WO2018182226A1 - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
WO2018182226A1
WO2018182226A1 PCT/KR2018/003277 KR2018003277W WO2018182226A1 WO 2018182226 A1 WO2018182226 A1 WO 2018182226A1 KR 2018003277 W KR2018003277 W KR 2018003277W WO 2018182226 A1 WO2018182226 A1 WO 2018182226A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
electrolyte
anode electrolyte
sub
anode
Prior art date
Application number
PCT/KR2018/003277
Other languages
French (fr)
Korean (ko)
Inventor
정현진
김대식
최원석
김태언
정진교
서동균
김진후
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2018182226A1 publication Critical patent/WO2018182226A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow cell, and more particularly, to a redox flow cell cooling a high temperature electrolyte flowing out after a reaction in a stack with a heat exchanger.
  • Zinc bromine redox flow cells are a type of flow cells that produce electricity through redox reactions between the electrolyte and the electrodes.
  • a redox flow battery is formed by repeatedly stacking a bipolar electrode and a membrane, stacking current collector plates and end caps on both sides of the outermost layer, and supplying electrolyte to oxidize the electrolyte.
  • the electrolyte tank comprises an anode electrolyte tank containing an anode electrolyte containing zinc, a cathode electrolyte tank containing a cathode electrolyte containing bromine, and a two-phase electrolyte tank containing two phases of the cathode electrolyte ( 230).
  • the redox flow cell further includes a water-cooled or air-cooled heat exchanger for cooling the hot electrolyte flowing out after the reaction in the stack.
  • the heat exchanger may increase heat exchange performance by increasing the surface area of the heat exchange and the path of the electrolyte.
  • the flow of the electrolyte varies according to the internal structure of the heat exchanger, and the internal pressure changes.
  • Embodiments of the present invention to provide a redox flow battery that minimizes the difference in the level of the electrolyte in the electrolyte tank generated due to the difference in viscosity and specific gravity of the electrolyte generated during charging and discharging.
  • embodiments of the present invention to provide a redox flow battery that improves heat exchange performance while optimizing energy efficiency.
  • a stack module including a unit stack for generating a current, an electrolyte tank for storing an electrolyte solution supplied to the stack module and outflow from the stack module, the electrolyte tank in the An electrolyte inflow line for introducing electrolyte into the stack module, an electrolyte outflow line for outflowing the electrolyte from the stack module to the electrolyte tank, and a heat exchanger provided at an anode electrolyte outflow line for outflowing an anode electrolyte from the electrolyte outflow line
  • the heat exchanger is spaced apart from each other to form a first chamber and a second chamber for inflow and outflow of the anode electrolyte, and a flow path for circulating the anode electrolyte by connecting the first chamber and the second chamber to be exposed to the outside air flow. May comprise tubes.
  • the first chamber is connected to the electrolyte outlet line to the inlet port for introducing the anode electrolyte, the outlet port connected to the electrolyte outlet line for outflow of the anode electrolyte, and is disposed between the inlet port and the outlet port It may include a septum partitioning both sides of the first sub-chamber and the second sub-chamber.
  • the anode electrolyte may include the inflow port of the first chamber, the first sub chamber, a portion of the tubes, the second chamber, another portion of the tubes, the second sub chamber of the first chamber, and the It may be via the outlet port of the first chamber.
  • the first chamber is connected to the electrolyte outlet line to inlet the anode electrolyte inlet, connected to the electrolyte outlet line outlet port for outflowing the anode electrolyte, and the inlet port from the inlet port sequentially arranged And an eleventh diaphragm and a twelfth diaphragm for dividing the eleventh subchamber, the twelfth subchamber, and the thirteenth subchamber.
  • the second chamber may include a twenty-first sub-chamber connected to the eleventh sub-chamber and the twelfth sub-chamber as part of the tubes, and another part of the tubes to the twelfth and thirteenth sub-chambers. It may include a second diaphragm for partitioning the 22nd sub-chamber.
  • the first chamber has an inflow port connected to the electrolyte outflow line for introducing the anode electrolyte
  • the second chamber has an outflow port connected to the electrolyte outflow line for outflowing the anode electrolyte.
  • the port and the outlet port may be arranged to form a maximum distance from the first chamber and the second chamber.
  • the first chamber may include a first diaphragm which is disposed on the inlet port side to define a fourteenth subchamber and a fifteenth subchamber larger than the fourteenth subchamber.
  • the second chamber may include a second diaphragm which is disposed on the outlet port side to define a twenty-fourth sub-chamber and a twenty-fifth sub-chamber larger than the twenty-fourth sub-chamber.
  • the twenty-fourth sub-chamber may be connected to some of the tubes to the fifteenth sub-chamber, and the twenty-fifth sub-chamber may be connected to another portion of the tubes to the fourteenth and sixteenth sub-chambers.
  • Embodiments of the present invention are provided with a heat exchanger in the anode electrolyte outflow line for outflowing the anode electrolyte is less reactive than the cathode electrolyte, and cools the anode electrolyte heated by the reaction, due to the difference in viscosity and specific gravity of the electrolyte during charging and discharging Crossover of the electrolyte in the generated stack is reduced, thereby minimizing the level difference of the electrolyte in the anode electrolyte tank and the cathode electrolyte tank. That is, the charge quantity efficiency is high, and consequently the energy efficiency can be optimized.
  • FIG. 1 is a block diagram of a redox flow battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a stack module, an electrolyte tank, and a heat exchanger applied to FIG. 1.
  • FIG. 3 is an exploded perspective view of a unit module applied to FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3.
  • FIG. 6 is a perspective view illustrating a heat exchanger of a first embodiment applied to FIG. 2.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 6.
  • FIG. 8 is a cross-sectional view of the heat exchanger of the second embodiment applied to FIG. 2.
  • FIG. 9 is a cross-sectional view of the heat exchanger of the third embodiment applied to FIG. 2.
  • FIG. 10 is a cross-sectional view of the heat exchanger of the fourth embodiment applied to FIG. 2.
  • FIG. 1 is a block diagram of a redox flow battery according to an embodiment of the present invention
  • Figure 2 is a perspective view showing a stack module, an electrolyte tank and a heat exchanger applied to FIG. 1 and 2, the redox flow battery of one embodiment supplies an electrolyte to a stack module 120 and a stack module 120 that generate current and store an electrolyte flowing out of the stack module 120.
  • Tank 200 the redox flow battery of one embodiment supplies an electrolyte to a stack module 120 and a stack module 120 that generate current and store an electrolyte flowing out of the stack module 120.
  • the stack module 120 includes a plurality of unit modules 110.
  • the stack module 120 is formed by arranging two unit modules 110 on the side of each other and electrically connecting them.
  • the unit module 110 is configured to generate a current in the circulation of the electrolyte, and as an example, includes four unit stacks 101, 102, 103, and 104, respectively.
  • the electrolyte tank 200 includes an anode electrolyte tank 210 containing an anode electrolyte containing zinc, a cathode electrolyte tank 220 containing a cathode electrolyte containing bromine, and a cathode electrolyte two phases. It includes a two-phase electrolyte tank 230 for receiving.
  • the redox flow battery of the embodiment is connected to the electrolyte tank 200 and the stack module 120, the electrolyte inflow line (La1 Lc1) flowing the electrolyte into the stack module 120 by the driving of the electrolyte pump (Pa, Pc) ), And electrolyte solution outlet lines La2 and Lc2 connecting the electrolyte tank 200 and the stack module 120 to discharge the electrolyte solution from the stack module 120.
  • the redox flow battery of one embodiment includes a heat exchanger 600 in the anode electrolyte outflow line La2 for outflowing the anode electrolyte from the electrolyte outflow lines La2 and Lc2.
  • the heat exchanger 600 is disposed on the side of the anode electrolyte which is less reactive than the cathode electrolyte, and directly contacts the anode electrolyte to consider the efficiency of the battery.
  • crossover of the electrolyte occurs in the stack module 120 due to differences in viscosity and specific gravity of the electrolyte. This may cause a difference in water level between the anode electrolyte tank 210 and the cathode electrolyte tank 220.
  • the heat exchanger 600 is configured to minimize the difference in the water level of the electrolyte.
  • the structure and arrangement of the heat exchanger 600 increases the efficiency of the redox flow cell and enables the durability and long term cycle stability of the stack module 120.
  • the heat exchanger 600 may be air cooled to minimize power consumption.
  • a fan that forms an air flow in the heat exchanger 600 may be provided at one side of the heat exchanger 600.
  • FIG. 3 is an exploded perspective view of a unit module applied to FIG. 2. 1 to 3, the anode electrolyte tank 210 is an anode between the membrane electrode 10 and the anode electrode 32 of the unit stacks 101, 102, 103, 104 forming the unit module 110. The electrolyte is supplied and the anode electrolyte flowing out between the membrane 10 and the anode electrode 32 is accommodated.
  • the cathode electrolyte tank 220 accommodates the cathode electrolyte supplied between the membrane 10 of the unit stacks 101, 102, 103, 104 forming the unit module 110 and the cathode electrode 31, and the anode electrolyte
  • the tank 210 is connected to the first overflow pipe 201.
  • the first overflow tube 201 allows the electrolyte of the anode and cathode electrolyte tanks 210 and 220 to be exchanged with each other.
  • the two-phase electrolyte tank 230 is a cathode electrolyte (aqueous bro) flowing out between the membrane electrode 10 and the cathode electrode 31 of the unit stacks 101, 102, 103, 104 forming the unit module 110.
  • An electrolyte containing two phases of min and heavy mixed bromine) and is connected to the cathode electrolyte tank 220 by a second overflow tube 202.
  • a lower portion of the two-phase electrolyte tank 230 and a lower portion of the cathode electrolyte tank 220 are connected to the communication tube 203.
  • the two-phase electrolyte tank 230 separates the cathode electrolyte flowing out between the membrane 10 and the cathode electrode 31 into two phases according to specific gravity, that is, accommodates the mixed bromine on the lower side and the aqueous bromine on the upper side. To accept. Aqueous bromine is supplied to the cathode electrolyte tank 220 through the second overflow tube 202.
  • the second overflow tube 202 is supplied with the upper aqueous bromine to the cathode electrolyte tank 220.
  • the lower heavy mixed bromine may be supplied between the membrane 10 and the cathode electrode 31 in place of the cathode electrolyte of the cathode electrolyte tank 220 through the communication tube 203.
  • the electrolyte inflow lines La1 and Lc1 are the anode electrolyte inflow line La1 connecting the anode electrolyte tank 210 to the unit module 110 and the stack module 120, and during discharge, the two-phase electrolyte tank ( 230 or at the time of filling, the cathode electrolyte inlet line Lc1 connecting the cathode electrolyte tank 220 to the unit module 110 and the stack module 120.
  • the electrolyte outflow lines La2 and Lc2 are the anode electrolyte outflow line La2 connecting the anode electrolyte tank 210 to the unit module 110 and the stack module 120, and the unit module 110 and the stack module 120. It includes a cathode electrolyte outflow line (Lc2) connecting the two-phase electrolyte tank (230).
  • the anode and cathode electrolyte inflow lines La1 and Lc1 are connected to the anode electrolyte tank 210 and the cathode electrolyte tank through the electrolyte inlets H21 and H31 of the unit module 110 via the anode and cathode electrolyte pumps Pa and Pc. And 220 or two-phase electrolyte tank 230, respectively.
  • the anode and cathode electrolyte outlet lines La2 and Lc2 connect the anode electrolyte tank 210 and the two-phase electrolyte tank 230 to the electrolyte outlets H22 and H32 of the unit module 110, respectively.
  • the anode electrolyte tank 210 contains an anode electrolyte containing zinc, and drives the anode electrolyte between the membrane 10 of the unit module 110 and the anode electrode 32 by driving the anode electrolyte pump Pa. Circulate
  • the cathode electrolyte tank 220 or the two-phase electrolyte tank 230 contains a cathode electrolyte containing bromine, and the membrane 10 and the cathode of the unit module 110 are driven by the cathode electrolyte pump Pc.
  • the cathode electrolyte is circulated between the electrodes 31.
  • the two-phase electrolyte tank 230 drives the cathode electrolyte flowing out between the membrane 10 of the unit module 110 and the cathode electrode 31 by the driving of the cathode electrolyte pump Pc to the cathode electrolyte outlet line Lc2.
  • the mixture receives the mixed bromine on the lower side and the aqueous bromine on the upper side.
  • the cathode electrolyte inlet line Lc1 connects the cathode electrolyte tank 220 and the two-phase electrolyte tank 230 to the stack module 120 via the cathode electrolyte pump Pc, and the cathode electrolyte outlet line Lc2.
  • the silver stack module 120 connects to the two-phase electrolyte tank 230 and the cathode electrolyte tank 220. Therefore, the inflow and outflow operation of the cathode electrolyte to the stack module 120 may be performed.
  • the communication tube 203 may be provided with an intermittent valve (not shown), and may drive the cathode electrolyte pump Pc during discharge to supply the cathode electrolyte of the two-phase electrolyte tank 230 to the stack module 120. That is, when the intermittent valve is closed during charging, the cathode electrolyte of the cathode electrolyte tank 220 is supplied to the cathode electrolyte inflow line Lc1. When the intermittent valve is opened during discharge, the cathode electrolyte of the two-phase electrolyte tank 230 is cathode. It is supplied to the electrolyte inflow line Lc1.
  • the unit stacks 101, 102, 103, 104 are electrically connected to each other through bus bars B1 and B2.
  • the unit module 110 and the stack module 120 discharge current generated in the unit stacks 101, 102, 103, and 104 through the busbars B1 and B2, or are connected to an external power supply to the anode.
  • the electrolyte tank 210 and the two-phase electrolyte tank 230 may be charged with current.
  • the unit modules 110 are formed by stacking the unit stacks 101, 102, 103, and 104 as shown in FIG. 2. Since the unit modules 110 are disposed on the side of each other, the stack module 120 is formed.
  • electrolyte inlets H21 and H31 are provided in the left unit cell C1 (see FIG. 3), and the electrolyte inlets H21 and H31 are provided through the anode and cathode electrolyte pumps Pa and Pc.
  • the anode and cathode electrolyte inflow lines La1 and Lc1 are respectively connected to the anode electrolyte tank 210 and the cathode electrolyte tank 220 or the two-phase electrolyte tank 230.
  • electrolyte module outlets H22 and H32 are provided at the right side unit cell C2 in the unit module 110 (see FIG. 3), and the electrolyte outlets H22 and H32 are anode and cathode electrolyte outlet lines La2 and Lc2. And are connected to the anode electrolyte tank 210 and the two-phase electrolyte tank 230, respectively.
  • the electrolyte inlets H21 and H31 flow the electrolyte from the anode electrolyte tank 210, the cathode electrolyte tank 220, or the two-phase electrolyte tank 230 into the left unit cell C1, respectively (see FIG. 3).
  • the electrolyte outlets H22 and H32 flow out the electrolyte from the right unit cell C2 (see FIG. 3) through the unit module 110 to the anode electrolyte tank 210 and the two-phase electrolyte tank 230, respectively. do.
  • the unit module 110 may include a membrane 10, a spacer 20, an electrode plate 30, a flow frame (eg, a membrane flow frame 40, and an electrode flow frame 50). ), And the unit stacks 101, 102, 103, and 104 including the first and second collector plates 61 and 62 and the first and second end caps 71 and 72 are repeatedly stacked. .
  • one electrode flow frame 50 is provided at the center, and Two membrane flow frames 40 arranged in both symmetrical structures on both sides of the flow frame 50, and two first and second end caps 71 and 72 disposed respectively outside the membrane flow frame 40. It includes.
  • the membrane 10 is configured to pass ions and is coupled to the membrane flow frame 40 at the center of the thickness direction of the membrane flow frame 40.
  • the electrode plate 30 is coupled to the electrode flow frame 50 at the center of the thickness direction of the electrode flow frame 50.
  • the first end cap 71, the membrane flow frame 40, the electrode flow frame 50, the membrane flow frame 40 and the second end cap 72 are disposed, and the membrane 10 and the electrode plate 30 are disposed.
  • the membrane flow frame 40, the electrode flow frame 50, and the first and second end caps 71 and 72 are joined to each other via the spacer 20 therebetween.
  • Unit stacks 101, 102, 103, and 104 are formed.
  • the electrode plate 30 forms the anode electrode 32 on one side and the cathode electrode 31 on the other side at the portion where the two unit cells C1 and C2 are connected, thereby forming the two unit cells C1 and C2.
  • the membrane flow frame 40, the electrode flow frame 50, and the first and second end caps 71 and 72 are bonded to each other to establish an internal volume S between the membrane 10 and the electrode plate 30.
  • first and second channel channels CH1 (see FIG. 4) and CH2 (see FIG. 5) for supplying an electrolyte solution to the internal volume S.
  • the first and second flow channels CH1 and CH2 are configured to supply the electrolyte at uniform pressure and amount on both sides of the membrane 10, respectively.
  • the membrane flow frame 40, the electrode flow frame 50, and the first and second end caps 71 and 72 may be formed of an electrical insulating material including a synthetic resin component, and may be bonded by thermal fusion or vibration fusion.
  • the first flow channel CH1 connects the electrolyte inlet H21, the internal volume S and the electrolyte outlet H22 to drive the membrane 10 and the anode electrode 32 by driving the anode electrolyte pump Pa.
  • the anode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction (see FIG. 4).
  • the second channel CH2 connects the electrolyte inlet H31, the internal volume S and the electrolyte outlet H32, and drives the membrane 10 and the cathode electrode 31 by driving the cathode electrolyte pump Pc.
  • the cathode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction (see FIG. 5).
  • the anode electrolyte is redox-reacted at the anode electrode 32 side of the internal volume S to generate a current and stored in the anode electrolyte tank 200.
  • the cathode electrolyte is redox-reacted on the cathode electrode 31 side of the internal volume S to generate a current and stored in the two-phase electrolyte tank 230.
  • bromine included in the cathode electrolyte is produced and stored in the two-phase electrolyte tank 230. At this time, bromine is immediately mixed by the tetraammonium ions in the cathode electrolyte to form a high density second phase which is immediately removed from the unit module 110, such as the cathode electrolyte.
  • the aqueous bromine separated in the two-phase electrolyte tank 230 is overflowed to the cathode electrolyte tank 220 through the second overflow tube 202.
  • the anode electrolyte or the cathode electrolyte between the anode electrolyte tank 210 and the cathode electrolyte tank 220 may overflow each other through the first overflow pipe 201.
  • a reverse reaction of equation 1 occurs between the membrane 10 and the cathode electrode 31, and a reverse reaction of equation 2 occurs between the membrane 10 and the anode electrode 32.
  • the first and second current collector plates 61 and 62 collect current generated from the cathode electrode 31 and the anode electrode 32 or supply current to the cathode electrode 31 and the anode electrode 32 from the outside.
  • the outermost electrode plates 30 and 30 are bonded to and electrically connected to each other.
  • the first end cap 71 is integrally formed by receiving the first collector plate 61 to which the bus bar B1 is connected, and the electrode plate 30 connected to the first collector plate 61.
  • One side of the unit stacks 101, 102, 103, and 104 is formed.
  • the second end cap 72 is integrally formed to accommodate the second collector plate 62 to which the bus bar B2 is connected, and the electrode plate 30 connected to the second collector plate 62.
  • the other one outer side of 101, 102, 103, 104 is formed.
  • the first end cap 71 includes anode and cathode electrolyte inlets H21 and H31 at one side thereof, and is connected to the first and second channel CHs CH1 and CH2, respectively, to introduce the cathode electrolyte and the anode electrolyte.
  • the second end cap 72 has electrolyte outlets H22 and H32 on one side thereof, and is connected to the first and second channel channels CH1 and CH2 to respectively discharge the cathode electrolyte and the anode electrolyte.
  • the overflow from the two-phase electrolyte tank 230 to the second overflow pipe 202 is an aqueous bromine located on the upper side, and the heavy mixed bromine located on the lower side does not overflow.
  • the intermittent valve is closed to supply the cathode electrolyte from the cathode electrolyte tank 220 to the cathode electrolyte inflow line Lc1.
  • the two-phase electrolyte tank 230 accommodates the cathode electrolyte.
  • the cathode electrolyte is supplied from the cathode electrolyte tank 220 to the cathode electrolyte inflow line Lc1.
  • the discharge valve is opened during discharge to supply the cathode electrolyte containing the mixed bromine to the cathode electrolyte inlet line (Lc1).
  • FIG. 6 is a perspective view illustrating a heat exchanger of a first embodiment applied to FIG. 2.
  • the heat exchanger 600 of the first embodiment is connected to the anode electrolyte outlet line La2 and is spaced apart from each other by the first chamber 610 and the second chamber 620, and the first and second chambers.
  • the tubes 630 and 620 are connected to each other to form tubes 630 for forming a flow path for circulating the anode electrolyte.
  • the anode electrolyte flowing out of the anode electrolyte outlet line La2 flows into any one side of the first and second chambers 610 and 620, and is heat exchanged through the tubes 630, and then flows to the same side or the other side. Spills.
  • the heated anode electrolyte flows into the first chamber 610 and flows back to the first chamber 610 via the tubes 630 and the second chamber 620, the outside of the Heat exchange in tubes 630 exposed to the air stream.
  • the number of tubes 630 is set in consideration of the viscosity and specific gravity of the electrolyte.
  • the first chamber 610 includes an inlet port 611, an outlet port 612, and a diaphragm 613.
  • the diaphragm 613 is disposed between the inlet port 611 and the outlet port 612 to partition the first chamber 610 into the first sub chamber 614 and the second sub chamber 615.
  • the internal flow path set as the diaphragm 613 and the tubes 630 has a curved structure in consideration of the heat exchange area and the internal pressure.
  • the inlet port 611 is connected to the anode electrolyte outlet line La2 to inject the anode electrolyte into the first sub chamber 614, and the outlet port 612 is connected to the anode electrolyte outlet line La2 to the second sub chamber.
  • the anode electrolyte flows out from 615. That is, the inlet port 611 and the outlet port 612 are located on the same side in the first chamber 610.
  • the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 may be a portion of the inlet port 611 of the first chamber 610, the first sub chamber 614, the tubes 630, and the second chamber. 620, another portion of the tubes 630, via the second sub chamber 615 of the first chamber 610, and the outlet port 612 of the first chamber 610. That is, the first and second chambers 610 and 620 and the tube 630 increase the heat exchange surface area and the path of the electrolyte at an appropriate ratio.
  • the difference in viscosity and specific gravity that may occur during charging and discharging is minimized, thereby minimizing crossover that may occur in the stack module 120. . Therefore, the difference in the level of the electrolyte in the anode electrolyte tank 210 and the cathode electrolyte tank 220 may be minimized.
  • FIG. 8 is a cross-sectional view of the heat exchanger of the second embodiment applied to FIG. 2.
  • the first chamber 710 includes an inlet port 711, an outlet port 712, an eleventh diaphragm 713, and a twelfth diaphragm 714. Include.
  • the eleventh diaphragm 713 and the twelfth diaphragm 714 are sequentially disposed from the inflow port 711 to the outflow port 712, and the first chamber 710 is disposed in the eleventh sub chamber 715 and the twelfth sub.
  • the chamber 716 and the thirteenth subchamber 717 are partitioned.
  • the inlet port 711 is connected to the anode electrolyte outlet line La2 to introduce the anode electrolyte into the eleventh subchamber 715, and the outlet port 712 is connected to the anode electrolyte outlet line La2 to the thirteenth subchamber.
  • the anode electrolyte flows out from 717.
  • the second chamber 720 includes a second diaphragm 723.
  • the second diaphragm 723 divides the second chamber 720 into a twenty-first sub chamber 721 and a twenty-second sub chamber 722.
  • the twenty-first sub-chamber 721 is connected to the eleventh sub-chamber 715 and the twelfth sub-chamber 716 as part of the tubes 730, and the twenty-second sub-chamber 722 is connected to the twelfth sub-chamber 716.
  • the thirteenth subchamber 717 is connected to another part of the tubes 730.
  • the inlet port 711 is connected to the anode electrolyte outlet line La2 to introduce the anode electrolyte into the eleventh subchamber 715, and the outlet port 712 is connected to the anode electrolyte outlet line La2 to the thirteenth subchamber.
  • the anode electrolyte flows out from 717.
  • the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 may be a portion of the inlet port 711 of the first chamber 710, the eleventh subchamber 715, the tubes 730, and the second chamber.
  • the twenty-second sub chamber 722, some of the tubes 730, the thirteenth sub chamber 717 of the first chamber 710, and the outlet port 712 are provided. That is, when compared with the first embodiment, the first, second chambers 710 and 720 and the tube 730 are identical to each other in the heat exchange surface area, and are further increased in the path of the electrolyte.
  • the second embodiment forms a larger temperature difference between the inlet port 711 and the outlet port 712 than the first embodiment, but shows a larger difference in the level of the electrolyte. For this reason, the second embodiment has lower energy efficiency than the first embodiment.
  • FIG. 9 is a cross-sectional view of the heat exchanger of the third embodiment applied to FIG. 2.
  • the first chamber 810 is provided with an inlet port 811 connected to the anode electrolyte outlet line La2 and introducing the anode electrolyte, and a second The chamber 820 is connected to the anode electrolyte outlet line La2 and has an outlet port 821 for outflowing the anode electrolyte.
  • the first and second chambers 810 and 820 are connected to the tubes 830, and the inflow port 811 and the outflow port 821 have a maximum distance from the first chamber 810 and the second chamber 820. Formed and placed.
  • the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 is inlet port 811, first chamber 810, tubes 730, and second chamber 820 of the first chamber 810. And via an outlet port 821 of the second chamber 820. That is, the first, second chambers 810, 820 and the tube 830 are the same in the heat exchange surface area, and further reduced in the path of the electrolyte when compared with the first embodiment.
  • the third embodiment forms a similar temperature difference between the inlet port 811 and the outlet port 812 compared to the first embodiment, but has a larger difference in the level of the electrolyte (second embodiment). Although the water level difference is smaller than the example). For this reason, the third embodiment showed lower energy efficiency (higher energy efficiency than the second embodiment) than the first embodiment.
  • FIG. 10 is a cross-sectional view of the heat exchanger of the fourth embodiment applied to FIG. 2.
  • the first chamber 910 includes a first diaphragm 912.
  • the first diaphragm 912 is disposed to be inclined toward the inlet port 911 and divided into a fourteenth subchamber 914 and a fifteenth subchamber 915.
  • the fifteenth subchamber 915 is larger than the fourteenth subchamber 914.
  • the second chamber 920 includes a second diaphragm 922.
  • the second diaphragm 922 is disposed to face the outlet port 921 and is divided into a twenty-fourth sub chamber 924 and a twenty-fifth sub chamber 925.
  • the twenty-fifth sub-chamber 925 is larger than the twenty-fourth sub-chamber 924.
  • the twenty-fourth subchamber 924 is connected to the fifteenth subchamber 915 as part of the tubes 930, and the twentyfifth subchamber 925 is connected to the fourteenth subchamber 914 and the fifteenth subchamber 915. To another part of the tubes 930.
  • the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 is inlet port 911, the fourteenth subchamber 914, the tubes 930, and the second chamber 920 of the first chamber 910.
  • the outlet port 921 that is, the first, second chambers 910, 920 and the tube 930 are the same in the heat exchange surface area, and are further increased in the path of the electrolyte as compared with the third embodiment.
  • the fourth embodiment has an increased temperature difference between the inlet port 911 and the outlet port 921 (the temperature difference is lower than that of the second embodiment), compared to the third embodiment. Shows the opposite difference in water level. For this reason, the fourth embodiment showed slightly lower energy efficiency than the third embodiment (the energy efficiency is higher than that of the second embodiment).
  • the temperature difference between the inlet port 611 and the outlet port 612 of the heat exchanger 600 is 2.5 ° C.
  • the energy level ratio of the electrolyte is 55:45, that is, the difference in the level of the anode and cathode electrolytes is smallest as 10, compared to the other second, third, and fourth embodiments. The highest was 72.7%.
  • the anode electrolyte heated by the reaction is cooled by a heat exchanger (600, 700, 800, 900), so that when the charge and discharge, the crossover of the electrolyte in the stack module 120 due to the difference in viscosity and specific gravity of the electrolyte Decreases.
  • the heat exchanger 600 of the first embodiment has higher charge quantity efficiency and, consequently, more energy efficiency than the heat exchangers 700, 800, 900 of the other second, third, and fourth embodiments. Can be.
  • electrode plate 31 cathode electrode
  • electrode flow frame 61, 62 first, second collector plate
  • first and second end cap 101, 102, 103, 104 unit stack
  • electrolyte tank 201 first overflow tube
  • anode electrolyte tank 220 cathode electrolyte tank
  • first sub chamber 615 second sub chamber
  • CH1, CH2 first and second channel H21, H31: electrolyte inlet
  • Lc2 electrolyte outflow line Pa
  • Pc electrolyte pump

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Abstract

One aspect of the present invention provides a redox flow battery for minimizing the level difference of an electrolyte in an electrolyte tank, the level difference occurring due to a difference, in viscosity and specific gravity of the electrolyte, generated during charging and discharging. According to one embodiment of the present invention, the redox flow battery comprises: a stack module including unit stacks in which an anode electrolyte and a cathode electrolyte internally flows so as to generate an electric current; and a heat exchanger provided at an anode electrolyte outflow line through which the anode electrolyte of the stack module flows out, wherein the heat exchanger can comprise: a first chamber and a second chamber spaced apart from each other so as to allow the anode electrolyte to flow in and discharge the same; and a flow path for connecting the first chamber and the second chamber so as to circulate the anode electrolyte therethrough.

Description

레독스 흐름 전지Redox flow battery
본 발명은 레독스 흐름 전지에 관한 것으로서, 스택에서 반응 후 유출되는 고온의 전해액을 열교환기로 냉각시키는 레독스 흐름 전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow cell, and more particularly, to a redox flow cell cooling a high temperature electrolyte flowing out after a reaction in a stack with a heat exchanger.
아연 브로민 레독스 흐름 전지는 흐름 전지의 일종으로써 전해액과 전극 사이에서 일어나는 산화 환원 반응으로 전기를 생산한다.Zinc bromine redox flow cells are a type of flow cells that produce electricity through redox reactions between the electrolyte and the electrodes.
예를 들면, 레독스 흐름 전지는 바이폴라 전극판(bipolar electrode)과 멤브레인(membrane)을 반복적으로 적층하고, 적층된 최외곽의 양측에 집전판과 엔드 캡을 차례로 적층하여 형성되고 전해액이 공급되어 산화 환원 반응이 일어나는 스택, 스택에 전해액을 공급하는 펌프와 배관, 및 스택에서 내부 반응 후, 유출되는 전해액을 저장하는 전해액 탱크를 포함한다.For example, a redox flow battery is formed by repeatedly stacking a bipolar electrode and a membrane, stacking current collector plates and end caps on both sides of the outermost layer, and supplying electrolyte to oxidize the electrolyte. A stack in which a reduction reaction occurs, a pump and a pipe for supplying an electrolyte solution to the stack, and an electrolyte tank for storing the electrolyte solution flowing out after the internal reaction in the stack.
전해액 탱크는 아연을 포함하는 애노드 전해액(anolyte)을 수용하는 애노드 전해액 탱크, 브로민을 포함하는 캐소드 전해액(catholyte)을 수용하는 캐소드 전해액 탱크, 및 캐소드 전해액의 2상을 수용하는 2상 전해액 탱크(230)를 포함한다.The electrolyte tank comprises an anode electrolyte tank containing an anode electrolyte containing zinc, a cathode electrolyte tank containing a cathode electrolyte containing bromine, and a two-phase electrolyte tank containing two phases of the cathode electrolyte ( 230).
레독스 흐름 전지는 스택에서 반응 후 유출되는 고온의 전해액을 냉각시키는 수랭식 또는 공랭식의 열교환기를 더 포함한다. 열교환기는 열교환의 표면적 및 전해액의 경로를 늘려서 열교환 성능을 높일 수 있다. 열교환기의 내부 구조에 따라 전해액의 흐름이 달라지고, 내부압이 변하게 된다.The redox flow cell further includes a water-cooled or air-cooled heat exchanger for cooling the hot electrolyte flowing out after the reaction in the stack. The heat exchanger may increase heat exchange performance by increasing the surface area of the heat exchange and the path of the electrolyte. The flow of the electrolyte varies according to the internal structure of the heat exchanger, and the internal pressure changes.
그러나 열교환 성능을 높이기 위하여, 열교환의 표면적 및 전해액의 경로를 지나치게 늘리면, 충전 및 방전 시 발생되는 전해액의 점도 및 비중의 차이로 인하여 스택 내에서 전해액의 크로스오버가 발생되어 애노드 전해액 탱크와 캐소드 전해액 탱크에서 전해액의 수위 차이가 발생된다. 이로 인하여, 전하량 효율이 저하되어 에너지 효율이 저하된다.However, in order to increase the heat exchange performance, excessively increasing the surface area of the heat exchange and the path of the electrolyte, crossover of the electrolyte in the stack due to the difference in the viscosity and specific gravity of the electrolyte generated during charging and discharging, the anode electrolyte tank and the cathode electrolyte tank Level difference between electrolytes occurs. For this reason, charge quantity efficiency falls and energy efficiency falls.
본 발명의 실시예들은 충전 및 방전 시 발생되는 전해액의 점도 및 비중 차이로 인하여 발생되는 전해액 탱크에서 전해액의 수위 차이를 최소화시키는 레독스 흐름 전지를 제공하고자 한다. Embodiments of the present invention to provide a redox flow battery that minimizes the difference in the level of the electrolyte in the electrolyte tank generated due to the difference in viscosity and specific gravity of the electrolyte generated during charging and discharging.
또한, 본 발명의 실시예들은 에너지 효율을 최적화하면서 열교환 성능을 향상시키는 레독스 흐름 전지를 제공하고자 한다.In addition, embodiments of the present invention to provide a redox flow battery that improves heat exchange performance while optimizing energy efficiency.
본 발명의 일 실시예에 따른 레독스 흐름 전지는, 전류를 생성하는 단위 스택들을 포함하는 스택 모듈, 상기 스택 모듈에 공급되고 상기 스택 모듈에서 유출되는 전해액을 저장하는 전해액 탱크, 상기 전해액 탱크에서 상기 전해액을 상기 스택 모듈로 유입하는 전해액 유입라인, 상기 스택 모듈에서 상기 전해액을 상기 전해액 탱크로 유출하는 전해액 유출라인, 및 상기 전해액 유출라인 중에서 애노드 전해액을 유출하는 애노드 전해액 유출라인에 구비되는 열교환기를 포함하며, 상기 열교환기는 서로 이격되어 애노드 전해액을 유입하여 유출시키는 제1챔버와 제2챔버, 및 상기 제1챔버와 상기 제2챔버를 연결하여 애노드 전해액을 순환시키는 유로를 형성하여 외부 공기 흐름에 노출되는 튜브들을 포함할 수 있다.Redox flow battery according to an embodiment of the present invention, a stack module including a unit stack for generating a current, an electrolyte tank for storing an electrolyte solution supplied to the stack module and outflow from the stack module, the electrolyte tank in the An electrolyte inflow line for introducing electrolyte into the stack module, an electrolyte outflow line for outflowing the electrolyte from the stack module to the electrolyte tank, and a heat exchanger provided at an anode electrolyte outflow line for outflowing an anode electrolyte from the electrolyte outflow line The heat exchanger is spaced apart from each other to form a first chamber and a second chamber for inflow and outflow of the anode electrolyte, and a flow path for circulating the anode electrolyte by connecting the first chamber and the second chamber to be exposed to the outside air flow. May comprise tubes.
상기 제1챔버는, 상기 전해액 유출라인에 연결되어 상기 애노드 전해액을 유입하는 유입포트, 상기 전해액 유출라인에 연결되어 상기 애노드 전해액을 유출하는 유출포트, 및 상기 유입포트와 상기 유출포트 사이에 배치되어 양측을 제1서브 챔버와 제2서브 챔버로 구획하는 격막을 포함할 수 있다.The first chamber is connected to the electrolyte outlet line to the inlet port for introducing the anode electrolyte, the outlet port connected to the electrolyte outlet line for outflow of the anode electrolyte, and is disposed between the inlet port and the outlet port It may include a septum partitioning both sides of the first sub-chamber and the second sub-chamber.
상기 애노드 전해액은, 상기 제1챔버의 상기 유입포트, 상기 제1서브 챔버, 상기 튜브들 중 일부, 상기 제2챔버, 상기 튜브들 중 다른 일부, 상기 제1챔버의 상기 제2서브 챔버 및 상기 제1챔버의 상기 유출포트를 경유할 수 있다.The anode electrolyte may include the inflow port of the first chamber, the first sub chamber, a portion of the tubes, the second chamber, another portion of the tubes, the second sub chamber of the first chamber, and the It may be via the outlet port of the first chamber.
상기 제1챔버는, 상기 전해액 유출라인에 연결되어 상기 애노드 전해액을 유입하는 유입포트, 상기 전해액 유출라인에 연결되어 상기 애노드 전해액을 유출하는 유출포트, 및 상기 유입포트에서 유출포트로 가면서 순차적으로 배치되어 제11서브 챔버, 제12서브 챔버 및 제13서브 챔버를 구획하는 제11격막과 제12격막을 포함할 수 있다.The first chamber is connected to the electrolyte outlet line to inlet the anode electrolyte inlet, connected to the electrolyte outlet line outlet port for outflowing the anode electrolyte, and the inlet port from the inlet port sequentially arranged And an eleventh diaphragm and a twelfth diaphragm for dividing the eleventh subchamber, the twelfth subchamber, and the thirteenth subchamber.
상기 제2챔버는, 상기 제11서브 챔버와 상기 제12서브 챔버에 상기 튜브들 중 일부로 연결되는 제21서브 챔버와, 상기 제12서브 챔버와 상기 제13서브 챔버에 상기 튜브들 중 다른 일부로 연결되는 제22서브 챔버를 구획하는 제2격막을 포함할 수 있다.The second chamber may include a twenty-first sub-chamber connected to the eleventh sub-chamber and the twelfth sub-chamber as part of the tubes, and another part of the tubes to the twelfth and thirteenth sub-chambers. It may include a second diaphragm for partitioning the 22nd sub-chamber.
상기 제1챔버는 상기 전해액 유출라인에 연결되어 상기 애노드 전해액을 유입하는 유입포트를 구비하고, 상기 제2챔버는 상기 전해액 유출라인에 연결되어 상기 애노드 전해액을 유출하는 유출포트를 구비하며, 상기 유입포트와 상기 유출포트는 상기 제1챔버와 상기 제2챔버에서 최대 거리를 형성하여 배치될 수 있다.The first chamber has an inflow port connected to the electrolyte outflow line for introducing the anode electrolyte, and the second chamber has an outflow port connected to the electrolyte outflow line for outflowing the anode electrolyte. The port and the outlet port may be arranged to form a maximum distance from the first chamber and the second chamber.
상기 제1챔버는 상기 유입포트 측에 치우쳐 배치되어 제14서브 챔버와 상기 제14서브 챔버보다 큰 제15서브 챔버를 구획하는 제1격막을 포함할 수 있다.The first chamber may include a first diaphragm which is disposed on the inlet port side to define a fourteenth subchamber and a fifteenth subchamber larger than the fourteenth subchamber.
상기 제2챔버는 상기 유출포트 측에 치우쳐 배치되어 제24서브 챔버와 상기 제24서브 챔버보다 큰 제25서브 챔버를 구획하는 제2격막을 포함할 수 있다.The second chamber may include a second diaphragm which is disposed on the outlet port side to define a twenty-fourth sub-chamber and a twenty-fifth sub-chamber larger than the twenty-fourth sub-chamber.
상기 제24서브 챔버는 상기 제15서브 챔버에 상기 튜브들 중 일부로 연결되고, 상기 제25서브 챔버는 상기 제14서브 챔버와 상기 제15서브 챔버에 상기 튜브들 중 다른 일부로 연결될 수 있다.The twenty-fourth sub-chamber may be connected to some of the tubes to the fifteenth sub-chamber, and the twenty-fifth sub-chamber may be connected to another portion of the tubes to the fourteenth and sixteenth sub-chambers.
본 발명의 실시예들은 캐소드 전해액에 비하여 반응성이 낮은 애노드 전해액을 유출하는 애노드 전해액 유출라인에 열교환기를 구비하여, 반응으로 가열된 애노드 전해액을 냉각하므로 충전 및 방전 시, 전해액의 점도 및 비중 차이로 인하여 발생되는 스택 내에서 전해액의 크로스오버가 줄어들고, 이로 인하여 애노드 전해액 탱크와 캐소드 전해액 탱크에서 전해액의 수위 차이가 최소화 될 수 있다. 즉, 전하량 효율이 높아지고, 결론적으로 에너지 효율이 최적화될 수 있다.Embodiments of the present invention are provided with a heat exchanger in the anode electrolyte outflow line for outflowing the anode electrolyte is less reactive than the cathode electrolyte, and cools the anode electrolyte heated by the reaction, due to the difference in viscosity and specific gravity of the electrolyte during charging and discharging Crossover of the electrolyte in the generated stack is reduced, thereby minimizing the level difference of the electrolyte in the anode electrolyte tank and the cathode electrolyte tank. That is, the charge quantity efficiency is high, and consequently the energy efficiency can be optimized.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지의 구성도이다.1 is a block diagram of a redox flow battery according to an embodiment of the present invention.
도 2는 도 1에 적용되는 스택 모듈과 전해액 탱크 및 열교환기를 도시한 사시도이다.FIG. 2 is a perspective view illustrating a stack module, an electrolyte tank, and a heat exchanger applied to FIG. 1.
도 3은 도 2에 적용되는 단위 모듈의 분해 사시도이다.3 is an exploded perspective view of a unit module applied to FIG. 2.
도 4는 도 3의 Ⅳ-Ⅳ 선에 따른 단면도이다.4 is a cross-sectional view taken along line IV-IV of FIG. 3.
도 5는 도 3의 Ⅴ-Ⅴ 선에 따른 단면도이다.5 is a cross-sectional view taken along the line VV of FIG. 3.
도 6은 도 2에 적용되는 제1실시예의 열교환기를 도시한 사시도이다.FIG. 6 is a perspective view illustrating a heat exchanger of a first embodiment applied to FIG. 2.
도 7은 도 6의 Ⅶ-Ⅶ 선에 따른 단면도이다.7 is a cross-sectional view taken along the line VII-VII of FIG. 6.
도 8은 도 2에 적용되는 제2실시예의 열교환기를 자른 단면도이다.FIG. 8 is a cross-sectional view of the heat exchanger of the second embodiment applied to FIG. 2.
도 9는 도 2에 적용되는 제3실시예의 열교환기를 자른 단면도이다.FIG. 9 is a cross-sectional view of the heat exchanger of the third embodiment applied to FIG. 2.
도 10은 도 2에 적용되는 제4실시예의 열교환기를 자른 단면도이다.FIG. 10 is a cross-sectional view of the heat exchanger of the fourth embodiment applied to FIG. 2.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected", but also "indirectly connected" between other members. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
명세서 전체에서 층, 막, 영역, 판 등의 부분이 다른 부분 "~위에" 또는 "~상에" 있다고 할 때 이는 다른 부분의 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 그리고 "~위에" 또는 "~상에" 라 함은 대상 부분의 위 또는 아래에 위치하는 것을 의미하며, 반드시 중력 방향을 기준으로 상측에 위치하는 것을 의미하지 않는다.When a part of a layer, a film, an area, a plate, etc. in the specification is said to be "on" or "on" another part, it is not only when it is "right on" the other part but also when there is another part in the middle. Include. And "on" or "on" means to be located above or below the target portion, and does not necessarily mean to be located above the gravity direction.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지의 구성도이고, 도 2는 도 1에 적용되는 스택 모듈과 전해액 탱크 및 열교환기를 도시한 사시도이다. 도 1 및 도 2를 참조하면, 일 실시예의 레독스 흐름 전지는 전류를 발생시키는 스택 모듈(120) 및 스택 모듈(120)에 전해액을 공급하고 스택 모듈(120)에서 유출되는 전해액을 저장하는 전해액 탱크(200)를 포함한다.1 is a block diagram of a redox flow battery according to an embodiment of the present invention, Figure 2 is a perspective view showing a stack module, an electrolyte tank and a heat exchanger applied to FIG. 1 and 2, the redox flow battery of one embodiment supplies an electrolyte to a stack module 120 and a stack module 120 that generate current and store an electrolyte flowing out of the stack module 120. Tank 200.
스택 모듈(120)은 복수의 단위 모듈들(110)을 포함한다. 일례로써, 스택 모듈(120)은 2개의 단위 모듈(110)을 서로의 측면에 배치하여 전기적으로 연결하여 형성된다. 단위 모듈(110)은 전해액의 순환으로 전류를 발생시키도록 구성되며, 일례로써, 각각 4개의 단위 스택들(101, 102, 103, 104)을 포함한다.The stack module 120 includes a plurality of unit modules 110. As an example, the stack module 120 is formed by arranging two unit modules 110 on the side of each other and electrically connecting them. The unit module 110 is configured to generate a current in the circulation of the electrolyte, and as an example, includes four unit stacks 101, 102, 103, and 104, respectively.
예를 들면, 전해액 탱크(200)는 아연을 포함하는 애노드 전해액을 수용하는 애노드 전해액 탱크(210), 브로민을 포함하는 캐소드 전해액을 수용하는 캐소드 전해액 탱크(220), 및 캐소드 전해액의 2상을 수용하는 2상 전해액 탱크(230)를 포함한다.For example, the electrolyte tank 200 includes an anode electrolyte tank 210 containing an anode electrolyte containing zinc, a cathode electrolyte tank 220 containing a cathode electrolyte containing bromine, and a cathode electrolyte two phases. It includes a two-phase electrolyte tank 230 for receiving.
또한, 일 실시예의 레독스 흐름 전지는 전해액 탱크(200)와 스택 모듈(120)을 연결하여 전해액 펌프(Pa, Pc)의 구동으로 전해액을 스택 모듈(120)에 유입하는 전해액 유입라인(La1 Lc1), 및 전해액 탱크(200)와 스택 모듈(120)을 연결하여 전해액을 스택 모듈(120)로부터 유출하는 전해액 유출라인(La2, Lc2)을 포함한다.In addition, the redox flow battery of the embodiment is connected to the electrolyte tank 200 and the stack module 120, the electrolyte inflow line (La1 Lc1) flowing the electrolyte into the stack module 120 by the driving of the electrolyte pump (Pa, Pc) ), And electrolyte solution outlet lines La2 and Lc2 connecting the electrolyte tank 200 and the stack module 120 to discharge the electrolyte solution from the stack module 120.
일 실시예의 레독스 흐름 전지는 전해액 유출라인(La2, Lc2) 중에서 애노드 전해액을 유출하는 애노드 전해액 유출라인(La2)에 열교환기(600)를 구비한다. 열교환기(600)는 캐소드 전해액에 비하여 반응성이 낮은 애노드 전해액 측에 배치되고, 애노드 전해액과 직접 맞닿아서 배터리의 효율을 고려한다.The redox flow battery of one embodiment includes a heat exchanger 600 in the anode electrolyte outflow line La2 for outflowing the anode electrolyte from the electrolyte outflow lines La2 and Lc2. The heat exchanger 600 is disposed on the side of the anode electrolyte which is less reactive than the cathode electrolyte, and directly contacts the anode electrolyte to consider the efficiency of the battery.
또한 충전 및 방전 시, 전해액의 점도 및 비중 차이로 인하여 스택 모듈(120) 내에서 전해액의 크로스오버가 발생된다. 이로 인하여 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220)의 수위 차이를 발생될 수 있다. In addition, during charging and discharging, crossover of the electrolyte occurs in the stack module 120 due to differences in viscosity and specific gravity of the electrolyte. This may cause a difference in water level between the anode electrolyte tank 210 and the cathode electrolyte tank 220.
열교환기(600)는 전해액의 수위 차이를 최소화시킬 수 있도록 구성된다. 열교환기(600)의 구조 및 배치는 레독스 흐름 전지의 효율을 증가시키고, 스택 모듈(120)의 내구성 및 장기 사이클 안정성을 도모할 수 있게 한다. 일례로써, 열교환기(600)는 공랭식으로 구비되어 소비전력을 최소화할 수 있다. 도시하지 않았으나 열교환기(600)에 공기 흐름을 형성하는 팬이 열교환기(600)의 일측에 구비될 수도 있다.The heat exchanger 600 is configured to minimize the difference in the water level of the electrolyte. The structure and arrangement of the heat exchanger 600 increases the efficiency of the redox flow cell and enables the durability and long term cycle stability of the stack module 120. As an example, the heat exchanger 600 may be air cooled to minimize power consumption. Although not shown, a fan that forms an air flow in the heat exchanger 600 may be provided at one side of the heat exchanger 600.
도 3은 도 2에 적용되는 단위 모듈의 분해 사시도이다. 도 1 내지 도 3을 참조하면, 애노드 전해액 탱크(210)는 단위 모듈(110)을 형성하는 단위 스택들(101, 102, 103, 104)의 멤브레인(10)과 애노드 전극(32) 사이에 애노드 전해액을 공급하고, 멤브레인(10)과 애노드 전극(32) 사이를 경유하여 유출되는 애노드 전해액을 수용한다.3 is an exploded perspective view of a unit module applied to FIG. 2. 1 to 3, the anode electrolyte tank 210 is an anode between the membrane electrode 10 and the anode electrode 32 of the unit stacks 101, 102, 103, 104 forming the unit module 110. The electrolyte is supplied and the anode electrolyte flowing out between the membrane 10 and the anode electrode 32 is accommodated.
캐소드 전해액 탱크(220)는 단위 모듈(110)을 형성하는 단위 스택들(101, 102, 103, 104)의 멤브레인(10)과 캐소드 전극(31) 사이에 공급하는 캐소드 전해액을 수용하며, 애노드 전해액 탱크(210)에 제1오버 플로우 관(201)으로 연결된다. 제1오버 플로우 관(201)는 애노드, 캐소드 전해액 탱크(210, 220)의 전해액을 서로 교환할 수 있게 한다.The cathode electrolyte tank 220 accommodates the cathode electrolyte supplied between the membrane 10 of the unit stacks 101, 102, 103, 104 forming the unit module 110 and the cathode electrode 31, and the anode electrolyte The tank 210 is connected to the first overflow pipe 201. The first overflow tube 201 allows the electrolyte of the anode and cathode electrolyte tanks 210 and 220 to be exchanged with each other.
2상 전해액 탱크(230)는 단위 모듈(110)을 형성하는 단위 스택들(101, 102, 103, 104)의 멤브레인(10)과 캐소드 전극(31) 사이를 경유하여 유출되는 캐소드 전해액(수성 브로민과 중혼합 브로민의 2상(phase)을 포함하는 전해액)을 수용하며, 캐소드 전해액 탱크(220)에 제2오버 플로우 관(202)으로 연결된다. 또한 2상 전해액 탱크(230)의 하부와 캐소드 전해액 탱크(220)의 하부는 연통관(203)으로 연결된다.The two-phase electrolyte tank 230 is a cathode electrolyte (aqueous bro) flowing out between the membrane electrode 10 and the cathode electrode 31 of the unit stacks 101, 102, 103, 104 forming the unit module 110. An electrolyte containing two phases of min and heavy mixed bromine) and is connected to the cathode electrolyte tank 220 by a second overflow tube 202. In addition, a lower portion of the two-phase electrolyte tank 230 and a lower portion of the cathode electrolyte tank 220 are connected to the communication tube 203.
2상 전해액 탱크(230)는 멤브레인(10)과 캐소드 전극(31) 사이에서 유출되는 캐소드 전해액을 비중에 따라 2상으로 분리하여, 즉 하측에 중혼합 브로민을 수용하고, 상측에 수성 브로민을 수용한다. 수성 브로민은 제2오버 플로우 관(202)을 통하여 캐소드 전해액 탱크(220)로 공급된다.The two-phase electrolyte tank 230 separates the cathode electrolyte flowing out between the membrane 10 and the cathode electrode 31 into two phases according to specific gravity, that is, accommodates the mixed bromine on the lower side and the aqueous bromine on the upper side. To accept. Aqueous bromine is supplied to the cathode electrolyte tank 220 through the second overflow tube 202.
즉 제2오버 플로우 관(202)은 상측 수성 브로민을 캐소드 전해액 탱크(220)로 공급된다. 방전시, 하측 중혼합 브로민은 연통관(203)을 통하여 캐소드 전해액 탱크(220)의 캐소드 전해액을 대신하여 멤브레인(10)과 캐소드 전극(31) 사이로 공급될 수 있다.That is, the second overflow tube 202 is supplied with the upper aqueous bromine to the cathode electrolyte tank 220. During discharge, the lower heavy mixed bromine may be supplied between the membrane 10 and the cathode electrode 31 in place of the cathode electrolyte of the cathode electrolyte tank 220 through the communication tube 203.
이를 위하여, 전해액 유입라인(La1, Lc1)은 애노드 전해액 탱크(210)를 단위 모듈(110) 및 스택 모듈(120)에 연결하는 애노드 전해액 유입라인(La1), 및 방전시, 2상 전해액 탱크(230) 또는 충전시, 캐소드 전해액 탱크(220)을 단위 모듈(110) 및 스택 모듈(120)에 연결하는 캐소드 전해액 유입라인(Lc1)을 포함한다.To this end, the electrolyte inflow lines La1 and Lc1 are the anode electrolyte inflow line La1 connecting the anode electrolyte tank 210 to the unit module 110 and the stack module 120, and during discharge, the two-phase electrolyte tank ( 230 or at the time of filling, the cathode electrolyte inlet line Lc1 connecting the cathode electrolyte tank 220 to the unit module 110 and the stack module 120.
전해액 유출라인(La2, Lc2)은 단위 모듈(110) 및 스택 모듈(120)에 애노드 전해액 탱크(210)를 연결하는 애노드 전해액 유출라인(La2), 및 단위 모듈(110) 및 스택 모듈(120)에 2상 전해액 탱크(230)를 연결하는 캐소드 전해액 유출라인(Lc2)을 포함한다.The electrolyte outflow lines La2 and Lc2 are the anode electrolyte outflow line La2 connecting the anode electrolyte tank 210 to the unit module 110 and the stack module 120, and the unit module 110 and the stack module 120. It includes a cathode electrolyte outflow line (Lc2) connecting the two-phase electrolyte tank (230).
애노드, 캐소드 전해액 유입라인(La1, Lc1)은 애노드, 캐소드 전해액 펌프(Pa, Pc)를 개재하여, 단위 모듈(110)의 전해액 유입구(H21, H31)를 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220) 또는 2상 전해액 탱크(230)에 각각 연결한다. 애노드, 캐소드 전해액 유출라인(La2, Lc2)은 단위 모듈(110)의 전해액 유출구(H22, H32)에 애노드 전해액 탱크(210)와 2상 전해액 탱크(230)를 각각 연결한다.The anode and cathode electrolyte inflow lines La1 and Lc1 are connected to the anode electrolyte tank 210 and the cathode electrolyte tank through the electrolyte inlets H21 and H31 of the unit module 110 via the anode and cathode electrolyte pumps Pa and Pc. And 220 or two-phase electrolyte tank 230, respectively. The anode and cathode electrolyte outlet lines La2 and Lc2 connect the anode electrolyte tank 210 and the two-phase electrolyte tank 230 to the electrolyte outlets H22 and H32 of the unit module 110, respectively.
애노드 전해액 탱크(210)는 아연을 포함하는 애노드 전해액(anolyte)을 내장하며, 애노드 전해액 펌프(Pa)의 구동으로 단위 모듈(110)의 멤브레인(10)과 애노드 전극(32) 사이에 애노드 전해액을 순환시킨다.The anode electrolyte tank 210 contains an anode electrolyte containing zinc, and drives the anode electrolyte between the membrane 10 of the unit module 110 and the anode electrode 32 by driving the anode electrolyte pump Pa. Circulate
캐소드 전해액 탱크(220) 또는 2상 전해액 탱크(230)는 브로민을 포함하는 캐소드 전해액(catholyte)을 내장하며, 캐소드 전해액 펌프(Pc)의 구동으로 단위 모듈(110)의 멤브레인(10)과 캐소드 전극(31) 사이에 캐소드 전해액을 순환시킨다.The cathode electrolyte tank 220 or the two-phase electrolyte tank 230 contains a cathode electrolyte containing bromine, and the membrane 10 and the cathode of the unit module 110 are driven by the cathode electrolyte pump Pc. The cathode electrolyte is circulated between the electrodes 31.
또한, 2상 전해액 탱크(230)는 캐소드 전해액 펌프(Pc)의 구동으로 단위 모듈(110)의 멤브레인(10)과 캐소드 전극(31) 사이에서 유출되는 캐소드 전해액을 캐소드 전해액 유출라인(Lc2)으로 공급 받아서 비중 차에 따라 하측에 중혼합 브로민을 수용하고, 상측에 수성 브로민을 수용한다.In addition, the two-phase electrolyte tank 230 drives the cathode electrolyte flowing out between the membrane 10 of the unit module 110 and the cathode electrode 31 by the driving of the cathode electrolyte pump Pc to the cathode electrolyte outlet line Lc2. Depending on the difference in specific gravity, the mixture receives the mixed bromine on the lower side and the aqueous bromine on the upper side.
한편, 캐소드 전해액 유입라인(Lc1)는 캐소드 전해액 펌프(Pc)를 개재하여 캐소드 전해액 탱크(220) 및 2상 전해액 탱크(230)를 스택 모듈(120)에 연결하고, 캐소드 전해액 유출라인(Lc2)은 스택 모듈(120)을 2상 전해액 탱크(230) 및 캐소드 전해액 탱크(220)에 연결한다. 따라서 스택 모듈(120)에 대한 캐소드 전해액의 유입과 유출 작동이 수행될 수 있다.Meanwhile, the cathode electrolyte inlet line Lc1 connects the cathode electrolyte tank 220 and the two-phase electrolyte tank 230 to the stack module 120 via the cathode electrolyte pump Pc, and the cathode electrolyte outlet line Lc2. The silver stack module 120 connects to the two-phase electrolyte tank 230 and the cathode electrolyte tank 220. Therefore, the inflow and outflow operation of the cathode electrolyte to the stack module 120 may be performed.
연통관(203)에는 단속 밸브(미도시)가 구비되어, 방전시 캐소드 전해액 펌프(Pc) 구동으로, 2상 전해액 탱크(230)의 캐소드 전해액을 스택 모듈(120)에 공급할 수 있다. 즉 충전시 단속 밸브가 폐쇄되면, 캐소드 전해액 탱크(220)의 캐소드 전해액이 캐소드 전해액 유입라인(Lc1)으로 공급되고, 방전시 단속 밸브가 개방되면, 2상 전해액 탱크(230)의 캐소드 전해액이 캐소드 전해액 유입라인(Lc1)으로 공급된다.The communication tube 203 may be provided with an intermittent valve (not shown), and may drive the cathode electrolyte pump Pc during discharge to supply the cathode electrolyte of the two-phase electrolyte tank 230 to the stack module 120. That is, when the intermittent valve is closed during charging, the cathode electrolyte of the cathode electrolyte tank 220 is supplied to the cathode electrolyte inflow line Lc1. When the intermittent valve is opened during discharge, the cathode electrolyte of the two-phase electrolyte tank 230 is cathode. It is supplied to the electrolyte inflow line Lc1.
또한, 단위 스택들(101, 102, 103, 104)은 버스바(B1, B2)를 통하여 서로 전기적으로 연결된다. 단위 모듈(110) 및 스택 모듈(120)은 버스바(B1, B2)를 통하여 단위 스택들(101, 102, 103, 104)의 내부에서 생성된 전류를 방전하거나, 외부의 전원에 연결되어 애노드 전해액 탱크(210)와 2상 전해액 탱크(230)에 전류를 충전할 수 있다.In addition, the unit stacks 101, 102, 103, 104 are electrically connected to each other through bus bars B1 and B2. The unit module 110 and the stack module 120 discharge current generated in the unit stacks 101, 102, 103, and 104 through the busbars B1 and B2, or are connected to an external power supply to the anode. The electrolyte tank 210 and the two-phase electrolyte tank 230 may be charged with current.
단위 스택들(101, 102, 103, 104)을 도 2에 도시된 바와 같이 적층하므로 단위 모듈(110)이 형성된다. 단위 모듈들(110)을 서로의 측면에 배치하므로 스택 모듈(120)이 형성된다. The unit modules 110 are formed by stacking the unit stacks 101, 102, 103, and 104 as shown in FIG. 2. Since the unit modules 110 are disposed on the side of each other, the stack module 120 is formed.
단위 모듈(110)에서 좌측 단위 셀(C1)에 전해액 유입구(H21, H31)가 구비되고(도 3 참조), 전해액 유입구(H21, H31)는 애노드, 캐소드 전해액 펌프(Pa, Pc)를 개재하여 애노드, 캐소드 전해액 유입라인(La1, Lc1)으로 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220) 또는 2상 전해액 탱크(230)에 각각 연결된다.In the unit module 110, electrolyte inlets H21 and H31 are provided in the left unit cell C1 (see FIG. 3), and the electrolyte inlets H21 and H31 are provided through the anode and cathode electrolyte pumps Pa and Pc. The anode and cathode electrolyte inflow lines La1 and Lc1 are respectively connected to the anode electrolyte tank 210 and the cathode electrolyte tank 220 or the two-phase electrolyte tank 230.
또한, 단위 모듈(110)에서 우측 단위 셀(C2)에 전해액 유출구(H22, H32)가 구비되고(도 3 참조), 전해액 유출구(H22, H32)는 애노드, 캐소드 전해액 유출라인(La2, Lc2)으로 애노드 전해액 탱크(210)와 2상 전해액 탱크(230)에 각각 연결된다.In addition, the electrolyte module outlets H22 and H32 are provided at the right side unit cell C2 in the unit module 110 (see FIG. 3), and the electrolyte outlets H22 and H32 are anode and cathode electrolyte outlet lines La2 and Lc2. And are connected to the anode electrolyte tank 210 and the two-phase electrolyte tank 230, respectively.
전해액 유입구(H21, H31)는 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220) 또는 2상 전해액 탱크(230)의 전해액을 좌측 단위 셀(C1)로 각각 유입한다(도 3 참조). 전해액 유출구(H22, H32)는 단위 모듈(110)을 경유하여, 우측 단위 셀(C2)로부터 유출되는(도 3 참조) 전해액을 애노드 전해액 탱크(210)와 2상 전해액 탱크(230)로 각각 유출한다.The electrolyte inlets H21 and H31 flow the electrolyte from the anode electrolyte tank 210, the cathode electrolyte tank 220, or the two-phase electrolyte tank 230 into the left unit cell C1, respectively (see FIG. 3). The electrolyte outlets H22 and H32 flow out the electrolyte from the right unit cell C2 (see FIG. 3) through the unit module 110 to the anode electrolyte tank 210 and the two-phase electrolyte tank 230, respectively. do.
도 4는 도 3의 Ⅳ-Ⅳ 선에 따른 단면도이고, 도 5는 도 3의 Ⅴ-Ⅴ 선에 따른 단면도이다. 도 3 내지 도 5를 참조하면, 단위 모듈(110)은 멤브레인(10), 스페이서(20), 전극판(30), 흐름 프레임(예를 들면, 멤브레인 흐름 프레임(40), 전극 흐름 프레임(50)), 제1, 제2집전판(61, 62) 및 제1, 제2앤드 캡(71, 72)을 포함하는 단위 스택들(101, 102, 103, 104)을 반복적으로 적층하여 형성된다.4 is a cross-sectional view taken along line IV-IV of FIG. 3, and FIG. 5 is a cross-sectional view taken along line V-V of FIG. 3. 3 to 5, the unit module 110 may include a membrane 10, a spacer 20, an electrode plate 30, a flow frame (eg, a membrane flow frame 40, and an electrode flow frame 50). ), And the unit stacks 101, 102, 103, and 104 including the first and second collector plates 61 and 62 and the first and second end caps 71 and 72 are repeatedly stacked. .
단위 모듈(110)을 참조하여 보면, 단위 스택들(101, 102, 103, 104)은 2개의 단위 셀(C1, C2)을 구비하므로 1개의 전극 흐름 프레임(50)을 중앙에 구비하고, 전극 흐름 프레임(50)의 양측에 좌우 대칭 구조로 배치되는 2개의 멤브레인 흐름 프레임(40), 및 멤브레인 흐름 프레임(40)의 외곽에 각각 배치되는 2개의 제1, 제2앤드 캡(71, 72)을 포함한다.Referring to the unit module 110, since the unit stacks 101, 102, 103, and 104 have two unit cells C1 and C2, one electrode flow frame 50 is provided at the center, and Two membrane flow frames 40 arranged in both symmetrical structures on both sides of the flow frame 50, and two first and second end caps 71 and 72 disposed respectively outside the membrane flow frame 40. It includes.
멤브레인(10)은 이온을 통과시키도록 구성되고, 멤브레인 흐름 프레임(40)에 멤브레인 흐름 프레임(40)의 두께 방향 중심에 결합된다. 전극판(30)은 전극 흐름 프레임(50)에 전극 흐름 프레임(50)의 두께 방향 중심에 결합된다.The membrane 10 is configured to pass ions and is coupled to the membrane flow frame 40 at the center of the thickness direction of the membrane flow frame 40. The electrode plate 30 is coupled to the electrode flow frame 50 at the center of the thickness direction of the electrode flow frame 50.
제1앤드 캡(71), 멤브레인 흐름 프레임(40), 전극 흐름 프레임(50), 멤브레인 흐름 프레임(40) 및 제2앤드 캡(72)을 배치하고, 멤브레인(10)과 전극판(30) 사이에 각각 스페이서(20)를 개재하여 멤브레인 흐름 프레임(40), 전극 흐름 프레임(50) 및 제1, 제2앤드 캡(71, 72)을 서로 접합함으로써, 2개의 단위 셀(C1, C2)을 구비한 단위 스택(101, 102, 103, 104)이 형성된다.The first end cap 71, the membrane flow frame 40, the electrode flow frame 50, the membrane flow frame 40 and the second end cap 72 are disposed, and the membrane 10 and the electrode plate 30 are disposed. By joining the membrane flow frame 40, the electrode flow frame 50, and the first and second end caps 71 and 72 to each other via the spacer 20 therebetween, the two unit cells C1 and C2 are joined. Unit stacks 101, 102, 103, and 104 are formed.
전극판(30)은 2개의 단위 셀(C1, C2)이 연결되는 부분에서는 일측으로 애노드 전극(32)을 형성하고 다른 측으로 캐소드 전극(31)을 형성하여, 2개의 단위 셀(C1, C2)을 직렬로 연결하는 바이폴라 전극을 형성한다. The electrode plate 30 forms the anode electrode 32 on one side and the cathode electrode 31 on the other side at the portion where the two unit cells C1 and C2 are connected, thereby forming the two unit cells C1 and C2. To form a bipolar electrode connecting in series.
멤브레인 흐름 프레임(40), 전극 흐름 프레임(50) 및 제1, 제2앤드 캡(71, 72)은 서로 접착되어 멤브레인(10)과 전극판(30) 사이에 내부 용적(S)을 설정하며, 내부 용적(S)에 전해액을 공급하는 제1, 제2유로 채널(CH1(도 4 참조), CH2(도 5 참조))을 구비한다. 제1, 제2유로 채널(CH1, CH2)은 멤브레인(10)의 양면에서 각각 균일한 압력과 양으로 전해액을 공급하도록 구성된다.The membrane flow frame 40, the electrode flow frame 50, and the first and second end caps 71 and 72 are bonded to each other to establish an internal volume S between the membrane 10 and the electrode plate 30. And first and second channel channels CH1 (see FIG. 4) and CH2 (see FIG. 5) for supplying an electrolyte solution to the internal volume S. The first and second flow channels CH1 and CH2 are configured to supply the electrolyte at uniform pressure and amount on both sides of the membrane 10, respectively.
멤브레인 흐름 프레임(40), 전극 흐름 프레임(50) 및 제1, 제2앤드 캡(71, 72)은 합성수지 성분을 포함하는 전기 절연재로 형성되어, 열융착 또는 진동 융착으로 접착될 수 있다.The membrane flow frame 40, the electrode flow frame 50, and the first and second end caps 71 and 72 may be formed of an electrical insulating material including a synthetic resin component, and may be bonded by thermal fusion or vibration fusion.
제1유로 채널(CH1)은 전해액 유입구(H21), 내부 용적(S) 및 전해액 유출구(H22)를 연결하여, 애노드 전해액 펌프(Pa)의 구동에 의하여, 멤브레인(10)과 애노드 전극(32) 사이에 설정되는 내부 용적(S)으로 애노드 전해액을 유입하여 반응 후, 유출 가능하게 한다(도 4 참조).The first flow channel CH1 connects the electrolyte inlet H21, the internal volume S and the electrolyte outlet H22 to drive the membrane 10 and the anode electrode 32 by driving the anode electrolyte pump Pa. The anode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction (see FIG. 4).
제2유로 채널(CH2)은 전해액 유입구(H31), 내부 용적(S) 및 전해액 유출구(H32)를 연결하여, 캐소드 전해액 펌프(Pc)의 구동에 의하여, 멤브레인(10)과 캐소드 전극(31) 사이에 설정되는 내부 용적(S)으로 캐소드 전해액을 유입하여 반응 후, 유출 가능하게 한다(도 5 참조).The second channel CH2 connects the electrolyte inlet H31, the internal volume S and the electrolyte outlet H32, and drives the membrane 10 and the cathode electrode 31 by driving the cathode electrolyte pump Pc. The cathode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction (see FIG. 5).
애노드 전해액은 내부 용적(S)의 애노드 전극(32) 측에서 산화환원 반응하여 전류를 생성하여 애노드 전해액 탱크(200)에 저장된다. 캐소드 전해액은 내부 용적(S)의 캐소드 전극(31) 측에서 산화환원 반응하여 전류를 생성하여 2상 전해액 탱크(230)에 저장된다.The anode electrolyte is redox-reacted at the anode electrode 32 side of the internal volume S to generate a current and stored in the anode electrolyte tank 200. The cathode electrolyte is redox-reacted on the cathode electrode 31 side of the internal volume S to generate a current and stored in the two-phase electrolyte tank 230.
충전시, 멤브레인(10)과 캐소드 전극(31) 사이에서,During charging, between the membrane 10 and the cathode electrode 31,
2Br- → 2Br+2e- (식 1)2Br - → 2Br + 2e - (formula 1)
와 같은 화학 반응이 일어나서, 캐소드 전해액에 포함된 브로민이 생산되어 2상 전해액 탱크(230)에 저장된다. 이때, 브로민은 캐소드 전해액과 같이 단위 모듈(110)로부터 즉시 제거되는 고밀도 제2상을 형성하도록 캐소드 전해액 안에서 사암모늄 이온에 의하여 즉시 혼합된다. 2상 전해액 탱크(230)에서 분리된 수성 브로민은 제2오버 플로우 관(202)을 통하여, 캐소드 전해액 탱크(220)로 오버 플로우 된다.As a chemical reaction occurs, bromine included in the cathode electrolyte is produced and stored in the two-phase electrolyte tank 230. At this time, bromine is immediately mixed by the tetraammonium ions in the cathode electrolyte to form a high density second phase which is immediately removed from the unit module 110, such as the cathode electrolyte. The aqueous bromine separated in the two-phase electrolyte tank 230 is overflowed to the cathode electrolyte tank 220 through the second overflow tube 202.
충전시, 멤브레인(10)과 애노드 전극(32) 사이에서,During charging, between the membrane 10 and the anode electrode 32,
Zn2++2e- → Zn (식 2)Zn 2+ + 2e - → Zn (Equation 2)
와 같은 화학 반응이 일어나서, 애노드 전해액에 포함된 아연이 애노드 전극(32)에 증착되어 저장된다. 이때, 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220) 사이에서 애노드 전해액 또는 캐소드 전해액은 제1오버 플로우 관(201)을 통하여 상호 오버 플로우 될 수 있다.As a chemical reaction occurs, zinc contained in the anode electrolyte is deposited and stored on the anode electrode 32. In this case, the anode electrolyte or the cathode electrolyte between the anode electrolyte tank 210 and the cathode electrolyte tank 220 may overflow each other through the first overflow pipe 201.
방전시, 멤브레인(10)과 캐소드 전극(31) 사이에서, 식 1의 역 반응이 일어나고, 멤브레인(10)과 애노드 전극(32) 사이에서 식 2의 역 반응이 일어난다.During discharge, a reverse reaction of equation 1 occurs between the membrane 10 and the cathode electrode 31, and a reverse reaction of equation 2 occurs between the membrane 10 and the anode electrode 32.
제1, 제2집전판(61, 62)은 캐소드 전극(31)과 애노드 전극(32)에서 생성된 전류를 모으거나, 외부에서 캐소드 전극(31)과 애노드 전극(32)에 전류를 공급하도록 최외곽 전극판(30, 30)에 접착되어 전기적으로 연결된다.The first and second current collector plates 61 and 62 collect current generated from the cathode electrode 31 and the anode electrode 32 or supply current to the cathode electrode 31 and the anode electrode 32 from the outside. The outermost electrode plates 30 and 30 are bonded to and electrically connected to each other.
단위 스택들(101, 102, 103, 104), 단위 모듈(110) 및 스택 모듈(120)에서 생성된 전류를 방전하거나, 외부 전원에 연결되어 애노드 전해액 탱크(210)와 2상 전해액 탱크(230)에 전류를 충전할 필요가 있다.Discharge currents generated in the unit stacks 101, 102, 103, 104, the unit module 110, and the stack module 120, or are connected to an external power source to the anode electrolyte tank 210 and the two-phase electrolyte tank 230. ) Needs to be charged with current.
이를 위하여, 제1앤드 캡(71)은 버스바(B1)가 연결된 제1집전판(61)과, 제1집전판(61)에 연결되는 전극판(30)을 수용하여 일체로 형성되어, 단위 스택들(101, 102, 103, 104)의 일측 외곽을 형성한다. 제2앤드 캡(72)은 버스바(B2)가 연결된 제2집전판(62)과, 제2집전판(62)에 연결되는 전극판(30)을 수용하여 일체로 형성되어 단위 스택들(101, 102, 103, 104)의 다른 일측 외곽을 형성한다. To this end, the first end cap 71 is integrally formed by receiving the first collector plate 61 to which the bus bar B1 is connected, and the electrode plate 30 connected to the first collector plate 61. One side of the unit stacks 101, 102, 103, and 104 is formed. The second end cap 72 is integrally formed to accommodate the second collector plate 62 to which the bus bar B2 is connected, and the electrode plate 30 connected to the second collector plate 62. The other one outer side of 101, 102, 103, 104 is formed.
제1앤드 캡(71)은 일측에 애노드, 캐소드 전해액 유입구(H21, H31)를 구비하여 제1, 제2유로 채널(CH1, CH2)에 연결되어, 캐소드 전해액과 애노드 전해액을 각각 유입한다. 제2앤드 캡(72)은 일측에 전해액 유출구(H22, H32)를 구비하여 제1, 제2유로 채널(CH1, CH2)에 연결되어 캐소드 전해액과 애노드 전해액을 각각 유출한다.The first end cap 71 includes anode and cathode electrolyte inlets H21 and H31 at one side thereof, and is connected to the first and second channel CHs CH1 and CH2, respectively, to introduce the cathode electrolyte and the anode electrolyte. The second end cap 72 has electrolyte outlets H22 and H32 on one side thereof, and is connected to the first and second channel channels CH1 and CH2 to respectively discharge the cathode electrolyte and the anode electrolyte.
즉 캐소드 전해액 유출라인(Lc2)를 통하여 유출되는 캐소드 전해액은 2상 전해액 탱크(230)로 유입된다. 따라서 2상 전해액 탱크(230)로 유입된 캐소드 전해액에 포합된 중혼합 브로민은 하측에 위치한다.That is, the cathode electrolyte flowing out through the cathode electrolyte outflow line Lc2 flows into the two-phase electrolyte tank 230. Therefore, the mixed bromine mixed in the cathode electrolyte introduced into the two-phase electrolyte tank 230 is located below.
그러므로 2상 전해액 탱크(230)에서 제2오버 플로우 관(202)으로 오버 플로우 되는 것은 상측에 위치하는 수성 부로민이며, 하측에 위치하는 중혼합 브로민은 오버 플로우 되지 않는다.Therefore, the overflow from the two-phase electrolyte tank 230 to the second overflow pipe 202 is an aqueous bromine located on the upper side, and the heavy mixed bromine located on the lower side does not overflow.
충전시에는 단속 밸브가 폐쇄되어 캐소드 전해액 탱크(220)에서 캐소드 전해액 유입라인(Lc1)으로 캐소드 전해액이 공급된다. 이때, 2상 전해액 탱크(230)는 캐소드 전해액을 수용하고 있다.During charging, the intermittent valve is closed to supply the cathode electrolyte from the cathode electrolyte tank 220 to the cathode electrolyte inflow line Lc1. At this time, the two-phase electrolyte tank 230 accommodates the cathode electrolyte.
방전시에는 캐소드 전해액 탱크(220)에서 캐소드 전해액 유입라인(Lc1)으로 캐소드 전해액이 공급된다. 또한 방전시 단속 밸브가 개방되어 중혼합 브로민이 포함된 캐소드 전해액을 캐소드 전해액 유입라인(Lc1)으로 공급한다.At the time of discharge, the cathode electrolyte is supplied from the cathode electrolyte tank 220 to the cathode electrolyte inflow line Lc1. In addition, the discharge valve is opened during discharge to supply the cathode electrolyte containing the mixed bromine to the cathode electrolyte inlet line (Lc1).
도 6은 도 2에 적용되는 제1실시예의 열교환기를 도시한 사시도이다. 도 6을 참조하면, 제1실시예의 열교환기(600)는 애노드 전해액 유출라인(La2)에 연결되고, 서로 이격되는 제1챔버(610)와 제2챔버(620), 및 제1, 제2챔버(610, 620)를 서로 연결하여 애노드 전해액을 순환시키는 유로를 형성하는 튜브들(630)을 포함한다.FIG. 6 is a perspective view illustrating a heat exchanger of a first embodiment applied to FIG. 2. Referring to FIG. 6, the heat exchanger 600 of the first embodiment is connected to the anode electrolyte outlet line La2 and is spaced apart from each other by the first chamber 610 and the second chamber 620, and the first and second chambers. The tubes 630 and 620 are connected to each other to form tubes 630 for forming a flow path for circulating the anode electrolyte.
애노드 전해액 유출라인(La2)으로 유출되는 애노드 전해액은 제1, 제2챔버(610, 620) 중 어느 일측으로 유입되어, 튜브들(630)를 경유하면서 열교환된 후, 유입되는 동일 측 또는 다른 측으로 유출된다.The anode electrolyte flowing out of the anode electrolyte outlet line La2 flows into any one side of the first and second chambers 610 and 620, and is heat exchanged through the tubes 630, and then flows to the same side or the other side. Spills.
제1실시예에서, 반응 후, 가열된 애노드 전해액은 제1챔버(610)로 유입되어 튜브들(630) 및 제2챔버(620)를 경유하여 다시 제1챔버(610)로 유출되면서, 외부 공기 흐름에 노출되는 튜브들(630)에서 열교환된다. 튜브들(630)의 개수는 전해액의 점도와 비중을 고려하여 설정된다.In the first embodiment, after the reaction, the heated anode electrolyte flows into the first chamber 610 and flows back to the first chamber 610 via the tubes 630 and the second chamber 620, the outside of the Heat exchange in tubes 630 exposed to the air stream. The number of tubes 630 is set in consideration of the viscosity and specific gravity of the electrolyte.
도 7은 도 6의 Ⅶ-Ⅶ 선에 따른 단면도이다. 도 7을 참조하면, 제1챔버(610)는 유입포트(611), 유출포트(612) 및 격막(613)을 포함한다. 격막(613)은 유입포트(611)와 유출포트(612) 사이에 배치되어 제1챔버(610)를 제1서브 챔버(614)와 제2서브 챔버(615)로 구획한다. 격막(613) 및 튜브들(630)로 설정되는 내부 유로는 열교환 면적 및 내부압을 고려하여 굴곡진 구조로 이루어진다. 7 is a cross-sectional view taken along the line VII-VII of FIG. 6. Referring to FIG. 7, the first chamber 610 includes an inlet port 611, an outlet port 612, and a diaphragm 613. The diaphragm 613 is disposed between the inlet port 611 and the outlet port 612 to partition the first chamber 610 into the first sub chamber 614 and the second sub chamber 615. The internal flow path set as the diaphragm 613 and the tubes 630 has a curved structure in consideration of the heat exchange area and the internal pressure.
유입포트(611)는 애노드 전해액 유출라인(La2)에 연결되어 제1서브 챔버(614)에 애노드 전해액을 유입하고, 유출포트(612)는 애노드 전해액 유출라인(La2)에 연결되어 제2서브 챔버(615)로부터 애노드 전해액을 유출한다. 즉 유입포트(611)와 유출포트(612)는 제1챔버(610)에서 동일 측에 위치한다.The inlet port 611 is connected to the anode electrolyte outlet line La2 to inject the anode electrolyte into the first sub chamber 614, and the outlet port 612 is connected to the anode electrolyte outlet line La2 to the second sub chamber. The anode electrolyte flows out from 615. That is, the inlet port 611 and the outlet port 612 are located on the same side in the first chamber 610.
반응 후, 가열되어 애노드 전해액 유출라인(La2)으로 유출되는 애노드 전해액은 제1챔버(610)의 유입포트(611), 제1서브 챔버(614), 튜브들(630) 중 일부, 제2챔버(620), 튜브들(630) 중 다른 일부, 제1챔버(610)의 제2서브 챔버(615) 및 제1챔버(610)의 유출포트(612)를 경유한다. 즉 제1, 제2챔버(610, 620) 및 튜브(630)는 열교환 표면적과 전해액의 경로를 적절한 비율로 증대시킨다.After the reaction, the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 may be a portion of the inlet port 611 of the first chamber 610, the first sub chamber 614, the tubes 630, and the second chamber. 620, another portion of the tubes 630, via the second sub chamber 615 of the first chamber 610, and the outlet port 612 of the first chamber 610. That is, the first and second chambers 610 and 620 and the tube 630 increase the heat exchange surface area and the path of the electrolyte at an appropriate ratio.
따라서 열교환기(600)를 경유하는 애노드 전해액은 냉각되므로 충전 및 방전 시, 발생될 수 있는 점도 및 비중 차이를 최소화 하고, 이로 인하여 스택 모듈(120) 내에서 발생될 수 있는 크로스오버를 최소화 하게 된다. 따라서 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220)에서 전해액의 수위 차이가 최소화 될 수 있다.Therefore, since the anode electrolyte passing through the heat exchanger 600 is cooled, the difference in viscosity and specific gravity that may occur during charging and discharging is minimized, thereby minimizing crossover that may occur in the stack module 120. . Therefore, the difference in the level of the electrolyte in the anode electrolyte tank 210 and the cathode electrolyte tank 220 may be minimized.
이하에서 본 발명의 다양한 실시예들에 대하여 설명한다. 제1실시예 및 기 설명된 실시예와 비교하여 서로 동일한 구성을 생략하고, 서로 다른 구성에 대하여 설명한다.Hereinafter, various embodiments of the present invention will be described. Compared to the first embodiment and the previously described embodiment, the same configuration is omitted, and different configurations will be described.
도 8은 도 2에 적용되는 제2실시예의 열교환기를 자른 단면도이다. 도 8을 참조하면, 제2실시예의 열교환기(700)에서, 제1챔버(710)는 유입포트(711), 유출포트(712), 제11격막(713) 및 제12격막(714)을 포함한다. 제11격막(713)과 제12격막(714)은 유입포트(711)에서 유출포트(712)로 가면서 순차적으로 배치되어, 제1챔버(710)를 제11서브 챔버(715), 제12서브 챔버(716) 및 제13서브 챔버(717)로 구획한다.FIG. 8 is a cross-sectional view of the heat exchanger of the second embodiment applied to FIG. 2. Referring to FIG. 8, in the heat exchanger 700 of the second embodiment, the first chamber 710 includes an inlet port 711, an outlet port 712, an eleventh diaphragm 713, and a twelfth diaphragm 714. Include. The eleventh diaphragm 713 and the twelfth diaphragm 714 are sequentially disposed from the inflow port 711 to the outflow port 712, and the first chamber 710 is disposed in the eleventh sub chamber 715 and the twelfth sub. The chamber 716 and the thirteenth subchamber 717 are partitioned.
유입포트(711)는 애노드 전해액 유출라인(La2)에 연결되어 제11서브 챔버(715)에 애노드 전해액을 유입하고, 유출포트(712)는 애노드 전해액 유출라인(La2)에 연결되어 제13서브 챔버(717)로부터 애노드 전해액을 유출한다.The inlet port 711 is connected to the anode electrolyte outlet line La2 to introduce the anode electrolyte into the eleventh subchamber 715, and the outlet port 712 is connected to the anode electrolyte outlet line La2 to the thirteenth subchamber. The anode electrolyte flows out from 717.
제2챔버(720)는 제2격막(723)을 포함한다. 제2격막(723)은 제2챔버(720)를 제21서브 챔버(721)과 제22서브 챔버(722)로 구획한다. 제21서브 챔버(721)는 제11서브 챔버(715) 및 제12서브 챔버(716)에 튜브들(730) 중 일부로 연결되고, 제22서브 챔버(722)는 제12서브 챔버(716)와 제13서브 챔버(717)에 튜브들(730) 중 다른 일부로 연결된다.The second chamber 720 includes a second diaphragm 723. The second diaphragm 723 divides the second chamber 720 into a twenty-first sub chamber 721 and a twenty-second sub chamber 722. The twenty-first sub-chamber 721 is connected to the eleventh sub-chamber 715 and the twelfth sub-chamber 716 as part of the tubes 730, and the twenty-second sub-chamber 722 is connected to the twelfth sub-chamber 716. The thirteenth subchamber 717 is connected to another part of the tubes 730.
유입포트(711)는 애노드 전해액 유출라인(La2)에 연결되어 제11서브 챔버(715)에 애노드 전해액을 유입하고, 유출포트(712)는 애노드 전해액 유출라인(La2)에 연결되어 제13서브 챔버(717)로부터 애노드 전해액을 유출한다.The inlet port 711 is connected to the anode electrolyte outlet line La2 to introduce the anode electrolyte into the eleventh subchamber 715, and the outlet port 712 is connected to the anode electrolyte outlet line La2 to the thirteenth subchamber. The anode electrolyte flows out from 717.
반응 후, 가열되어 애노드 전해액 유출라인(La2)으로 유출되는 애노드 전해액은 제1챔버(710)의 유입포트(711), 제11서브 챔버(715), 튜브들(730) 중 일부, 제2챔버(720)의 제21서브 챔버(721), 튜브들(730) 중 일부, 제1챔버(710)의 제12서브 챔버(716), 튜브들(730) 중 일부, 제2챔버(720)의 제22서브 챔버(722), 튜브들(730) 중 일부, 제1챔버(710)의 제13서브 챔버(717) 및 유출포트(712)를 경유한다. 즉 제1, 제2챔버(710, 720) 및 튜브(730)는 제1실시예와 비교할 때, 열교환 표면적에서 서로 동일하고, 전해액의 경로에서 더 증대되었다.After the reaction, the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 may be a portion of the inlet port 711 of the first chamber 710, the eleventh subchamber 715, the tubes 730, and the second chamber. The twenty-first sub chamber 721 of 720, a portion of the tubes 730, the twelfth sub chamber 716 of the first chamber 710, a portion of the tubes 730, and a second chamber 720 of the second chamber 720. The twenty-second sub chamber 722, some of the tubes 730, the thirteenth sub chamber 717 of the first chamber 710, and the outlet port 712 are provided. That is, when compared with the first embodiment, the first, second chambers 710 and 720 and the tube 730 are identical to each other in the heat exchange surface area, and are further increased in the path of the electrolyte.
따라서 아래 표 1을 보면, 제2실시예는 제1실시예에 비하여, 유입포트(711)와 유출포트(712)에서의 온도 차이를 더 크게 형성하지만, 전해액의 수위에서 더 큰 차이를 보인다. 이로 인하여, 제2실시예는 제1실시예에 비하여, 에너지 효율이 더 낮게 나타났다.Therefore, looking at Table 1 below, the second embodiment forms a larger temperature difference between the inlet port 711 and the outlet port 712 than the first embodiment, but shows a larger difference in the level of the electrolyte. For this reason, the second embodiment has lower energy efficiency than the first embodiment.
도 9는 도 2에 적용되는 제3실시예의 열교환기를 자른 단면도이다. 도 9를 참조하면, 제3실시예의 열교환기(800)에서, 제1챔버(810)는 애노드 전해액 유출라인(La2)에 연결되어 애노드 전해액을 유입하는 유입포트(811)를 구비하고, 제2챔버(820)는 애노드 전해액 유출라인(La2)에 연결되어 애노드 전해액을 유출하는 유출포트(821)를 구비한다.FIG. 9 is a cross-sectional view of the heat exchanger of the third embodiment applied to FIG. 2. Referring to FIG. 9, in the heat exchanger 800 of the third embodiment, the first chamber 810 is provided with an inlet port 811 connected to the anode electrolyte outlet line La2 and introducing the anode electrolyte, and a second The chamber 820 is connected to the anode electrolyte outlet line La2 and has an outlet port 821 for outflowing the anode electrolyte.
제1, 제2챔버(810, 820)는 튜브들(830)로 연결되고, 유입포트(811)와 유출포트(821)는 제1챔버(810)와 제2챔버(820)에서 최대 거리를 형성하여 배치된다.The first and second chambers 810 and 820 are connected to the tubes 830, and the inflow port 811 and the outflow port 821 have a maximum distance from the first chamber 810 and the second chamber 820. Formed and placed.
반응 후, 가열되어 애노드 전해액 유출라인(La2)으로 유출되는 애노드 전해액은 제1챔버(810)의 유입포트(811), 제1챔버(810), 튜브들(730), 제2챔버(820), 제2챔버(820)의 유출포트(821)를 경유한다. 즉 제1, 제2챔버(810, 820) 및 튜브(830)는 제1실시예와 비교할 때, 열교환 표면적에서 동일하고, 전해액의 경로에서 더 감소되었다.After the reaction, the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 is inlet port 811, first chamber 810, tubes 730, and second chamber 820 of the first chamber 810. And via an outlet port 821 of the second chamber 820. That is, the first, second chambers 810, 820 and the tube 830 are the same in the heat exchange surface area, and further reduced in the path of the electrolyte when compared with the first embodiment.
따라서 아래 표 1을 보면, 제3실시예는 제1실시예에 비하여, 유입포트(811)와 유출포트(812)에서의 온도 차이를 비슷하게 형성하지만, 전해액의 수위에서 더 큰 차이(제2실시예 보다는 수위 차이가 작지만)를 보인다. 이로 인하여, 제3실시예는 제1실시예에 비하여, 에너지 효율이 더 낮게 나타났다(제2실시예 보다는 에너지 효율이 높다).Therefore, referring to Table 1 below, the third embodiment forms a similar temperature difference between the inlet port 811 and the outlet port 812 compared to the first embodiment, but has a larger difference in the level of the electrolyte (second embodiment). Although the water level difference is smaller than the example). For this reason, the third embodiment showed lower energy efficiency (higher energy efficiency than the second embodiment) than the first embodiment.
도 10은 도 2에 적용되는 제4실시예의 열교환기를 자른 단면도이다. 도 10을 참조하면, 제4실시예의 열교환기(900)에서, 제1챔버(910)는 제1격막(912)을 포함한다. 제1격막(912)은 유입포트(911) 측에 치우쳐 배치되어 제14서브 챔버(914)와 제15서브 챔버(915)로 구획한다. 제15서브 챔버(915)는 제14서브 챔버(914)보다 크게 형성된다.FIG. 10 is a cross-sectional view of the heat exchanger of the fourth embodiment applied to FIG. 2. Referring to FIG. 10, in the heat exchanger 900 of the fourth embodiment, the first chamber 910 includes a first diaphragm 912. The first diaphragm 912 is disposed to be inclined toward the inlet port 911 and divided into a fourteenth subchamber 914 and a fifteenth subchamber 915. The fifteenth subchamber 915 is larger than the fourteenth subchamber 914.
제2챔버(920)는 제2격막(922)을 포함한다. 제2격막(922)은 유출포트(921) 측에 치우쳐 배치되어 제24서브 챔버(924)와 제25서브 챔버(925)로 구획한다. 제25서브 챔버(925)는 제24서브 챔버(924)보다 크게 형성된다.The second chamber 920 includes a second diaphragm 922. The second diaphragm 922 is disposed to face the outlet port 921 and is divided into a twenty-fourth sub chamber 924 and a twenty-fifth sub chamber 925. The twenty-fifth sub-chamber 925 is larger than the twenty-fourth sub-chamber 924.
제24서브 챔버(924)는 제15서브 챔버(915)에 튜브들(930) 중 일부로 연결되고, 제25서브 챔버(925)는 제14서브 챔버(914)와 제15서브 챔버(915)에 튜브들(930) 중 다른 일부로 연결된다.The twenty-fourth subchamber 924 is connected to the fifteenth subchamber 915 as part of the tubes 930, and the twentyfifth subchamber 925 is connected to the fourteenth subchamber 914 and the fifteenth subchamber 915. To another part of the tubes 930.
반응 후, 가열되어 애노드 전해액 유출라인(La2)으로 유출되는 애노드 전해액은 제1챔버(910)의 유입포트(911), 제14서브 챔버(914), 튜브들(930), 제2챔버(920)의 제25서브 챔버(925), 튜브들(930), 제1챔버(910)의 제15서브 챔버(915), 튜브들(930), 제2챔버(920)의 제24서브 챔버(924) 및 유출포트(921)를 경유한다. 즉 제1, 제2챔버(910, 920) 및 튜브(930)는 제3실시예와 비교할 때, 열교환 표면적에서 동일하고, 전해액의 경로에서 더 증대되었다.After the reaction, the anode electrolyte that is heated and flows out to the anode electrolyte outlet line La2 is inlet port 911, the fourteenth subchamber 914, the tubes 930, and the second chamber 920 of the first chamber 910. 24th subchamber 924 of the 25th subchamber 925, the tubes 930, the 15th subchamber 915 of the first chamber 910, the tubes 930, and the second chamber 920. And through the outlet port 921. That is, the first, second chambers 910, 920 and the tube 930 are the same in the heat exchange surface area, and are further increased in the path of the electrolyte as compared with the third embodiment.
따라서 아래 표 1을 보면, 제4실시예는 제3실시예에 비하여, 유입포트(911)와 유출포트(921)에서의 온도 차이가 증가하였지만(제2실시예보다 온도 차이가 낮다), 전해액의 수위에서 정반대의 차이를 보인다. 이로 인하여, 제4실시예는 제3실시예에 비하여, 에너지 효율이 조금 더 낮게 나타났다(제2실시예 보다는 에너지 효율이 높다).Therefore, in Table 1 below, the fourth embodiment has an increased temperature difference between the inlet port 911 and the outlet port 921 (the temperature difference is lower than that of the second embodiment), compared to the third embodiment. Shows the opposite difference in water level. For this reason, the fourth embodiment showed slightly lower energy efficiency than the third embodiment (the energy efficiency is higher than that of the second embodiment).
제1 내지 제4실시예에 동일한 유속을 적용한 레독스 흐름 전지들의 실험 결과는 표 1과 같다.The experimental results of the redox flow batteries applying the same flow rate to the first to fourth embodiments are shown in Table 1.
동일한 유속Same flow rate 제1실시예First embodiment 제2실시예Second embodiment 제3실시예Third embodiment 제4실시예Fourth embodiment
전해액의 수위 비율(애노드 전해액: 캐소드 전해액)Water level ratio of electrolyte solution (anode electrolyte: cathode electrolyte) (55:45)(55:45) (25:75)(25:75) (65:35)(65:35) (35:65)(35:65)
온도 차이(열교환기의 유입포트와 유출포트)(℃)Temperature difference (inlet and outlet ports of the heat exchanger) (℃) 2.52.5 33 2.42.4 2.82.8
에너지 효율(%)Energy efficiency (%) 72.772.7 68.268.2 70.570.5 69.769.7
제1실시예와 다른 제2, 제3, 제4실시예들을 비교하면, 열교환기(600)의 유입포트(611)와 유출포트(612)에서의 온도 차이가 2.5℃로 다른 실시예의 온도 차이와 유사하게 나타났다.그러나 제1실시예는 다른 제2, 제3, 제4실시예들에 비하여, 전해액의 수위 비율이 55:45, 즉 애노드, 캐소드 전해액의 수위 차이가 10으로 가장 작아서 에너지 효율이 72.7%로 가장 높았다.Comparing the second, third and fourth embodiments with the first embodiment, the temperature difference between the inlet port 611 and the outlet port 612 of the heat exchanger 600 is 2.5 ° C. However, in the first embodiment, the energy level ratio of the electrolyte is 55:45, that is, the difference in the level of the anode and cathode electrolytes is smallest as 10, compared to the other second, third, and fourth embodiments. The highest was 72.7%.
이와 같이, 반응으로 가열된 애노드 전해액을 열교환기(600, 700, 800, 900)로 냉각하므로 충전 및 방전 시, 전해액의 점도 및 비중 차이로 인하여 발생되는 스택 모듈(120) 내에서 전해액의 크로스오버가 줄어든다.As such, the anode electrolyte heated by the reaction is cooled by a heat exchanger (600, 700, 800, 900), so that when the charge and discharge, the crossover of the electrolyte in the stack module 120 due to the difference in viscosity and specific gravity of the electrolyte Decreases.
이로 인하여, 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220)에서 전해액의 수위 차이가 최소화 될 수 있다. 제1실시예의 열교환기(600)는 다른 제2, 제3, 제4실시예들의 열교환기들(700, 800, 900)에 비하여, 전하량 효율을 더 높이고, 결론적으로, 에너지 효율을 더 최적화할 수 있다.For this reason, the level difference between the electrolytes in the anode electrolyte tank 210 and the cathode electrolyte tank 220 may be minimized. The heat exchanger 600 of the first embodiment has higher charge quantity efficiency and, consequently, more energy efficiency than the heat exchangers 700, 800, 900 of the other second, third, and fourth embodiments. Can be.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.
- 부호의 설명 -Description of the sign
10: 멤브레인 20: 스페이서10: membrane 20: spacer
30: 전극판 31: 캐소드 전극30: electrode plate 31: cathode electrode
32: 애노드 전극 40: 멤브레인 흐름 프레임32: anode electrode 40: membrane flow frame
50: 전극 흐름 프레임 61, 62: 제1, 제2집전판50: electrode flow frame 61, 62: first, second collector plate
71, 72: 제1, 제2앤드 캡 101, 102, 103, 104: 단위 스택71, 72: first and second end cap 101, 102, 103, 104: unit stack
110: 단위 모듈 120: 스택 모듈110: unit module 120: stack module
200: 전해액 탱크 201: 제1오버 플로우 관200: electrolyte tank 201: first overflow tube
202: 제2오버 플로우 관 203: 연통관202: second overflow pipe 203: communication pipe
210: 애노드 전해액 탱크 220: 캐소드 전해액 탱크210: anode electrolyte tank 220: cathode electrolyte tank
230: 2상 전해액 탱크 600, 700, 800, 900: 열교환기230: two- phase electrolyte tank 600, 700, 800, 900: heat exchanger
610, 710, 810, 910: 제1챔버 611, 711, 811, 911: 유입포트610, 710, 810, 910: first chamber 611, 711, 811, 911: inlet port
612, 712, 821, 921: 유출포트 613: 격막612, 712, 821, 921: outlet port 613: diaphragm
614: 제1서브 챔버 615: 제2서브 챔버614: first sub chamber 615: second sub chamber
620, 720, 820, 920: 제2챔버 630, 730, 830, 930: 튜브620, 720, 820, 920: second chamber 630, 730, 830, 930: tube
713: 제11격막 714: 제12격막713: Eleventh diaphragm 714: 12th diaphragm
715: 제11서브 챔버 716: 제12서브 챔버715: 11th subchamber 716: 12th subchamber
717: 제13서브 챔버 721: 제21서브 챔버717: thirteenth subchamber 721: twenty-first subchamber
722: 제22서브 챔버 723: 제2격막722: 22nd subchamber 723: second diaphragm
912: 제1격막 914: 제14서브 챔버912: first diaphragm 914: 14th subchamber
915: 제15서브 챔버 922: 제2격막915: 15th subchamber 922: second diaphragm
924: 제24서브 챔버 925: 제25서브 챔버924: 24th subchamber 925: 25th subchamber
B1, B2: 버스바 C1, C2: 단위 셀B1, B2: Busbars C1, C2: Unit cells
CH1, CH2: 제1, 제2유로 채널 H21, H31: 전해액 유입구CH1, CH2: first and second channel H21, H31: electrolyte inlet
H22, H32: 전해액 유출구 La1 Lc1: 전해액 유입라인H22, H32: electrolyte outlet La1 Lc1: electrolyte inlet line
La2, Lc2: 전해액 유출라인 Pa, Pc: 전해액 펌프La2, Lc2: electrolyte outflow line Pa, Pc: electrolyte pump
S: 내부 용적S: internal volume

Claims (10)

  1. 애노드 전해액 및 캐소드 전해액이 유동하며 전류를 생성하는 단위 스택들을 포함하는 스택 모듈; 및 A stack module including unit stacks in which an anode electrolyte and a cathode electrolyte flow and generate current; And
    상기 스택 모듈의 상기 애노드 전해액이 유출되는 애노드 전해액 유출라인에 구비되는 열교환기;를 포함하며,And a heat exchanger provided at an anode electrolyte outlet line through which the anode electrolyte solution of the stack module flows out.
    상기 열교환기는,The heat exchanger,
    서로 이격되어 애노드 전해액을 유입하여 유출시키는 제1챔버와 제2챔버, 및A first chamber and a second chamber spaced apart from each other to allow the anode electrolyte to flow in and out;
    상기 제1챔버와 상기 제2챔버를 연결하여 애노드 전해액을 순환시키는 유로A flow path for circulating an anode electrolyte by connecting the first chamber and the second chamber
    를 포함하는 레독스 흐름 전지.Redox flow battery comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1챔버 및 제2챔버를 연결하는 유로는 외부 공기 흐름에 노출되는 튜브들을 포함하는 레독스 흐름 전지.The flow path connecting the first chamber and the second chamber includes a tube exposed to the outside air flow.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1챔버는The first chamber is
    상기 애노드 전해액 유출라인에 연결되어 상기 애노드 전해액을 유입하는 유입포트,An inlet port connected to the anode electrolyte outlet line for introducing the anode electrolyte;
    상기 애노드 전해액 유출라인에 연결되어 상기 애노드 전해액을 유출하는 유출포트, 및An outlet port connected to the anode electrolyte outlet line for outflowing the anode electrolyte solution, and
    상기 유입포트와 상기 유출포트 사이에 배치되어 양측을 제1서브 챔버와 제2서브 챔버로 구획하는 격막The diaphragm is disposed between the inlet port and the outlet port to partition both sides into a first sub chamber and a second sub chamber.
    을 포함하는 레독스 흐름 전지.Redox flow battery comprising a.
  4. 제3항에 있어서,The method of claim 3,
    상기 애노드 전해액은The anode electrolyte is
    상기 제1챔버의 상기 유입포트, 상기 제1서브 챔버, 상기 튜브들 중 일부, 상기 제2챔버, 상기 튜브들 중 다른 일부, 상기 제1챔버의 상기 제2서브 챔버 및 상기 제1챔버의 상기 유출포트를 경유하는 레독스 흐름 전지.The inlet port of the first chamber, the first sub chamber, part of the tubes, the second chamber, another part of the tubes, the second sub chamber of the first chamber and the first chamber of the first chamber. Redox flow cell via outlet port.
  5. 제2항에 있어서,The method of claim 2,
    상기 제1챔버는The first chamber is
    상기 애노드 전해액 유출라인에 연결되어 상기 애노드 전해액을 유입하는 유입포트,An inlet port connected to the anode electrolyte outlet line for introducing the anode electrolyte;
    상기 애노드 전해액 유출라인에 연결되어 상기 애노드 전해액을 유출하는 유출포트, 및An outlet port connected to the anode electrolyte outlet line for outflowing the anode electrolyte solution, and
    상기 유입포트에서 유출포트로 가면서 순차적으로 배치되어 제11서브 챔버, 제12서브 챔버 및 제13서브 챔버를 구획하는 제11격막과 제12격막The 11th diaphragm and the 12th diaphragm which are arranged sequentially from the inflow port to the outflow port and partition 11th sub chamber, 12th sub chamber, and 13th sub chamber
    을 포함하는 레독스 흐름 전지.Redox flow battery comprising a.
  6. 제5항에 있어서,The method of claim 5,
    상기 제2챔버는The second chamber is
    상기 제11서브 챔버와 상기 제12서브 챔버에 상기 튜브들 중 일부로 연결되는 제21서브 챔버와,A twenty-first sub chamber connected to the eleventh sub chamber and the twelfth sub chamber by a part of the tubes;
    상기 제12서브 챔버와 상기 제13서브 챔버에 상기 튜브들 중 다른 일부로 연결되는 제22서브 챔버를 구획하는 제2격막을 포함하는 레독스 흐름 전지.And a second diaphragm which defines a twenty-second sub chamber connected to the twelfth sub chamber and the thirteenth sub chamber by another part of the tubes.
  7. 제2항에 있어서,The method of claim 2,
    상기 제1챔버는The first chamber is
    상기 애노드 전해액 유출라인에 연결되어 상기 애노드 전해액을 유입하는 유입포트를 구비하고,It is connected to the anode electrolyte outlet line having an inlet port for introducing the anode electrolyte,
    상기 제2챔버는The second chamber is
    상기 애노드 전해액 유출라인에 연결되어 상기 애노드 전해액을 유출하는 유출포트를 구비하며,It is connected to the anode electrolyte outlet line and has an outlet port for outflowing the anode electrolyte,
    상기 유입포트와 상기 유출포트는The inlet port and the outlet port
    상기 제1챔버와 상기 제2챔버에서 최대 거리를 형성하여 배치되는 레독스 흐름 전지.Redox flow battery disposed to form a maximum distance from the first chamber and the second chamber.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1챔버는The first chamber is
    상기 유입포트 측에 치우쳐 배치되어 제14서브 챔버와 상기 제14서브 챔버보다 큰 제15서브 챔버를 구획하는 제1격막을 포함하는 레독스 흐름 전지.Redox flow battery comprising a first diaphragm disposed on the inlet port side and partitioning a 14th subchamber and a 15th subchamber larger than the 14th subchamber.
  9. 제8항에 있어서,The method of claim 8,
    상기 제2챔버는 The second chamber is
    상기 유출포트 측에 치우쳐 배치되어 제24서브 챔버와 상기 제24서브 챔버보다 큰 제25서브 챔버를 구획하는 제2격막을 포함하는 레독스 흐름 전지.And a second diaphragm disposed on the outlet port side to define a twenty-fourth sub-chamber and a twenty-fifth sub-chamber larger than the twenty-fourth sub-chamber.
  10. 제9항에 있어서,The method of claim 9,
    상기 제24서브 챔버는 상기 제15서브 챔버에 상기 튜브들 중 일부로 연결되고,The twenty-fourth subchamber is connected to the fifteenth subchamber by some of the tubes,
    상기 제25서브 챔버는 상기 제14서브 챔버와 상기 제15서브 챔버에 상기 튜브들 중 다른 일부로 연결되는 레독스 흐름 전지.The 25th subchamber is connected to the 14th subchamber and the 15th subchamber with a redox flow battery.
PCT/KR2018/003277 2017-03-30 2018-03-21 Redox flow battery WO2018182226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170040547A KR20180110792A (en) 2017-03-30 2017-03-30 Redox flow battery
KR10-2017-0040547 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018182226A1 true WO2018182226A1 (en) 2018-10-04

Family

ID=63676332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003277 WO2018182226A1 (en) 2017-03-30 2018-03-21 Redox flow battery

Country Status (2)

Country Link
KR (1) KR20180110792A (en)
WO (1) WO2018182226A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437353A (en) * 2021-06-30 2021-09-24 深圳大学 Flowing type lithium ion battery based on bypass flow type flow field structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188730A (en) * 2006-01-12 2007-07-26 Kansai Electric Power Co Inc:The Heat utilization system
KR20100045452A (en) * 2007-07-18 2010-05-03 세레네르기 에이/에스 A bipolar plate for a fuel cell comprising a by-passed serpentine flow path for oxidant gas, a cooling plate for a fuel cell comprising a by-passed serpentine flow path for coolant fluid, fuel cell comprising such plates and uses thereof
KR20160078566A (en) * 2014-12-24 2016-07-05 오씨아이 주식회사 Flow distributor having cooling function and cascade type redox flow battery having the same
KR20170005629A (en) * 2015-07-06 2017-01-16 롯데케미칼 주식회사 Redox flow battery
KR20170015798A (en) * 2015-07-31 2017-02-09 오씨아이 주식회사 Heat exchanger for redox flow battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188730A (en) * 2006-01-12 2007-07-26 Kansai Electric Power Co Inc:The Heat utilization system
KR20100045452A (en) * 2007-07-18 2010-05-03 세레네르기 에이/에스 A bipolar plate for a fuel cell comprising a by-passed serpentine flow path for oxidant gas, a cooling plate for a fuel cell comprising a by-passed serpentine flow path for coolant fluid, fuel cell comprising such plates and uses thereof
KR20160078566A (en) * 2014-12-24 2016-07-05 오씨아이 주식회사 Flow distributor having cooling function and cascade type redox flow battery having the same
KR20170005629A (en) * 2015-07-06 2017-01-16 롯데케미칼 주식회사 Redox flow battery
KR20170015798A (en) * 2015-07-31 2017-02-09 오씨아이 주식회사 Heat exchanger for redox flow battery

Also Published As

Publication number Publication date
KR20180110792A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017007228A1 (en) Redox flow battery
WO2019182251A1 (en) Battery module, battery pack including battery module, and vehicle including battery pack
WO2016068551A1 (en) Unit battery pack
WO2018169216A1 (en) Battery module, battery pack comprising battery module, and vehicle comprising battery pack
WO2018169358A1 (en) Redox flow battery
WO2016043441A1 (en) Battery module comprising cooling structure having minimized bending of refrigerant channel
WO2017179795A1 (en) Redox flow battery
WO2012091459A2 (en) Battery module storage device, battery module temperature adjustment device, and electric power storage system having same
WO2019004553A1 (en) Battery module
WO2015016566A1 (en) Battery module assembly
WO2018182376A1 (en) Redox flow battery having electrolyte flow path independently provided therein
WO2013119028A1 (en) Novel air cooled structured battery pack
WO2016105034A1 (en) Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same
WO2012148160A2 (en) Battery pack storage apparatus and cooling apparatus for power storage battery pack using same
WO2010002139A2 (en) Battery module comprising battery cell assembly with heat exchanger
EP3482430A1 (en) Battery module carrier, battery module, and vehicle with a battery system
WO2019221376A1 (en) Battery pack comprising frame profile having integral refrigerant circuit member
WO2022240140A1 (en) Heating tray for vacuum hopper precharger
WO2016175400A1 (en) Redox flow battery
WO2018080182A1 (en) Battery module
WO2017007227A1 (en) Redox flow battery
WO2019074247A1 (en) Battery pack having bidirectional cooling structure
WO2018182226A1 (en) Redox flow battery
WO2018160050A2 (en) Redox flow battery
WO2019221394A1 (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775883

Country of ref document: EP

Kind code of ref document: A1