WO2018184310A1 - 一种荧光模块及光源系统 - Google Patents

一种荧光模块及光源系统 Download PDF

Info

Publication number
WO2018184310A1
WO2018184310A1 PCT/CN2017/091689 CN2017091689W WO2018184310A1 WO 2018184310 A1 WO2018184310 A1 WO 2018184310A1 CN 2017091689 W CN2017091689 W CN 2017091689W WO 2018184310 A1 WO2018184310 A1 WO 2018184310A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
cavity
fluorescent
wavelength conversion
conversion layer
Prior art date
Application number
PCT/CN2017/091689
Other languages
English (en)
French (fr)
Inventor
胡飞
郭祖强
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2018184310A1 publication Critical patent/WO2018184310A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S15/00Non-electric lighting devices or systems employing light sources not covered by main groups F21S11/00, F21S13/00 or F21S19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/105Outdoor lighting of arenas or the like

Definitions

  • the present invention relates to the field of lighting technologies, and in particular, to a fluorescent module and a light source system.
  • the existing light source system in which a laser is used to excite a fluorescent material to generate a laser as a light source, light emitted from the laser light emitting element reaches an optical material through an optical element (such as a light combining device or a beam shaping device), and is converted by the fluorescent material to obtain illumination light.
  • an optical element such as a light combining device or a beam shaping device
  • the existing light source system converts excitation light into laser light with low conversion efficiency.
  • the phosphor is placed in the cavity, and the laser is used to excite the fluorescence in the cavity to generate excitation light, thereby obtaining high-intensity outgoing light.
  • the excitation light in the prior art cannot be fully utilized, resulting in
  • the illuminating light generally includes the excitation light and the received laser light, so the emitted light is impure, and the brightness of the final emitted light is not high due to the low light conversion efficiency.
  • the technical problem to be solved by the present invention is to provide a fluorescent module and a light source system, which are intended to provide high-purity, high-brightness outgoing light.
  • Embodiments of the present invention provide a fluorescent module and a light source system including a cavity, a reflective wall disposed in a portion of the cavity, and a wavelength conversion layer disposed on the partially reflective wall.
  • the cavity has a light transmission port
  • the wavelength conversion layer has a predetermined thickness, and the excitation light is incident into the wavelength conversion layer of the predetermined thickness through the light transmission port to make the excitation light be completely back and forth in the wavelength conversion layer of the predetermined thickness. Absorbed and converted into a laser.
  • the cavity is square, inverted trapezoidal, inverted multi-story or rounded.
  • the fluorescent module further includes a filter disposed above the light transmissive opening and sealingly sealing the opening of the cavity.
  • the light transmission port is further configured to emit the laser light.
  • the cavity includes a light exit port, and the light exit port is used to emit the laser light.
  • the reflective wall is a reflective film attached to a portion of the inner surface of the cavity, or directly coated on the inner surface of the cavity or a plated reflective film.
  • the predetermined thickness of the wavelength conversion layer is set according to the density of the wavelength conversion material.
  • the cavity is disposed on a substrate, and the substrate is made of any one of a metal plate, a transparent silicon substrate or an aluminum nitride substrate.
  • the fluorescent cavity further includes a light recycling element, which is spherical or parabolic.
  • the light recycling member has an opening from which excitation light is incident or is emitted by a laser.
  • the light recycling element has a coating area and an exit opening, and excitation light is incident from the coating area, and is emitted by the laser light from the light exit opening.
  • Embodiments of the present invention also provide a light source system including a light source, and the fluorescent module of any of the above embodiments.
  • the light source is a laser light source.
  • the invention has the beneficial effects that the reflective wall of the fluorescent module is provided with a wavelength conversion layer of a predetermined thickness, and the incident excitation light is completely back and forth in the wavelength conversion layer of the predetermined thickness. It is attracted to be converted into a laser, and since the incident excitation light is completely converted into a laser, the purity of the emitted laser light is greatly improved, and the light emission brightness is also improved.
  • FIG. 1 is a schematic structural view of a fluorescent module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a proportional relationship between the intensity of the excitation light and the distance of the excitation light from the light surface according to an embodiment of the present invention
  • FIG. 3 is another schematic structural diagram of a fluorescent module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another fluorescent module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another fluorescent module according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another fluorescent module according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a light source system including a fluorescent module according to an embodiment of the present invention.
  • FIG. 8 is another schematic structural diagram of a light source system including a fluorescent module according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of drift of a coating film using laser as excitation light according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of drift of a coating film using LED as excitation light according to an embodiment of the present invention.
  • the invention provides a fluorescent module and a light source system, which are intended to improve the excitation efficiency of the wavelength conversion layer by using excitation light in the current display field, and the main idea is that the excitation light emitted by the light source is incident on the reflection of the fluorescent module.
  • a wavelength conversion layer of a predetermined thickness on the wall allows excitation light incident on the wavelength conversion layer to be completely absorbed and converted into a laser light once in the wavelength conversion layer.
  • the excitation light once and for all in the wavelength conversion layer means that the excitation light is incident on the light incident surface of the wavelength conversion layer, reaches the opposite surface of the light incident surface, and is reflected back from the opposite surface.
  • the excitation light when the excitation light is incident on the opposite surface of the wavelength conversion layer and then reaches the opposite surface of the light incident surface, and is reflected from the opposite surface to reach the light incident surface, it is completely absorbed, and the corresponding wavelength conversion layer
  • the thickness is optimal. Since the excitation light can be absorbed completely back and forth in the wavelength conversion layer, the final emitted light has high purity, and since the excitation light is efficiently converted into a laser beam, the final emitted light has high brightness.
  • the fluorescent module can directly receive the monochromatic excitation light, and convert the monochromatic excitation light into a laser of a corresponding color for illumination display and the like.
  • the fluorescent module includes a cavity, a light transmissive port, a reflective wall, and a wavelength conversion layer.
  • the wavelength conversion layer is disposed on a reflective wall within a cavity of the fluorescent module.
  • the light-transmitting port can guide the excitation light onto the wavelength conversion layer of a predetermined thickness, and guide the laser light generated by the excitation of the wavelength conversion layer, and the emitted laser light is emitted from the light exit opening of the cavity, the excitation The light can be completely absorbed back and forth in the wavelength conversion layer of the predetermined thickness to be efficiently converted into a laser light, thereby improving the light emission purity and the light emission brightness of the emitted light.
  • the light exit port is configured to emit the at least part of the laser light, and the light exit port is disposed at the same position or a different position of the light transmission port. Specifically, it may be located at the light transmission port, or may be located at other arbitrary positions different from the light transmission port.
  • the light source may be an LD (Laser Diode) array, and the LED (Light Emitting) Diode, LED array, or a combination of LD and LED arrays.
  • LD Laser Diode
  • LED Light Emitting Diode
  • FIG. 1 it is a structural schematic diagram of a fluorescent module.
  • the fluorescent module includes a cavity 2, a light transmitting port 21, a reflective wall 22, and a wavelength conversion layer 3.
  • the cavity 2 is placed inside the fluorescent module.
  • the reflective wall 22 is located in the cavity 2 for collecting excitation light incident on the reflective wall 22 to be incident on the wavelength conversion layer 3, or to be reflected by the laser light to collect the laser light to be finally emitted.
  • the reflective wall 22 is disposed within a portion of the cavity 2.
  • the wavelength conversion layer 3 is disposed at the bottom of the cavity 2 and disposed on at least a portion of the reflective wall 22 for converting incident light into a laser beam, the wavelength conversion being preset according to the density of the wavelength conversion layer 3.
  • the thickness of the layer 3 is such that the incident light is completely absorbed back and forth in the wavelength conversion layer 3 and converted into a laser beam.
  • the light-transmissive opening 21 is located at a position on the cavity 2 of the fluorescent module, which is different from the position of the wavelength conversion layer 3 for guiding the excitation light to the wavelength conversion layer 3 To generate a laser.
  • the light-transmissive port 21 receives both the excitation light and the laser light.
  • the light-transmissive port 21 is both the light-in port of the fluorescent module. Light exit.
  • the thickness of the wavelength conversion layer 3 is H, and the thickness H can be set according to the density of the wavelength conversion layer. For example, when the density of the wavelength conversion layer is large, the thickness can be set to be thinner. When the density of the wavelength conversion layer is small, the thickness thereof may be set to be thicker.
  • the thickness H of the wavelength conversion layer 3 is such that the excitation light is almost completely absorbed back and forth in the wavelength conversion layer 3 and converted into a corresponding laser beam.
  • the incident excitation light may be a blue excitation light generated by a blue laser, or may be an LED light source.
  • the light source that generates the excitation light is placed above the light transmission port 21 of the fluorescent module to facilitate the direct emission of the excitation light into the cavity 2.
  • the placement position of the light source and the type of the light source can also be adjusted.
  • the light source can be placed on the side of the fluorescent module, and then the excitation light emitted by the light source is guided and incident into the cavity 2 through the optical device.
  • the propagation direction of the excitation light is changed by the mirror so that the excitation light can be incident into the cavity 2 from the light transmission port 21.
  • the cavity 2 has any one of a square shape, an inverted trapezoidal shape, an inverted polygonal plate shape, and a rounded table shape. In a specific application, the structure of the cavity 2 can also be improved.
  • the fluorescent module may further include a filter (not shown) placed at the light transmission opening 21.
  • the filter can not only filter the laser light emitted from the light-transmissive opening 21, but also seal the light-transmissive opening 21 in the fluorescent module, so that the interior of the fluorescent module forms a closed receiving space. Prevent impurities such as dust and water vapor from entering the internal space of the cavity 2.
  • the filter may be an angle selection filter that is capable of emitting light of less than a certain angle, and light of other angles is reflected to reuse light of other angles that are not emitted.
  • the angle selection filter is capable of controlling the angle of the outgoing light such that the exiting light of the fluorescent module is controlled to exit in an appropriate direction and angle.
  • a material having a better heat dissipation effect may be selected as a base of a fluorescent module (not shown), and the substrate is a rectangular parallelepiped, a cube or a prismatic body, etc., preferably, one of the substrates
  • the middle position of the surface is excavated, and some edges are reserved, that is, the area of the opening is smaller than the area of the surface of the opening, and the edge material is reserved with the base material.
  • the cavity has an opening, a side wall and a bottom, and the two opposite faces of the substrate are not completely excavated during the excavation, and the cavity is a cavity of the fluorescent module.
  • the bottom surface of the cavity is provided with a wavelength conversion layer.
  • the substrate may be fabricated using a metal plate, an aluminum substrate, a transparent silicon substrate, an aluminum nitride substrate, or the like.
  • the material for the substrate it is mainly considered to select a material with good heat dissipation performance, and the substrate can heat the wavelength conversion layer to convert the excitation light into heat generated by the laser to dissipate quickly.
  • FIG. 2 it is a schematic diagram showing the relationship between the intensity of the excitation light and the distance of the excitation light from the light surface.
  • the intensity of the excitation light is inversely proportional to the distance of the excitation light from the light surface, and the excitation light is continuously absorbed during the incident process until the absorption is complete, such as the curves ⁇ and ⁇ , in other words, in order to make the excitation light As far as possible, the absorption is complete, and the industry will increase the thickness of the wavelength conversion layer.
  • the technical solution of the embodiment of the present invention is to thin the thickness of the wavelength conversion layer to a thickness H (the distance from the light entrance surface corresponding to point A in the figure).
  • the excitation light when the excitation light is reflected back from the opposite direction to the light incident surface of the wavelength conversion layer, the excitation light is just completely absorbed.
  • the thickness H of the corresponding wavelength conversion layer is an optimum thickness.
  • the fluorescent module includes a light entrance opening 21 through which incident light enters and a light exit opening 23 from which the outgoing light is emitted.
  • the light entrance opening 21 and the light exit opening 23 are respectively at different positions on the reflective wall 22.
  • the light entrance opening 21 and the light exit opening 23 are disposed not to be opposite, as shown in the drawing. That is, after the laser light is emitted from the wavelength conversion layer 3, it does not directly exit from the light exit port 23, but is reflected on the reflective wall a plurality of times and finally exits from the light exit port 23.
  • the wavelength conversion layer 3 is placed at the bottom of the cavity 2, and after receiving the excitation light, the wavelength conversion layer 3 generates a corresponding laser light.
  • the reflective wall 22 is a reflective film attached to a portion of the inner surface of the cavity 2, or applied directly to the inner surface of the cavity 2, or alternatively, may be a plated reflective film.
  • the wavelength conversion layer 3 may include a phosphor, a fluorescent ceramic, a quantum dot, or the like.
  • the phosphor may be a yellow phosphor, a blue phosphor, a green phosphor, a red phosphor or the like.
  • the bottom of the fluorescent module is coated with a red phosphor material.
  • the red phosphor material When the excitation light is incident on the red phosphor material, the red phosphor material is excited to generate a red laser, and the red laser is reflected by the reflective wall multiple times. Exit from the light exit.
  • the green phosphor material is excited to generate a green laser light, and the green laser light is reflected from the light exit through multiple reflections of the reflective wall.
  • the wavelength conversion layer may further include a yellow phosphor material that receives the excitation light and is excited to generate a yellow laser light, wherein the yellow laser light includes red light and green light.
  • the fluorescent ceramics may be pure phase fluorescent ceramics, specifically various oxide ceramics, nitride ceramics or oxynitride ceramics, and a luminescent center is formed by incorporating a trace amount of activator elements (such as lanthanides) into the ceramic preparation process.
  • the fluorescent ceramic may be a composite ceramic in which a transparent/translucent ceramic is used as a matrix, and luminescent ceramic particles (such as phosphor particles) are distributed in the ceramic matrix.
  • the transparent/translucent ceramic substrate may be various oxide ceramics (such as alumina ceramics, Y3Al5O12 ceramics), nitride ceramics (such as aluminum nitride ceramics) or oxynitride ceramics, and the ceramic matrix functions to conduct light and heat.
  • the excitation light can be incident on the luminescent ceramic particles, and the laser light can be emitted from the luminescent ceramic.
  • the phosphor particles in the fluorescent ceramic bear the main illuminating function for absorbing the excitation light and converting it into a laser.
  • FIG. 4 is a schematic view showing still another structure of the fluorescent module of the present invention.
  • the embodiment shown in Figure 4 is obtained on the basis of the embodiment of Figure 3.
  • the embodiment of FIG. 4 is provided with a light recovery element 1 on the light exit port 23, and the light recovery element 1 introduces at least part of the excitation light into the interior of the fluorescent cavity, and will be from the fluorescent cavity. At least part of the body exit is derived by the laser.
  • the light recycling element 1 may be a reflective bowl of the opening 11, or a spherical crown glass cover, and an angle selective reflection film is disposed on the glass cover, and a large angle of light is reflected back to the cavity 2, and a small angle of light is emitted.
  • the light outlet 23 is located at a center of the light recovery element 1; in addition, when the light recovery member 1 is parabolic, the light exit port 23 It is preferably located at the focus position of the light recycling element 1. Compared with the fluorescent module in Fig. 3, since the light-recycling element is added, the outgoing light can be concentrated.
  • the embodiment shown in Fig. 5 is obtained by the modification of the embodiment of Fig. 4.
  • only one light transmission port 21 is provided on the reflection wall 22, and the light transmission port 21 is not only an entrance port for exciting light but also an exit port of the laser; in addition, when a large angle is incident on the laser light to the When the opening 11 of the light recovery element 1 is recovered, it can also be reflected back into the cavity 2 through the light transmission opening 21.
  • only one light-transmitting port needs to be dug to complete the incident of the excitation light and the laser light.
  • the area of the light-transmissive opening 21 is only a small portion of the surface of the light-transmissive opening.
  • the area of the transparent opening 21 may also occupy an entire surface of the surface on which it is located.
  • the transparent opening 21 can guide incident light.
  • the wavelength conversion layer 3 is incident to generate a laser light, and the light transmission port 21 can also emit laser light reflected by the wavelength conversion layer 3.
  • FIG. 7 is a schematic structural diagram of a light source system including a fluorescent module according to an embodiment of the present invention.
  • the excitation light emitted from the excitation light source 4 passes through the dichroic element and then enters the wavelength conversion layer 3 in the cavity 2 through the opening 11 and the light transmission port 21 of the light recovery element 1 to excite the wavelength conversion layer 3.
  • the laser generated by the excitation wavelength conversion 3 is reflected on the reflective wall of the cavity, a part of the light is emitted from the light transmission port 21 of the cavity 2 (such as light 03), and a part of the light is reflected in the cavity 2 and then emitted, such as light 02.
  • the light recycling element 1 After a part of the light is reflected by the inner wall of the cavity 2, it returns to the wavelength conversion layer 3, such as the light 01.
  • the light recycling element 1 reflects the large angle light back into the cavity 2, such as light 05; the light recycling element 1 directs the small angle light directly to the dichroic element and reflects it, such as light 06.
  • the above technical solution can, on the one hand, cause the excitation light to be reflected in the reflective wall of the cavity, so that the excitation light can fill the entire wavelength conversion layer 3, so that the excitation light is uniformly irradiated to the wavelength conversion layer 3, and at the same time, the laser is in the cavity. Fully reflected so that the outgoing light is more uniform.
  • FIG. 8 is another schematic structural diagram of a light source system including a fluorescent module according to an embodiment of the present invention.
  • the embodiment shown in Fig. 8 is obtained by the modification of the embodiment of Fig. 7.
  • the fluorescent module adopts a light-recycling element 1 having an inconsistent structure, wherein the light-receiving element 1 includes a coating region 12 and a light-emitting port 11, and the coating region 12 can select a reflection film at an angle, allowing light of a small angle to pass.
  • the excitation light can pass through, and is reflected by the small angle of the laser to the cavity at a large angle, and is reflected by multiple times, thereby making the emitted light More even.
  • the excitation light source 4 may be a solid state light source.
  • the excitation light source 4 is a laser light source (LD light source).
  • the light source system shown in FIG. 7 is capable of sufficiently separating the excitation light and the laser light passing through the dichroic element by using the LD light source, thereby avoiding the use of the LED in the prior art, because the spectrum coverage of the broad spectrum light emitted by the LED is relatively high. Wide, due to the angular drift, it is impossible to separate the excitation light from the laser, thereby affecting the light effect, that is, affecting the intensity of the light and affecting the color of the light.
  • the schematic diagram of the angular drift of the LD excitation light and the laser light is shown in FIG.
  • FIG. 10 the angular drift of the LED excitation light and the laser light is shown in FIG. 10 .
  • the excitation light source 4 adopts the LED light source, the LED excitation light and the laser light are easily affected by the angular drift of the dichroic element, and finally the excitation light may not be separated from the laser light;
  • the excitation light source 4 uses the LD light source, the LD excitation light and the received laser light are substantially unaffected by the angular drift of the dichroic element, so that it is easy to separate the excitation light from the laser light.
  • the excitation light can be completely transmitted through the plating region 12 of the light-receiving element 1, and the laser light is reflected, thereby increasing the brightness of the emitted light.
  • the LED light source since the broad spectrum light emitted by the LED light source has a wide coverage, the excitation light is not separated from the laser light due to the angular drift, and the light efficiency is lowered.
  • the embodiment of the present invention further provides a light source system, the light source system includes a light source and a fluorescent module, and the fluorescent module is the fluorescent module described in any of the above embodiments, and the fluorescent module can have the structure and function in the foregoing embodiments.
  • the light source system may be, for example, a stage light illumination, a car headlight, or the like.
  • the light source is used to emit excitation light.
  • the light source may be an LD array, an LED array, an LD, an LED array, or the like.
  • the excitation light generated by the light source is shaped by a shaping device to form uniform light, and the light is incident into the fluorescent module.
  • the wavelength conversion layer of a predetermined thickness within the fluorescent module receives the incident excitation light, which is completely absorbed and converted into a laser light when the wavelength conversion layer of the predetermined thickness is returned to and fro. Since the excitation light is completely absorbed and converted into a laser light, the purity of the emitted light is greatly improved, and the brightness of the light is also improved due to an increase in the light conversion efficiency.
  • a plurality of fluorescent modules may be connected by different connections, and the wavelength conversion layer disposed in each fluorescent module may be the same or different materials.
  • the wavelength conversion layer disposed in each fluorescent module may be the same or different materials.
  • at least three or more fluorescent modules may be connected to each other.
  • the excitation light from the light source is incident on different fluorescent modules, the corresponding red, green, or Blue color light.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种荧光模块,包括腔体(2)、设置于部分腔体(2)内的反射壁(22)、设置于部分反射壁(12)上的波长转换层(3),腔体(2)具有透光口(21);波长转换层(3)具有预设厚度,激发光通过透光口(21)射入预设厚度的波长转换层(3)以使激发光在预设厚度的波长转换层(3)内来回一次被完全吸收并转化为受激光。还提供一种包括上述荧光模块的光源系统。由于入射的激发光完全转化为受激光,因此出射的受激光的光纯度大大提高了,并且出光亮度也提高了。

Description

一种荧光模块及光源系统 技术领域
本发明涉及照明技术领域,尤其涉及一种荧光模块及光源系统。
背景技术
现有的以激光激发荧光材料产生受激光作为光源的光源系统中,激光发光元件发出的光经光学元件(如合光器件、光束整形器件)到达荧光材料,经荧光材料转换后得到照明光。然而现有的光源系统将激发光转化为受激光的转化效率很低。
技术问题
为了解决上述问题,开始采用将荧光粉置于腔体内,采用激光激发腔体内的荧光,产生激发光,从而获得高亮度的出射光,但是,现有技术中的激发光不能完全利用,导致出射光通常包括激发光又包括受激光,因此出射光不纯,且由于光转化效率不高导致最终出射光的亮度不高。
技术解决方案
本发明所要解决的技术问题在于提供一种荧光模块及光源系统,旨在提供高纯度、高亮度的出射光。
本发明的实施例提供一种荧光模块及光源系统,其包括腔体、设置于部分腔体内的反射壁、设置于部分反射壁上的波长转换层,
所述腔体具有透光口;
所述波长转换层具有预设厚度,激发光通过所述透光口射入所述预设厚度的波长转换层以使所述激发光在所述预设厚度的波长转换层内来回一次被完全吸收并转化为受激光。
进一步地,所述腔体为方形、倒梯形、倒多棱台形或倒圆台形。
进一步地,所述荧光模块还包括滤光片,所述滤光片置于所述透光口的上方并将所述腔体的开口密封设置。
进一步地,所述透光口还用于出射所述受激光。
进一步地,所述腔体包括出光口,所述出光口用于出射所述受激光。
进一步地,所述反射壁为粘贴在腔体的部分内表面的反射膜、或直接涂敷在腔体的内表面或镀制的反射膜。
进一步地,所述波长转换层的预设厚度是依据波长转换材料的密度设置的。
进一步地,所述腔体设置在基板上,所述基体采用金属板、透明的硅基板或氮化铝基板中的任一材料制作。
进一步地,所述荧光腔体还包括光回收元件,所述光回收元件为球形或抛物面形。
进一步地,所述光回收元件具有开口,激发光从所述开口入射所述腔体内或受激光从所述开口出射。
进一步地,所述光回收元件具有镀膜区及出光口,激发光从所述镀膜区入射,受激光从所述出光口出射。
本发明的实施例还提供一种光源系统,包括光源,以及上述任一实施例所述的荧光模块。
进一步地,所述光源是激光光源。
有益效果
本发明与现有技术相比,有益效果在于:所述荧光模块的反射壁上设置了预设厚度的波长转换层,入射的激发光在所述预设厚度的波长转换层内来回一次可完全被吸引以转化为受激光,由于入射的激发光完全转化为受激光,因此出射的受激光的光纯度大大提高了,并且出光亮度也提高了。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的荧光模块的一种结构示意图;
图2是本发明实施例提供的激发光强度与所述激发光距入光面的距离的比例关系的曲线示意图;
图3是本发明实施例提供的荧光模块的另一种结构示意图;
图4是本发明实施例提供的荧光模块的又一种结构示意图;
图5是本发明实施例提供的荧光模块的又一种结构示意图;
图6是本发明实施例提供的荧光模块的又一种结构示意图;
图7是本发明实施例提供的包括荧光模块的光源系统的结构示意图;
图8是本发明实施例提供的包括荧光模块的光源系统的另一种结构示意图;
图9是本发明实施例提供的以激光作为激发光的镀膜漂移示意图;
图10是本发明实施例提供的以LED作为激发光的镀膜漂移示意图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的一种荧光模块及光源系统旨在对目前的显示领域中的利用激发光对波长转换层的激发效率进行改进,其主要思路为:光源发出的激发光入射至在荧光模块的反射壁上的预设厚度的波长转换层,使得入射至所述波长转换层的激发光在所述波长转换层内来回一次能被完全吸收并转化成受激光。其中,所述激发光在波长转换层内来回一次是指的:所述激发光入射至波长转换层的入光面后到达入光面的相对面,并从所述相对面反射回来。优选的,当所述激发光入射至波长转换层的入射而后到达入光面的相对面,并从所述相对面反射回来到达所述入光面时刚好完全吸收,此时对应的波长转换层的厚度为最佳。由于所述激发光在所述波长转换层内来回一次可以吸收完全,故最终出射光纯度高,而且由于激发光高效率的转化为受激光,因此最终出射光亮度高。荧光模块可以直接接收单色激发光,并将单色激发光转化为相应颜色的受激光,用于照明显示等。所述荧光模块包括腔体、透光口、反射壁和波长转换层。所述波长转换层设置在荧光模块的腔体内的反射壁上。所述透光口能将激发光引导到预设厚度的波长转换层上,并将波长转换层受激产生的受激光引导出射,出射的受激光从腔体的出光口处出射,所述激发光在预设厚度的波长转换层内来回一次可被完全吸收以高效率的转化成受激光,从而提高出射光的发光纯度及发光亮度。其中,所述出光口用于出射所述至少部分受激光,所述出光口设置于所述透光口同一位置或不同位置。具体而言,可以位于所述透光口处,也可以位于其它不同于所述透光口处的其它任意位置。
其中,光源可以是LD(Laser Diode,激光二极管)阵列,LED(Light Emitting Diode,发光二极管)阵列,或LD与LED的组合阵列等。
如图1所示,为荧光模块的一种结构示意图。荧光模块包括腔体2,透光口21、反射壁22以及波长转换层3。所述腔体2置于所述荧光模块内。所述反射壁22位于所述腔体2内,用于汇集入射至反射壁22上的激发光以入射至所述波长转换层3,或将受激光进行反射以汇集所述受激光最终出射。所述反射壁22设置于部分腔体2内。波长转换层3置于腔体2的底部,并设置在至少部分反射壁22上,该波长转换层3用于将入射光转换为受激光,依据波长转换层3的密度预设所述波长转换层3的厚度以使所述入射光在所述波长转换层3内来回一次被完全吸收并转化为受激光。透光口21位于所述荧光模块的腔体2上的一处,其不同于所述波长转换层3的位置,所述透光口21用于将激发光引导入射至所述波长转换层3以生成受激光。在本实施例中,为了简化所述荧光模块的结构,所述透光口21既入射激发光又出射受激光,换句话说,所述透光口21既是所述荧光模块的入光口也是出光口。
所述波长转换层3的厚度为H,该厚度H可依据所述波长转换层的密度而设置其厚度,例如,当所述波长转换层的密度较大时,其厚度可以设置的较薄些;当所述波长转换层的密度较小时,其厚度可以设置的较厚些。所述波长转换层3的厚度H需满足让激发光在所述波长转换层3内来回一次几乎完全吸收,并转化为相应的受激光。
优先地,入射的激发光,比如,可以为蓝色激光器产生的蓝色激发光,或者,也可以为LED光源。产生激发光的光源置于荧光模块的透光口21的上方,以方便发出的激发光直接入射到腔体2内。当然,根据产品的实际结构,也可以调整光源的放置位置及光源类型,比如,可以将光源放置于荧光模块的侧面,然后通过光学器件将光源发出的激发光引导并入射至腔体2内,又如,通过反射镜改变激发光的传播方向,使得激发光能从透光口21处入射到腔体2内。
腔体2为方形、倒梯形、倒多棱台形、倒圆台形中的任一种结构。在具体的应用中,还可以对腔体2的结构进行改进。
结合上述的实施例,荧光模块还可以包括滤光片(图中未示出),该滤光片置于透光口21处。该滤光片不仅可以对从透光口21处出射的受激光进行过滤,还可以将荧光模块中的透光口21进行密封设置,使所述荧光模块的内部形成一个封闭的容纳空间,以防止灰尘、水蒸气等杂质进入到腔体2的内部空间。或者,该滤光片可以为角度选择滤光片,该角度选择滤光片能够将小于特定角度的光出射,其它角度的光进行反射,以使不出射的其它角度的光进行重复利用。角度选择滤光片能够控制出射光的角度,使得荧光模块的出射光控制在适当的方向和角度出射。
在具体的制作中,例如,可以选取一块散热效果较好的材质作为荧光模块的基体(图中未示出),该基体为长方体、正方体或棱台体等,优选的,在该基体的一个面的中间位置进行挖取,并预留一些边缘,即开口的面积小于该开口所在面的面积,且开口的边缘预留有基体材质。该腔体具有开口、侧壁和底部,在挖取时没有将该基体相对的两个面完全挖通,该腔体即为荧光模块的腔体。该腔体的底面设置有波长转换层。在上述各个实施例的基础上,所述基体可以采用金属板、铝基板、透明的硅基板、氮化铝基板等制作。在选择制作基体的材质时,主要考虑选择散热性能好的材质,基板可以将波长转换层在激发光转换为受激光过程中产生的热量较快地进行散热。
如图2所示,为激发光强度与所述激发光距入光面的距离的比例关系的曲线示意图。通常,所述激发光强度会随着激发光距入光面的距离成反比例关系,激发光在入射过程中不断的被吸收直至吸收完全,如曲线α与β,换句话说,为了让激发光尽可能的吸收完全,业界内都会采用增加波长转换层的厚度的方式来实现。而本发明的实施例的技术方案是通过将波长转换层的厚度变薄为厚度H(如图中A点对应的距入光面的距离)。当激发光入射波长转换层的入光面后,所述激发光强度与距入光面的距离的关系呈现曲线α所示,从图中可看出,当激发光从入光面入射后,随着距离入光面的距离越大,该激发光的强度越弱;当激发光到达入光面的相对面并反射回时,所述激发光强度与距入光面的距离的关系呈现曲线γ所示,从图中可看出,当激发光反射回来后,随着距离入光面的距离越小,该激发光的强度越弱直至吸收完全为止。
优选的,当激发光从所述相对而反射回来到达所述波长转换层的入光面时,所述激发光刚好完全被吸收。此时对应的波长转换层的厚度H为最佳厚度。通过合理设置波长转换层厚度,一方面节约了材料,发光陶瓷或荧光材料3的厚度更薄,所需材料更少,降低了成本,另一方面使得荧光模块的体积更小。
如图3所示,为荧光模块的另一种结构示意图。图3所示的实施例为在图1实施例的基础上变形得到。同样的,荧光模块包括供入射光进入的入光口21以及出射光射出的出光口23,所述入光口21以及出光口23分别处于反射壁22上不同位置。在本实施例中,为了使出射的受激光的光斑亮度更均匀,所述入光口21与所述出光口23设置为不相对,如图中所示。即受激光从波长转换层3出射后不会直接从出光口23出射,而是经过多次在反射壁上反射后最终从出光口23出射。
波长转换层3置于腔体2的底部,所述波长转换层3接收到激发光之后,生成相应的受激光。
反射壁22为粘贴在腔体2的部分内表面的反射膜,或者,直接涂敷在腔体2的内表面,又或者,可以为镀制的反射膜。
波长转换层3可以包括荧光粉、荧光陶瓷、量子点等。其中,荧光粉可以为黄色荧光粉、蓝色荧光粉、绿色荧光粉、红色荧光粉等。比如,荧光模块中的底部涂敷有红色荧光粉材料,当激发光入射到红色荧光粉材料时,红色荧光粉材料受激发产生红色的受激光,红色的受激光经过反射壁的多次反射后从出光口出射。当激发光入射到绿色荧光材料时,绿色荧光粉材料受激发产生绿色的受激光,绿色的受激光经过反射壁的多次反射后从出光口出射。又如,波长转换层还可以包括为黄色荧光粉材料,黄色荧光粉材料接收激发光并受激产生黄色受激光,其中,黄色受激光包括红色光和绿色光。
荧光陶瓷可以为纯相的荧光陶瓷,具体可以是各种氧化物陶瓷、氮化物陶瓷或氮氧化物陶瓷,通过在陶瓷制备过程中掺入微量的激活剂元素(如镧系元素)形成发光中心。或者,荧光陶瓷也可以是复合陶瓷,以透明/半透明陶瓷作为基质,在陶瓷基质内分布着发光陶瓷颗粒(如荧光粉颗粒)。透明/半透明陶瓷基质可以是各种氧化物陶瓷(如氧化铝陶瓷、Y3Al5O12陶瓷)、氮化物陶瓷(如氮化铝陶瓷)或氮氧化物陶瓷,陶瓷基质的作用在于对光和热进行传导,使得激发光能够入射到发光陶瓷颗粒上,并使受激光能够从发光陶瓷中出射,荧光陶瓷中的荧光粉颗粒承担主要的发光功能,用于吸收激发光并将其转换为受激光。
如图4所示,为本发明荧光模块的又一种结构示意图。图4所示的实施例为在图3实施例的基础上变形得到。与图3不同的是,图4的实施例在出光口23上设置一光回收元件1,所述光回收元件1将至少部分激发光导入所述荧光腔体内部,并将从所述荧光腔体出射的至少部分受激光导出。
所述光回收元件1可以是开孔11的反光碗,或者允许球冠形玻璃罩,玻璃罩上敷设有角度选择反射膜,大角度的光反射回腔体2,小角度的光出射。优选地,当所述光回收元件1为球形反光碗或球冠形玻璃罩时,光出口23位于光回收元件1的球心位置;另外,当光回收元件1为抛物面形时,出光口23优选的位于光回收元件1的焦点位置。相较于图3中的荧光模块,由于增加了光回收元件,因此可以让出射光更集中。
如图5所示,图5所示的实施例为在图4实施例的基础上变形得到。与图4不同的是,在反射壁22只设置一个透光口21,该透光口21不仅是激发光的入射口,也是受激光的出射口;此外,当大角度受激光入射至所述光回收元件1的开口11时,也可通过所述透光口21反射回腔体2内。在工艺制作过程中,仅需挖一个透光口来完成激发光的入射及受激光的出射。图中可看出,透光口21的面积仅占该透光口所在面的一小部分。在另一实施例中,如图6所示,所述透光口21的面积还可以占其所在面的一整个面,在图中可看出,所述透光口21可以将入射光引导射入所述波长转换层3以产生受激光,同时,所述透光口21还可以出射由波长转换层3反射回的受激光。
如图7所示,是本发明实施例提供的包括荧光模块的光源系统的结构示意图。如图中所示,激发光源4发出的激发光经过二向色元件后通过光回收元件1的开口11及透光口21进入到腔体2内的波长转换层3上,激发波长转换层3,激发波长转换3产生的受激光在腔体内的反射壁上反射,一部分光从腔体2的透光口21出射(如光03),一部分在腔体2内再反射后出射,如光02,一部分光经腔体2的内壁反射后,回到波长转换层3,如光01。所述光回收元件1将大角度光反射回腔体2内,如光05;所述光回收元件1将小角度光直接出射至二向色元件并进行反射,如光06。
上述技术方案一方面可以使得激发光在腔体的反射壁内反射,从而使得激发光能够充满整个波长转换层3,从而使得激发光均匀的照射到波长转换层3,同时,受激光在腔体内充分反射,从而使得出射光更均匀。
如图8所示,是本发明实施例提供的包括荧光模块的光源系统的另一种结构示意图。图8所示的实施例为在图7实施例的基础上变形得到。与图7不同的是,该荧光模块采用结构不一致的光回收元件1,其中,光回收元件1包括镀膜区域12和出光口11,该镀膜区域12可以角度选择反射膜,允许小角度的光通过,大角度的光反射,而采用激光光源,由于激光的入射角度近似0°,所以激发光能够通过,受激光小角度的出射大角度的反射回腔体,经过多次反射,从而使得出射光更加均匀。
在上述实施例中,激发光源4可以是固态光源,优选的,激发光源4为激光光源(LD光源)。图7所示的光源系统,由于采用LD光源能够使得激发光和受激光经过二向色元件时,充分的分开,避免现有技术中采用LED,由于LED发出的宽谱光的波谱覆盖范围较广,由于角度漂移,无法将激发光与受激光分开,从而影响光效,也即影响出光的强度且影响出光的颜色。其中LD激发光与受激光的角度漂移示意图如图9所示,LED激发光与受激光的角度漂移示意图如图10所示。从图9与图10可看出,当激发光源4采用LED光源时,LED激发光与受激光很容易受到二向色元件的角度漂移的影响,最终可能无法将激发光与受激光分开;相反,当激发光源4采用LD光源时,LD激发光与受激光则基本不会受到二色色元件的角度漂移的影响,因此很容易将激发光与受激光分开。图8所示的光源系统,由于采用LD光源,在光回收元件1的镀膜区域12可以使得激发光完全通过,受激光被反射,从而提高出射光的亮度。而采用LED光源时,由于LED光源发出的宽谱光的波谱覆盖范围较广,由于存在角度漂移,无法将激发光和受激光区分开,从而光效降低。
本发明实施例还提供一种光源系统,该光源系统包括光源和荧光模块,所述荧光模块为上述任一实施例所述的荧光模块,该荧光模块可以具有上述各实施例中的结构与功能。所述光源系统可以是,例如舞台灯照明、汽车大灯等。
光源用于发出激发光,例如,光源可以为LD阵列、LED阵列、LD与LED阵列等,光源产生的激发光经过整形装置进行整形后形成均匀的光,该光入射至荧光模块内,所述荧光模块内的预设厚度的波长转换层接收到入射的激发光,所述激发光在预设厚度的波长转换层来回一次时被完全吸收并转化为受激光。由于激发光被完全吸收并转化为受激光,因此出射光的纯度大大提高,并且由于光转化效率的提高使得光亮度也同时提高。
优选地,为了适应更高要求的光源系统,可以将若干个荧光模块通过不同的连接方式连接,每一荧光模块中设置的波长转换层可以采用相同或不同的材料。例如,在舞台中需要出射红、绿、蓝三色光时,则至少可以采用三个以上荧光模块连接一块,当光源发出的激发光入射至不同的荧光模块时,可分别出射相应红、绿或蓝颜色的光。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

1.一种荧光模块,其特征在于,包括腔体、设置于部分腔体内的反射壁、设置于部分反射壁上的波长转换层,
所述腔体具有透光口;
所述波长转换层具有预设厚度,激发光通过所述透光口射入所述预设厚度的波长转换层以使所述激发光在所述预设厚度的波长转换层内来回一次被完全吸收并转化为受激光。
2.根据权利要求1所述的荧光模块,其特征在于,所述腔体为方形、倒梯形、倒多棱台形或倒圆台形。
3、根据权利要求1所述的荧光模块,其特征在于,所述荧光模块还包括滤光片,所述滤光片置于所述透光口的上方并将所述腔体的开口密封设置。
4.根据权利要求1所述的荧光模块,其特征在于,所述透光口还用于出射所述受激光。
5.根据权利要求1所述的荧光模块,其特征在于,所述腔体包括出光口,所述出光口用于出射所述至少部分受激光,所述出光口设置于所述透光口同一位置或不同位置。
6.根据权利要求1所述的荧光模块,其特征在于,所述反射壁为粘贴在腔体的部分内表面的反射膜、或直接涂敷在腔体的内表面或镀制的反射膜。
7.根据权利要求1所述的荧光模块,其特征在于,所述波长转换层的预设厚度是依据波长转换材料的密度设置的。
8.根据权利要求1所述的荧光模块,其特征在于,所述腔体设置在基板上,所述基体采用金属板、透明的硅基板或氮化铝基板中的任一材料制作。
9.根据权利要求1至8任一所述的荧光模块,其特征在于,所述荧光腔体还包括光回收元件,所述光回收元件为球形或抛物面形,所述光回收元件将至少部分激发光导入所述荧光腔体内部,并将从所述荧光腔体出射的至少部分受激光导出。
10.根据权利要求9所述的荧光模块,其特征在于,所述光回收元件具有开口,激发光从所述开口入射所述腔体内或受激光从所述开口出射。
11.根据权利要求9所述的荧光模块,其特征在于,所述光回收元件具有镀膜区及出光口,激发光从所述镀膜区入射,受激光从所述出光口出射。
12.一种光源系统,其特征在于,包括光源,以及权利要求1至11任一项所述的荧光模块,所述光源用于发出激发光,所述荧光模块接收所述激发光,以使所述激发光在荧光模块的预设厚度的波长转换层内来回一次被完全吸收并转化为受激光。
13.根据权利要求12所述的光源系统,其特征在于,所述光源是激光光源。
PCT/CN2017/091689 2017-04-05 2017-07-04 一种荧光模块及光源系统 WO2018184310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710218228.1 2017-04-05
CN201710218228.1A CN108692196A (zh) 2017-04-05 2017-04-05 一种荧光模块及光源系统

Publications (1)

Publication Number Publication Date
WO2018184310A1 true WO2018184310A1 (zh) 2018-10-11

Family

ID=63711977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091689 WO2018184310A1 (zh) 2017-04-05 2017-07-04 一种荧光模块及光源系统

Country Status (2)

Country Link
CN (1) CN108692196A (zh)
WO (1) WO2018184310A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574360A (zh) * 2013-10-15 2014-02-12 吴震 波长转换装置、反光杯、光源和波长转换装置的制造方法
CN103574517A (zh) * 2013-10-15 2014-02-12 吴震 波长转换装置的制造方法和光源
CN104534409A (zh) * 2014-12-15 2015-04-22 杨毅 波长转换装置和发光装置
CN104566231A (zh) * 2014-12-24 2015-04-29 杨毅 波长转换装置和发光装置
CN204372585U (zh) * 2014-12-15 2015-06-03 杨毅 发光装置
CN204372822U (zh) * 2014-12-15 2015-06-03 杨毅 波长转换装置和发光装置
DE102014100723A1 (de) * 2014-01-23 2015-07-23 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
CN204629367U (zh) * 2015-01-31 2015-09-09 杨毅 波长转换装置和发光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105003843B (zh) * 2012-03-23 2017-12-29 深圳市绎立锐光科技开发有限公司 光源
CN207049630U (zh) * 2017-04-05 2018-02-27 深圳市绎立锐光科技开发有限公司 一种荧光模块及光源系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574360A (zh) * 2013-10-15 2014-02-12 吴震 波长转换装置、反光杯、光源和波长转换装置的制造方法
CN103574517A (zh) * 2013-10-15 2014-02-12 吴震 波长转换装置的制造方法和光源
DE102014100723A1 (de) * 2014-01-23 2015-07-23 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
CN104534409A (zh) * 2014-12-15 2015-04-22 杨毅 波长转换装置和发光装置
CN204372585U (zh) * 2014-12-15 2015-06-03 杨毅 发光装置
CN204372822U (zh) * 2014-12-15 2015-06-03 杨毅 波长转换装置和发光装置
CN104566231A (zh) * 2014-12-24 2015-04-29 杨毅 波长转换装置和发光装置
CN204629367U (zh) * 2015-01-31 2015-09-09 杨毅 波长转换装置和发光装置

Also Published As

Publication number Publication date
CN108692196A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
TWI252290B (en) Search-light and search-light element
US8662690B2 (en) Multi-colored illumination system with wavelength converter and method
WO2017121233A1 (zh) 一种波长转换装置、光源系统以及投影装置
CN102130109B (zh) 发光器件和使用发光器件的灯单元
WO2014163269A1 (ko) 레이저 광원장치
WO2016192623A1 (zh) 波长转换装置、光源系统和投影系统
WO2018218913A1 (zh) 荧光芯片及其波长转换装置的制备方法以及显示系统
WO2013151265A1 (ko) 발광 다이오드 조명 장치
WO2017181958A1 (zh) 一种照明装置及车辆用前照灯装置
CN207049630U (zh) 一种荧光模块及光源系统
TW201331513A (zh) 平面發光二極體照明(二)
WO2018137312A1 (zh) 一种荧光模块及相关光源
WO2018095019A1 (zh) 光源系统、投影系统及照明装置
CN210072201U (zh) 波长转换模块以及投影装置
WO2019165741A1 (zh) 光源系统及照明装置
WO2017118300A1 (zh) 一种光源装置及照明装置
WO2016126005A1 (ko) 발광 장치
WO2018184310A1 (zh) 一种荧光模块及光源系统
CN209279066U (zh) 一种高亮度的光源模组
CN102486265B (zh) Led模块及灯具结构
US11713864B2 (en) Light source system
CN109668112A (zh) 一种激光照明灯
CN109737353A (zh) 一种高亮度的光源模组
CN107145029B (zh) 光源装置
CN211600585U (zh) 采用棱镜压缩激光束的激光照明模块及激光照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904828

Country of ref document: EP

Kind code of ref document: A1