22 | 2015-04-01 | 清华大学 | 车辆检查系统 |
CN106093087A (zh) * | 2016-08-18 | 2016-11-09 | 清华大学 | 一种固定式透射辐射成像的车辆自行拖动扫描系统 |
CN205941409U (zh) * | 2016-08-18 | 2017-02-08 | 清华大学 | 一种固定式透射辐射成像的车辆自行拖动扫描系统 |
CN106840235A (zh) * | 2017-04-07 | 2017-06-13 | 清华大学 | 车辆检查系统 |
CN206919910U (zh) * | 2017-04-07 | 2018-01-23 | 清华大学 | 车辆检查系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3608638A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3608638A4 (en) | 2021-01-20 |
CN106840235A (zh) | 2017-06-13 |
EP3608638A1 (en) | 2020-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018184556A1 (zh) | 车辆检查系统 | |
CN105438756B (zh) | 一种小型车辆检查系统 | |
CN204237158U (zh) | 车辆检查系统 | |
US10082596B2 (en) | Vehicle inspection system | |
JP5793407B2 (ja) | 無人搬送車による台車の自動搬送システム | |
WO2016026249A1 (zh) | 车辆拖动系统和车辆检查系统 | |
CN102107778B (zh) | 一种滑撬式车辆输送系统及滑撬式车辆输送方法 | |
JP4908384B2 (ja) | ロープウェー設備 | |
CN204250825U (zh) | 车辆拖动系统和车辆检查系统 | |
CN206919910U (zh) | 车辆检查系统 | |
CN208120104U (zh) | 物料运输系统 | |
CN209226023U (zh) | 一种可垂直升降积放式输送机 | |
JP6110285B2 (ja) | 移動体、及び移動体と被牽引物との自動切離しシステム | |
JP4237297B2 (ja) | キャリア式台車コンベヤの乗継機構 | |
JP7268609B2 (ja) | 物品搬送設備 | |
CN103395609B (zh) | 一种适用于浆粕喂料的自动喂粕机 | |
US2987011A (en) | Conveyor interchange | |
CN208802579U (zh) | 水平循环式磁悬浮传送带 | |
CN108945950A (zh) | 一种物流车 | |
CN210214012U (zh) | 一种卷纸储纸架推送机构 | |
JPH0331198A (ja) | 垂直搬送装置 | |
JP2812498B2 (ja) | 可動体搬送装置 | |
IT202100006200A1 (it) | Gruppo di rimozione neve | |
CN206901237U (zh) | 一种物料输送车 | |
CN106093087A (zh) | 一种固定式透射辐射成像的车辆自行拖动扫描系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18780998 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018780998 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018780998 Country of ref document: EP Effective date: 20191107 |