WO2018184197A1 - 信号干扰电路及设备 - Google Patents

信号干扰电路及设备 Download PDF

Info

Publication number
WO2018184197A1
WO2018184197A1 PCT/CN2017/079688 CN2017079688W WO2018184197A1 WO 2018184197 A1 WO2018184197 A1 WO 2018184197A1 CN 2017079688 W CN2017079688 W CN 2017079688W WO 2018184197 A1 WO2018184197 A1 WO 2018184197A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
circuit
interference
vco
Prior art date
Application number
PCT/CN2017/079688
Other languages
English (en)
French (fr)
Inventor
陈涛
汤一君
邓任钦
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/079688 priority Critical patent/WO2018184197A1/zh
Priority to CN201780005161.1A priority patent/CN108496095A/zh
Publication of WO2018184197A1 publication Critical patent/WO2018184197A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • G01S19/215Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference

Definitions

  • the present invention relates to the field of signal interference, and in particular to a signal interference circuit and device.
  • Small civilian UAVs generally use GPS (Global Positioning System, Global Positioning System, L1 band: 1575.42MHz ⁇ 1.023MHz), GLONASS (GLOBAL NAVIGATION SATELLITE SYSTEM, GLONASS, L1 band: 1602.5625MHz ⁇ 4MHz) or BD2 (Beidou-2, Beidou-2 satellite navigation system, B1 band: 1561.098MHz ⁇ 2.046MHz) for positioning and navigation.
  • GPS Global Positioning System, Global Positioning System, L1 band: 1575.42MHz ⁇ 1.023MHz
  • GLONASS GLOBAL NAVIGATION SATELLITE SYSTEM
  • GLONASS L1 band: 1602.5625MHz ⁇ 4MHz
  • BD2 Beidou-2, Beidou-2 satellite navigation system, B1 band: 1561.098MHz ⁇ 2.046MHz
  • interference with the UAV navigation signal can increase the bit error rate of the UAV navigation signal or even lose the navigation signal.
  • the interference to the navigation signal is mainly divided into two types: suppressed interference and deceptive interference.
  • the deceptive interference needs to generate the wrong satellite positioning information or forward the navigation signal, so that the receiver of the drone obtains the wrong pseudorange, so that the drone is not positioned correctly.
  • the erroneous satellite positioning information needs to have a deep understanding of the message of each navigation signal, and the navigation signal needs to be extracted, amplified, and forwarded by the navigation signal, and the two deceptive interference implementations are complicated.
  • the suppressed interference mainly includes monophonic aiming interference, blocking interference, and pseudo code related interference.
  • Monophonic aiming interference requires knowing the carrier frequency of the UAV communication, using the continuous wave signal of the frequency for interference; blocking interference, that is, the transmitted interference signal is despread by the receiver of the drone, as long as the noise of the interference signal The power is higher than the receiver's dry-to-signal ratio, and effective interference can be performed.
  • the aiming interference is a special case of blocking interference; the pseudo-code related interference needs to be generated and navigated.
  • the number of related interference signals obtains a certain spread spectrum gain in spread spectrum communication, and the interference effect is better than random noise.
  • the suppression interference circuit is relatively low in complexity and simple to implement.
  • UAV navigation signals generally use GPS, Glonass, BD2 multi-mode satellite navigation technology.
  • the navigation frequency of these three modes spans from 1559.052MHz (unit: megahertz) to 1606.5625MHz, occupying 47.5105MHz, which is practically useful.
  • the bandwidth is 14.138MHz. If the traditional wideband interference or sweeping interference is used, the interference efficiency will be relatively low. In addition, the single-mode interference signal will not completely block the navigation signal of the drone.
  • the invention provides a signal interference circuit and device.
  • a signal interference circuit for interfering with a navigation signal of a drone, the navigation signal being GPS, Glonass or BD multimode
  • the signal interference circuit comprising a control module and a frequency synthesizing module
  • a power amplifying circuit and an antenna the frequency synthesizing module is configured to generate an interference signal
  • the control module is connected to the frequency synthesizing module
  • the control module is configured to control the frequency of the interference signal in a GPS, a Glonass, and a BD multimode Switching between navigation frequencies of at least two modes, the interference signal being sent to the antenna via the power amplification circuit.
  • a signal interference device for interfering with a navigation signal of a drone, the navigation signal being a GPS, Glonass or BD multimode
  • the signal interference device comprising a housing and being disposed in the shell a signal interference circuit comprising: a control module, a frequency synthesizing module, a power amplifying circuit and an antenna, wherein the frequency synthesizing module is configured to generate an interference signal, and the control module is connected to the frequency synthesizing module;
  • the control module is configured to control a frequency of the interference signal to be switched between navigation frequencies of at least two modes of GPS, Glonass, and BD multimode, and the interference signal is sent to the antenna via the power amplification circuit.
  • control module configures the frequency synthesizing module to obtain a frequency hopping noise hopping interference signal, that is, the frequency synthesizing module can Interfering signals of different frequency bands are outputted in different time periods, thereby realizing interference to navigation signals of at least two modes in GPS, Glonass and BD multimode, so that no one is flying in at least two modes of GPS, Glonass and BD multimode The machine cannot be accurately positioned and the interference efficiency is high.
  • FIG. 1 is a schematic structural diagram of a signal interference circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a signal interference circuit according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a signal interference circuit according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a noise circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a signal interference device according to an embodiment of the present invention.
  • 100 housing; 200: signal interference circuit; 300: button;
  • 2 frequency synthesis module
  • 21 frequency synthesizer
  • 211 VCO
  • 212 VCO control terminal
  • 213 first frequency divider
  • 214 phase detector
  • 215 charge pump
  • 216 register group
  • 217 SPI interface
  • 218 second frequency divider
  • 219 output stage circuit
  • 22 loop filter
  • FIG. 1 is a schematic structural diagram of a signal interference circuit 200 according to an embodiment of the present invention.
  • the signal jamming circuit 200 can be used to interfere with the navigation signals of the drone.
  • the drone may be a civil drone, and the navigation signal is a navigation signal of a civil drone.
  • the navigation signal is a GPS, Glonass or BD (ie BD2) multimode.
  • the signal interference circuit 200 may include a control module 1, a frequency synthesizing module 2, a power amplifying circuit 4, and an antenna 5.
  • the frequency synthesizing module 2 is configured to output an interference signal, and the interference signal is used to interfere with a navigation signal of the drone so that the drone cannot be accurately positioned.
  • the control module 1 is connected to the frequency synthesizing module 2 for controlling the frequency of the interference signal output by the frequency synthesizing module 2, so that the frequency of the interference signal output by the frequency synthesizing module 2 is in GPS, Glonass and BD. Switching between navigation frequencies of at least two modes in the multimode, the interference signal output by the frequency synthesizer module 2 is sent to the antenna 5 via the power amplifying circuit 4, and finally transmitted by the antenna 5, to the drone The navigation signal interferes.
  • the signal interference circuit 200 of the embodiment is configured by the control module 1 to obtain the frequency hopping interference signal of the frequency hopping, so that the frequency synthesis module can output interference signals of different frequency bands in different time periods, thereby realizing the GPS.
  • At least two of Glonass and BD multimode The mode's navigation signals interfere, making drones flying in at least two of the GPS, Glonass, and BD multimodes inaccurate.
  • the interference signal generated by the signal interference circuit 200 of the embodiment has higher interference efficiency and better interference effect.
  • the frequency synthesizer module 2 includes a frequency synthesizer 21, and the frequency synthesizer 21 is configured to generate an interference signal.
  • the control module 1 is connected to the frequency synthesizer 21 to configure the frequency of the interference signal.
  • the frequency synthesizer 21 includes a VCO (ie, a voltage controlled oscillator) 211, and the control module 1 is configured to control a frequency of an interference signal output by the VCO 211 in at least two modes of GPS, Glonass, and BD multimode. Switch between.
  • VCO voltage controlled oscillator
  • control module 1 is configured to periodically control the frequency of the interference signal output by the VCO 211 to be switched between navigation frequencies of at least two modes of the GPS, the Glonass, and the BD multimode, so that the signal interference circuit 200 can cycle.
  • the interference signal of the frequency hopping is transmitted to achieve better interference effect.
  • the period in which the control module 1 controls the frequency switching of the VCO 211 output interference signal can be set as needed. In order to improve the interference efficiency, the cycle of the frequency switching is as short as possible.
  • the control module 1 controls a frequency of the interference signal output by the VCO 211 to be switched between a navigation frequency of at least two modes of the GPS, the Glonass, and the BD multimode, where the period is 10 ms to 20 ms, that is, the control module 1
  • the frequency synthesizer 21 is configured once every 10 ms to 20 ms, so that the frequency synthesizer 21 replaces one output frequency every 10 ms to 20 ms, thereby improving the interference efficiency.
  • control module 1 periodically controls the center frequency of the interference signal output by the VCO 211 to switch between center frequencies of at least two modes of the GPS, the Glonass, and the BD multimode to improve interference efficiency.
  • control module 1 controls the center frequency output by the frequency synthesizer module 2 every 15 ms to jump back and forth between the three frequencies of the GPS center frequency of 1575.42 MHz, the Glonass center frequency of 1602 MHz, and the BD multimode center frequency of 1561 MHz.
  • control module 1 controls the VCO 211 to perform the frequency switching period may also be selected according to actual needs.
  • the control module 1 uses a timer to periodically control the frequency of the interference signal output by the VCO 211 to switch between navigation frequencies of at least two modes in the GPS, Glonass, and BD multimodes, thereby being more accurate.
  • the time at which the frequency synthesizer 21 switches the frequency is controlled.
  • the control module 1 employs a delay function to periodically control the frequency of the interference signal output by the VCO 211 to switch between navigation frequencies of at least two of the GPS, Glonass, and BD multimodes.
  • control module 1 includes a processor, and the processor may be a single chip microcomputer such as an ARM (Advanced RISC Machines, RISC microprocessor), an AVR (RISC reduced instruction set high-speed 8-bit single-chip microcomputer), or an ASIC. (Application Specific Integrated Circuit) chip.
  • ARM Advanced RISC Machines, RISC microprocessor
  • AVR RISC reduced instruction set high-speed 8-bit single-chip microcomputer
  • ASIC Application Specific Integrated Circuit
  • the time when the control module 1 controls the frequency of the interference signal output by the VCO 211 to switch between the navigation frequencies of at least two modes of the GPS, the Glonass, and the BD multimode may also be a random mode, and the switching time may be as needed. set up.
  • the signal interference circuit 200 further includes a noise circuit 3, which also includes a VCO control terminal 212.
  • the noise circuit 3 is configured to generate narrowband noise, and the output end of the noise circuit 3 is connected to the VCO control terminal 212 of the frequency synthesizer 21, so that the generated narrowband noise is input to the VCO 211 through the VCO control terminal 212,
  • the control voltage of the VCO 211 is modulated such that the VCO 211 outputs a noise modulated interference signal, thereby improving interference efficiency.
  • the narrowband signal of this embodiment refers to a signal whose signal bandwidth is much smaller than the narrow frequency or center frequency where it is located. In general, the relative bandwidth of narrowband signals is less than 1%.
  • the narrowband noise generated by the noise circuit 3 is narrowband Gaussian white noise.
  • the noise circuit 3 includes a reverse biased Zener diode D for generating narrowband Gaussian white noise, and uses the reverse bias characteristic of the Zener diode D to generate narrowband Gaussian white noise.
  • the road structure is simple. Wherein, the Zener diode D has an anode grounded, a cathode connected to a voltage source, and a cathode of the Zener diode D is an output end of the noise circuit 3.
  • the noise circuit 3 further includes an audio amplification circuit 31 and a filter circuit 32.
  • the narrowband Gaussian white noise output by the Zener diode D is output to the VCO control terminal 212 via the audio amplification circuit 31 and the filter circuit 32, and the VCO control terminal 212 inputs the narrowband Gaussian white noise to the VCO 211.
  • the cathode of the Zener diode D is connected to the input end of the audio amplifying circuit 31, and the output end of the audio amplifying circuit 31 is connected to the input end of the filter circuit 32, and the output of the filter circuit 322 is output.
  • the end is the output of the noise circuit 3.
  • the embodiment of the present invention does not limit the connection order of the audio amplifying circuit 31 and the filter circuit 32.
  • the audio amplifying circuit 31 can select an audio amplifying circuit 31 which is conventional in the art
  • the filter circuit 32 can select a filter circuit 32 which is conventional in the art.
  • the interference signal generated by the signal interference circuit 200 of the embodiment has a bandwidth of 2 MHz to improve the interference efficiency to the navigation signal. While the bandwidth of the interference signal is related to the amplitude of the narrowband noise output by the noise circuit 3, the bandwidth of the interference signal can be adjusted by adjusting the amplitude of the narrowband noise. In order to achieve an adjustment of the amplitude of the narrowband noise, the noise circuit 3 may also comprise a potentiometer R or a signal amplifier.
  • the noise circuit 3 includes a potentiometer R.
  • an output end of the filter circuit 32 is connected to an input end of the potentiometer R, and an output end of the potentiometer R is the noise circuit.
  • the potentiometer R further includes an adjustment end, and the amplitude of the narrowband noise generated by the noise circuit 3 is controlled by adjusting the adjustment end, thereby adjusting the bandwidth of the finally generated interference signal.
  • the audio amplifying circuit 31 and the filter circuit 32 The order of arrangement between the potentiometer R and the potentiometer R is also interchangeable. The embodiment of the present invention does not limit the connection order of the audio amplifier circuit 31, the filter circuit 32 and the potentiometer R.
  • the noise circuit 3 includes a signal amplifier
  • the output of the filter circuit 32 is connected to the input of the signal amplifier
  • the output of the signal amplifier is the output of the noise circuit 3, and the signal is set.
  • the amplification factor of the amplifier adjusts the magnitude of the narrowband noise generated by the noise circuit 3, thereby adjusting the bandwidth of the resulting interference signal.
  • the order of setting between the audio amplifying circuit 31, the filter circuit 32 and the signal amplifier is also interchangeable.
  • the embodiment of the present invention does not limit the connection order of the audio amplifying circuit 31, the filter circuit 32 and the signal amplifier.
  • the VCO control terminal 212 is an external interface integrated with the input end of the VCO 211 integrated by the frequency synthesizer 21 to facilitate the insertion of the noise circuit 3.
  • the VCO control terminal 212 can also be directly the input end of the VCO 211, so that the circuit structure is relatively simple.
  • the frequency synthesizer module 2 further includes a loop filter 22 and a crystal oscillator 23.
  • the frequency synthesizer 21 further includes a first frequency divider 213, a phase detector 214, and a charge pump 215.
  • the crystal oscillator 23 is connected to the frequency synthesizer 21 for generating an oscillation frequency required for the operation of the frequency synthesizer 21.
  • the output end of the VCO 211 is connected to the input end of the first frequency divider 213, and the output end of the first frequency divider 213 is connected to the input end of the phase detector 214, the phase detector 214 An output is coupled to an input of the charge pump 215, and an output of the charge pump 215 is coupled to an input of the VCO 211.
  • the phase detector 214 also inputs a reference frequency.
  • the output frequency of the VCO 211 is divided by the first frequency divider 213, the input frequency is obtained and input to the phase detector 214, and the phase detector 214 compares the input frequency with the reference frequency and compares The result is sent to the charge pump 215, which adjusts the control voltage of the input of the VCO 211 according to the comparison result, such that the VCO The output frequency is the set value.
  • the reference frequency is related to an oscillation frequency generated by the crystal oscillator 23.
  • the oscillation frequency generated by the crystal oscillator 23 is directly input to the phase detector 214.
  • the frequency synthesizer 21 further includes a second frequency divider 218, and the oscillation frequency generated by the crystal oscillator 23 is divided by the second frequency divider 218, and input to the phase detector.
  • the 214 that is, the oscillation frequency generated by the crystal oscillator 23 is divided by the second frequency divider 218 to obtain a reference frequency.
  • the frequency synthesizer 21 also includes a register bank 216.
  • the register group 216 is connected to the control module 1 and the first frequency divider 213, respectively, so that the control unit 1 can control the division of the first frequency divider 213.
  • Frequency ratio is respectively connected to the control module 1 and the second frequency divider 218, so that the frequency division ratio of the second frequency divider 218 can be controlled by the control module 1.
  • the register group 216 is respectively connected to the control module 1, the first frequency divider 213, and the second frequency divider 218, so that the first frequency divider 213 and the second frequency division can be controlled by the control module 1. The division ratio of both of them 218.
  • the first frequency division ratio and the second frequency division ratio may be determined according to the size of the output frequency required by the VCO 211, thereby implementing switching of the output frequency of the VCO 211.
  • the calculation formula of the VCO211 output frequency f VCO is as follows:
  • N is the first frequency division ratio
  • f REFIN is the reference frequency
  • R is the second frequency division ratio
  • N and R can be set by the cooperation of the control module 1 and the register set 216.
  • the first frequency divider 213, the phase detector 214, and the charge pump 215 and the VCO 211 form a phase locked loop, so that the frequency synthesizer 21 can accurately output the required interference signal frequency and improve the interference efficiency.
  • the charge pump 215 is a charge and discharge capacitor.
  • the frequency synthesizing module 2 is implemented by using a discrete VCO 211, a first frequency divider 213, a phase detector 214, a charge pump 215, and a second frequency divider 218.
  • the VCO 211, the first frequency divider 213, the phase detector 214, the charge pump 215, and the second frequency divider 218 are integrally disposed to form the frequency synthesizer 21, and the frequency synthesizer 21 is miniaturized.
  • the volume of the frequency synthesizer 21 is greatly reduced, simplifying the design of the frequency synthesizer 21.
  • the frequency of the navigation signal is locked by the frequency synthesizer 21 chip, and temperature drift can be avoided.
  • the output of the charge pump 215 is coupled to the input of the VCO 211 via the loop filter 22.
  • the frequency synthesizer 21 further includes an SPI (Serial Peripheral Interface) interface, and the register group 216 passes through the SPI interface 217 and the control module. 1 is connected, the control module 1 writes the register set 216 through the SPI interface 217, thereby controlling the magnitude of the first frequency division ratio and/or the second frequency division ratio, so that the VCO 211 outputs interference signals of different frequencies.
  • SPI Serial Peripheral Interface
  • the register set 216 can also be connected to the control module 1 via other types of interfaces, such as jacks.
  • the register group 216 and the control module 1 are connected through an interface to facilitate plugging and unplugging.
  • the frequency synthesizer 21 further includes an output stage circuit 219 for amplifying the interference signal output by the VCO 211 and outputting it to the power amplifying circuit 4.
  • the power amplifying circuit 4 includes a power amplifier (PA, Power Amplifier) for The interference signal output by the VCO211 module is amplified, which may be selected as a signal amplifying circuit conventional in the art. For example, to stabilize the signal interference circuit 200 and obtain higher gain and power, the power amplifying circuit 4 can select a two-stage signal amplifier.
  • PA Power Amplifier
  • the antenna 5 is used to transmit an interference signal.
  • the antenna 5 may select an omnidirectional antenna 5 or a directional antenna 5, for example, the antenna 5 selects the omnidirectional antenna 5, so that the energy of the swept signal finally transmitted by the signal interference circuit 200 is evenly distributed, thereby performing navigation signals. Better interference.
  • the antenna 5 can select the directional antenna 5 to achieve concentrated interference with the UAV navigation signal.
  • an embodiment of the present invention further provides a signal interference device, which includes a housing 100 and a signal interference circuit 200.
  • the signal interference circuit 200 is disposed in the casing 100, and protects the signal interference circuit 200 through the casing 100 to extend the life of the signal interference device, and the bare signal interference circuit 200 can be solved by the casing 100. The security risks.
  • the signal jamming device further includes a button 300 disposed thereon, the button 300 being electrically coupled to the signal jamming circuit 200.
  • the button 300 is a switch button 300 for controlling the on/off of the signal interference circuit 200.
  • the switch button 300 is used to control the power on and off of the power supply circuit of the signal interference circuit 200, and when the interference signal needs to be transmitted to interfere with the navigation signal of the drone, the switch button 300 is pressed, so that The signal interference circuit 200 is connected to the power supply, and the signal interference circuit 200 can generate an interference signal, thereby realizing interference to the navigation signal of the drone, and the implementation is convenient and fast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Noise Elimination (AREA)

Abstract

一种信号干扰电路(200)及设备,用于干扰无人机的导航信号,所述导航信号为GPS、Glonass或者BD多模,所述信号干扰电路(200)包括:控制模块(1)、频综模块(2)、功率放大电路(4)及天线(5),所述频综模块(2)用于产生干扰信号,所述控制模块(1)连接所述频综模块(2);所述控制模块(1)用于控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换,所述干扰信号经所述功率放大电路(4)送至所述天线(5)。所述信号干扰电路(200)能够在不同时段输出不同频段的干扰信号,从而实现对GPS、Glonass和BD多模中至少两个模式的导航信号进行干扰,使得无人机不能精确定位,干扰效率较高。

Description

信号干扰电路及设备 技术领域
本发明涉及信号干扰领域,尤其涉及一种信号干扰电路及设备。
背景技术
目前,小型民用无人机爱好者越来越多,一些禁非区域(例如安防敏感区域)急需对无人机进行空中管制。而小型民用无人机一般采用GPS(Global Positioning System,全球定位系统,L1波段:1575.42MHz±1.023MHz)、GLONASS(GLOBAL NAVIGATION SATELLITE SYSTEM,格洛纳斯,L1波段:1602.5625MHz±4MHz)或BD2(Beidou-2,北斗二号卫星导航系统,B1波段:1561.098MHz±2.046MHz)进行定位和导航。
通常,对无人机导航信号进行干扰能够使无人机导航信号误码率增加甚至丢失导航信号。而对导航信号进行干扰主要分压制式干扰和欺骗式干扰两种方式。
其中,欺骗式干扰需产生错误的卫星定位信息或转发导航信号,使无人机的接收机获得错误的伪距从而使无人机定位不准。然而,产生错误的卫星定位信息需要对各导航信号的电文有深入的了解,转发导航信号需要对导航信号进行提取、放大、转发,这两种欺骗式干扰实现较为复杂。
压制式干扰主要有单音瞄准式干扰、阻塞式干扰、伪码相关干扰等。单音瞄准式干扰需要知道无人机通信的载波频率,使用该频率的连续波信号进行干扰;阻塞式干扰即发射的干扰信号被无人机的接收机接收解扩后,只要干扰信号的噪声功率高于接收机的干信比,即可进行有效的干扰,通常瞄准式干扰是阻塞式干扰的一种特例;伪码相关干扰需要产生与导航信 号相关的干扰信号,在扩频通信中获得一定的扩频增益,干扰效果会比随机的噪声要好一些。总体来说压制式干扰电路复杂度相对较低,简单易于实现。
无人机导航信号一般会采用GPS、Glonass、BD2多模的卫星导航技术,这三种模式的导航信号频率跨度从1559.052MHz(单位:兆赫)至1606.5625MHz,占据了47.5105MHz,而实际有用的带宽为14.138MHz,若采用传统的宽带干扰或者扫频干扰会使得干扰效率比较低,另外,单模的干扰信号也不能使无人机的导航信号彻底阻塞。
发明内容
本发明提供一种信号干扰电路及设备。
根据本发明的第一方面,提供一种信号干扰电路,用于干扰无人机的导航信号,所述导航信号为GPS、Glonass或者BD多模,所述信号干扰电路包括控制模块、频综模块、功率放大电路及天线,所述频综模块用于产生干扰信号,所述控制模块连接所述频综模块;所述控制模块用于控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换,所述干扰信号经所述功率放大电路送至所述天线。
根据本发明的第二方面,提供一种信号干扰设备,用于干扰无人机的导航信号,所述导航信号为GPS、Glonass或者BD多模,所述信号干扰设备包括壳体和设置在壳体上的信号干扰电路,所述信号干扰电路包括控制模块、频综模块、功率放大电路及天线,所述频综模块用于产生干扰信号,所述控制模块连接所述频综模块;所述控制模块用于控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换,所述干扰信号经所述功率放大电路送至所述天线。
由以上本发明实施例提供的技术方案可见,本发明通过控制模块对频综模块进行配置,获得跳频的噪声跳频干扰信号,即使得频综模块能够 在不同时段输出不同频段的干扰信号,从而实现对GPS、Glonass和BD多模中至少两个模式的导航信号进行干扰,使得在GPS、Glonass和BD多模中至少两个模式下飞行的无人机不能精确定位,干扰效率较高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的信号干扰电路的结构示意图;
图2是本发明另一实施例提供的信号干扰电路的结构示意图;
图3是本发明又一实施例提供的信号干扰电路的结构示意图;
图4是本发明一实施例提供的噪声电路的结构示意图;
图5是本发明一实施例提供的信号干扰设备的结构示意图。
附图标记:
100:壳体;200:信号干扰电路;300:按钮;
1:控制模块;
2:频综模块;21:频率综合器;211:VCO;212:VCO控制端;213:第一分频器;214:鉴相器;215:电荷泵;216:寄存器组;217:SPI接口;218:第二分频器;219:输出级电路;22:环路滤波器;23晶体振荡器;
3:噪声电路;D:齐纳二极管;31:音频放大电路;32:滤波电路;R:电位器;
4:功率放大电路;
5:天线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的信号干扰电路200及设备进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
如图1所示,本发明实施例提供的一种信号干扰电路200的结构示意图。该信号干扰电路200可用于干扰无人机的导航信号。可选地,所述无人机可为民用无人机,所述导航信号为民用无人机的导航信号。可选地,所述导航信号为GPS、Glonass或者BD(即BD2)多模。
参见图1,所述信号干扰电路200可包括控制模块1、频综模块2、功率放大电路4以及天线5。其中,所述频综模块2用于输出干扰信号,所述干扰信号用于对无人机的导航信号进行干扰,以使得无人机不能精确定位。
所述控制模块1与所述频综模块2相连,用于对所述频综模块2输出干扰信号的频率进行控制,使得所述频综模块2输出的干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换,所述频综模块2输出的干扰信号经所述功率放大电路4送至所述天线5,最终由天线5发射出去,对无人机的导航信号进行干扰。
本实施例的信号干扰电路200,通过控制模块1对频综模块2进行配置,获得跳频的噪声调频干扰信号,即使得频综模块能够在不同时段输出不同频段的干扰信号,从而实现对GPS、Glonass和BD多模中至少两个 模式的导航信号进行干扰,使得在GPS、Glonass和BD多模中至少两个模式下飞行的无人机不能精确定位。相比于单模干扰信号(即频率位于GPS、Glonass或BD多模频段的干扰信号),本实施例的信号干扰电路200产生的干扰信号干扰效率较高,干扰效果较好。
参见图2,本实施例中,所述频综模块2包括频率综合器21,所述频率综合器21用于产生干扰信号。所述控制模块1连接所述频率综合器21,以对所述干扰信号的频率进行配置。
所述频率综合器21包括VCO(即压控振荡器)211,所述控制模块1用于控制所述VCO211输出的干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换。
可选地,所述控制模块1是周期性控制所述VCO211输出的干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换的,使得信号干扰电路200能够周期性发射出跳频的干扰信号,实现更好的干扰效果。
其中,所述控制模块1控制所述VCO211输出干扰信号的频率切换的周期可根据需要设定。为提高干扰效率,频率切换的周期越短越好。可选地,所述控制模块1控制所述VCO211输出的干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换的周期为10ms~20ms,即控制模块1每隔10ms~20ms对频率综合器21进行一次配置,从而使得频率综合器21每隔10ms~20ms即更换一个输出频率,提高干扰效率。可选地,所述控制模块1周期性控制所述VCO211输出的干扰信号的中心频率在GPS、Glonass和BD多模中至少两个模式的中心频率之间切换,以提高干扰效率。例如,所述控制模块1每隔15ms控制频综模块2输出的中心频率在GPS的中心频率1575.42MHz、Glonass的中心频率1602MHz和BD多模的中心频率1561MHz这三个频率之间来回跳动。
所述控制模块1控制VCO211进行频率切换周期的方式也可根据实际需求来选择。在一实施例中,所述控制模块1采用定时器来周期性控制所述VCO211输出的干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换,从而较为精确地控制频率综合器21切换频率的时间。在另一实施例中,所述控制模块1采用延时函数来周期性控制所述VCO211输出的干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换。
本实施例中,所述控制模块1包括处理器,所述处理器可为ARM(Advanced RISC Machines,RISC微处理器)、AVR(RISC精简指令集高速8位单片机)等单片机,还可为ASIC(Application Specific Integrated Circuit,专用集成电路)芯片。
当然,所述控制模块1控制所述VCO211输出的干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换的时间也可以为随机模式,该切换时间可根据需要设定。
又参见图2,所述信号干扰电路200还包括噪声电路3,所述频率综合器21还包括VCO控制端212。其中,所述噪声电路3用于产生窄带噪声,所述噪声电路3的输出端连接所述频率综合器21的VCO控制端212,从而将产生的窄带噪声通过VCO控制端212输入至VCO211,以对VCO211的控制电压进行调制,使得VCO211输出噪声调制的干扰信号,从而提高干扰效率。
需要说明的是,本实施例的窄带信号是指信号带宽远小于其所在的窄频或者中心频率的信号。一般情况下,窄带信号的相对带宽小于1%。
本实施例中,噪声电路3产生的窄带噪声为窄带高斯白噪声。可选地,参见图4,所述噪声电路3包括用于产生窄带高斯白噪声的反向偏置的齐纳二极管D,利用齐纳二极管D的反偏特性产生窄带高斯白噪声,电 路结构简单。其中,所述齐纳二极管D的,阳极接地,阴极连接电压源,所述齐纳二极管D的阴极为所述噪声电路3的输出端。
可选地,参见图4,所述噪声电路3还包括音频放大电路31以及滤波电路32。所述齐纳二极管D输出的窄带高斯白噪声经所述音频放大电路31和滤波电路32后输出至所述VCO控制端212,又所述VCO控制端212将窄带高斯白噪声输入至VCO211。
又参见图4,所述齐纳二极管D的阴极连接所述音频放大电路31的输入端,所述音频放大电路31的输出端连接所述滤波电路32的输入端,所述滤波电路322的输出端为所述噪声电路3的输出端。通过设置音频放大电路31,对齐纳二极管D产生的窄带高斯白噪声的幅值进行放大,并通过设置滤波电路32,对放大后的窄带高斯白噪声进行滤波处理,从而使得噪声电路3输出满足需求的窄带高斯白噪声。
需要说明的是,本发明实施例并不对所述音频放大电路31和滤波电路32的连接顺序进行限定。并且,所述音频放大电路31可选择本领域常规的音频放大电路31,所述滤波电路32可选择本领域常规的滤波电路32。
考虑到无人机导航信号的带宽比较窄,本实施例的信号干扰电路200产生的干扰信号的带宽为2MHz,以提高对导航信号的干扰效率。而干扰信号的带宽与所述噪声电路3输出的窄带噪声的幅度相关,可通过调节所述窄带噪声的幅度来调节所述干扰信号的带宽。为实现对窄带噪声的幅值的调节,所述噪声电路3还可包括电位器R或者信号放大器。
在一些例子中,所述噪声电路3包括电位器R,参见图4,所述滤波电路32的输出端连接所述电位器R的输入端,所述电位器R的输出端为所述噪声电路3的输出端。其中,所述电位器R还包括调节端,通过调节该调节端来控制所述噪声电路3产生的窄带噪声的幅值大小,从而调节最终产生的干扰信号的带宽。当然,所述音频放大电路31、滤波电路32 和电位器R之间的设置顺序也可互换,本发明实施例并不对所述音频放大电路31、滤波电路32和电位器R的连接顺序进行限定。
在其他一些例子中,所述噪声电路3包括信号放大器,所述滤波电路32的输出端连接信号放大器的输入端,所述信号放大器的输出端为所述噪声电路3的输出端,通过设置信号放大器的放大倍数来调节所述噪声电路3产生的窄带噪声的幅值大小,从而调节最终产生的干扰信号的带宽。当然,所述音频放大电路31、滤波电路32和信号放大器之间的设置顺序也可互换,本发明实施例并不对所述音频放大电路31、滤波电路32和信号放大器的连接顺序进行限定。
可选地,所述VCO控制端212为所述频率综合器21集成的与所述VCO211的输入端相连的对外接口,以方便噪声电路3的插接。当然,所述VCO控制端212也可直接为所述VCO211的输入端,使得电路结构较为简单。
结合图2和图3,所述频综模块2还包括环路滤波器22和晶体振荡器23。所述频率综合器21还包括第一分频器213、鉴相器214和电荷泵215。本实施例中,所述晶体振荡器23与所述频率综合器21相连,用于产生所述频率综合器21工作所需的振荡频率。
其中,所述VCO211的输出端连接所述第一分频器213的输入端,所述第一分频器213的输出端连接所述鉴相器214的输入端,所述鉴相器214的输出端连接所述电荷泵215的输入端,所述电荷泵215的输出端连接所述VCO211的输入端。另外,所述鉴相器214还输入参考频率。
本实施例中,所述VCO211的输出频率由第一分频器213进行分频,获得输入频率并输入鉴相器214,所述鉴相器214将输入频率与参考频率进行比较,并将比较结果发送至所述电荷泵215,所述电荷泵215根据所述比较结果调节所述VCO211的输入端的控制电压,以使得所述VCO的 输出频率为设定值。
可选地,所述参考频率与所述晶体振荡器23产生的振荡频率相关。在一些例子中,所述晶体振荡器23产生的振荡频率直接输入所述鉴相器214。在其他一些例子中,所述频率综合器21还包括第二分频器218,所述晶体振荡器23产生的振荡频率经所述第二分频器218分频后,输入至所述鉴相器214,即晶体振荡器23产生的振荡频率经第二分频器218分频获得参考频率。
所述频率综合器21还包括寄存器组216。为实现对VCO211输出频率的周期切换,可选地,所述寄存器组216与所述控制模块1、第一分频器213分别连接,从而可通过控制模块1控制第一分频器213的分频比。可选地,所述寄存器组216与所述控制模块1、第二分频器218分别连接,从而可通过控制模块1控制第二分频器218的分频比。可选地,所述寄存器组216与所述控制模块1、第一分频器213、第二分频器218分别连接,从而可通过控制模块1控制第一分频器213和第二分频器218两者的分频比。
所述第一分频比、第二分频比可根据VCO211所需输出频率的大小决定,从而实现VCO211输出频率的切换。
本实施例中,VCO211输出频率fVCO的计算公式如下:
fVCO=N×fREFIN/R        (1)
公式(1)中,N为第一分频比,fREFIN是参考频率,R是第二分频比。
其中,N和R可通过控制模块1与寄存器组216的配合进行设置。可选地,VCO需要输出1575.42MHz的干扰信号(用于干扰GPS模式的导航信号),fREFIN=1790.93KHz(单位:千赫),则N=879.67,R=1。可选地,VCO需要输出1602MHz的干扰信号(用于干扰Glonass模式的导航 信号),fREFIN=1796.41KHz,则N=891.78,R=1。可选地,VCO需要输出1561MHz的干扰信号(用于干扰BD2模式的导航信号),fREF=1790.82KHz,则N=871.67,R=1。
本实施例中,第一分频器213、鉴相器214和电荷泵215、VCO211形成锁相环,使得频率综合器21可以准确地输出所需的干扰信号频率,提高干扰效率。可选地,所述电荷泵215为充放电电容。
可选地,频综模块2采用分立的VCO211、第一分频器213、鉴相器214及电荷泵215、第二分频器218等电路来实现。可选地,所述VCO211、第一分频器213、鉴相器214及电荷泵215、第二分频器218集成设置以形成所述频率综合器21,实现频率综合器21的小型化,大大减小频率综合器21的体积,简化频率综合器21的设计。通过频率综合器21芯片锁定导航信号的频点,能够避免温漂。
而为减小VCO211输出频率发生抖动,所述电荷泵215的输出端经所述环路滤波器22与所述VCO211的输入端连接。
又结合图2和图3,可选地,所述频率综合器21还包括SPI(Serial Peripheral Interface,串行外设接口)接口,所述寄存器组216通过所述SPI接口217与所述控制模块1连接,控制模块1通过SPI接口217对寄存器组216进行写入,从而控制第一分频比和/或第二分频比的大小,使得VCO211输出不同频率的干扰信号。
当然,所述寄存器组216也可通过其他类型的接口,例如插孔,与所述控制模块1连接。同时,通过接口连接寄存器组216和控制模块1,方便拔插。
又结合图2和图3,所述频率综合器21还包括输出级电路219,用于对所述VCO211输出的干扰信号进行放大后输出至功率放大电路4。
所述功率放大电路4包括功率放大器(PA,Power Amplifier),用于 对所述VCO211模块输出的干扰信号进行放大,其可选择为本领域常规的信号放大电路。例如,为使得信号干扰电路200工作稳定,并获得较高增益和功率,所述功率放大电路4可选择两级信号放大器。
所述天线5用于将干扰信号发射出去。所述天线5可选择全向天线5或者定向天线5,例如,所述天线5选择全向天线5,使得信号干扰电路200最终发射的扫频信号的能量各向分布均匀,从而对导航信号进行更好的干扰。在无人机的方位确定时,所述天线5可选择定向天线5,以实现对所述无人机导航信号的集中干扰。
参见图5,本发明实施例还提供一种信号干扰设备,所述信号干扰设备包括壳体100和信号干扰电路200。其中,所述信号干扰电路200设置在所述壳体100内,通过壳体100对信号干扰电路200进行保护,延长信号干扰设备的寿命,且通过壳体100能够解决裸露的信号干扰电路200存在的安全隐患问题。
另外,为方便操作,所述信号干扰设备还包括设置在上的按钮300,所述按钮300与所述信号干扰电路200电连接。可选地,所述按钮300为开关按钮300,用于控制所述信号干扰电路200的开启/关闭。例如,所述开关按钮300用于控制所述信号干扰电路200的供电电源的接通与断开,在需要发射干扰信号对无人机导航信号进行干扰时,按下所述开关按钮300,使得所述信号干扰电路200与所述供电电源接通,所述信号干扰电路200即可产生干扰信号,从而实现对无人机导航信号的干扰,实现较为方便、快捷。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还 包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的信号干扰电路及设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (41)

  1. 一种信号干扰电路,用于干扰无人机的导航信号,所述导航信号为GPS、Glonass或者BD多模,其特征在于,所述信号干扰电路包括控制模块、频综模块、功率放大电路及天线,所述频综模块用于产生干扰信号,所述控制模块连接所述频综模块;
    所述控制模块用于控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换,所述干扰信号经所述功率放大电路送至所述天线。
  2. 根据权利要求1所述的信号干扰电路,其特征在于,所述控制模块是周期性控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换的。
  3. 根据权利要求2所述的信号干扰电路,其特征在于,所述控制模块控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换的周期为10ms~20ms。
  4. 根据权利要求3所述的信号干扰电路,其特征在于,所述控制模块采用定时器或延时函数来周期性控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换。
  5. 根据权利要求2所述的信号干扰电路,其特征在于,所述控制模块周期性控制所述干扰信号的中心频率在GPS、Glonass和BD多模中至少两个模式的中心频率之间切换。
  6. 根据权利要求1所述的信号干扰电路,其特征在于,所述信号干扰电路还包括用于产生窄带噪声的噪声电路,所述频综模块包括所述频率综合器,
    所述频率综合器包括VCO及VCO控制端,
    所述噪声电路的输出端连接所述VCO控制端。
  7. 根据权利要求6所述的信号干扰电路,其特征在于,所述窄带噪声 为窄带高斯白噪声,所述噪声电路包括用于产生窄带高斯白噪声的反向偏置的齐纳二极管。
  8. 根据权利要求7所述的信号干扰电路,其特征在于,所述噪声电路还包括音频放大电路及滤波电路,所述齐纳二极管输出的窄带高斯白噪声经所述音频放大电路、滤波电路后输出。
  9. 根据权利要求8所述的信号干扰电路,其特征在于,所述噪声电路还包括电位器或信号放大器,所述滤波电路或信号放大器的输出端连接所述电位器的输入端,所述电位器或信号放大器的输出端连接所述VCO控制端。
  10. 根据权利要求6所述的信号干扰电路,其特征在于,所述干扰信号的带宽为2MHz。
  11. 根据权利要求6所述的信号干扰电路,其特征在于,所述VCO控制端为所述频率综合器集成的与所述VCO的输入端相连的对外接口。
  12. 根据权利要求1所述的信号干扰电路,其特征在于,所述频综模块包括所述频率综合器,
    所述频率综合器包括VCO、第一分频器、鉴相器及电荷泵;
    所述VCO的输出频率经所述第一分频器分频后获得输入频率,所述第一分频器输出所述输入频率至所述鉴相器,由所述鉴相器将所述输入频率与参考频率进行比较,并将比较结果发送至所述电荷泵,所述电荷泵根据所述比较结果调节所述VCO的输入端的控制电压,以使得所述VCO的输出频率为设定值。
  13. 根据权利要求12所述的信号干扰电路,其特征在于,所述频率综合器还包括寄存器组,所述寄存器组与所述控制模块、第一分频器分别连接。
  14. 根据权利要求13所述的信号干扰电路,其特征在于,所述频率综合器还包括SPI接口,所述寄存器组通过所述SPI接口与所述控制模块连接。
  15. 根据权利要求13或14所述的信号干扰电路,其特征在于,所述频综模块还包括与所述频率综合器相连的晶体振荡器,其用于产生振荡频率并将所述振荡频率输入所述鉴相器,以作为所述鉴相器的参考频率。
  16. 根据权利要求15所述的信号干扰电路,其特征在于,所述频率综合器还包括第二分频器,所述晶体振荡器产生的振荡频率经所述第二分频器分频后,输入至所述鉴相器。
  17. 根据权利要求16所述的信号干扰电路,其特征在于,所述第二分频器还与所述寄存器组连接。
  18. 根据权利要求12所述的信号干扰电路,其特征在于,所述频综模块还包括环路滤波器,所述鉴相器的输出端经所述环路滤波器与所述VCO的输入端连接。
  19. 根据权利要求12所述的信号干扰电路,其特征在于,所述VCO、第一分频器、鉴相器及电荷泵集成设置以形成所述频率综合器。
  20. 根据权利要求6或12所述的信号干扰电路,其特征在于,所述频率综合器还包括输出级电路,用于对所述VCO输出的干扰信号进行放大后输出至功率放大电路。
  21. 一种信号干扰设备,用于干扰无人机的导航信号,所述导航信号为GPS、Glonass或者BD多模,所述信号干扰设备包括壳体和设置在壳体上的信号干扰电路,其特征在于,所述信号干扰电路包括控制模块、频综模块、功率放大电路及天线,所述频综模块用于产生干扰信号,所述控制模块连接所述频综模块;
    所述控制模块用于控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换,所述干扰信号经所述功率放大电路送至所述天线。
  22. 根据权利要求21所述的信号干扰设备,其特征在于,所述控制模块是周期性控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换的。
  23. 根据权利要求22所述的信号干扰设备,其特征在于,所述控制模块控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换的周期为10ms~20ms。
  24. 根据权利要求23所述的信号干扰设备,其特征在于,所述控制模块采用定时器或延时函数来周期性控制所述干扰信号的频率在GPS、Glonass和BD多模中至少两个模式的导航频率之间切换。
  25. 根据权利要求22所述的信号干扰设备,其特征在于,所述控制模块周期性控制所述干扰信号的中心频率在GPS、Glonass和BD多模中至少两个模式的中心频率之间切换。
  26. 根据权利要求22所述的信号干扰设备,其特征在于,所述信号干扰电路还包括用于产生窄带噪声的噪声电路,所述频综模块包括所述频率综合器,
    所述频率综合器包括VCO及VCO控制端,
    所述噪声电路的输出端连接所述VCO控制端。
  27. 根据权利要求26所述的信号干扰设备,其特征在于,所述窄带噪声为窄带高斯白噪声,所述噪声电路包括用于产生窄带高斯白噪声的反向偏置的齐纳二极管。
  28. 根据权利要求27所述的信号干扰设备,其特征在于,所述噪声电路还包括音频放大电路及滤波电路,所述齐纳二极管输出的窄带高斯白噪声经所述音频放大电路、滤波电路后输出。
  29. 根据权利要求28所述的信号干扰设备,其特征在于,所述噪声电路还包括电位器或信号放大器,所述滤波电路或信号放大器的输出端连接所述电位器的输入端,所述电位器或信号放大器的输出端连接所述VCO控制端。
  30. 根据权利要求26所述的信号干扰设备,其特征在于,所述干扰信号的带宽为2MHz。
  31. 根据权利要求26所述的信号干扰设备,其特征在于,所述VCO 控制端为所述频率综合器集成的与所述VCO的输入端相连的对外接口。
  32. 根据权利要求21所述的信号干扰设备,其特征在于,所述频综模块包括所述频率综合器,
    所述频率综合器包括VCO、第一分频器、鉴相器及电荷泵;
    所述VCO的输出频率经所述第一分频器分频后获得输入频率,所述第一分频器输出所述输入频率至所述鉴相器,由所述鉴相器将所述输入频率与参考频率进行比较,并将比较结果发送至所述电荷泵,所述电荷泵根据所述比较结果调节所述VCO的输入端的控制电压,以使得所述VCO的输出频率为设定值。
  33. 根据权利要求32所述的信号干扰设备,其特征在于,所述频率综合器还包括寄存器组,所述寄存器组与所述控制模块、第一分频器分别连接。
  34. 根据权利要求33所述的信号干扰设备,其特征在于,所述频率综合器还包括SPI接口,所述寄存器组通过所述SPI接口与所述控制模块连接。
  35. 根据权利要求33或34所述的信号干扰设备,其特征在于,所述频综模块还包括与所述频率综合器相连的晶体振荡器,其用于产生振荡频率并将所述振荡频率输入所述鉴相器,以作为所述鉴相器的参考频率。
  36. 根据权利要求35所述的信号干扰设备,其特征在于,所述频率综合器还包括第二分频器,所述晶体振荡器产生的振荡频率经所述第二分频器分频后,输入至所述鉴相器。
  37. 根据权利要求36所述的信号干扰设备,其特征在于,所述第二分频器还与所述寄存器组连接。
  38. 根据权利要求32所述的信号干扰设备,其特征在于,所述频综模块还包括环路滤波器,所述电荷泵的输出端经所述环路滤波器与所述VCO的输入端连接。
  39. 根据权利要求32所述的信号干扰设备,其特征在于,所述VCO、 第一分频器、鉴相器及电荷泵集成设置以形成所述频率综合器。
  40. 根据权利要求26或32所述的信号干扰设备,其特征在于,所述频率综合器还包括输出级电路,用于对所述VCO输出的干扰信号进行放大后输出至功率放大电路。
  41. 根据权利要求21所述的信号干扰设备,其特征在于,所述壳体上设有按钮,所述按钮与所述信号干扰电路电连接。
PCT/CN2017/079688 2017-04-07 2017-04-07 信号干扰电路及设备 WO2018184197A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/079688 WO2018184197A1 (zh) 2017-04-07 2017-04-07 信号干扰电路及设备
CN201780005161.1A CN108496095A (zh) 2017-04-07 2017-04-07 信号干扰电路及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079688 WO2018184197A1 (zh) 2017-04-07 2017-04-07 信号干扰电路及设备

Publications (1)

Publication Number Publication Date
WO2018184197A1 true WO2018184197A1 (zh) 2018-10-11

Family

ID=63344708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079688 WO2018184197A1 (zh) 2017-04-07 2017-04-07 信号干扰电路及设备

Country Status (2)

Country Link
CN (1) CN108496095A (zh)
WO (1) WO2018184197A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944958A (zh) * 2010-08-27 2011-01-12 北京中科飞鸿科技有限公司 宽带多载波自适应无线频率干扰系统
US20120196525A1 (en) * 2011-01-28 2012-08-02 Alcatel-Lucent Usa Inc. Method and apparatus of performing video programming security control
CN203554399U (zh) * 2013-11-25 2014-04-16 成都九华圆通科技发展有限公司 数字合成干扰机控制电路
CN104333433A (zh) * 2014-11-20 2015-02-04 天津光电通信技术有限公司 一种移动通信干扰器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349740B (zh) * 2008-07-29 2011-09-07 北京航空航天大学 通用卫星导航信号干扰源及其信号产生方法
CN103281066B (zh) * 2013-05-22 2015-10-07 中国电子科技集团公司第五十四研究所 一种同源或非同源干扰信号时频基准产生方法
CN103312423B (zh) * 2013-05-31 2015-01-28 郑州威科姆科技股份有限公司 多模卫星接收机跟踪源切换测试装置
CN203377888U (zh) * 2013-06-17 2014-01-01 合肥赛为智能有限公司 一种便携式监测干扰系统
CN104901719B (zh) * 2015-04-10 2017-04-05 北京航空航天大学 一种常见卫星干扰信号生成方法
CN205160501U (zh) * 2015-12-10 2016-04-13 中国电子科技集团公司第二十七研究所 一种gps信号干扰器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944958A (zh) * 2010-08-27 2011-01-12 北京中科飞鸿科技有限公司 宽带多载波自适应无线频率干扰系统
US20120196525A1 (en) * 2011-01-28 2012-08-02 Alcatel-Lucent Usa Inc. Method and apparatus of performing video programming security control
CN203554399U (zh) * 2013-11-25 2014-04-16 成都九华圆通科技发展有限公司 数字合成干扰机控制电路
CN104333433A (zh) * 2014-11-20 2015-02-04 天津光电通信技术有限公司 一种移动通信干扰器

Also Published As

Publication number Publication date
CN108496095A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
US7301404B2 (en) Method and apparatus for transceiver frequency synthesis
US10405298B2 (en) Beacon using an FBAR-based oscillator
US9974050B2 (en) Transmitter IC for single-channel Bluetooth beacon
JP4499739B2 (ja) マルチモードおよびマルチバンドrf送受信機ならびに関連する通信方法
JP2006261714A (ja) 通信用半導体集積回路および携帯通信端末
TWI324468B (en) Radio frequency transceiver and transmission method
JP5345858B2 (ja) ノイズリダクションを持つ無線周波数信号の受信及び/又は送信用の装置
KR20120095291A (ko) 송신 장치
KR100895886B1 (ko) 이중 대역 gps/galileo 위성 신호 수신기
CN104237910A (zh) 多通道导航射频接收机
JP3822057B2 (ja) 移動通信端末装置
WO2018184197A1 (zh) 信号干扰电路及设备
EP1113584A2 (en) Mobile phone transceiver
JP2003152633A (ja) 無線通信システム及び携帯無線機
CN102709809B (zh) 一种基于单运放的光纤陀螺半导体激光器调制电路
CN101330311A (zh) 新型信标接收机
US20110141772A1 (en) Resonance Power Generator
KR101208041B1 (ko) 광대역 주파수 합성을 위한 소형 주파수 합성기
JP2007174325A (ja) 半導体集積回路及びそれに設けられた送信機の校正方法並びにそれを用いた移動体通信装置
KR101012176B1 (ko) 차량 위치인식용 gnss의 고감도와 고정밀을 고려한 수신기 및 그 제어 방법
CN105259563A (zh) 一种将gps卫星信号转换为基带信号的电路结构
CN220853315U (zh) 一种针对穿越机的反制系统及设备
RU187912U1 (ru) Передатчик помехового сигнала системам связи стандарта GSM
US20230043914A1 (en) Up/down frequency converter with millimeter-wave low-phase-noise local oscillator
JPH11186933A (ja) ディジタル無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904883

Country of ref document: EP

Kind code of ref document: A1