WO2018184191A1 - 差压传感器及其制造方法 - Google Patents

差压传感器及其制造方法 Download PDF

Info

Publication number
WO2018184191A1
WO2018184191A1 PCT/CN2017/079675 CN2017079675W WO2018184191A1 WO 2018184191 A1 WO2018184191 A1 WO 2018184191A1 CN 2017079675 W CN2017079675 W CN 2017079675W WO 2018184191 A1 WO2018184191 A1 WO 2018184191A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sheet
carrier
carrier body
top surface
Prior art date
Application number
PCT/CN2017/079675
Other languages
English (en)
French (fr)
Inventor
许晋福
陈源杰
林志勇
陈世斌
Original Assignee
沛喆科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沛喆科技股份有限公司 filed Critical 沛喆科技股份有限公司
Priority to DE112017007273.5T priority Critical patent/DE112017007273T5/de
Priority to PCT/CN2017/079675 priority patent/WO2018184191A1/zh
Priority to US16/603,270 priority patent/US20200209086A1/en
Publication of WO2018184191A1 publication Critical patent/WO2018184191A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning

Definitions

  • the present invention relates to a construction of a sensor, and more particularly to a differential pressure sensor manufactured by an IC carrier package technology and a method of fabricating the same.
  • the existing differential pressure sensor must be provided with two pressure sampling tubes, and the two pressure sampling tubes are respectively connected to the high-voltage input source of the gas and the low-voltage input source, and the gas pressures of the two input sources must be passed through the internal of the differential pressure sensor. It is configured to transfer high and low pressure gas pressure to the surface of the sensing film of the pressure sensing chip. The main function of the pressure sensing chip is to convert the pressure intensity into an electrical signal.
  • the general differential pressure sensor is used to realize the pressure transmission.
  • the main purpose is to guide the gas pressure to the front and back sides of the pressure sensing chip by the design of the package structure.
  • the method is usually pre-mold (pre-molding).
  • the lead frame of the form is combined with a plastic structure having a pressure transmitting function.
  • Another method is to use two pressure sensing chips to realize the differential pressure measurement function of the high voltage input source of the gas and the low voltage input source.
  • the present invention proposes a new packaging technology that solves the problem of transmitting signals and transmitting gas pressure by a differential pressure sensor with an economical, mature production technology and low cost IC carrier structure.
  • the present invention provides a differential pressure sensor comprising:
  • An IC carrier board is provided with a carrier body comprising two or more sheet-like substrates stacked one above another, and a gas pipe is formed in the carrier body at the top of the carrier body The surface is provided with two air holes respectively communicating with the gas pipe, and a plurality of welding are arranged around the carrier body Point, a conductive line is disposed on the carrier body, and the conductive line is connected to a plurality of solder joints;
  • a signal processing chip coupled to the carrier body and connected to the conductive line;
  • a pressure sensing chip having a front surface and a reverse surface, the pressure sensing chip being coupled to a top surface of the carrier body and covering one of the air holes with the reverse surface, the pressure sensing chip and the Conductive line connection, transmitting the signal sensed by the front side and the back side to the signal processing chip by the conductive line;
  • An upper cover is provided with a joint block, and a bottom surface of the joint block is adhered to the top surface of the carrier body in a close contact manner, and positions corresponding to the two air holes are recessed on the bottom surface of the joint block.
  • a cavity wherein the cavity accommodates the pressure sensing chip, and the other cavity is in communication with another air hole, and two vent pipes are extended upwardly on the bonding block, and each of the vent pipes is formed separately a venting hole, the inner ends of each of the venting holes being in communication with each of the cavities.
  • the signal processing chip is disposed in the range in which the bonding block is adhesively bonded to the carrier body, and a chip housing is recessed on a bottom surface of the bonding block corresponding to the position of the signal processing chip.
  • the signal processing chip is housed in the chip compartment, and a pressure balance hole is bored in a surface of the bonding block, and the air pressure balance hole communicates with the chip compartment.
  • the gas pipe is an elongated pipe extending in a straight line, the two air holes are respectively communicated with the two ends of the gas pipe, and the signal processing chip is coupled to the top surface of the carrier body at two air holes. The part between.
  • the carrier body comprises two layers of the sheet-like substrate stacked one above another, and a long groove is recessed in a top surface of the sheet-like substrate on the lower side, and the gas pipe is formed. Between the bottom surface of the upper sheet-like substrate and the long groove, the two pores are holes penetrating vertically through the sheet-like substrate on the upper side.
  • the carrier body comprises three layers of the sheet-like substrate stacked one above another, the sheet-like substrate in the middle vertically extending through a long hole, and the gas pipe is formed on the upper side.
  • the two pores are holes penetrating vertically through the sheet-like base material on the upper side.
  • the present invention provides a method of manufacturing a differential pressure sensor, the steps of which include:
  • An IC carrier board is provided, the top surface of the IC carrier board has air holes communicating with two gas ends in a gas pipe, the IC carrier board has a plurality of soldering points around the IC carrier board, and the IC carrier board has a plurality of a conductive line connected to the solder joint;
  • the pressure sensing chip covers the air hole, and the pressure sensing chip is connected to the signal processing chip through the conductive line;
  • the pressure sensing chip, the other cavity is in communication with the air hole not combined with the pressure sensing chip, and the finished product of the differential pressure sensor is completed.
  • a step of manufacturing the IC carrier board is performed, which is to first manufacture a carrier board body, and take the side sheet substrate when manufacturing the carrier board body.
  • a long groove is formed from the top surface of the lower side of the sheet-like substrate, and the depth of the long groove is not more than the thickness of the sheet-like substrate itself on the lower side, and an upper sheet is formed.
  • a substrate is bonded to a top surface of the lower sheet substrate, and the gas pipe is formed between a bottom surface of the upper sheet substrate and the long groove, and the sheet base on the upper side
  • the top surface of the material penetrates through the two air holes inwardly, and the two air holes are connected to the gas pipe to complete the carrier body.
  • a plurality of the solder joints and the conductive are formed on the carrier body. The circuit is completed by manufacturing the IC carrier board.
  • the step of manufacturing the IC carrier before performing the step of providing the IC carrier is to first manufacture a carrier body, and take an intermediate sheet substrate when manufacturing the carrier body.
  • a long hole is formed through the middle of the sheet-like substrate in the middle, and the depth of the long groove is processed to be equal to the thickness of the intermediate sheet-like substrate itself, and then the upper substrate and the lower substrate are
  • the sheet-shaped base material on the side is bonded to the top surface and the bottom surface of the sheet-like base material in the middle, and the bottom surface of the upper sheet-like base material, the long hole, and the lower side are Forming the gas conduit between the top surfaces of the sheet-like substrate, and penetrating the two pores in a top surface of the upper sheet-like substrate, and connecting the two pores to the gas pipe to complete
  • the carrier body is finally formed, and finally, the plurality of solder joints and the conductive lines are formed on the carrier body, and the IC carrier is manufactured.
  • the IC carrier board is soldered to the circuit board, the solder joint is electrically connected to the circuit board, and the two vent pipes are respectively connected to the high voltage input source of the gas and the low voltage input source.
  • the front side of the pressure sensing chip can sense the high pressure air input by one of the vent pipes through the cavity, and the low pressure air input into the cavity by the other vent pipe is connected to the pressure sensing through the two air holes of the IC carrier and the internal gas pipe.
  • the reverse side of the chip allows the pressure sensing chip to simultaneously sense high pressure air
  • the air pressure from the source and the air pressure from the low-pressure air source convert the pressure into an electrical signal and send it to the signal processing chip for processing before being transmitted to the board.
  • the utility model has the advantages that the IC carrier board can bear the electrical connection and constitute the gas pressure transmission channel with a single component, and electrically connects the two together with the signal processing chip and the pressure sensing chip while conducting the signal processing chip and the pressure sensing chip, and can
  • the two gas pipes and the gas pipe are configured to cooperate with the upper cover to realize the function of transmitting high and low gas pressures to the same pressure sensing chip.
  • the structure of the IC carrier is a separate component in the process, and the gas pipeline can be provided inside without assembling a plurality of plastic structures, and the package structure of the IC carrier is a mature mass production technology.
  • the process of packaging the chip can be combined with the signal processing chip, the pressure sensing chip and the upper cover to complete the invention, which is easy to manufacture, cost-effective and can be applied to the original package.
  • the production line equipment of the IC carrier board is produced.
  • Figure 1 is an exploded view of a first preferred embodiment of the present invention
  • Figure 2 is a perspective view of a first preferred embodiment of the present invention
  • Figure 3 is a cross-sectional view showing the first preferred embodiment of the present invention.
  • Figure 4 is a block diagram of a first preferred embodiment of the present invention.
  • FIG. 5 is a schematic view showing a manufacturing process of a carrier body according to a first preferred embodiment of the present invention
  • Figure 6 is a cross-sectional view showing a second preferred embodiment of the present invention.
  • Figure 7 is a schematic view showing the manufacturing process of the carrier body of the second preferred embodiment of the present invention.
  • the present invention provides a differential pressure sensor including an IC (Chip/Integrated Circuit) carrier 10, a signal respectively coupled to the IC carrier 10.
  • the processing chip 20 a pressure sensing chip 30 and an upper cover 40, wherein:
  • the IC carrier 10 is provided with a carrier body 11 comprising two or more layers of sheet-like substrate 111 stacked one on top of the other. In the preferred embodiment, the two layers are stacked one on top of the other.
  • the material 111 has a long groove 112 recessed in the middle of the top surface of the lower sheet substrate 111.
  • the long groove 112 is an elongated groove extending linearly in the left-right direction, and is formed on the bottom surface of the upper sheet substrate 111.
  • a gas pipe 12 is formed between the long grooves 112 of the lower sheet-like substrate 111, and corresponding to the left and right ends of the gas pipe 12, the two air holes 13 are vertically penetrated on the upper sheet substrate 111 so that two The air holes 13 are respectively disposed on the left and right sides of the top surface of the carrier body 11 and communicate with the two ends of the gas pipe 12 respectively.
  • a plurality of soldering points 14 are disposed on the carrier board.
  • the body 11 is provided with a conductive line 15 which is connected to a plurality of solder joints 14.
  • the signal processing chip 20 is packaged between the two air holes 13 in the middle of the top surface of the carrier body 11.
  • the signal processing chip 20 is connected to the conductive line 15.
  • the pressure sensing chip 30 has a front surface 31 and a reverse surface 32.
  • the front surface 31 and the back surface 32 sense the gas pressure from different sources.
  • the pressure sensing chip 30 is packaged on the top surface of the carrier body 11 and covered by the reverse surface 32.
  • One of the air holes 13 enables the pressure sensing chip 30 to sense the air pressure from the gas pipe 12 with the reverse surface 32.
  • the pressure sensing chip 30 is connected to the conductive line 15 to sense the signals sensed by the front surface 31 and the reverse surface 32.
  • the conductive line 15 is transmitted to the signal processing chip 20, and the signal processing chip 20 transmits the processed signal from the conductive line 15 to each solder joint 14, so that the processed signal can be outputted outward by the IC carrier 10.
  • the upper cover 40 is provided with a joint block 41.
  • the joint block 41 is a rectangular plastic block.
  • the bottom surface of the joint block 41 is adhered and fixed to the top surface of the carrier body 11 in a close contact manner, corresponding to the two air holes 13 .
  • Two cavities 411 are recessed on the left and right sides of the bottom surface of the bonding block 41.
  • One cavity 411 is for receiving the pressure sensing chip 30, and the other cavity 411 is connected with another air hole 13 not provided with the pressure sensing chip 30.
  • Phase Two vent pipes 42 are formed on the left and right sides of the top of the joint block 41, and a vent hole 421 is formed in each vent pipe 42. The inner ends of the vent holes 421 are respectively communicated with the respective cavities 411, corresponding signals.
  • the chip processing chamber 20 is recessed in the middle of the bottom surface of the bonding block 41.
  • the signal processing chip 20 is accommodated in the chip housing 412, and a gas pressure balancing hole 413 is bored in the middle of the surface of the bonding block 41.
  • the air pressure balance hole 413 communicates with the chip chamber 412 such that the air pressure inside the chip chamber 412 can be balanced with the atmospheric pressure of the outside.
  • the IC carrier 10 in the first preferred embodiment is a separate component.
  • the carrier body 11 of the two layers stacked one on top of the other is manufactured.
  • the sheet substrate 111 of the lower side is removed first.
  • a long groove 112 is formed from the top surface of the lower sheet substrate 111 by mechanical processing, laser processing or chemical etching liquid etching, and the depth of the long groove 112 is machined and etched to be no more than the lower portion.
  • the thickness of the side sheet-like substrate 111 itself.
  • the upper sheet substrate 111 is bonded to the top surface of the lower sheet substrate 111, and the gas conduit 12 is formed between the bottom surface of the upper sheet substrate 111 and the long groove 112.
  • the two holes 13 are bored through the top surface of the completed carrier body 11, that is, the top surface of the upper sheet substrate 111.
  • the two air holes 13 are connected at both ends of the gas pipe 12 to form a continuous gas pressure transmission passage.
  • the IC carrier 10 When used in the present invention, the IC carrier 10 is solder bonded to a product, such as a circuit board of a respirometer.
  • the plurality of solder joints 14 are electrically connected to the circuit board, and the two vent pipes 42 of the two upper covers 40 are respectively connected to the high voltage input source of the gas and the low voltage input source.
  • the front surface 31 of the pressure sensing chip 30 can sense the high pressure air input to the left side cavity 411 by the vent tube 42 on the left side, and the low pressure air input to the right side cavity 411 by the vent tube 42 on the right side.
  • the pressure function of the low pressure air is transmitted from the gas pipe 12 to the reverse surface 32 of the pressure sensing chip 30 through the communication function of the gas pipe 12 inside the IC carrier 10, so that the pressure sensing chip 30 can simultaneously sense the high voltage.
  • the air pressure from the air source and the air pressure from the low-pressure air source are converted into electrical signals and sent to the signal processing chip 20 for processing.
  • the signals processed by the signal processing chip 20 are transmitted from the solder joints 14 of the IC carrier 10. To the product's board.
  • the effect of the present invention is that the IC carrier 10 is a mass-produced technology, and the process of manufacturing the IC carrier 10 is easier and cost-effective than the mold injection molding configuration.
  • the IC carrier 10 can afford the electrical connection of the chip package and the role of the gas pressure transmission channel with a single component, and the conductive line 15 is carried while carrying the signal processing chip 20 and the pressure sensing chip 30. The two are electrically connected, and the signals processed by the signal processing chip 20 are externally output through a plurality of soldering points 14.
  • the pressure transmitting function can also be realized, so that the pressure sensing chip 30 located in one of the cavities 411 can simultaneously sense the high voltage input to the two cavities 411 by the two vent pipes 42 respectively.
  • the pressure of the gas and the low pressure gas can also be realized, so that the pressure sensing chip 30 located in one of the cavities 411 can simultaneously sense the high voltage input to the two cavities 411 by the two vent pipes 42 respectively.
  • the pressure of the gas and the low pressure gas can also be realized, so that the pressure sensing chip 30 located in one of the cavities 411 can simultaneously sense the high voltage input to the two cavities 411 by the two vent pipes 42 respectively.
  • the pressure of the gas and the low pressure gas are examples of the gas and the low pressure gas.
  • the process of encapsulating the signal processing chip 20, the pressure sensing chip 30, and the upper cover 40 on the IC carrier 10 is the same as the process of generally bonding the chip and the package material on the IC carrier 10. Since the IC carrier 10 is a separate component and does not need to be separately assembled, after the signal processing chip 20 and the pressure sensing chip 30 are coupled to the IC carrier 10, the upper cover 40 is adhered to the IC carrier 10.
  • the assembly process of the present invention can be completed, and the production line equipment and process method for packaging the IC carrier 10 need not be greatly adjusted during production, and the manufacturing is flexible and selective, and the production is relatively easy, and the manufacturing is more economical and cost-effective. .
  • the carrier body 11 of the IC carrier 10 is two layers of sheet-like substrate 111 which are vertically bonded to each other, as shown in the second preferred embodiment shown in FIG.
  • the carrier body 11 may also include three layers of sheet-like substrate 111 which are vertically bonded to each other.
  • the sheet-like substrate 111 is vertically penetrating through a long hole 113 extending in the left-right direction, and the upper sheet is on the upper side.
  • a gas pipe 12 is formed between the bottom surface of the substrate 111, the long hole 113, and the top surface of the lower sheet substrate 111, corresponding to the left and right ends of the gas pipe 12, and the upper sheet substrate 111
  • the top surface penetrates through the two air holes 13 so that the two air holes 13 communicate with both ends of the gas pipe 12. Since the rest of the configuration and the functions of the second preferred embodiment are the same as those described in the first preferred embodiment, the present invention is not described herein.
  • the carrier body 11 of the three layers stacked one on top of the other is manufactured.
  • the intermediate sheet substrate 111 is taken first, by machining, laser processing or chemical etching solution.
  • the long hole 113 is formed through the middle of the intermediate sheet-like substrate 111, and the depth of the long groove 112 is machined and etched downward to be equal to the thickness of the intermediate sheet-like substrate 111 itself.
  • the upper sheet substrate 111 and the lower sheet substrate 111 are bonded to the top surface and the bottom surface of the intermediate sheet substrate 111, respectively, and the bottom surface of the upper sheet substrate 111 and the long hole.
  • the gas pipe 12 is formed between 113 and the top surface of the lower sheet substrate 111, and finally the top surface of the completed carrier body 11 is formed by machining, laser processing or chemical etching liquid etching. That is, the top surface of the upper sheet-like substrate 111 is bored inwardly through the two air holes 13, so that the two air holes 13 are connected at both ends of the gas pipe 12 to form a continuous gas pressure transmission passage.
  • the invention also provides a method for manufacturing a differential pressure sensor for manufacturing the differential pressure sensor described above, the method steps of which are as follows:
  • An IC carrier 10 is formed on the inside of the IC carrier 10.
  • the top surface of the IC carrier 10 has two air holes 13 respectively communicating with the gas pipe 12.
  • the two sides of the IC carrier 10 have a plurality of soldering points 14 on both sides.
  • the IC carrier 10 has conductive traces 15 connected to a plurality of solder joints 14.
  • a signal processing chip 20 is packaged on the IC carrier board 10, and the signal processing chip 20 is connected to the conductive line 15.
  • a pressure sensing chip 30 having a front side 31 and a back side 32 for sensing gas pressures from different sources is prepared.
  • the pressure sensing chip 30 is packaged on the top surface of the IC carrier 10 and provided with one of the air holes 13 so that the pressure sensing chip 30 covers one of the air holes 13 of the two air holes 13 with the reverse surface 32, and the pressure sensing chip 30 is provided.
  • the pressure sensing chip 30 can sense the air pressure from the gas pipe 12 with the reverse surface 32, and then transmit the signal sensed by the front surface 31 and the reverse surface 32 to the signal processing chip by the conductive line 15. 20, and let the signal processing chip 20 transmit the processed signal from the conductive line 15 to each solder joint 14, so that the processed signal can be outputted outward from the solder joints 14 of the IC carrier 10.
  • An upper cover 40 having two cavities 411 is formed.
  • the upper cover 40 has two vent pipes 42 respectively connecting the two cavities 411, and the upper cover 40 is adhesively bonded to the top surface of the IC carrier 10, so that A cavity 411 accommodates the pressure sensing chip 30, and another cavity 411 communicates with another air hole 13 of the uncompressed pressure sensing chip 30 to complete the finished product of the differential pressure sensor.
  • a step of manufacturing the IC carrier 10 can be performed before the step of providing an IC carrier 10 for internally forming the gas conduit 12.
  • a carrier body 11 is first fabricated.
  • the sheet-like substrate 111 on the lower side is manufactured by machining, laser processing or chemical etching to form a long groove 112 from the top surface of the lower sheet substrate 111, and is machined and etched.
  • the depth of the long groove 112 is not greater than the thickness of the lower sheet substrate 111 itself; then, the upper sheet substrate 111 is bonded to the top surface of the lower sheet substrate 111, and the upper sheet is formed.
  • the gas pipe 12 is formed between the bottom surface of the substrate 111 and the long groove 112, and finally drilled through the top surface of the completed carrier body 11 by mechanical processing, laser processing or chemical etching liquid corrosion.
  • Two of the air holes 13 are connected to the two ends of the gas pipe 12 to complete the carrier body 11, and finally a plurality of solder joints 14 are formed on the front and rear sides of the carrier body 11 and
  • the carrier body 11 is provided with a conductive line 15 connected to a plurality of solder joints 14
  • the IC substrate 10 is manufactured to complete.
  • the manner of manufacturing the carrier body 11 can be changed by first taking an intermediate sheet substrate 111 by machining, laser processing or chemistry.
  • the etching liquid is etched in such a manner that the long hole 113 is formed through the middle of the intermediate sheet-like substrate 111, and The depth of the long groove 112 is machined and etched to be equal to the thickness of the intermediate sheet substrate 111 itself; and then the upper sheet substrate 111 and the lower sheet substrate 111 are bonded to each other in the middle sheet shape.
  • the top surface and the bottom surface of the substrate 111 form the gas conduit 12 between the bottom surface of the upper sheet substrate 111, the long hole 113, and the top surface of the lower sheet substrate 111, and finally pass through Mechanical processing, laser processing, or chemical etching liquid etching is performed from the top surface of the completed carrier body 11 to bore through the two air holes 13 so that the two air holes 13 are connected to both ends of the gas pipe 12
  • the carrier body 11 is completed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种差压传感器,是在IC载板(10)内形成一气体管道(12),在该IC载板(10)顶面穿设两与该气体管道(12)相通的气孔(13),在该IC载板(10)上结合一覆盖其中一气孔(13)的压力感应芯片(30),在该IC载板(10)顶面黏贴结合一上盖(40),对应两气孔(13)的位置在该上盖(40)设有两空腔(411),在该上盖(40)设有两分别连接各空腔(411)的通气管(42);使用时是结合在电路板,通过两气孔(13)与气体管道(12)的引导,使该压力感应芯片(30)的正、反两面同时感测由两通气管(42)输入的高压气体与低压气体,利用成熟量产的IC载板(10)技术实现电气信号传递与气体压力传递的功能,大幅降低制造的难度与成本。

Description

差压传感器及其制造方法 技术领域
本发明涉及一种传感器的构造,尤其涉及一种IC载板封装技术制造的差压传感器及其制造方法。
背景技术
现有的差压传感器必须设有两个压力采样管,以两个压力采样管分别连接气体的高压输入来源与低压输入来源,而这两个输入来源的气体压力必须藉由差压传感器的内部构造来将高低压的气体压力传递到压力感应芯片的感应薄膜表面上,该压力感应芯片主要的功用是将压力强度转变为电气信号。
一般的差压传感器用来实现压力传递的方式,主要是藉由封装结构的设计来将气体压力引导到压力感应芯片的正、反两面上,实现的方式通常是采用pre-mold(预铸模)形式的导线架与具备压力传递功能的塑料结构体相互结合而成。另外一种作法是使用两颗压力感应芯片来实现气体的高压输入来源与低压输入来源的差压量测功能。
前述现有的采用pre-mold导线架配合塑料结构体的生产方式,由于是以塑料结构体组装形成导引气体压力的结构,生产时会有模具费用高昂的缺点,并且生产的封装厂必需要针对导线架的外型来调整生产线设备与制程方法,因此在生产上比较困难而没有弹性与选择性;使用两颗压力感应芯片的差压传感器则是会产生较高的制造成本。
发明内容
由于现有差压传感器的封装构造会有生产较为困难且成本较高的缺点。为此,本发明提出一种新的封装技术,以经济、生产技术成熟且成本较低的IC载板构造解决差压传感器传递信号与传递气体压力的问题。
为达到上述目的,本发明提供一种差压传感器,包括:
一IC载板,设有一载板本体,所述载板本体包括两层以上上下相迭结合的片状基材,在所述载板本体内形成一气体管道,在所述载板本体的顶面穿设两分别与所述气体管道相通的气孔,在所述载板本体的周围设有数个焊接 点,在所述载板本体设有一导电线路,所述导电线路与数个焊接点连接;
一信号处理芯片,结合在所述载板本体上并且与所述导电线路连接;
一压力感应芯片,所述压力感应芯片具有一正面与一反面,所述压力感应芯片结合在所述载板本体的顶面并且以所述反面覆盖其中一气孔,所述压力感应芯片与所述导电线路连接,将所述正面与所述反面感测到的信号以所述导电线路传输至所述信号处理芯片;以及
一上盖,设有一结合块,所述结合块的底面以密合的形态黏贴结合在所述载板本体的顶面,对应两所述气孔的位置在所述结合块的底面凹设两空腔,其中一所述空腔容纳所述压力感应芯片,另一所述空腔与另一所述气孔相通,在所述结合块上向上延伸设置两通气管,各所述通气管内分别形成一通气孔,各所述通气孔的内端分别与各所述空腔相通。
进一步,所述信号处理芯片设于所述结合块黏贴结合在所述载板本体的范围内,对应所述信号处理芯片的位置在所述结合块的底面凹设一芯片容室,所述信号处理芯片容纳在所述芯片容室内,在所述结合块的表面穿设一气压平衡孔,所述气压平衡孔与所述芯片容室相通。
更进一步,所述气体管道是直线延伸的长条形管道,所述两气孔分别与所述气体管到的两端相通,所述的信号处理芯片结合在所述载板本体顶面位于两气孔之间的部分。
较佳的,所述载板本体包括两层上下相迭结合的所述片状基材,在下侧的所述的片状基材的顶面凹设一长沟,所述的气体管道是形成在所述上侧的片状基材的底面以及所述长沟之间,两所述气孔是垂直贯穿在上侧的所述片状基材的孔洞。
较佳的,所述载板本体包括三层上下相迭结合的所述片状基材,在中间的所述片状基材垂直贯穿一长孔,所述气体管道是形成在上侧的所述片状基材的底面、所述下侧片状基材的顶面与所述长孔之间,两所述气孔是垂直贯穿在上侧的所述片状基材的孔洞。
为达到上述目的,本发明提供一种差压传感器的制造方法,其步骤包括:
提供一IC载板,所述IC载板的顶面具有两内端以一气体管道相连通的气孔,所述IC载板的周围具有数个焊接点,所述IC载板上具有与数个所述焊接点连接的导电线路;
将一信号处理芯片封装结合在所述IC载板上,使所述信号处理芯片与所述导电线路连接,将一压力感应芯片封装结合在所述IC载板顶面上设有其中一所述气孔处,使所述压力感应芯片覆盖所述气孔,并使所述压力感应芯片通过所述导电线路与所述信号处理芯片连接;
将一内部具有两空腔的上盖黏贴结合至所述IC载板顶面,两所述空腔分别由两通气管对外连通,所述上盖黏贴时使其中一所述空腔容纳所述压力感应芯片,另一所述空腔与另一未结合所述压力感应芯片的所述气孔相通,完成差压传感器的成品。
较佳的,在提供一所述IC载板的步骤之前进行一制造所述IC载板的步骤,其为先制造一载板本体,制造所述载板本体时取一下侧的片状基材,从下侧的所述片状基材的顶面向下制造出一条长沟,加工所述长沟的深度不大于下侧的所述片状基材本身的厚度,将一上侧的片状基材黏合在下侧的所述片状基材的顶面,在上侧的所述片状基材的底面与所述长沟之间形成所述气体管道,在上侧的所述片状基材的顶面向内贯穿两个所述气孔,使两所述气孔与所述气体管道相连而完成所述载板本体,最后在所述载板本体上形成数个所述焊接点以及所述导电线路,将所述IC载板制造完成。
较佳的,在前述提供一所述IC载板的步骤之前进行一制造所述IC载板的步骤,是先制造一载板本体,制造所述载板本体时取一中间的片状基材,从中间的所述片状基材的中间贯穿一长孔,加工所述长沟的深度等于中间的所述片状基材本身的厚度,接着将上侧的所述片状基材以及下侧的所述片状基材分别黏合在中间的所述片状基材的顶面以及底面,在上侧的所述片状基材的底面、所述长孔以及所述下侧的所述片状基材的顶面之间形成所述气体管道,在上侧的所述片状基材的顶面向内贯穿两个所述气孔,使两所述气孔与所述气体管道相连而完成所述载板本体,最后在所述载板本体形成数个所述焊接点以及所述导电线路,将所述IC载板制造完成。
本发明的差压传感器使用时,是将IC载板焊接在电路板上,使焊接点与电路板电性连接,并将两通气管分别连接气体的高压输入来源与低压输入来源。该压力感应芯片的正面能感测到其中一通气管通过空腔输入的高压空气,由另一通气管输入空腔的低压空气则是通过IC载板的两气孔以及内部的气体管道连通至该压力感应芯片的反面,使该压力感应芯片同时感测到高压空气 来源的空气压力以及低压空气来源的空气压力,将压力转换为电气信号之后送至该信号处理芯片处理后再传输至电路板上。
本发明的功效在于,该IC载板以单一组件即能负担起电气连接以及构成气体压力传递通道的角色,在承载信号处理芯片以及压力感应芯片的同时以导电线路将两者电气连接,又能以两气体管道以及气体管道的构造配合该上盖实现传递高低气体压力至同一压力感应芯片感测的功能。该IC载板的构造在制程上是独立的组件,不需要以数个塑料结构体组装就能在内部具备所述的气体管道,加上IC载板的封装结构是成熟量产的技术,因此在制造程序上只要取得IC载板,即可以封装芯片的制程将信号处理芯片、压力感应芯片以及上盖结合在该IC载板上完成本发明,具有生产容易、省成本且能应用原有封装IC载板的生产线设备进行生产的功效。
附图说明
图1是本发明第一较佳实施例的分解图;
图2是本发明第一较佳实施例的立体图;
图3是本发明第一较佳实施例的剖面实施示意图;
图4是本发明第一较佳实施例的方块图;
图5是本发明第一较佳实施例载板本体的制造流程示意图;
图6是本发明第二较佳实施例的剖面图;
图7是本发明第二较佳实施例载板本体的制造流程示意图。
附图标记说明:
10 IC载板          11 载板本体
111 片状基材       112 长沟
113 长孔           12 气体管道
13 气孔            14 焊接点
15 导电线路        20 信号处理芯片
30 压力感应芯片    31 正面
32 反面            40 上盖
41 结合块          411 空腔
412 芯片容室       413 气压平衡孔
42 通气管          421 通气孔
具体实施方式
为能详细了解本发明的技术特征及实用功效,并可依照说明书的内容来实施,进一步以如图式所示的较佳实施例,详细说明如下。
如图1至图4所示的第一较佳实施例,本发明提供一种差压传感器,包括一IC(芯片/集成电路)载板10、分别结合在该IC载板10上的一信号处理芯片20、一压力感应芯片30以及一上盖40,其中:
该IC载板10设有一载板本体11,该载板本体11包括两层以上上下相迭结合的片状基材111,如本较佳实施例是包括两层上下相迭结合的片状基材111,在下侧的片状基材111的顶面中间凹设一长沟112,该长沟112是沿左右方向直线延伸的长条形沟,在上侧的片状基材111的底面与该下侧的片状基材111的长沟112之间形成一气体管道12,对应该气体管道12左右两端的位置,在该上侧的片状基材111上垂直贯穿两气孔13,使两气孔13穿设在该载板本体11顶面的左右两侧而分别与该气体管道12的两端相通,在该载板本体11周围的前后两侧设有数个焊接点14,在该载板本体11设有一导电线路15,该导电线路15与数个焊接点14连接。
该信号处理芯片20封装结合在该载板本体11顶面的中间而位于两气孔13之间,该信号处理芯片20与该导电线路15连接。
该压力感应芯片30具有一正面31与一反面32,以正面31与反面32感测不同来源的气体压力,该压力感应芯片30封装结合在该载板本体11的顶面并且以该反面32覆盖其中一气孔13,使得该压力感应芯片30能以反面32感测来自气体管道12的空气压力,该压力感应芯片30与该导电线路15连接,将正面31与反面32感测到的信号以该导电线路15传输至该信号处理芯片20,该信号处理芯片20将处理过后的信号由该导电线路15传输至各焊接点14,使处理过的信号能由该IC载板10向外输出。
该上盖40设有一结合块41,该结合块41是矩形的塑料块体,该结合块41的底面以密合的形态黏贴结合在该载板本体11的顶面固定,对应两气孔13的位置,在该结合块41底面的左右两侧凹设两空腔411,其中一空腔411用以容纳该压力感应芯片30,另一空腔411与另一未设有压力感应芯片30的气孔13相 通,在该结合块41顶部的左右两侧朝上延伸设置两通气管42,各通气管42内分别形成一通气孔421,各通气孔421的内端分别与各空腔411相通,对应该信号处理芯片20的位置,在该结合块41底面的中间凹设一芯片容室412,该信号处理芯片20容纳在该芯片容室412,在该结合块41表面的中间穿设一气压平衡孔413,该气压平衡孔413与该芯片容室412相通,使得该芯片容室412内部的气压能与外界的大气压力平衡。
第一较佳实施例中的IC载板10是独立的零件,其两层上下相迭结合的载板本体11在制造时,如图5所示,是先取下侧的片状基材111,通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式,从下侧的片状基材111的顶面向下制造出一条长沟112,机械加工、蚀刻此长沟112的深度不大于该下侧的片状基材111本身的厚度。接着将上侧的片状基材111黏合在下侧的片状基材111的顶面,在上侧的片状基材111的底面与该长沟112之间形成所述的气体管道12,最后通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式从完成的载板本体11的顶面,也就是上侧的片状基材111的顶面向内钻孔贯穿两个所述的气孔13,使两气孔13连接在该气体管道12的两端成为一个连续的气体压力传递通道。
当本发明使用时,是将IC载板10焊接结合在产品,例如呼吸测量器的电路板上。使数个焊接点14与电路板电性连接,并将两上盖40的两通气管42分别连接气体的高压输入来源与低压输入来源。
如图3所示,该压力感应芯片30的正面31能感测到左侧的通气管42输入左侧空腔411的高压空气,由右侧的通气管42输入右侧空腔411的低压空气,则是能通过IC载板10内部气体管道12的连通功能,将低压空气的压力由该气体管道12传递至该压力感应芯片30的反面32,使该压力感应芯片30能同时感测到高压空气来源的空气压力以及低压空气来源的空气压力,将压力转换为电气信号之后送至该信号处理芯片20处理,将该信号处理芯片20处理后的信号由IC载板10的各焊接点14传输至产品的电路板上。
本发明的功效在于,IC载板10是量产成熟的技术,制造生产IC载板10的过程较模具射出成型的构造更容易且节省成本。在本发明的结构中,该IC载板10以单一组件即能负担起芯片封装后电气连接以及构成气体压力传递通道的角色,在承载信号处理芯片20以及压力感应芯片30的同时以导电线路15将两者电气连接,通过数个焊接点14对外输出该信号处理芯片20处理过的信号, 以气体管道12配合该上盖40的构造,还能实现压力传递的功能,使位于其中一空腔411内的压力感应芯片30能同时感测到由两通气管42分别输入两空腔411的高压气体以及低压气体的压力。
将信号处理芯片20、压力感应芯片30以及上盖40封装在IC载板10上的制程与一般在IC载板10上结合芯片与封装材料的制程相同。由于该IC载板10为一独立的组件不需要另外组装,因此当信号处理芯片20与压力感应芯片30结合在该IC载板10后,将该上盖40黏贴合在该IC载板10上即可完成本发明的组装过程,生产时无需大幅调整封装IC载板10的生产线设备与制程方法,在生产制造上具有弹性与选择性,具有生产较容易且制造更经济、节省成本的功效。
本发明除前述第一较佳实施例,该IC载板10的载板本体11是两层上下相迭黏合的片状基材111以外,如图6所示的第二较佳实施例所示,该载板本体11也可以包括三层上下相迭黏合的片状基材111,其构造是在中间的片状基材111垂直贯穿一沿左右方向延伸的长孔113,在上侧的片状基材111的底面、该长孔113以及下侧的片状基材111的顶面之间形成一气体管道12,对应该气体管道12的左右两端,在上侧的片状基材111的顶面朝下贯穿两个气孔13,使两气孔13与该气体管道12的两端相通。由于第二较佳实施例其余的构造与能发挥的功效与第一较佳实施例中所述相同,故本发明在此不做赘述。
第二较佳实施例中三层上下相迭结合的载板本体11在制造时,如图7所示,是先取中间的片状基材111,通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式,从中间的片状基材111的中间贯穿形成所述的长孔113,向下机械加工、蚀刻此长沟112的深度等于该中间的片状基材111本身的厚度。接着将上侧的片状基材111以及下侧的片状基材111分别黏合在中间的片状基材111的顶面以及底面,在上侧的片状基材111的底面、该长孔113以及该下侧的片状基材111的顶面之间形成所述的气体管道12,最后通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式从完成的载板本体11的顶面,也就是上侧的片状基材111的顶面向内钻孔贯穿两个所述的气孔13,使两气孔13连接在该气体管道12的两端成为一个连续的气体压力传递通道。
本发明也提供一种差压传感器的制造方法,用以制造前述的差压传感器,其制造的方法步骤包括:
提供一内部形成气体管道12的IC载板10,该IC载板10的顶面具有两分别与该气体管道12相通的气孔13,该IC载板10周围的两侧具有数个焊接点14,该IC载板10上具有与数个焊接点14连接的导电线路15。
将一信号处理芯片20封装结合在该IC载板10,使该信号处理芯片20与该导电线路15连接,另准备一具有感测不同来源气体压力的正面31与反面32的压力感应芯片30,将该压力感应芯片30封装结合在该IC载板10顶面设有其中一气孔13处,使该压力感应芯片30以反面32覆盖两气孔13的其中一气孔13,并使该压力感应芯片30与该导电线路15连接,令该压力感应芯片30能以反面32感测来自气体管道12的空气压力后,将正面31与反面32感测到的信号以该导电线路15传输至该信号处理芯片20,并让该信号处理芯片20将处理过后的信号由该导电线路15传输至各焊接点14,使处理过的信号能由该IC载板10的各焊接点14向外输出。
准备一内部具有两空腔411的上盖40,该上盖40具有两分别连接两空腔411的通气管42,将该上盖40黏贴结合至该IC载板10的顶面,使其中一空腔411容纳该压力感应芯片30,另一空腔411与另一未结合压力感应芯片30的气孔13相通,完成差压传感器的成品。
本发明的方法,在前述提供一内部形成气体管道12的IC载板10的步骤前,可进行一制造IC载板10的步骤,如图5所示,是先制造一载板本体11,取一下侧的片状基材111,通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式,从下侧的片状基材111的顶面向下制造出一条长沟112,机械加工、蚀刻此长沟112的深度不大于该下侧的片状基材111本身的厚度;接着将一上侧的片状基材111黏合在下侧的片状基材111的顶面,在上侧的片状基材111的底面与该长沟112之间形成所述的气体管道12,最后通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式从完成的载板本体11的顶面向内钻孔贯穿两个所述的气孔13,使两气孔13连接在该气体管道12的两端而完成该载板本体11,最后在该载板本体11周围的前后两侧形成数个焊接点14,并在该载板本体11设有与数个焊接点14连接的导电线路15,将该IC载板10制造完成。
如图6所示,前述制造IC载板10的步骤中,制造所述的载板本体11的方式可以改换为:先取一中间的片状基材111,通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式,从中间的片状基材111的中间贯穿形成所述的长孔113,向 下机械加工、蚀刻此长沟112的深度等于该中间的片状基材111本身的厚度;接着将上侧的片状基材111以及下侧的片状基材111分别黏合在中间的片状基材111的顶面以及底面,在上侧的片状基材111的底面、该长孔113以及该下侧的片状基材111的顶面之间形成所述的气体管道12,最后通过机械加工、雷射加工或是化学蚀刻液腐蚀的方式从完成的载板本体11的顶面向内钻孔贯穿两个所述的气孔13,使两气孔13连接在该气体管道12的两端而完成该载板本体11。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明主张的权利范围,凡其它未脱离本发明所揭示的精神所完成的等效改变或修饰,均应包括在本发明的申请专利范围内。

Claims (8)

  1. 一种差压传感器,其特征在于,包括:
    一IC载板,设有一载板本体,所述载板本体包括两层以上上下相迭结合的片状基材,在所述载板本体内形成一气体管道,在所述载板本体的顶面穿设两分别与所述气体管道相通的气孔,在所述载板本体的周围设有数个焊接点,在所述载板本体设有一导电线路,所述导电线路与数个焊接点连接;
    一信号处理芯片,结合在所述载板本体上并且与所述导电线路连接;
    一压力感应芯片,所述压力感应芯片具有一正面与一反面,所述压力感应芯片结合在所述载板本体的顶面并且以所述反面覆盖其中一气孔,所述压力感应芯片与所述导电线路连接,将所述正面与所述反面感测到的信号以所述导电线路传输至所述信号处理芯片;以及
    一上盖,设有一结合块,所述结合块的底面以密合的形态黏贴结合在所述载板本体的顶面,对应两所述气孔的位置在所述结合块的底面凹设两空腔,其中一所述空腔容纳所述压力感应芯片,另一所述空腔与另一所述气孔相通,在所述结合块上向上延伸设置两通气管,各所述通气管内分别形成一通气孔,各所述通气孔的内端分别与各所述空腔相通。
  2. 如权利要求1所述的差压传感器,其特征在于,所述信号处理芯片设于所述结合块黏贴结合在所述载板本体的范围内,对应所述信号处理芯片的位置在所述结合块的底面凹设一芯片容室,所述信号处理芯片容纳在所述芯片容室内,在所述结合块的表面穿设一气压平衡孔,所述气压平衡孔与所述芯片容室相通。
  3. 如权利要求2所述的差压传感器,其特征在于,所述气体管道是直线延伸的长条形管道,所述两气孔分别与所述气体管到的两端相通,所述的信号处理芯片结合在所述载板本体顶面位于两气孔之间的部分。
  4. 如权利要求1或2或3所述的差压传感器,其特征在于,所述载板本体包括两层上下相迭结合的所述片状基材,在下侧的所述的片状基材的顶面凹设一长沟,所述的气体管道是形成在所述上侧的片状基材的底面以及所述长沟之间,两所述气孔是垂直贯穿在上侧的所述片状基材的孔洞。
  5. 如权利要求1或2或3所述的差压传感器,其特征在于,所述载板本体包括三层上下相迭结合的所述片状基材,在中间的所述片状基材垂直贯穿一长孔,所述气体管道是形成在上侧的所述片状基材的底面、所述下侧片状基材 的顶面与所述长孔之间,两所述气孔是垂直贯穿在上侧的所述片状基材的孔洞。
  6. 一种差压传感器的制造方法,其特征在于,其步骤包括:
    提供一IC载板,所述IC载板的顶面具有两内端以一气体管道相连通的气孔,所述IC载板的周围具有数个焊接点,所述IC载板上具有与数个所述焊接点连接的导电线路;
    将一信号处理芯片封装结合在所述IC载板上,使所述信号处理芯片与所述导电线路连接,将一压力感应芯片封装结合在所述IC载板顶面上设有其中一所述气孔处,使所述压力感应芯片覆盖所述气孔,并使所述压力感应芯片通过所述导电线路与所述信号处理芯片连接;
    将一内部具有两空腔的上盖黏贴结合至所述IC载板顶面,两所述空腔分别由两通气管对外连通,所述上盖黏贴时使其中一所述空腔容纳所述压力感应芯片,另一所述空腔与另一未结合所述压力感应芯片的所述气孔相通,完成差压传感器的成品。
  7. 如权利要求6所述的差压传感器的制造方法,其特征在于,在提供一所述IC载板的步骤之前进行一制造所述IC载板的步骤,其为先制造一载板本体,制造所述载板本体时取一下侧的片状基材,从下侧的所述片状基材的顶面向下制造出一条长沟,加工所述长沟的深度不大于下侧的所述片状基材本身的厚度,将一上侧的片状基材黏合在下侧的所述片状基材的顶面,在上侧的所述片状基材的底面与所述长沟之间形成所述气体管道,在上侧的所述片状基材的顶面向内贯穿两个所述气孔,使两所述气孔与所述气体管道相连而完成所述载板本体,最后在所述载板本体上形成数个所述焊接点以及所述导电线路,将所述IC载板制造完成。
  8. 如权利要求6所述的差压传感器的制造方法,其特征在于,在前述提供一所述IC载板的步骤之前进行一制造所述IC载板的步骤,是先制造一载板本体,制造所述载板本体时取一中间的片状基材,从中间的所述片状基材的中间贯穿一长孔,加工所述长沟的深度等于中间的所述片状基材本身的厚度,接着将上侧的所述片状基材以及下侧的所述片状基材分别黏合在中间的所述片状基材的顶面以及底面,在上侧的所述片状基材的底面、所述长孔以及所述下侧的所述片状基材的顶面之间形成所述气体管道,在上侧的所述片状基 材的顶面向内贯穿两个所述气孔,使两所述气孔与所述气体管道相连而完成所述载板本体,最后在所述载板本体形成数个所述焊接点以及所述导电线路,将所述IC载板制造完成。
PCT/CN2017/079675 2017-04-07 2017-04-07 差压传感器及其制造方法 WO2018184191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017007273.5T DE112017007273T5 (de) 2017-04-07 2017-04-07 Differenzdrucksensor und Verfahren zu seiner Herstellung
PCT/CN2017/079675 WO2018184191A1 (zh) 2017-04-07 2017-04-07 差压传感器及其制造方法
US16/603,270 US20200209086A1 (en) 2017-04-07 2017-04-07 Differential Pressure Sensor and Fabrication Method Therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079675 WO2018184191A1 (zh) 2017-04-07 2017-04-07 差压传感器及其制造方法

Publications (1)

Publication Number Publication Date
WO2018184191A1 true WO2018184191A1 (zh) 2018-10-11

Family

ID=63712903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079675 WO2018184191A1 (zh) 2017-04-07 2017-04-07 差压传感器及其制造方法

Country Status (3)

Country Link
US (1) US20200209086A1 (zh)
DE (1) DE112017007273T5 (zh)
WO (1) WO2018184191A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542257A (zh) * 2006-11-29 2009-09-23 株式会社藤仓 压力传感器模块
CN102809459A (zh) * 2011-06-02 2012-12-05 飞思卡尔半导体公司 双端口压力传感器
US20120304452A1 (en) * 2011-06-02 2012-12-06 Hooper Stephen R Method of making a dual port pressure sensor
CN103728066A (zh) * 2012-10-10 2014-04-16 吾土产业株式会社 使用陶瓷膜的压力传感器
CN205175580U (zh) * 2015-10-14 2016-04-20 瑞声声学科技(深圳)有限公司 Mems压力传感器
CN105518419A (zh) * 2013-09-06 2016-04-20 伊利诺斯工具制品有限公司 绝压和差压传感器
CN205664972U (zh) * 2016-05-16 2016-10-26 中北大学 一种高温压力传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542257A (zh) * 2006-11-29 2009-09-23 株式会社藤仓 压力传感器模块
CN102809459A (zh) * 2011-06-02 2012-12-05 飞思卡尔半导体公司 双端口压力传感器
US20120304452A1 (en) * 2011-06-02 2012-12-06 Hooper Stephen R Method of making a dual port pressure sensor
CN103728066A (zh) * 2012-10-10 2014-04-16 吾土产业株式会社 使用陶瓷膜的压力传感器
CN105518419A (zh) * 2013-09-06 2016-04-20 伊利诺斯工具制品有限公司 绝压和差压传感器
CN205175580U (zh) * 2015-10-14 2016-04-20 瑞声声学科技(深圳)有限公司 Mems压力传感器
CN205664972U (zh) * 2016-05-16 2016-10-26 中北大学 一种高温压力传感器

Also Published As

Publication number Publication date
US20200209086A1 (en) 2020-07-02
DE112017007273T5 (de) 2019-12-05

Similar Documents

Publication Publication Date Title
JP5412443B2 (ja) Pcb圧力センサにおける一体型空洞
US10329143B2 (en) Package with chambers for dies and manufacturing process thereof
US5101665A (en) Semiconductor pressure sensor
JP5011820B2 (ja) 積層デバイス、およびその製造方法
KR101740014B1 (ko) 압력센서장치 및 그 제조방법
CN107258089A (zh) Mems换能器封装件
CN109256373A (zh) I/f转换系统三维立体封装结构及封装方法
JPH06258163A (ja) 複数枚のラミネートで構成された基体を有する圧力センサー並びに同センサーの製造方法
WO2004080133A3 (en) Integrated sensor and electronics package
CN110351642B (zh) 振动传感器、音频设备和振动传感器的组装方法
CN103196623A (zh) 基于背面金属化工艺的介质隔离压力传感器
CN212409938U (zh) 一种mems压力传感器充油芯体
CN105721998A (zh) 一种集成传感器的分腔封装结构
EP0334611A3 (en) Pressure transmitter assembly
CN104006914A (zh) 用于具有两层芯片结构的压力传感器的系统和方法
WO2017012251A1 (zh) 一种环境传感器
TWI638983B (zh) 差壓傳感器及其製造方法
WO2018184191A1 (zh) 差压传感器及其制造方法
US20120161260A1 (en) Method for packaging a sensor chip, and a component produced using such a method
CN105993207A (zh) 用于装配麦克风构件的电路板和具有这种电路板的麦克风模块
US9506829B2 (en) Pressure sensors having low cost, small, universal packaging
CN111362227A (zh) Mems传感器封装结构
CN113526455A (zh) 一种mems压力传感器的封装结构
JP2020144125A (ja) リードレス圧力センサ
CN202710237U (zh) 绝压传感器封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904517

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17904517

Country of ref document: EP

Kind code of ref document: A1