JP2007188730A - Heat utilization system - Google Patents

Heat utilization system Download PDF

Info

Publication number
JP2007188730A
JP2007188730A JP2006005445A JP2006005445A JP2007188730A JP 2007188730 A JP2007188730 A JP 2007188730A JP 2006005445 A JP2006005445 A JP 2006005445A JP 2006005445 A JP2006005445 A JP 2006005445A JP 2007188730 A JP2007188730 A JP 2007188730A
Authority
JP
Japan
Prior art keywords
electrolyte
heat
negative electrode
positive electrode
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006005445A
Other languages
Japanese (ja)
Inventor
Masamori Nohayashi
正盛 野林
Naohiro Inui
直浩 乾
Yasumitsu Tsutsui
康充 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2006005445A priority Critical patent/JP2007188730A/en
Publication of JP2007188730A publication Critical patent/JP2007188730A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively use an electrolytic solution circulation type battery in the winter season when there is less leveling effect by utilizing heat generated by an electrolytic solution of the electrolytic solution circulation type battery as a heat source of a heater or the like. <P>SOLUTION: This is a heat utilization system which includes the electrolytic solution circulation type battery 1 which includes as constituting elements a battery cell 11, a positive electrode tank 2, a negative electrode tank 3, a positive electrode electrolytic solution circulation passage 4 to circulate and supply a positive electrode electrolytic solution to the battery cell, a negative electrode electrolytic solution circulation passage 5 to circulate and supply a negative electrode electrolytic solution to the battery cell, and pumps 13, 14 installed at the respective electrolytic solution circulation passages, and mixing flow passages 71, 72 to mix an appropriate amount of a positive electrode electrolytic solution and a negative electrode electrolytic solution flowing in the respective electrolytic solution circulation passages, and in which the heat generated in the mixing flow passage is used in a heating system. A part in which the electrolytic solution generates heat in the mixing flow passage is assembled into a heat exchanger 812, and the electrolytic solution heat exchanged in the heat exchanger 812 is made to return to the electrolytic solution circulation passage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、セルに正極電解液及び負極電解液を供給して充放電を行う電解液循環型電池を備える熱利用システムに関するものである。特に、電解液で発生した熱を熱源として加熱システムに利用する熱利用システムに関するものである。   The present invention relates to a heat utilization system including an electrolyte circulation type battery that charges and discharges by supplying a positive electrode electrolyte and a negative electrode electrolyte to a cell. In particular, the present invention relates to a heat utilization system that uses heat generated in an electrolytic solution as a heat source for a heating system.

レドックスフロー電池などの電解液循環型電池は、例えば、特許文献1に開示されているように、従来、負荷平準化や瞬低対策などに利用されている。図9はレドックスフロー電池の動作原理を示す説明図である。この電池は、イオン交換膜からなる隔膜2Cで正極セル2Aと負極セル2Bとに分離されたセル1Aを備える。正極セル2A、負極セル2Bにはそれぞれ正極電極3Aと負極電極3Bとを内蔵している。   An electrolyte circulation type battery such as a redox flow battery has been conventionally used for load leveling, a measure against voltage sag, and the like, as disclosed in Patent Document 1, for example. FIG. 9 is an explanatory diagram showing the operating principle of the redox flow battery. This battery includes a cell 1A separated into a positive electrode cell 2A and a negative electrode cell 2B by a diaphragm 2C made of an ion exchange membrane. Each of the positive electrode cell 2A and the negative electrode cell 2B contains a positive electrode 3A and a negative electrode 3B.

正極セル2Aには、正極セル2Aに供給された後、正極セル2Aから排出される正極電解液を貯留する正極タンク4Aが電解液の循環路となる導管6Aを介して接続されている。負極セル2Bには、負極セル2Bに供給された後、負極電極3Bから排出される負極電解液を貯留する負極タンク4Bが電解液の循環路となる導管6Bを介して接続されている。   Connected to the positive electrode cell 2A is a positive electrode tank 4A that stores the positive electrolyte solution that is supplied to the positive electrode cell 2A and then discharged from the positive electrode cell 2A via a conduit 6A that serves as a circulation path for the electrolyte solution. A negative electrode tank 4B for storing a negative electrode electrolyte that is supplied to the negative electrode cell 2B and then discharged from the negative electrode 3B is connected to the negative electrode cell 2B via a conduit 6B that serves as a circulation path for the electrolyte.

各極電解液にはバナジウムイオンなど原子価が変化するイオン溶液を用い、ポンプ5A,5Bで電解液を循環させ、正極電極3A、負極電極3Bにおけるイオンの価数変化反応に伴って充放電を行う。例えば、バナジウムイオンを含む電解液を用いた場合、セル内で充放電時に生じる反応は次の通りである。   Each electrode electrolyte uses an ionic solution that changes in valence, such as vanadium ion, and the electrolyte is circulated by pumps 5A and 5B, and charge and discharge are performed in accordance with the ion valence change reaction in positive electrode 3A and negative electrode 3B. Do. For example, when an electrolytic solution containing vanadium ions is used, the reaction that occurs during charging and discharging in the cell is as follows.

正極:V4+→V5++e-(充電) V4+←V5++e-(放電)
負極:V3++e-→V2+(充電) V3++e-←V2+(放電)
The positive electrode: V 4+ → V 5+ + e - ( charging) V 4+ ← V 5+ + e - ( discharge)
The negative electrode: V 3+ + e - → V 2+ ( charging) V 3+ + e - ← V 2+ ( discharge)

また、レドックスフロー電池における充放電反応は、電解液の温度の影響を受け、同温度が高いほど、内部抵抗を低くできることから大きな出力が得られ、電池容量が向上する。そこで、特許文献2に示すように、正極タンクと負極タンクとをタンク底部近くにおいて連通管で連通させ、この連通管にバルブを設ける構成としたものが提案されている。この構成により、少なくともどちらか一方のタンクの電解液の温度が所定の温度よりも低くなったときには、バルブを開いて双方のタンクの電解液を混合させて電解液を自己放電させることにより、電解液を発熱させて温度を上げるようにしている。   In addition, the charge / discharge reaction in the redox flow battery is affected by the temperature of the electrolytic solution, and the higher the temperature, the lower the internal resistance, so that a larger output is obtained and the battery capacity is improved. Therefore, as shown in Patent Document 2, there has been proposed a structure in which a positive electrode tank and a negative electrode tank are connected with a communication pipe near the bottom of the tank, and a valve is provided on the communication pipe. With this configuration, when the temperature of the electrolyte in at least one of the tanks is lower than a predetermined temperature, the valve is opened to mix the electrolyte in both tanks, and the electrolyte is self-discharged. The liquid is heated to raise the temperature.

特許文献2の構成によれば、運転開始時や外部から新たに電解液を補充する場合などで電解液の温度が低い場合でも、連通管を介して正極電解液と負極電解液とを混合して、自己放電により発熱させて電解液の温度を上昇させ、電池容量を向上させることができる。   According to the configuration of Patent Document 2, even when the temperature of the electrolyte is low, such as when starting operation or when a new electrolyte is replenished from the outside, the positive electrode electrolyte and the negative electrode electrolyte are mixed via the communication pipe. Thus, heat can be generated by self-discharge to increase the temperature of the electrolytic solution and improve the battery capacity.

特開平8-138716号公報JP-A-8-138716 特開2001-43884号公報Japanese Patent Laid-Open No. 2001-43884

以上のような電解液循環型電池は、負荷平準用として用いる場合には、通常、夏場の最大電力負荷に合わせて設計される。しかし、冬場はガス等の熱源による暖房が多く使われるため、昼間の電力ピークが小さく、電力使用量が減り、電解液循環型電池を冬場に負荷平準用として用いる場合には、平準化効果が少なく電池を運転するメリットが小さい。   When the electrolyte circulation type battery as described above is used for load leveling, it is usually designed according to the maximum power load in summer. However, since heating with a heat source such as gas is often used in the winter, the power peak is small and the amount of power used is reduced, and there is a leveling effect when the electrolyte circulation type battery is used for load leveling in the winter. Less merit to operate battery.

ところで、暖房を行う場合、電気ヒーター、ヒートポンプチラー、温水式の暖房機(床暖房など)、ガスまたは石油類による燃焼系の暖房機などを用いて暖房を行う。このような各暖房機器を用いて暖房を行う場合、以下のような不具合がある。   By the way, when heating is performed, heating is performed using an electric heater, a heat pump chiller, a hot water heater (floor heating or the like), a combustion heater using gas or petroleum. When heating is performed using each such heating device, there are the following problems.

電気式のヒーターによる暖房は、主に昼間の電気を使うため、電気代が高くなるという不具合がある。   Heating by an electric heater mainly uses daytime electricity, so there is a problem that the electricity bill becomes high.

ヒートポンプチラーによる暖房は、ヒートポンプが外気温度によって能力が変動し、しかも通常コンプレッサーが屋外にあるため、このコンプレッサーで発生した熱が屋外に逃げてしまう。また外気温が非常に低い時に暖房を行うと、室外機は0℃以下の風で熱交換しようとするため、室外機に霜が付き、霜取り運転(暖房停止)が必要となる場合が多い。以上のように、ヒートポンプチラーによる暖房では、暖房の利きが悪く、最も暖房が必要となる早朝に霜取り運転で止まるなど、暖房性能に問題がある。   In the heating by the heat pump chiller, the capacity of the heat pump varies depending on the outside air temperature, and since the compressor is usually outdoors, the heat generated by the compressor escapes outdoors. Further, when heating is performed when the outside air temperature is very low, the outdoor unit tries to exchange heat with wind of 0 ° C. or less, so that the outdoor unit is often frosted and defrosting operation (heating stop) is often required. As described above, in the heating by the heat pump chiller, there is a problem in the heating performance such that the heating is not good and stops in the defrosting operation in the early morning when the heating is most necessary.

温水式の暖房の場合は、主に夜間の安価な電気やガス、石油を使うため、ランニングコストは低くなるが、温められた温水を搬送して暖房に利用するため、搬送中に水温が低下し、温度調整が行い難い。さらに、通常は、ある程度まとまった量の温水を作り、この温水を暖房として利用するため、不規則な暖房運転や、一部の部屋だけ不定期に暖房するような変化の多い運転には温水式の暖房は効率が悪くなる。   In the case of hot water heating, the running cost is low because it mainly uses cheap electricity, gas, and oil at night, but the warmed water is transported and used for heating, so the water temperature decreases during transportation. However, it is difficult to adjust the temperature. In addition, usually a certain amount of warm water is made and this warm water is used as heating, so it is hot water type for irregular heating operation or operation with many changes such as heating some rooms irregularly. Heating is inefficient.

ガス、石油類による暖房は、安価で、暖房能力に優れるが、燃料を燃焼させるため、排ガス、CO2の増加という環境面の問題がある。 Heating with gas and petroleum is inexpensive and excellent in heating capacity, but there is an environmental problem of increasing exhaust gas and CO 2 because fuel is burned.

本発明は、平準化効果が少なく電池運転メリットが小さい冬場において電解液循環型電池で発生する熱を利用して上記加熱システムの不具合を解消する熱利用システムを提供することを目的とする。   An object of the present invention is to provide a heat utilization system that solves the problems of the heating system by using heat generated in an electrolyte circulation type battery in winter when the effect of leveling is small and the battery operation merit is small.

本出願人は、電解液循環型電池を充放電したときに、電解液で発生する熱に着目し、電解液の熱を暖房機器などの加熱システムに利用することにより、上記した暖房機器等の不具合を解決するだけでなく、電解液循環型電池の冬場における利用価値を高められるに至ることを見出した。   The present applicant pays attention to the heat generated in the electrolyte when charging / discharging the electrolyte circulation type battery, and uses the heat of the electrolyte in a heating system such as a heating device. It has been found that not only the problem can be solved, but also the utility value of the electrolyte circulation type battery in winter can be increased.

本発明の熱利用システムは、電解液循環型電池と、電解液循環型電池の各電解液循環路を流れる正極電解液と負極電解液とを適量混合する混合流路とを備え、混合流路で発生した電解液の熱を加熱システムに用いることを特徴とする。   The heat utilization system of the present invention includes an electrolyte circulation type battery, and a mixing channel for mixing an appropriate amount of a positive electrode electrolyte and a negative electrode electrolyte flowing through each electrolyte circuit of the electrolyte circulation type battery. The heat of the electrolytic solution generated in step 1 is used for a heating system.

電解液循環型電池は、正極電解液及び負極電解液が供給される電池セルと、正極電解液が貯留される正極タンクと、負極電解液が貯留される負極タンクと、正極電解液を電池セルに循環供給する正極電解液循環路と、負極電解液を電池セルに循環供給する負極電解液循環路と、各電解液循環路に設けるポンプとを構成要素として含む。   The electrolyte circulation type battery includes a battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, a positive electrode tank in which a positive electrode electrolyte is stored, a negative electrode tank in which a negative electrode electrolyte is stored, and a positive electrode electrolyte. A positive electrode electrolyte circulation path that circulates and supplies to the battery cell, a negative electrode electrolyte circulation path that circulates and supplies the negative electrode electrolyte solution to the battery cells, and a pump provided in each electrolyte circulation path are included as constituent elements.

本発明では、混合流路における電解液が発熱している部分を暖房機器などの加熱システムに組み込んで、加熱システムにおいて電解液を熱交換する。   In the present invention, the portion of the mixing channel where the electrolyte is generating heat is incorporated into a heating system such as a heating device, and the electrolyte is exchanged in the heating system.

加熱システムとしては、床暖房機、ファン暖房機、ヒートポンプチラーなどが挙げられる。   Examples of the heating system include a floor heater, a fan heater, and a heat pump chiller.

本発明では、熱源として発熱している電解液を用いる。電解液は、発熱量を大きくするために、充電された正極電解液と負極電解液を混合させたものを熱利用システムの熱源として用いることが好ましい。さらに、これら正極と負極の電解液の混合は、加熱システムにおいて必要とされる熱量に応じて適量混合させることが好ましい。   In the present invention, an exothermic electrolytic solution is used as a heat source. In order to increase the calorific value, it is preferable to use a mixture of a charged positive electrode electrolyte and a negative electrode electrolyte as a heat source of the heat utilization system. Furthermore, it is preferable that the electrolyte solution of these positive electrodes and negative electrodes is mixed in an appropriate amount according to the amount of heat required in the heating system.

そして、加熱システムに電解液の熱を用いる場合としては、例えば、床暖房機の場合には、床暖房機の加温部に用いる温水を電解液の熱で加熱したり、床暖房機の加温部として電解液の熱を直接用いることが挙げられる。   For example, in the case of a floor heater, the heating water used in the heating unit of the floor heater is heated with the heat of the electrolyte, or the floor heater is heated. Directly using the heat of the electrolytic solution as the hot part.

さらに、ファン暖房機の場合には、ファン暖房機に設ける熱交換器内を流れる流体を電解液の熱で加熱したり、電解液を熱交換器内に流す流体として直接用いることもできる。   Further, in the case of a fan heater, the fluid flowing in the heat exchanger provided in the fan heater can be heated by the heat of the electrolytic solution, or directly used as the fluid flowing the electrolytic solution in the heat exchanger.

また、ヒートポンプチラーの場合には、ヒートポンプチラーに用いる冷媒を電解液の熱で加熱する。特に、ヒートポンプチラーの室外に配置される熱交換器を流れる冷媒を電解液の熱で加熱することが冬場の霜の発生を防止する上で好ましい。   In the case of a heat pump chiller, the refrigerant used for the heat pump chiller is heated by the heat of the electrolyte. In particular, heating the refrigerant flowing through the heat exchanger disposed outside the heat pump chiller with the heat of the electrolyte is preferable in preventing the generation of frost in winter.

本発明では、混合流路において、正極電解液と負極電解液とが混合され、混合による自己放電で電解液を発熱させる。そして、混合流路における電解液が発熱している部分を加熱システムに組み込むことにより、電解液で発生した熱を加熱システムで利用する。加熱システムにおいて、熱交換された電解液は、正極電解液循環路と負極電解液循環路とに戻す。   In the present invention, the positive electrode electrolyte and the negative electrode electrolyte are mixed in the mixing channel, and the electrolyte is heated by self-discharge by mixing. And the heat which generate | occur | produced in electrolyte solution is utilized with a heating system by incorporating in the heating system the part which the electrolyte solution in the mixing flow path is exothermic. In the heating system, the heat-exchanged electrolyte returns to the positive electrolyte circulation circuit and the negative electrolyte circulation circuit.

混合流路には、正極電解液と負極電解液との混合量を調整する調整弁を設けることが好ましい。このように、混合流路に調整弁を設けることにより、調整弁の開閉動作で、容易かつ確実に正極電解液と負極電解液を加熱システムで必要とされる熱量が得られるように混合できる。   It is preferable to provide an adjustment valve for adjusting the mixing amount of the positive electrode electrolyte and the negative electrode electrolyte in the mixing channel. Thus, by providing the adjusting valve in the mixing channel, the positive and negative electrolyte solutions can be easily and reliably mixed by the opening and closing operation of the adjusting valve so that the amount of heat required by the heating system can be obtained.

さらに、混合流路に調整弁を設ける場合には、混合流路の電解液発熱箇所の温度を検出する温度検出手段と、この温度検出手段の検出結果に基づいて調整弁により混合流路における電解液の混合量の制御を行う制御手段とを備えるようにする。   Further, in the case of providing a regulating valve in the mixing channel, temperature detecting means for detecting the temperature of the electrolyte solution heat generation point in the mixing channel and electrolysis in the mixing channel by the regulating valve based on the detection result of the temperature detecting means. And a control means for controlling the mixing amount of the liquid.

この場合、温度検出手段で、混合流路での電解液の発熱温度を検出し、この検出結果に基づいて、制御手段で調整弁の開閉動作を制御することにより、熱利用システムとして必要な熱量が得られるように電解液の混合量を調整できる。このように、温度検出手段と制御手段とを設けることにより、電解液で発生した熱を過不足なく加熱システムで利用することができるので、確実な暖房制御が可能となる。   In this case, the temperature detection means detects the heat generation temperature of the electrolyte solution in the mixing flow path, and the control means controls the opening / closing operation of the regulating valve based on the detection result. The amount of the electrolyte solution mixed can be adjusted so that is obtained. Thus, by providing the temperature detection means and the control means, the heat generated in the electrolytic solution can be utilized in the heating system without excess or deficiency, so that reliable heating control is possible.

混合流路は、具体的には、各電解液循環路におけるポンプより下流側に接続される上流部と、これら上流部の流路を合流させて形成される正極電解液と負極電解液とが合流する合流部と、合流部を流れる電解液を分流して各電解液循環路の上流部接続位置より下流側に戻す下流部とを有する構成とする。   Specifically, the mixing flow path includes an upstream part connected to the downstream side of the pump in each electrolyte circulation path, and a positive electrode electrolyte and a negative electrode electrolyte formed by joining the upstream flow paths. A joining portion that joins and a downstream portion that diverts the electrolyte flowing through the joining portion and returns it to the downstream side from the upstream connection position of each electrolyte circulation path.

なお、上流部は、正極電解液循環路におけるポンプより下流側に接続される正極側上流部と、負極電解液循環路におけるポンプより下流側に接続される負極側上流部とを有する。下流部も、正極電解液循環路に電解液を戻す正極側下流部と、負極電解液循環路に電解液を戻す負極側下流部とを有する。   The upstream portion has a positive-electrode-side upstream portion connected downstream from the pump in the positive-electrode electrolyte circulation path and a negative-electrode-side upstream portion connected downstream from the pump in the negative-electrode electrolyte circulation circuit. The downstream portion also includes a positive-electrode-side downstream portion that returns the electrolyte solution to the positive-electrode electrolyte circulation path and a negative-electrode-side downstream portion that returns the electrolyte solution to the negative-electrode electrolyte circulation path.

合流部では、正極電解液と負極電解液が混合されて電解液が発熱する。電解液を加熱システム内で放熱させて熱交換させた後、熱交換後の電解液を正極側と負極側とに分流させ下流部を構成する。   At the junction, the positive electrode electrolyte and the negative electrode electrolyte are mixed and the electrolyte generates heat. After the electrolyte solution is radiated in the heating system to exchange heat, the electrolyte solution after the heat exchange is divided into a positive electrode side and a negative electrode side to constitute a downstream portion.

また、合流部は、合流した電解液が複数に分流されて流れる分岐流路と、各分岐流路への電解液の流量を制御する調整弁とを有するようにしてもよい。   Further, the merging section may include a branch flow path in which the merged electrolyte solutions are divided and flowed, and an adjustment valve that controls the flow rate of the electrolyte solution to each branch flow path.

この場合、合流部は、合流した電解液を加熱システム内で放熱させる前に複数に分岐させて分岐流路を構成する。そして、分岐流路の少なくとも一部を、加熱システムに配設して、この部分を加熱システムでの加熱部分として用いる。さらに、加熱システムを複数設けて、これら加熱システムに分岐流路を別々に配設するようにしてもよいし、一つの加熱システムに複数の分岐流路を配設するようにしてもよい。調整弁は、分岐流路における加熱システムへの入口より上流に設けることが好ましい。   In this case, the merging section divides the merged electrolyte solution into a plurality of parts before radiating heat in the heating system to form a branch flow path. And at least one part of a branch flow path is arrange | positioned in a heating system, and this part is used as a heating part in a heating system. Furthermore, a plurality of heating systems may be provided, and the branch flow paths may be provided separately in these heating systems, or a plurality of branch flow paths may be provided in one heating system. The regulating valve is preferably provided upstream of the inlet to the heating system in the branch channel.

混合された電解液は、調整弁を制御することにより、各分岐流路のうち、任意の分岐流路に循環させることができる。その結果、加熱システムを複数設けて、これら加熱システムに個別に分岐流路の少なくとも一部を配設する場合には、複数の加熱システムのうち、任意の加熱システムに対応した分岐流路を選択して、選択された分岐流路に電解液の熱を供給することが可能となる。   The mixed electrolyte can be circulated to any branch flow path among the branch flow paths by controlling the regulating valve. As a result, when multiple heating systems are provided and at least part of the branch flow paths are individually arranged in these heating systems, a branch flow path corresponding to an arbitrary heating system is selected from the plurality of heating systems. As a result, the heat of the electrolyte can be supplied to the selected branch channel.

また、一つの加熱システムに複数の分岐流路を配設する場合には、調整弁の制御により発熱させる分岐流路に電解液を供給するようにして、加熱システムでの加熱量を制御することができる。   When a plurality of branch channels are provided in one heating system, the amount of heating in the heating system should be controlled by supplying electrolyte to the branch channel that generates heat by controlling the regulating valve. Can do.

以上のように、分岐流路を構成する配管と調整弁によって電解液の循環経路を容易に変更できるので、例えば複数の加熱システムを床暖房機とする場合には、複数の床暖房機を自在に暖房することができる。複数の部屋を暖房する場合、各分岐流路をそれぞれの部屋の暖房用として用いることにより、複数の部屋を必要に応じて個別に暖房することができる。また、一つの部屋を床暖房する場合でも、この部屋の内部を複数のエリアに分けて、各エリアに対応させて分岐流路を配置させるようにすることもでき、この場合には、必要なエリアの暖房を行うことができる。   As described above, the circulation path of the electrolyte solution can be easily changed by the piping and the regulating valve constituting the branch flow path. For example, when a plurality of heating systems are used as a floor heater, a plurality of floor heaters can be freely used. Can be heated. When heating a plurality of rooms, the plurality of rooms can be individually heated as necessary by using each branch channel for heating each room. In addition, even when a room is heated under the floor, the interior of this room can be divided into a plurality of areas, and branching channels can be arranged corresponding to each area. The area can be heated.

また、正極電解液の上流部と、負極電解液の上流部を、それぞれ複数に分岐させ、分岐後の流路を合流させて複数の合流部するとともに、上流部に各合流部への電解液の流量を制御する調整弁を備えるようにしてもよい。   Further, the upstream portion of the positive electrode electrolyte and the upstream portion of the negative electrode electrolyte are branched into a plurality of portions, and the flow paths after branching are merged to form a plurality of merge portions, and the electrolyte solution to each merge portion in the upstream portion You may make it provide the adjustment valve which controls the flow volume of this.

そして、各合流部の少なくとも一部を、加熱システムに配設して、この部分を加熱システムでの加熱部分として用いる。さらに、加熱システムを複数設けて、これら加熱システムに複数の合流部を別々に配設するようにしてもよいし、一つの加熱システムに複数の合流部を配設するようにしてもよい。調整弁は、合流部より上流に設けることが好ましい。   And at least one part of each joining part is arrange | positioned in a heating system, and this part is used as a heating part in a heating system. Further, a plurality of heating systems may be provided, and a plurality of merging portions may be separately disposed in these heating systems, or a plurality of merging portions may be disposed in one heating system. The regulating valve is preferably provided upstream from the junction.

この場合も複数の加熱システムを暖房機とする場合には、各合流部の合流位置は、複数の暖房機に対して、各暖房機の近く、または、暖房機の設備内に配置することにより、電解液の合流位置から負荷となる暖房機の加温部までの距離をできるだけ短くできるので、電解液の搬送途中での放熱ロスをできるだけ少なくできる。その結果、電解液で発生した熱の利用効率が向上する。   Also in this case, when a plurality of heating systems are used as a heater, the merging position of each merging portion is arranged near each heater or in the heater facility with respect to the plurality of heaters. Since the distance from the joining position of the electrolyte solution to the heating part of the heater as a load can be shortened as much as possible, the heat dissipation loss during the transportation of the electrolyte solution can be minimized. As a result, the utilization efficiency of the heat generated in the electrolyte is improved.

加熱システムが床暖房機の場合には、混合流路における発熱部分を床下に配置してこの発熱部分を床暖房機の加温部とすることができる。混合流路における発熱部分を床下に配置することにより、床下において、発熱する電解液を循環させて直接床面を暖めることができる。このように、混合により発熱させた電解液を床下で放熱させるので、無駄なく暖房に利用することが可能となる。さらに、本発明の混合流路が、従来の床暖房機の加温部を構成していた温水管の代わりとなるので、温水管を不要にできる。   When the heating system is a floor heater, a heat generating portion in the mixing flow path can be disposed under the floor, and this heat generating portion can be used as a heating unit of the floor heater. By disposing the heat generating part in the mixing channel under the floor, the floor surface can be directly warmed by circulating the heat generating electrolyte under the floor. In this way, since the electrolyte generated by mixing is dissipated under the floor, it can be used for heating without waste. Furthermore, since the mixing flow path of the present invention replaces the hot water pipe constituting the heating section of the conventional floor heater, the hot water pipe can be dispensed with.

また、加熱システムが床暖房機であり、床下に温水管を配置して温水管を流れる水を混合流路の電解液発熱部分を流れる電解液の熱で加熱することもできる。   Further, the heating system is a floor heater, and a hot water pipe is disposed under the floor so that water flowing through the hot water pipe can be heated by the heat of the electrolyte flowing through the electrolyte heating portion of the mixing channel.

温水暖房の場合、電解液循環型電池で余ったエネルギーを既存の床暖房機に用いる温水を加熱するために利用することが可能となり、しかも、従来使用していた温水を加熱するための熱交換器を不要にできる。その結果、電解液循環型電池と既設の温水床暖房設備とを組み合わせることにより、電解液循環型電池によって安価な夜間電力を有効に活用して、床暖房を行うことができる。   In the case of hot water heating, it becomes possible to use the excess energy in the electrolyte circulation battery to heat the hot water used in existing floor heaters, and heat exchange to heat the hot water used in the past The vessel can be made unnecessary. As a result, by combining the electrolyte circulation type battery and the existing hot water floor heating facility, floor heating can be performed by effectively utilizing inexpensive nighttime electric power by the electrolyte circulation type battery.

加熱システムがヒートポンプチラーの場合には、ヒートポンプチラーに設ける冷媒配管を流れる冷媒を混合流路の電解液発熱部分を流れる電解液の熱で加熱することが好ましい。この場合には、低温時に、ヒートポンプチラーの室外機を流れる冷媒を電解液で発生した熱で加熱することにより、室外機に霜が発生するのを抑制して、ヒートポンプの暖房機能を向上させることができる。その結果、高効率で暖房能力に優れ、安定した暖房能力が得られるヒートポンプチラーを提供できる。   When the heating system is a heat pump chiller, it is preferable to heat the refrigerant flowing through the refrigerant pipe provided in the heat pump chiller with the heat of the electrolytic solution flowing through the electrolytic solution heating portion of the mixing channel. In this case, at low temperatures, the refrigerant flowing through the outdoor unit of the heat pump chiller is heated with the heat generated by the electrolyte, thereby suppressing the generation of frost in the outdoor unit and improving the heating function of the heat pump. Can do. As a result, it is possible to provide a heat pump chiller that is highly efficient, excellent in heating capacity, and capable of obtaining stable heating capacity.

また、電解液循環型電池は、主として原子力発電で得られる安価でクリーンな夜間電力を用いて充電でき、その電解液循環型電池の電解液の熱を利用してヒートポンプチラーを駆動させることができる。従って、オール電化普及上の課題であった真冬朝方の暖房熱源としてガスや石油等の燃料暖房を用いる必要がなくなり、CO2削減にも有効となる。 In addition, the electrolyte circulation type battery can be charged using cheap and clean nighttime power obtained mainly by nuclear power generation, and the heat pump chiller can be driven using the heat of the electrolyte solution of the electrolyte circulation type battery. . Therefore, it is not necessary to use fuel heating such as gas or oil as a heating heat source in the morning of winter, which has been a problem in the popularization of all electrification, and it is effective for CO 2 reduction.

なお、本発明の熱利用システムの電解液循環型電池に用いる電解液としては、起電力が高く、エネルギー密度が大きく、電解液が単一元素系であるため正極電解液と負極電解液とが混合しても充電によって再生することができるといった多くの利点を有しているバナジウムイオン溶液が好適である。各電解液循環路および混合流路は、電解液が接触しても短絡などの事故が生じないように絶縁材料にて形成されたパイプなどを利用するとよい。   The electrolyte solution used in the electrolyte circulation type battery of the heat utilization system of the present invention has a high electromotive force, a large energy density, and the electrolyte solution is a single element system. A vanadium ion solution having many advantages that it can be regenerated by charging even if mixed is preferred. For each electrolyte circulation path and mixing channel, a pipe formed of an insulating material may be used so that an accident such as a short circuit does not occur even when the electrolyte contacts.

また、前記した各調整弁の制御を行う制御手段は、コンピュータ、シーケンサ(プログラマブル・ロジック・コントローラ)などを用いて行う。   Further, the control means for controlling each regulating valve described above is performed using a computer, a sequencer (programmable logic controller), or the like.

上記構成を備える本発明の熱利用システムは、正極と負極の電解液を必要に応じて適量混合させて熱を発生させ、この熱を暖房機器等の加熱システムの熱源として使用したり、電解液の充放電ロスにより発生する熱を加熱システムの熱源として使用したりする構成である。   The heat utilization system of the present invention having the above configuration generates heat by mixing a proper amount of positive and negative electrode electrolytes as necessary, and uses this heat as a heat source of a heating system such as a heating device. The heat generated by the charge / discharge loss is used as a heat source for the heating system.

このように熱利用システムを構成することにより、電解液に蓄えられたエネルギーを、必要な時に必要な量だけ熱として取り出して、加熱システムに利用できる。   By configuring the heat utilization system in this way, the energy stored in the electrolytic solution can be taken out as a necessary amount of heat when necessary and used for the heating system.

その結果、電解液に蓄積したエネルギーを電気としてだけでなく、熱源としても自由に利用できるため、電力負荷の少ない冬場も含め、年間を通じて有効に電解液循環型電池を活用できる。   As a result, the energy accumulated in the electrolyte can be used not only as electricity but also as a heat source, so that the electrolyte circulation type battery can be effectively used throughout the year, including in winter when the power load is low.

さらに、本発明の熱利用システムでは、加熱システムで用いる熱を、熱の媒体となる電解液自体の正極電解液と負極電解液との混合により発生する熱とし、必要な場所で、必要な量だけ混合して熱を取り出すので、従来のように電気ヒーター等を熱源とする場合に生じていた熱伝導時の熱放散ロス等の無駄が小さくなり、熱利用システムの温度の制御性に優れる。   Furthermore, in the heat utilization system of the present invention, the heat used in the heating system is the heat generated by mixing the positive electrode electrolyte and the negative electrode electrolyte of the electrolyte itself that is the heat medium, and the necessary amount at the required place. Since heat is extracted only by mixing, waste such as heat dissipation loss during heat conduction that occurs when an electric heater or the like is used as a heat source as in the prior art is reduced, and the temperature controllability of the heat utilization system is excellent.

また、安価な夜間電力や余剰電力を熱で蓄える既存の蓄熱暖房機器に較べても、本発明の熱利用システムは、利用する熱エネルギーを、化学エネルギーとして蓄えておいて、熱エネルギーに変換するため、蓄熱暖房機器のように熱放散ロスがなく、熱エネルギーの利用効率が高くなるとともに、暖房負荷に対する熱の制御性も良い。   In addition, the heat utilization system of the present invention stores the heat energy to be used as chemical energy and converts it into heat energy even compared to existing heat storage and heating equipment that stores cheap nighttime power and surplus power with heat. Therefore, there is no heat dissipation loss as in the case of the heat storage and heating equipment, the use efficiency of the heat energy is increased, and the controllability of heat with respect to the heating load is good.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

[第1実施形態]
図1は、本発明にかかる熱利用システムの第1実施形態の概略構成図である。本実施形態にかかる熱利用システムは、電解液循環型電池と、電解液循環型電池の各電解液循環路を流れる正極電解液と負極電解液とを適量混合する混合流路とを備え、混合流路で発生した電解液の熱を加熱システムである床暖房機器に利用する。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a first embodiment of a heat utilization system according to the present invention. The heat utilization system according to the present embodiment includes an electrolyte circulation type battery, and a mixing channel that mixes an appropriate amount of a positive electrode electrolyte and a negative electrode electrolyte flowing through each electrolyte circulation path of the electrolyte circulation type battery. The heat of the electrolyte generated in the flow path is used for floor heating equipment that is a heating system.

本実施形態では、電解液循環型電池1としてレドックスフロー電池を用いる。電解液循環型電池1は、電池セル11と、電池セル11に供給/排出される正極電解液を貯留する正極タンク2と、電池セル11に供給/排出される負極電解液を貯留する負極タンク3と、交流/直流変換器12とを備える。   In the present embodiment, a redox flow battery is used as the electrolyte circulation type battery 1. The electrolyte circulation type battery 1 includes a battery cell 11, a positive electrode tank 2 that stores a positive electrode electrolyte supplied / discharged to the battery cell 11, and a negative electrode tank that stores a negative electrode electrolyte supplied / discharged to the battery cell 11. 3 and an AC / DC converter 12.

電池セル11と正極タンク2とは、電池セル11と正極タンク2との間で正極電解液を循環供給する正極電解液循環路4で連通される。また、電池セル11と負極タンク3とは、電池セル11と負極タンク3との間で負極電解液を循環供給する負極電解液循環路5で連通される。   The battery cell 11 and the positive electrode tank 2 communicate with each other through a positive electrode electrolyte circulation path 4 that circulates and supplies the positive electrode electrolyte between the battery cell 11 and the positive electrode tank 2. The battery cell 11 and the negative electrode tank 3 are communicated with each other through a negative electrode electrolyte circulation path 5 that circulates and supplies a negative electrode electrolyte between the battery cell 11 and the negative electrode tank 3.

正極電解液循環路4は、電池セル11に対して上流側に接続される上流側正極配管41、下流側に接続される下流側正極配管42を備え、上流側正極配管41に正極側循環用ポンプ13を設けている。   The cathode electrolyte circulation path 4 includes an upstream cathode pipe 41 connected to the upstream side with respect to the battery cell 11 and a downstream cathode pipe 42 connected to the downstream side. A pump 13 is provided.

負極電解液循環路5は、電池セル11に対して上流側に接続される上流側負極配管51、下流側に接続される下流側負極配管52を備え、上流側負極配管51に負極側循環用ポンプ14を設けている。さらに、正極タンク2と負極タンク3とは、連通管6で連通されている。   The negative electrode electrolyte circulation path 5 includes an upstream negative electrode pipe 51 connected to the upstream side with respect to the battery cell 11 and a downstream negative electrode pipe 52 connected to the downstream side. A pump 14 is provided. Further, the positive electrode tank 2 and the negative electrode tank 3 are communicated with each other through a communication pipe 6.

電池セル11は、単層セルを複数積層させた積層体構造である。本実施形態では、電池セル11の基本的構成は、図9に示すセル1Aと同様であり、イオン交換膜(隔膜)により正極セルと負極セルとに分離され、正極セルに正極電極、負極セルに負極電極を内蔵し、各電極にそれぞれ正極電解液、負極電解液が供給される。本実施形態では、正極電解液にV5+を含む溶液、負極電解液にV2+を含む溶液を用いている。 The battery cell 11 has a stacked structure in which a plurality of single-layer cells are stacked. In this embodiment, the basic configuration of the battery cell 11 is the same as that of the cell 1A shown in FIG. 9, and is separated into a positive electrode cell and a negative electrode cell by an ion exchange membrane (diaphragm). The negative electrode is built in, and a positive electrode electrolyte and a negative electrode electrolyte are supplied to each electrode. In this embodiment, a solution containing V 5+ is used for the positive electrode electrolyte, and a solution containing V 2+ is used for the negative electrode electrolyte.

そして、本実施形態では、正極電解液循環路4を流れる正極電解液と、負極電解液循環路5を流れる負極電解液とを混合するために、混合流路となる正極電解液混合用配管71の一端を上流側正極配管41に接続し、正極電解液混合用配管71の他端を下流側負極配管52に接続する。さらに、上流側負極配管51に同じく混合流路となる負極電解液混合用配管72の一端を接続し、下流側正極配管42に負極電解液混合用配管72の他端を接続する。   In this embodiment, in order to mix the positive electrode electrolyte flowing through the positive electrode electrolyte circulation path 4 and the negative electrode electrolyte flowing through the negative electrode electrolyte circulation path 5, a positive electrode electrolyte mixing pipe 71 serving as a mixing flow path. One end of the positive electrode pipe 41 is connected to the upstream side positive electrode pipe 41, and the other end of the positive electrode electrolyte mixing pipe 71 is connected to the downstream side negative electrode pipe 52. Furthermore, one end of a negative electrode electrolyte mixing pipe 72 that also serves as a mixing flow path is connected to the upstream negative electrode pipe 51, and the other end of the negative electrode electrolyte mixing pipe 72 is connected to the downstream positive electrode pipe.

正極電解液混合用配管71は、正極側合流配管部分71aと、正極側分岐配管部分71bとに途中で分岐させている。正極側合流配管部分71aの下流側端部は、負極電解液循環路5の下流側負極配管52に接続している。正極側分岐配管部分71bの下流側端部は、負極電解液混合用配管72に接続され、正極電解液をこの負極電解液混合用配管72に送るようになっている。   The positive electrode electrolyte mixing pipe 71 is branched into a positive side merging pipe portion 71a and a positive side branch pipe portion 71b. The downstream end portion of the positive electrode side joining pipe portion 71 a is connected to the downstream negative electrode pipe 52 of the negative electrode electrolyte circulation path 5. The downstream end of the positive branch pipe 71b is connected to the negative electrolyte mixing pipe 72 so that the positive electrolyte is sent to the negative electrolyte mixing pipe 72.

また、負極電解液混合用配管72も、負極側合流配管部分72aと、負極側分岐配管部分72bとに途中で分岐させている。負極側合流配管部分72aの下流側端部は、正極電解液循環路4の下流側正極配管42に接続している。負極側分岐配管部分72bの下流側端部は、正極電解液混合用配管71に接続され、負極電解液をこの正極電解液混合用配管71に送るようになっている。   Also, the negative electrode electrolyte mixing pipe 72 is branched into a negative electrode side junction pipe part 72a and a negative electrode side branch pipe part 72b on the way. The downstream end portion of the negative electrode side joining pipe portion 72 a is connected to the downstream positive electrode pipe 42 of the positive electrode electrolyte circulation path 4. The downstream end portion of the negative electrode side branch pipe portion 72b is connected to the positive electrode electrolyte mixing pipe 71, and the negative electrode electrolyte is sent to the positive electrode electrolyte mixing pipe 71.

本実施形態では、正極電解液混合用配管71は、分岐する手前の上流側の配管部分が上流部となり、負極側分岐配管部分72bが接続された位置よりも下流側が合流部となり、後記する熱交換器812で熱交換された後の正極側合流配管部分71aが下流部となる。   In the present embodiment, in the positive electrode electrolyte mixing pipe 71, the upstream pipe part before branching becomes the upstream part, and the downstream side becomes the joining part from the position where the negative side branch pipe part 72b is connected. The positive-side merging pipe portion 71a after heat exchange in the exchanger 812 becomes the downstream portion.

また、負極電解液混合用配管72も、分岐する手前の上流側の配管部分が上流部となり、正極側分岐配管部分71bが接続された位置よりも下流側が合流部となり、熱交換器812で熱交換された後の負極側合流配管部分72aが下流部となる。   Also, in the negative electrode electrolyte mixing pipe 72, the upstream pipe part before branching becomes the upstream part, and the downstream side from the position where the positive branch pipe part 71b is connected becomes the joining part, and the heat exchanger 812 The negative electrode side merging pipe portion 72a after the replacement becomes the downstream portion.

本実施形態では、正極電解液混合用配管71の正極側合流配管部分71aを流れる正極電解液に負極側分岐配管部分72bからの負極電解液が混合されることにより、電解液合流位置より下流側の正極側合流配管部分71aで電解液が発熱する。また、負極電解液混合用配管72の負極側合流配管部分72aを流れる負極電解液に正極側分岐配管部分71bからの正極電解液が混合されることにより、電解液合流位置より下流側の負極側合流配管部分72aで電解液が発熱する。   In the present embodiment, the negative electrode electrolyte from the negative branch pipe portion 72b is mixed with the positive electrode electrolyte flowing through the positive electrode side merge pipe portion 71a of the positive electrode electrolyte mixing pipe 71, thereby the downstream side from the electrolyte merge position. The electrolyte solution generates heat in the positive electrode side joining pipe portion 71a. Further, the negative electrode electrolyte flowing from the negative electrode side merging pipe part 72a of the negative electrode electrolyte mixing pipe 72 is mixed with the positive electrode electrolyte from the positive electrode side branch pipe part 71b, so that the negative electrode side downstream from the electrolyte merging position The electrolyte solution generates heat at the junction pipe portion 72a.

そして、本実施形態の熱利用システムの正極側合流配管部分71aと負極側合流配管部分72aとで発生した熱は、床暖房パネル811、熱交換器812、床暖房パネル811と熱交換器812との間で温水を循環させる温水循環路813を有する床暖房機81(加熱システム)で利用する。床暖房機81の床暖房パネル811は、温水循環路813を流れる温水で加温される。温水循環路813には、温水を循環させるためのポンプ814が設けられている。   Then, the heat generated in the positive side merging pipe portion 71a and the negative side merging pipe portion 72a of the heat utilization system of the present embodiment is the floor heating panel 811, the heat exchanger 812, the floor heating panel 811 and the heat exchanger 812. It is used in a floor heater 81 (heating system) having a hot water circulation path 813 for circulating hot water between them. The floor heating panel 811 of the floor heater 81 is heated with hot water flowing through the hot water circulation path 813. The hot water circulation path 813 is provided with a pump 814 for circulating hot water.

さらに、熱交換器812では、温水循環路813を蛇行状に配置するともに、正極側合流配管部分71aと負極側合流配管部分72aも蛇行状に配置させ、温水循環路813に正極側合流配管部分71aと負極側合流配管部分72aを重ねた状態にしている。熱交換器812では、温水循環路813を流れる温水を、正極側合流配管部分71a及び負極側合流配管部分72aを流れる電解液の熱で加熱するようになっている。   Further, in the heat exchanger 812, the hot water circulation path 813 is arranged in a meandering manner, and the positive side merging pipe portion 71a and the negative side merging pipe portion 72a are also arranged in a meandering manner, so that the hot water circulation path 813 has a positive side merging piping portion. 71a and the negative side merging pipe portion 72a are overlapped. In the heat exchanger 812, the hot water flowing through the hot water circulation path 813 is heated by the heat of the electrolyte flowing through the positive electrode side joining pipe portion 71a and the negative electrode side joining pipe portion 72a.

また、熱交換器812には、温水循環路813を流れる水温の温度を検出する温度検出手段15を設けている。熱交換器812は、床暖房機81における電解液の発熱箇所であるため、電解液の熱で加熱される水の温度を温度検出手段15で検出することにより、電解液の温度を検出することができる。   Further, the heat exchanger 812 is provided with temperature detection means 15 for detecting the temperature of the water temperature flowing through the hot water circulation path 813. Since the heat exchanger 812 is a heat generating portion of the electrolytic solution in the floor heater 81, the temperature detecting means 15 detects the temperature of the water heated by the heat of the electrolytic solution, thereby detecting the temperature of the electrolytic solution. Can do.

さらに、本実施形態では、電解液が流通する配管に多数の調整弁を設けている。上流側正極配管41における正極電解液混合用配管71の接続位置よりも下流側に第1調整弁91を、上流側負極配管51における負極電解液混合用配管72の接続位置よりも下流側に第2調整弁92を設ける。正極側合流配管部分71aにおける正極側分岐配管部分71bとの分岐位置より下流で負極側分岐配管部分72bの接続位置よりも上流に第3調整弁93を設ける。負極側合流配管部分72aにおける負極側分岐配管部分72bとの分岐位置より下流で正極側分岐配管部分71bの接続位置よりも上流に第4調整弁94を設ける。   Furthermore, in this embodiment, a large number of regulating valves are provided in the piping through which the electrolytic solution flows. The first regulating valve 91 is located downstream of the connection position of the positive electrode electrolyte mixing pipe 71 in the upstream positive electrode pipe 41 and the downstream side of the connection position of the negative electrode electrolyte mixing pipe 72 in the upstream negative electrode pipe 51. Two adjustment valves 92 are provided. A third regulating valve 93 is provided downstream of the branch position of the positive-side merging pipe portion 71a with the positive-side branch pipe portion 71b and upstream of the connection position of the negative-electrode-side branch pipe portion 72b. A fourth regulating valve 94 is provided downstream of the branching position of the negative side merging pipe part 72a with the negative side branch pipe part 72b and upstream of the connection position of the positive side branch pipe part 71b.

正極側分岐配管部分71bに第5調整弁95を負極側分岐配管部分72bに第6調整弁96を設ける。連通管6に連通用調整弁6aを設ける。本実施形態では、連通管6に設ける連通用調整弁6aを開らくことにより、正極タンク2と負極タンク3とを連通して、各タンクの電解液の電解液の温度を調整するようになっている。   A fifth adjustment valve 95 is provided in the positive side branch piping portion 71b, and a sixth adjustment valve 96 is provided in the negative side branch piping portion 72b. A communication regulating valve 6 a is provided in the communication pipe 6. In the present embodiment, by opening the communication adjustment valve 6a provided in the communication pipe 6, the positive electrode tank 2 and the negative electrode tank 3 are connected to adjust the temperature of the electrolyte solution in each tank. ing.

そして、これら調整弁は、バルブコントローラー16(制御手段)で開閉制御されるようなっている。バルブコントローラー16は、床暖房機81の使用の有無に応じて、さらに、床暖房機81を使用している時は、温度検出手段15で検出した熱交換器812での温水の温度に基づいて、各調整弁の開閉を制御する。   These regulating valves are controlled to be opened and closed by a valve controller 16 (control means). Depending on whether or not the floor heater 81 is used, the valve controller 16 further uses the temperature of the hot water in the heat exchanger 812 detected by the temperature detecting means 15 when the floor heater 81 is used. Control the opening and closing of each regulating valve.

具体的に、本実施形態における電池システムの運転制御について説明する。通常は、電力貯蔵用二次電池として、正極タンクおよび負極タンクから電池セルに電解液を供給し、電池セルから排出した電解液を各タンクに戻すようにして、電解液を循環させながら充放電を行う。   Specifically, the operation control of the battery system in the present embodiment will be described. Normally, as a secondary battery for power storage, the electrolytic solution is supplied from the positive and negative tanks to the battery cells, and the electrolytic solution discharged from the battery cells is returned to each tank. I do.

この充放電を行っているときは、第1調整弁91と第2調整弁92は開いた状態にし、混合流路である正極電解液混合用配管71および負極電解液混合用配管72で、正極電解液と負極電解液とを混合させるときは、第1調整弁91と第2調整弁92は閉じた状態にする。   During this charging / discharging, the first regulating valve 91 and the second regulating valve 92 are opened, and the positive electrode electrolyte mixing pipe 71 and the negative electrode electrolyte mixing pipe 72 which are mixing channels are connected to the positive electrode. When mixing the electrolytic solution and the negative electrode electrolytic solution, the first regulating valve 91 and the second regulating valve 92 are closed.

混合流路に設ける第3調整弁93から第6調整弁96は、電動式となっており、熱交換器812を流れる温水の温度を温度検出手段15で検出し、この検出結果に基づいて弁の開度を制御して、混合量を調節するようになっている。   The third adjustment valve 93 to the sixth adjustment valve 96 provided in the mixing flow path are electrically operated, and the temperature detection means 15 detects the temperature of the hot water flowing through the heat exchanger 812, and the valve is based on the detection result. The amount of mixing is adjusted by controlling the opening degree.

具体的には、床暖房機81を駆動させている間で、熱交換器812の温水の温度が所定の温度以下のときは第3調整弁93から第6調整弁96を全開状態にし、床暖房機81を停止しているときは第3調整弁93から第6調整弁96を閉じた状態にする。また、熱交換器812の温水の温度が所定の温度を超えた場合には、温度に応じて、第3調整弁93から第6調整弁96の開度を調整して電解液の流量を制御するか、または、閉じた状態にする。   Specifically, while the floor heater 81 is being driven, when the temperature of the hot water in the heat exchanger 812 is equal to or lower than a predetermined temperature, the third adjustment valve 93 to the sixth adjustment valve 96 are fully opened, When the heater 81 is stopped, the third adjustment valve 93 to the sixth adjustment valve 96 are closed. In addition, when the temperature of the hot water in the heat exchanger 812 exceeds a predetermined temperature, the flow rate of the electrolyte is controlled by adjusting the opening degree of the third adjustment valve 93 to the sixth adjustment valve 96 according to the temperature. Or close it.

第3調整弁93から第6調整弁96を開くことにより、正極電解液と負極電解液が、正極側合流配管部分71aと負極側合流配管部分72aにおいて混合され、電解液が自己放電して発熱する。   By opening the sixth adjustment valve 96 from the third adjustment valve 93, the positive electrode electrolyte and the negative electrode electrolyte are mixed in the positive electrode side merging pipe portion 71a and the negative electrode side merging pipe portion 72a, and the electrolyte self-discharges to generate heat. To do.

この電解液で発生した熱を熱交換器812において温水循環路813を流れる温水と熱交換して温水を加熱し、この温水で床暖房パネル811を加温する。   The heat generated in the electrolyte is exchanged with the warm water flowing through the warm water circulation path 813 in the heat exchanger 812 to heat the warm water, and the floor heating panel 811 is heated with this warm water.

電解液を混合するときは、電池セル11に温度の上がった電解液が流れ込まないように第1調整弁91と第2調整弁92は閉じた状態となっている。   When the electrolytic solution is mixed, the first regulating valve 91 and the second regulating valve 92 are closed so that the heated electrolyte solution does not flow into the battery cell 11.

なお、温度検出手段15で検出する温度は、熱交換器812内に配置される正極側合流配管部分71aと負極側合流配管部分72aを流れるそれぞれの電解液の温度を温度検出手段で検出するようにしてもよい。この場合は、温水と熱交換された後の電解液の温度を検出することが好ましい。また、本実施形態では、温水循環路813と、床暖房パネル811は既存の物を用いている。   The temperature detected by the temperature detecting means 15 is such that the temperature detecting means detects the temperature of each electrolyte flowing through the positive side merging pipe portion 71a and the negative side merging pipe portion 72a disposed in the heat exchanger 812. It may be. In this case, it is preferable to detect the temperature of the electrolytic solution after heat exchange with warm water. In this embodiment, existing hot water circulation path 813 and floor heating panel 811 are used.

[第2実施形態]
第1実施形態では、混合流路を正極電解液混合用配管と負極電解液混合用配管とにより構成し、これら配管を途中で分岐させてそれぞれの配管に合流させて、電解液を混合させた。
[Second Embodiment]
In 1st Embodiment, the mixing flow path was comprised by the piping for positive electrode electrolyte mixing, and the piping for negative electrode electrolyte mixing, these piping was branched on the way, and it merged with each piping, and mixed the electrolyte solution. .

第2実施形態の熱利用システムでは、図2に示すように、混合流路の構成、床暖房機81の熱交換器812の構成、混合流路に設ける調整弁の数及び配置箇所が第1実施形態と異なる。第2実施形態も、加熱システムとして床暖房機を用いており、混合流路の構成、床暖房機81の熱交換器812の構成、混合流路に設ける調整弁の数および配置箇所以外は、第1実施形態と同じ構成であるので、同じ構成部分については説明を省略する。   In the heat utilization system of the second embodiment, as shown in FIG. 2, the configuration of the mixing channel, the configuration of the heat exchanger 812 of the floor heater 81, the number and arrangement locations of the regulating valves provided in the mixing channel are the first. Different from the embodiment. The second embodiment also uses a floor heater as a heating system, except for the configuration of the mixing channel, the configuration of the heat exchanger 812 of the floor heater 81, the number of adjustment valves provided in the mixing channel, and the arrangement location, Since it is the same structure as 1st Embodiment, description is abbreviate | omitted about the same component.

第2実施形態では、図2に示すように、混合流路は、正極側混合用配管上流部73と、負極側混合用配管上流部74と、混合用配管合流部75と、正極側混合用配管下流部76と、負極側混合用配管下流部77とから構成されている。   In the second embodiment, as shown in FIG. 2, the mixing flow path includes a positive electrode side mixing pipe upstream portion 73, a negative electrode side mixing pipe upstream portion 74, a mixing pipe merging portion 75, and a positive electrode side mixing portion. The pipe downstream portion 76 and the negative electrode side mixing pipe downstream portion 77 are configured.

正極側混合用配管上流部73は上流側正極配管41に接続され、負極側混合用配管上流部74は上流側負極配管51に接続される。混合用配管合流部75は、正極側混合用配管上流部73と負極側混合用配管上流部74の下流側端部を合流して形成される。正極側混合用配管下流部76と負極側混合用配管下流部77とは、混合用配管合流部75の下流側端部を分岐して形成され、正極側混合用配管下流部76を下流側正極配管42に接続し、負極側混合用配管下流部77を下流側負極配管52に接続する。本実施形態では、混合用配管合流部75を蛇行状に形成して、この蛇行部分を熱交換器812に組み込んでいる。   The positive electrode side mixing pipe upstream part 73 is connected to the upstream positive electrode pipe 41, and the negative electrode side mixing pipe upstream part 74 is connected to the upstream negative electrode pipe 51. The mixing pipe joining portion 75 is formed by joining the downstream end portions of the positive electrode side mixing pipe upstream portion 73 and the negative electrode side mixing pipe upstream portion 74. The positive electrode side mixing pipe downstream portion 76 and the negative electrode side mixing pipe downstream portion 77 are formed by branching the downstream end of the mixing pipe confluence portion 75, and the positive electrode side mixing pipe downstream portion 76 is connected to the downstream positive electrode. Connected to the pipe 42, the negative electrode side mixing pipe downstream portion 77 is connected to the downstream negative electrode pipe 52. In the present embodiment, the mixing pipe joining portion 75 is formed in a meandering shape, and this meandering portion is incorporated in the heat exchanger 812.

そして、正極側混合用配管上流部73に第3調整弁93aを、負極側混合用配管上流部74に第4調整弁94aを、混合用配管合流部75における熱交換器812の出口より下流側に第5調整弁95aを設けている。   Then, the third adjustment valve 93a is provided in the positive electrode side mixing pipe upstream portion 73, the fourth adjustment valve 94a is provided in the negative electrode side mixing pipe upstream portion 74, and the downstream side from the outlet of the heat exchanger 812 in the mixing pipe confluence portion 75. Is provided with a fifth adjusting valve 95a.

そして、これら調整弁も、温度検出手段15で検出した熱交換器812の温水温度に基づいてバルブコントローラー16(制御部)で開閉制御されるようなっている。   These regulating valves are also controlled to be opened and closed by the valve controller 16 (control unit) based on the hot water temperature of the heat exchanger 812 detected by the temperature detecting means 15.

本実施形態における熱利用システムの運転制御も、第1実施形態と同様に、電解液循環型電池1を電力貯蔵用二次電池として充放電を行う運転制御と、床暖房機81の熱源として電解液を使用する運転制御とを行う。   Similarly to the first embodiment, the operation control of the heat utilization system in the present embodiment is also performed by charging / discharging the electrolyte circulation battery 1 as a secondary battery for power storage, and electrolysis as a heat source of the floor heater 81. Operation control using liquid is performed.

充放電を行っているときは、第1調整弁91と第2調整弁92は開いた状態にし、混合流路に設ける第3調整弁93aから第5調整弁95aは閉じた状態にする。また、正極電解液と負極電解液とを混合させるときは、第1調整弁91と第2調整弁92は閉じた状態にし、混合流路に設ける第3調整弁93aから第5調整弁95aは開いた状態にする。   During charging / discharging, the first regulating valve 91 and the second regulating valve 92 are opened, and the third regulating valve 93a to the fifth regulating valve 95a provided in the mixing flow path are closed. When mixing the positive electrode electrolyte and the negative electrode electrolyte, the first adjustment valve 91 and the second adjustment valve 92 are closed, and the third adjustment valve 93a to the fifth adjustment valve 95a provided in the mixing channel are Keep it open.

混合流路に設ける第3調整弁93aから第5調整弁95aは、床暖房機81を駆動させている間は、温度検出手段15で検出した熱交換器812の温水温度に基づいて開閉制御する。   The third to fifth adjusting valves 93a to 95a provided in the mixing channel perform opening / closing control based on the hot water temperature of the heat exchanger 812 detected by the temperature detecting means 15 while the floor heater 81 is being driven. .

第3調整弁93aと第4調整弁94aを開くことにより、正極電解液と負極電解液が、混合用配管合流部75において混合され、電解液が自己放電して発熱する。   By opening the third regulating valve 93a and the fourth regulating valve 94a, the positive electrode electrolyte and the negative electrode electrolyte are mixed in the mixing pipe junction 75, and the electrolyte self-discharges to generate heat.

この電解液で発生した熱を熱交換器812において温水循環路813を流れる温水と熱交換して温水を加熱し、この温水で床暖房パネル811を加温する。第2実施形態では、第1実施形態に比べて、混合流路の配管構造を単純にできる。   The heat generated in the electrolyte is exchanged with the warm water flowing through the warm water circulation path 813 in the heat exchanger 812 to heat the warm water, and the floor heating panel 811 is heated with this warm water. In the second embodiment, the piping structure of the mixing channel can be simplified as compared with the first embodiment.

[第3実施形態]
第3実施形態も、熱利用システムを利用する加熱システムとして床暖房機を用いており、図3に示すように、混合流路の構成、床暖房機81の構成、混合流路に設ける調整弁の数と配置箇所が前記した各実施形態と異なる。第3実施形態も、第1実施形態と同じ構成部分については説明を省略する。
[Third Embodiment]
The third embodiment also uses a floor heater as a heating system that uses a heat utilization system. As shown in FIG. 3, the configuration of the mixing channel, the configuration of the floor heater 81, and the regulating valve provided in the mixing channel The number and the arrangement location are different from those of the above-described embodiments. In the third embodiment, the description of the same components as those in the first embodiment is omitted.

第3実施形態も、正極電解液循環路4の上流側正極配管41に混合流路となる正極電解液混合用配管71の一端を、負極電解液循環路5の下流側負極配管52に正極電解液混合用配管71の他端を接続している。さらに、負極電解液循環路5の上流側負極配管51に混合流路となる負極電解液混合用配管72の一端を、正極電解液循環路4の下流側正極配管42に負極電解液混合用配管72の他端を接続している。   Also in the third embodiment, one end of the positive electrode electrolyte mixing pipe 71 serving as a mixing flow path is connected to the upstream positive electrode pipe 41 of the positive electrode electrolyte circulation path 4 and the positive electrode electrolysis is connected to the downstream negative electrode pipe 52 of the negative electrode electrolyte circulation path 5. The other end of the liquid mixing pipe 71 is connected. Furthermore, one end of the negative electrode electrolyte mixing pipe 72 that becomes the mixing flow path is connected to the upstream negative electrode pipe 51 of the negative electrode electrolyte circulation path 5, and the negative electrode electrolyte mixing pipe is connected to the downstream positive electrode pipe 42 of the positive electrode electrolyte circulation path 4. The other end of 72 is connected.

正極電解液混合用配管71は、途中で、正極側合流配管部分71aと正極側分岐配管部分71bに分岐し、正極側合流配管部分71aをさらに複数に分岐させて分岐流路を形成している。正極側分岐配管部分71bは、第1実施形態と同様に、その下流側端部が、負極電解液混合用配管72に接続される。   The positive electrode electrolyte mixing pipe 71 is branched into a positive side merging pipe part 71a and a positive side branch pipe part 71b on the way, and the positive side merging pipe part 71a is further branched into a plurality of branches. . As in the first embodiment, the downstream end of the positive electrode side branch pipe portion 71b is connected to the negative electrode electrolyte mixing pipe 72.

また、負極電解液混合用配管72も、途中で、負極側合流配管部分72aと負極側分岐配管部分72bに分岐し、負極側合流配管部分72aをさらに複数に分岐させて分岐流路を形成している。負極側分岐配管部分72bも、第1実施形態と同様に、その下流側端部が、正極電解液混合用配管71に接続される。   Also, the negative electrode electrolyte mixing pipe 72 is branched into a negative side merging pipe part 72a and a negative side branch pipe part 72b in the middle, and the negative side merging pipe part 72a is further branched into a plurality of branches. ing. Similarly to the first embodiment, the downstream end of the negative-side branch pipe portion 72b is connected to the positive-electrode electrolyte mixing pipe 71.

第3実施形態では、正極側合流配管部分71aと負極側合流配管部分72aのそれぞれについて、電解液が合流した後に多数に分岐させており、各分岐流路で、床暖房機81の床暖房パネル811a,811b,811cを加温するための加温部815を構成している。さらに、これら分岐流路を、床暖房パネル811a,811b,811cの出口より下流で再度合流させている。   In the third embodiment, each of the positive-side merging pipe portion 71a and the negative-side merging pipe portion 72a is branched into a large number after the electrolyte is merged, and the floor heating panel of the floor heater 81 is provided in each branch passage. A heating unit 815 for heating 811a, 811b, and 811c is configured. Further, these branch flow paths are joined again downstream from the outlets of the floor heating panels 811a, 811b, 811c.

第3実施形態では、床暖房機81は、複数の床暖房パネル811a,811b,811cを有し、温水循環路は設けていない。第3実施形態では、温水循環路の代わりに、正極側合流配管部分71aと負極側合流配管部分72aの加温部815で各床暖房パネル811a,811b,811cを加温するようになっている。各床暖房パネル811a,811b,811cは複数の部屋に対して個別に配置する構成となっている。それぞれ床暖房パネル811a,811b,811cには、正極側合流配管部分71aと負極側合流配管部分72aの加温部815が配置される。本実施形態では、各床暖房パネル811a,811b,811cが個別の加熱システムとなる。   In the third embodiment, the floor heater 81 has a plurality of floor heating panels 811a, 811b, 811c, and no hot water circulation path is provided. In the third embodiment, the floor heating panels 811a, 811b, and 811c are heated by the heating portions 815 of the positive-side merging pipe portion 71a and the negative-side merging pipe portion 72a instead of the hot water circulation path. . Each floor heating panel 811a, 811b, 811c is arranged individually for a plurality of rooms. In each of the floor heating panels 811a, 811b, and 811c, heating portions 815 of the positive-side joining pipe portion 71a and the negative-side joining pipe portion 72a are arranged. In this embodiment, each floor heating panel 811a, 811b, 811c is an individual heating system.

さらに、前記加温部815は、各床暖房パネル811a,811b,811cにおいて、蛇行状に配管されており、この蛇行状の配置により床暖房パネル811a,811b,811cの全体を効率よく加温するようになっている。   Further, the heating unit 815 is arranged in a meandering manner in each of the floor heating panels 811a, 811b, 811c, and the whole of the floor heating panels 811a, 811b, 811c is efficiently heated by this meandering arrangement. It is like that.

本実施形態においても、バルブコントローラー16で開閉制御される調整弁を多数設けている。第1実施形態と同様に、上流側正極配管41に第1調整弁91を、上流側負極配管51に第2調整弁92を設ける。正極側合流配管部分71aにおける負極側分岐配管部分72bの接続位置よりも上流に第3調整弁93を設ける。負極側合流配管部分72aにおける正極側分岐配管部分71bの接続位置よりも上流に第4調整弁94を設ける。正極側分岐配管部分71bに第5調整弁95を、負極側分岐配管部分72bに第6調整弁96を設ける。第1調整弁91から第6調整弁96までは、第1実施形態と同じ構成である。   Also in this embodiment, a large number of regulating valves that are controlled to open and close by the valve controller 16 are provided. Similarly to the first embodiment, the first adjustment valve 91 is provided in the upstream-side positive electrode pipe 41, and the second adjustment valve 92 is provided in the upstream-side negative electrode pipe 51. A third regulating valve 93 is provided upstream of the connection position of the negative electrode side branch pipe portion 72b in the positive electrode side merge pipe portion 71a. A fourth regulating valve 94 is provided upstream of the connection position of the positive-side branch pipe portion 71b in the negative-side merging pipe portion 72a. A fifth adjustment valve 95 is provided in the positive side branch piping portion 71b, and a sixth adjustment valve 96 is provided in the negative side branch piping portion 72b. The first adjustment valve 91 to the sixth adjustment valve 96 have the same configuration as in the first embodiment.

本実施形態では、さらに、正極側合流配管部分71aの多数に分岐した分岐点より下流側で、床暖房パネル811a,811b,811cの入口よりも上流に調整弁(第7調整弁97、第9調整弁99、第11調整弁101…)を設け、負極側合流配管部分72aの多数に分岐した分岐点より下流側で、床暖房パネル811a,811b,811cの入口よりも上流に調整弁(第8調整弁98、第10調整弁100、第12調整弁102…)を設ける。   In the present embodiment, the regulating valves (seventh regulating valve 97, ninth) are further downstream from the branching point branched into a large number of the positive-side merging pipe portion 71a and upstream from the inlets of the floor heating panels 811a, 811b, 811c. A regulating valve 99, an eleventh regulating valve 101... Are provided downstream of the branching point branched into a large number of the negative side joining pipe portion 72a and upstream of the inlets of the floor heating panels 811a, 811b, 811c. 8 adjusting valve 98, 10th adjusting valve 100, 12th adjusting valve 102.

なお、本実施形態では、図示していないが、各床暖房パネル811a,811b,811cにおいて、暖房パネルに配置される加温部815を流れる電解液の温度を温度検出手段で検出するようにしている。この検出結果に基づいて、各調整弁の開閉制御を行って、電解液の混合量と、それぞれの床暖房パネル811a,811b,811cを循環させる電解液の流量を制御する。   Although not shown in the present embodiment, in each of the floor heating panels 811a, 811b, 811c, the temperature of the electrolyte flowing through the heating unit 815 disposed in the heating panel is detected by the temperature detection means. Yes. Based on the detection result, the opening / closing control of each regulating valve is performed to control the amount of electrolyte mixed and the flow rate of the electrolyte circulating through the respective floor heating panels 811a, 811b, 811c.

本実施形態における電池システムの運転制御は、床暖房機81の運転を行う場合には、第1調整弁91と第2調整弁92を閉じた状態で、第3調整弁93から第6調整弁96を開いた状態にする。さらに、各床暖房パネル811a,811b,811cでの温度に応じて、そして、暖房が必要な床暖房パネル811a,811b,811cに対して電解液を循環させるように、正極側および負極側の合流配管部分における分岐流路に設けた調整弁の開閉制御を行う。   In the operation control of the battery system in the present embodiment, when the floor heater 81 is operated, the third adjustment valve 93 to the sixth adjustment valve with the first adjustment valve 91 and the second adjustment valve 92 closed. Make 96 open. Further, according to the temperature at each floor heating panel 811a, 811b, 811c, and so as to circulate the electrolyte to the floor heating panels 811a, 811b, 811c that need heating, the positive side and the negative side merge Open / close control of the regulating valve provided in the branch flow path in the piping portion is performed.

また、本実施形態における電池システムの運転制御は、床暖房機81の運転を行わない場合には、第1調整弁91と第2調整弁92は開き、第3調整弁93から第6調整弁96を閉じる。   Further, in the operation control of the battery system in the present embodiment, when the floor heater 81 is not operated, the first adjustment valve 91 and the second adjustment valve 92 are opened, and the third adjustment valve 93 to the sixth adjustment valve are opened. Close 96.

本実施形態では、混合された電解液が流れる合流配管部分を床暖房パネル811a,811b,811cに組み込んだ構成としているので、電解液の放熱を無駄なく床暖房に利用することができる。さらに、合流配管部分を分岐して、複数の暖房パネルに電解液を循環させる構成とするとともに、分岐流路に設けた調整弁を開閉制御することにより、暖房が必要な暖房パネルのみを加温することが可能となる。   In this embodiment, since the merged pipe portion through which the mixed electrolyte flows is incorporated in the floor heating panels 811a, 811b, 811c, the heat radiation of the electrolyte can be used for floor heating without waste. In addition, the junction pipe section is branched to allow the electrolyte to circulate through a plurality of heating panels, and only the heating panels that require heating are heated by controlling the opening and closing of the regulating valves provided in the branch flow paths. It becomes possible to do.

さらに、本実施形態の電解液循環型電池システムでは、床暖房パネルを加温する温水循環路、熱交換器、温水を循環させるポンプが不要となる。   Further, in the electrolyte circulation type battery system of the present embodiment, a hot water circulation path for heating the floor heating panel, a heat exchanger, and a pump for circulating the hot water are unnecessary.

[第4実施形態]
第4実施形態も、熱利用システムを利用する加熱システムとして床暖房機を用いており、図4に示すように、床暖房機81は、第3実施形態と同様に、複数の床暖房パネル811a,811b,811cを有し、混合流路を流れる電解液で直接床暖房パネル811a,811b,811cを加温するようにしたものである。
[Fourth Embodiment]
The fourth embodiment also uses a floor heater as a heating system that uses the heat utilization system. As shown in FIG. 4, the floor heater 81 has a plurality of floor heating panels 811a as in the third embodiment. , 811b, 811c, and the floor heating panels 811a, 811b, 811c are directly heated by the electrolyte flowing through the mixing channel.

第4実施形態は、第3実施形態とは、混合流路の構成、混合流路に設ける調整弁の数と配置箇所が異なる。第4実施形態は、電池セル11、交流/直流変換器12、正極タンク2、負極タンク3、正極電解液循環路4、負極電解液循環路5、循環ポンプ13,14の構成は、前記した各実施形態と同じ構成であり、混合流路は、第2実施形態の混合流路と同じ構成部分を有している。同じ構成部分については説明を省略する。   The fourth embodiment differs from the third embodiment in the configuration of the mixing channel, the number of adjusting valves provided in the mixing channel, and the arrangement location. In the fourth embodiment, the configuration of the battery cell 11, the AC / DC converter 12, the positive electrode tank 2, the negative electrode tank 3, the positive electrode electrolyte circulation path 4, the negative electrode electrolyte circulation path 5, and the circulation pumps 13 and 14 are as described above. It is the same structure as each embodiment, and the mixing flow path has the same component as the mixing flow path of 2nd Embodiment. Description of the same components is omitted.

第4実施形態は、第2実施形態と同様に、混合流路は、正極側混合用配管上流部73と、負極側混合用配管上流部74と、混合用配管合流部75と、正極側混合用配管下流部76と、負極側混合用配管下流部77とから構成されている。そして、第4実施形態は、混合用配管合流部75を、電解液が合流した後に多数に分岐させて分岐流路を形成しており、各分岐流路で、床暖房機81の床暖房パネル811a,811b,811cを加温するための加温部815を構成している。さらに、これら分岐流路を、床暖房パネル811a,811b,811cの出口より下流で再度合流させている。それぞれの床暖房パネル811a,811b,811cには、混合用配管合流部75の加温部815が配置される。   In the fourth embodiment, as in the second embodiment, the mixing flow path includes the positive electrode side mixing pipe upstream part 73, the negative electrode side mixing pipe upstream part 74, the mixing pipe merging part 75, and the positive electrode side mixing. The pipe downstream part 76 and the negative electrode side mixing pipe downstream part 77 are configured. In the fourth embodiment, the mixing pipe joining portion 75 is branched into a large number after the electrolyte is joined to form branch passages, and the floor heating panel of the floor heater 81 is formed in each branch passage. A heating unit 815 for heating 811a, 811b, and 811c is configured. Further, these branch flow paths are joined again downstream from the outlets of the floor heating panels 811a, 811b, 811c. In each of the floor heating panels 811a, 811b, 811c, a heating unit 815 of the mixing pipe joining unit 75 is disposed.

さらに、前記加温部815も、各床暖房パネル811a,811b,811cにおいて、蛇行状に配管されており、この蛇行状の配置により床暖房パネル811a,811b,811cの全体を効率よく加温する。本実施形態においても、バルブコントローラー16で開閉制御される調整弁を多数設けている。   Further, the heating unit 815 is also arranged in a meandering manner in each of the floor heating panels 811a, 811b, 811c, and the whole of the floor heating panels 811a, 811b, 811c is efficiently heated by this meandering arrangement. . Also in this embodiment, a large number of regulating valves that are controlled to open and close by the valve controller 16 are provided.

上流側正極配管41に第1調整弁91を、上流側負極配管51に第2調整弁92を設ける。正極側混合用配管上流部73に第3調整弁93aを、負極側混合用配管上流部74に第4調整弁94aを設ける。   A first adjustment valve 91 is provided in the upstream positive electrode pipe 41, and a second adjustment valve 92 is provided in the upstream negative electrode pipe 51. A third adjustment valve 93a is provided in the positive electrode side mixing pipe upstream portion 73, and a fourth adjustment valve 94a is provided in the negative electrode side mixing pipe upstream portion 74.

本実施形態では、さらに、混合用配管合流部75を多数に分岐した分岐点より下流側で、床暖房パネル811a,811b,811cの入口よりも上流に調整弁(第5調整弁95b、第7調整弁97b、第9調整弁99b…)を設け、混合用配管合流部75の床暖房パネル811a,811b,811cの出口より下流側に調整弁(第6調整弁96b、第8調整弁98b、第10調整弁100b…)を設ける。   In the present embodiment, the regulating valves (the fifth regulating valve 95b, the seventh regulating valve 95b, the seventh regulating valve) are further downstream from the branching point where the mixing pipe merging portion 75 is branched in many, and upstream from the inlets of the floor heating panels 811a, 811b, 811c. A regulating valve 97b, a ninth regulating valve 99b..., And regulating valves (sixth regulating valve 96b, eighth regulating valve 98b, downstream of the outlets of the floor heating panels 811a, 811b, 811c of the mixing pipe junction 75) A tenth regulating valve 100b ...) is provided.

なお、本実施形態も、図示していないが、各床暖房パネル811a,811b,811cにおいて、暖房パネルに配置される加温部815を流れる電解液の温度を温度検出手段で検出するようにしている。この検出結果に基づいて、混合流路に設ける各調整弁の開閉制御を行って、電解液の混合量と、それぞれの床暖房パネル811a,811b,811cを循環させる電解液の流量を制御する。   Although not shown in the present embodiment, the temperature detection means detects the temperature of the electrolyte flowing in the heating unit 815 disposed in the heating panel in each floor heating panel 811a, 811b, 811c. Yes. Based on the detection result, opening / closing control of each regulating valve provided in the mixing flow path is performed to control the mixing amount of the electrolytic solution and the flow rate of the electrolytic solution for circulating the respective floor heating panels 811a, 811b, 811c.

本実施形態における電池システムの運転制御は、床暖房機81の運転を行う場合には、第1調整弁91と第2調整弁92を閉じた状態で、第3調整弁93aから第4調整弁94aを開いた状態にする。さらに、暖房が必要な床暖房パネル811a,811b,811cに対し、各床暖房パネル811a,811b,811cでの温度に応じて電解液を循環させるように、混合用配管合流部75に設ける調整弁(第5調整弁95bから第10調整弁100b)の開閉制御を行う。   In the operation control of the battery system in this embodiment, when the floor heater 81 is operated, the third adjustment valve 93a to the fourth adjustment valve are closed with the first adjustment valve 91 and the second adjustment valve 92 closed. Open 94a. Further, a regulating valve provided in the mixing pipe junction 75 to circulate the electrolyte according to the temperature in each floor heating panel 811a, 811b, 811c for the floor heating panels 811a, 811b, 811c that require heating. The opening / closing control of the fifth adjusting valve 95b to the tenth adjusting valve 100b is performed.

また、本実施形態における電池システムの運転制御は、床暖房機81の運転を行わない場合には、第1調整弁91と第2調整弁92は開き、第3調整弁93aと第4調整弁94aは閉じる。   In the operation control of the battery system in the present embodiment, when the floor heater 81 is not operated, the first adjustment valve 91 and the second adjustment valve 92 are opened, and the third adjustment valve 93a and the fourth adjustment valve are opened. 94a closes.

本実施形態も、第3実施形態と同様に、混合された電解液が流れる配管を床暖房パネル811a,811b,811cに組み込む構成としているので、電解液の放熱を無駄なく利用することができる。さらに、混合用配管合流部75を分岐して、複数の床暖房パネル811a,811b,811cに電解液を循環させる構成とするとともに、混合用配管合流部75に設ける調整弁の開閉制御により、暖房が必要な床暖房パネル811a,811b,811cのみを加温することが可能となる。   Similarly to the third embodiment, the present embodiment is also configured to incorporate the pipe through which the mixed electrolyte flows into the floor heating panels 811a, 811b, 811c, so that the heat dissipation of the electrolyte can be used without waste. Further, the mixing pipe joining section 75 is branched so that the electrolyte is circulated through the plurality of floor heating panels 811a, 811b, 811c, and heating is performed by controlling the opening and closing of the adjusting valve provided in the mixing pipe joining section 75. It is possible to heat only the floor heating panels 811a, 811b, and 811c that require heat.

さらに、本実施形態も、床暖房パネルを加温する温水循環路、熱交換器、温水を循環させるポンプが不要となる。   Furthermore, this embodiment also eliminates the need for a hot water circulation path for heating the floor heating panel, a heat exchanger, and a pump for circulating the hot water.

[第5実施形態]
第5実施形態も、熱利用システムを利用する加熱システムとして暖房機を用いており、図5に示すように、床暖房機81は、第4実施形態と同様に、複数の床暖房パネル811a,811b,811cを有し、混合流路を流れる電解液で直接床暖房パネル811a,811b,811cを加温するようにしたものである。
[Fifth Embodiment]
The fifth embodiment also uses a heater as a heating system that uses the heat utilization system. As shown in FIG. 5, the floor heater 81 has a plurality of floor heating panels 811a, The floor heating panels 811a, 811b, 811c are directly heated by the electrolyte solution having 811b, 811c and flowing through the mixing channel.

第5実施形態は、電解液の混合を各床暖房パネル811a,811b,811cの入口近くで行うようしたものである。第5実施形態も、電池セル11、交流/直流変換器12、正極タンク2、負極タンク3、正極電解液循環路4、負極電解液循環路5、循環ポンプ13,14の構成は、前記した各実施形態と同じ構成であり、混合流路は、第4実施形態の混合流路と同じ構成部分を有している。同じ構成部分については説明を省略する。   In the fifth embodiment, the electrolyte solution is mixed near the entrance of each floor heating panel 811a, 811b, 811c. Also in the fifth embodiment, the configuration of the battery cell 11, the AC / DC converter 12, the positive electrode tank 2, the negative electrode tank 3, the positive electrode electrolyte circulation path 4, the negative electrode electrolyte circulation path 5, and the circulation pumps 13 and 14 are as described above. It is the same structure as each embodiment, and the mixing flow path has the same component as the mixing flow path of the fourth embodiment. Description of the same components is omitted.

第5実施形態は、第4実施形態における混合流路の構成を変形させたものであり、混合流路は、第4実施形態と同様に、正極側混合用配管上流部73と、負極側混合用配管上流部74と、混合用配管合流部75と、正極側混合用配管下流部76と、負極側混合用配管下流部77とから構成されている。そして、第5実施形態は、正極側混合用配管上流部73と、負極側混合用配管上流部74とをそれぞれ多数に分岐させて分岐流路を形成しており、各分岐流路を床暖房パネル811a,811b,811cの入口近くで合流させて、複数の混合用配管合流部75を形成している。そして、各混合用配管合流部75を床暖房機81の複数の床暖房パネル811a,811b,811cを加温するための加温部815としている。さらに、これら混合用配管合流部75を、床暖房パネル811a,811b,811cの出口より下流で合流させている。   The fifth embodiment is a modification of the configuration of the mixing channel in the fourth embodiment, and the mixing channel includes the positive electrode side mixing pipe upstream portion 73 and the negative electrode side mixing, as in the fourth embodiment. The pipe upstream portion 74, the mixing pipe joining portion 75, the positive electrode side mixing pipe downstream portion 76, and the negative electrode side mixing pipe downstream portion 77 are configured. In the fifth embodiment, the positive electrode side mixing pipe upstream portion 73 and the negative electrode side mixing pipe upstream portion 74 are each branched into a large number of branch flow paths, and each branch flow path is heated under the floor. A plurality of mixing pipe joining portions 75 are formed by joining near the inlets of the panels 811a, 811b, and 811c. Each mixing pipe junction 75 is a heating unit 815 for heating a plurality of floor heating panels 811a, 811b, 811c of the floor heater 81. Further, the mixing pipe joining portion 75 is joined downstream from the outlets of the floor heating panels 811a, 811b, 811c.

本実施形態においては、バルブコントローラー16で開閉制御される調整弁を次のように設ける。   In the present embodiment, an adjustment valve that is controlled to open and close by the valve controller 16 is provided as follows.

上流側正極配管41に第1調整弁91を、上流側負極配管51に第2調整弁92を設ける。正極側混合用配管上流部73における分岐位置より上流に第3調整弁93aを、負極側混合用配管上流部74における分岐位置より上流に第4調整弁94aを設ける。   A first adjustment valve 91 is provided in the upstream positive electrode pipe 41, and a second adjustment valve 92 is provided in the upstream negative electrode pipe 51. A third regulator valve 93a is provided upstream from the branch position in the positive electrode side mixing pipe upstream portion 73, and a fourth regulator valve 94a is provided upstream from the branch position in the negative electrode side mixing pipe upstream portion 74.

本実施形態では、さらに、正極側混合用配管上流部73における分岐位置より下流に調整弁(第5調整弁95c、第8調整弁98c、第11調整弁101c…)を設け、負極側混合用配管上流部74における分岐位置より下流側に調整弁(第6調整弁96c、第9調整弁99c、第12調整弁102c…)を設ける。そして、混合用配管合流部75における床暖房パネル811a,811b,811cの出口より下流で、各床暖房パネル811a,811b,811cからの電解液が合流する前に調整弁(第7調整弁97c、第10調整弁100c、第13調整弁103c…)を設ける。   In the present embodiment, further, regulating valves (fifth regulating valve 95c, eighth regulating valve 98c, eleventh regulating valve 101c,...) Are provided downstream from the branch position in the positive electrode side mixing pipe upstream portion 73 for the negative electrode side mixing. Adjusting valves (sixth adjusting valve 96c, ninth adjusting valve 99c, twelfth adjusting valve 102c,...) Are provided downstream from the branch position in the pipe upstream portion 74. Then, downstream of the outlets of the floor heating panels 811a, 811b, 811c in the mixing pipe junction 75, before the electrolytes from the floor heating panels 811a, 811b, 811c join, the regulating valves (seventh regulating valve 97c, A tenth regulating valve 100c, a thirteenth regulating valve 103c, ...) are provided.

なお、本実施形態も、図示していないが、各床暖房パネル811a,811b,811cにおいて、暖房パネルに配置される加温部815を流れる電解液の温度を温度検出手段で検出するようにしている。この検出結果に基づいて、混合流路に設ける各調整弁の開閉制御を行って、電解液の混合量と、それぞれの床暖房パネル811a,811b,811cを循環させる電解液の流量を制御する。   Although not shown in the present embodiment, the temperature detection means detects the temperature of the electrolyte flowing in the heating unit 815 disposed in the heating panel in each floor heating panel 811a, 811b, 811c. Yes. Based on the detection result, opening / closing control of each regulating valve provided in the mixing flow path is performed to control the mixing amount of the electrolytic solution and the flow rate of the electrolytic solution for circulating the respective floor heating panels 811a, 811b, 811c.

本実施形態における電池システムの運転制御は、床暖房機81の運転を行う場合には、第1調整弁91と第2調整弁92を閉じた状態で、第3調整弁93aと第4調整弁94aを開いた状態にする。さらに、暖房が必要な床暖房パネル811a,811b,811cに対して各床暖房パネル811a,811b,811cでの温度に応じて所望の電解液を循環させるように、混合流路に設ける他の調整弁の開閉制御を行う。   In the operation control of the battery system in the present embodiment, when the floor heater 81 is operated, the third adjustment valve 93a and the fourth adjustment valve are closed with the first adjustment valve 91 and the second adjustment valve 92 closed. Open 94a. In addition, other adjustments provided in the mixing channel to circulate the desired electrolyte according to the temperature at each floor heating panel 811a, 811b, 811c for the floor heating panels 811a, 811b, 811c that require heating Controls opening and closing of the valve.

また、本実施形態における電池システムの運転制御は、床暖房機81の運転を行わない場合には、第1調整弁91と第2調整弁92は開き、第3調整弁93aと第4調整弁94aを閉じる。   In the operation control of the battery system in the present embodiment, when the floor heater 81 is not operated, the first adjustment valve 91 and the second adjustment valve 92 are opened, and the third adjustment valve 93a and the fourth adjustment valve are opened. Close 94a.

本実施形態も、混合された電解液が流れる配管を床暖房パネル811a,811b,811cに組み込んでいるので、電解液の放熱を無駄なく利用することができ、しかも、電解液の混合後、すぐに床暖房パネル811a,811b,811cを加温するので、熱の放散ロスをできるだけ少なくでき、さらに、熱の無駄がなくなる。その結果、暖房負荷が電池本体と離れている場合や、混合流路が途中で屋外等の冷えた場所を通るような場合でも、電解液の熱を有効に利用できる。   Also in this embodiment, since the piping through which the mixed electrolyte flows is incorporated in the floor heating panels 811a, 811b, 811c, the heat dissipation of the electrolyte can be used without waste, and immediately after the electrolyte is mixed In addition, since the floor heating panels 811a, 811b, and 811c are heated, the heat dissipation loss can be reduced as much as possible, and the waste of heat is eliminated. As a result, even when the heating load is separated from the battery body or when the mixing flow path passes through a cold place such as outdoors, the heat of the electrolyte can be used effectively.

さらに、調整弁の開閉制御により電解液の循環経路を制御して、複数の床暖房パネル811a,811b,811cに電解液を個別に循環できる構成としているので、暖房が必要な床暖房パネル811a,811b,811cのみを加温することが可能となる。   Furthermore, since the electrolyte circulation path is controlled by opening / closing control of the regulating valve, and the electrolyte can be circulated individually to the plurality of floor heating panels 811a, 811b, 811c, the floor heating panel 811a, which requires heating, Only 811b and 811c can be heated.

[第6実施形態]
図6に示す第6実施形態は、熱利用システムを利用する加熱システムとしてファン暖房機82を用いたものである。
[Sixth Embodiment]
The sixth embodiment shown in FIG. 6 uses a fan heater 82 as a heating system using a heat utilization system.

第6実施形態の電解液循環型電池システムは、電池セル11、交流/直流変換器12、正極タンク2、負極タンク3、正極電解液循環路4、負極電解液循環路5、循環ポンプ13,14、混合流路、各調整弁、ファン暖房機82に用いる熱交換器812及び温水循環路813の構成は、第1実施形態と同じ構成である。同じ構成部分については説明を省略する。   The electrolyte circulation type battery system of the sixth embodiment includes a battery cell 11, an AC / DC converter 12, a positive electrode tank 2, a negative electrode tank 3, a positive electrode electrolyte circulation path 4, a negative electrode electrolyte circulation path 5, a circulation pump 13, 14, the configuration of the mixing channel, each regulating valve, the heat exchanger 812 and the hot water circulation channel 813 used for the fan heater 82 are the same as those in the first embodiment. Description of the same components is omitted.

第6実施形態の熱利用システムを利用するファン暖房機82は、空気熱交換器822とファン823を備える室内機821と、熱交換器812、室内機821の空気熱交換器822と熱交換器812との間で温水を循環させる温水循環路813を有する。温水循環路813には、温水を循環させるためのポンプ814が設けられている。   The fan heater 82 using the heat utilization system of the sixth embodiment includes an indoor unit 821 including an air heat exchanger 822 and a fan 823, a heat exchanger 812, an air heat exchanger 822 of the indoor unit 821, and a heat exchanger. A hot water circulation path 813 for circulating hot water to and from 812 is provided. The hot water circulation path 813 is provided with a pump 814 for circulating hot water.

第6実施形態も温水循環路813を流れる温水の温度を温度検出手段15で検出して、温度検出結果に基づいてバルブコントローラー16により調整弁の開閉制御を行う。   In the sixth embodiment, the temperature detection means 15 detects the temperature of the hot water flowing through the hot water circulation path 813, and the valve controller 16 controls the opening / closing of the regulating valve based on the temperature detection result.

加熱システムとして、ファン暖房機82を用いる場合でも、電解液の発熱を有効に利用して暖房を行うことができる。   Even when the fan heater 82 is used as the heating system, heating can be performed by effectively using the heat generated by the electrolyte.

[第7実施形態]
第6実施形態では、ファン暖房機に、室内機とは別に熱交換器を設けて、この熱交換機において温水を電解液の熱で加熱するようにした。図7に示す第7実施形態は、ファン暖房機82の室内機821に設ける空気熱交換器822に電解液が流れる混合流路を組み込んだ構成にしている。
[Seventh Embodiment]
In the sixth embodiment, the fan heater is provided with a heat exchanger separately from the indoor unit, and the hot water is heated by the heat of the electrolytic solution in this heat exchanger. The seventh embodiment shown in FIG. 7 has a configuration in which a mixing flow path through which an electrolytic solution flows is incorporated in an air heat exchanger 822 provided in an indoor unit 821 of a fan heater 82.

第7実施形態の熱利用システムは、電池セル11、交流/直流変換器12、正極タンク2、負極タンク3、正極電解液循環路4、負極電解液循環路5、循環ポンプ13,14、混合流路、各調整弁の構成は、第1実施形態と同じ構成である。同じ構成部分については説明を省略する。   The heat utilization system of the seventh embodiment includes a battery cell 11, an AC / DC converter 12, a positive electrode tank 2, a negative electrode tank 3, a positive electrode electrolyte circuit 4, a negative electrolyte circuit 5, circulation pumps 13 and 14, and mixing The configuration of the flow path and each regulating valve is the same as that of the first embodiment. Description of the same components is omitted.

第7実施形態の熱利用システムを利用するファン暖房機82は、空気熱交換器822とファン823を備える室内機821とを有する。第7実施形態は、空気熱交換器822から出てきた空気の温度を温度検出手段15で検出して、温度検出結果に基づいて制御手段16により調整弁の開閉制御を行う。   A fan heater 82 that uses the heat utilization system of the seventh embodiment includes an air heat exchanger 822 and an indoor unit 821 that includes a fan 823. In the seventh embodiment, the temperature detection means 15 detects the temperature of the air that has come out of the air heat exchanger 822, and the control means 16 performs opening / closing control of the regulating valve based on the temperature detection result.

第7実施形態では、ファン暖房機82の空気熱交換器822において、電解液で発生した熱を直接熱交換するので、電解液の熱をさらに有効に利用して暖房を行うことができる。第7実施形態では、第6実施形態で用いた温水循環路と温水を加熱するための熱交換機を不要にできる。   In the seventh embodiment, since heat generated in the electrolytic solution is directly exchanged in the air heat exchanger 822 of the fan heater 82, heating can be performed using the heat of the electrolytic solution more effectively. In the seventh embodiment, the hot water circulation path used in the sixth embodiment and the heat exchanger for heating the hot water can be eliminated.

[第8実施形態]
図8に示す第8実施形態は、熱利用システムを利用する加熱システムとして、ヒートポンプチラー83を用いている。
[Eighth Embodiment]
In the eighth embodiment shown in FIG. 8, a heat pump chiller 83 is used as a heating system using a heat utilization system.

第8実施形態の熱利用システムは、電池セル11、交流/直流変換器12、正極タンク2、負極タンク3、正極電解液循環路4、負極電解液循環路5、循環ポンプ13,14、混合流路、各調整弁の構成は、第1実施形態と同じ構成である。同じ構成部分については説明を省略する。   The heat utilization system of the eighth embodiment includes a battery cell 11, an AC / DC converter 12, a positive electrode tank 2, a negative electrode tank 3, a positive electrolyte circulation circuit 4, a negative electrolyte circulation circuit 5, circulation pumps 13 and 14, and mixing. The configuration of the flow path and each regulating valve is the same as that of the first embodiment. Description of the same components is omitted.

第8実施形態の熱利用システムを利用するヒートポンプチラー83は、室内機831と、室外機となる熱交換器832、室内機831と熱交換器832との間で冷媒を循環させる冷媒循環路833を有する。冷媒循環路833には、冷媒を循環させるためのポンプ814が設けられている。   A heat pump chiller 83 that uses the heat utilization system of the eighth embodiment includes an indoor unit 831, a heat exchanger 832 that serves as an outdoor unit, and a refrigerant circulation path 833 that circulates refrigerant between the indoor unit 831 and the heat exchanger 832. Have The refrigerant circulation path 833 is provided with a pump 814 for circulating the refrigerant.

第8実施形態では、熱交換器832に混合流路を組み込んで、この熱交換器832で冷媒を加熱する。第8実施形態も冷媒循環路833を流れる冷媒の温度を温度検出手段15で検出して、温度検出結果に基づいて制御手段16により調整弁の開閉制御を行う。   In the eighth embodiment, a mixing channel is incorporated in the heat exchanger 832 and the refrigerant is heated by the heat exchanger 832. In the eighth embodiment, the temperature of the refrigerant flowing through the refrigerant circulation path 833 is detected by the temperature detecting means 15, and the control means 16 controls the opening / closing of the regulating valve based on the temperature detection result.

加熱システムとして、ヒートポンプチラー83を用いる場合でも、電解液の発熱を有効に利用して暖房を行うことができる。   Even when the heat pump chiller 83 is used as the heating system, heating can be performed by effectively using the heat generated by the electrolyte.

さらに、真冬の早朝など気温が低く、熱交換器に霜が発生しやすい状態でも、冷媒を電解液の熱で加熱することにより、速やかに暖房を立ち上げて、高出力運転が可能となる。   Furthermore, even in a state where the temperature is low such as early morning in midwinter and frost is likely to be generated in the heat exchanger, heating the refrigerant quickly with the heat of the electrolyte makes it possible to quickly start up the heating and perform high-power operation.

なお、気温が上がってヒートポンプが外気熱のみで高効率の暖房運転できるようになったら、電解液混合を停止して、夜間蓄えた安価な電気を放電し、ヒートポンプチラーに給電する。このように、電解液に蓄えられたエネルギーをヒートポンプチラーの熱源として利用したり、ヒートポンプチラーに給電するために用いることで、電解液に蓄えられたエネルギーを無駄なく有効に活用できる。   When the temperature rises and the heat pump can perform high-efficiency heating operation only with outside air heat, the electrolytic solution mixing is stopped, the inexpensive electricity stored at night is discharged, and the heat pump chiller is fed. Thus, by using the energy stored in the electrolyte as a heat source for the heat pump chiller or for supplying power to the heat pump chiller, the energy stored in the electrolyte can be effectively used without waste.

本発明の熱利用システムは、負荷平準化や瞬低対策などとして利用されている電解液循環型電池のエネルギーを加熱システムの熱源して利用することができる。   The heat utilization system of the present invention can utilize the energy of the electrolyte circulation type battery, which is used as load leveling or a measure against instantaneous voltage drop, as a heat source of the heating system.

本発明の第1実施形態に係る加熱システムの概略構成図である。1 is a schematic configuration diagram of a heating system according to a first embodiment of the present invention. 本発明の第2実施形態に係る加熱システムの概略構成図である。It is a schematic block diagram of the heating system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る加熱システムの概略構成図である。It is a schematic block diagram of the heating system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る加熱システムの概略構成図である。It is a schematic block diagram of the heating system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る加熱システムの概略構成図である。It is a schematic block diagram of the heating system which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る加熱システムの概略構成図である。It is a schematic block diagram of the heating system which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る加熱システムの概略構成図である。It is a schematic block diagram of the heating system which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る加熱システムの概略構成図である。It is a schematic block diagram of the heating system which concerns on 8th Embodiment of this invention. 電解液循環型電池の動作原理の説明図である。It is explanatory drawing of the principle of operation of an electrolyte circulation type battery.

符号の説明Explanation of symbols

1 電解液循環型電池
11 電池セル 12 交流/直流変換器 13 正極側循環用ポンプ
14 負極側循環用ポンプ 15 温度検出手段
16 バルブコントローラー(制御手段)
2 正極タンク
3 負極タンク
4 正極電解液循環路
41 上流側正極配管
42 下流側正極配管
5 負極電解液循環路
51 上流側負極配管
52 下流側負極配管
6 連通管
6a 連通用調整弁
71 正極電解液混合用配管
71a 正極側合流配管部分 71b 正極側分岐配管部分
72 負極電解液混合用配管
72a 負極側合流配管部分 72b 負極側分岐配管部分
73 正極側混合用配管上流部 74 負極側混合用配管上流部
75 混合用配管合流部
76 正極側混合用配管下流部 77 負極側混合用配管下流部
81 床暖房機
811,811a,811b,811c 床暖房パネル 812 熱交換器
813 温水循環路 814 ポンプ 815 加温部
82 ファン暖房機
821 室内機 822 空気熱交換器 823 ファン
83 ヒートポンプチラー
831 室内機 832 熱交換器 833 冷媒循環路
91 第1調整弁 92 第2調整弁
93,93a 第3調整弁 94,94a 第4調整弁
95,95a,95b,95c 第5調整弁 96,96b,96c 第6調整弁
97,97b,97c 第7調整弁 98,98b,98c 第8調整弁
99,99b,99c 第9調整弁 100,100b,100c 第10調整弁
101,101c 第11調整弁 102,102c 第12調整弁
103c 第13調整弁
1A セル 2A 正極セル 2B 負極セル
2C 隔膜 3A 正極電極 3B 負極電極
4A 正極タンク 4B 負極タンク
5A,5B ポンプ 6A,6B 導管
1 Electrolyte circulating battery
11 Battery cell 12 AC / DC converter 13 Positive side circulation pump
14 Negative side circulation pump 15 Temperature detection means
16 Valve controller (control means)
2 Positive electrode tank
3 Negative tank
4 Positive electrode electrolyte circuit
41 Upstream cathode piping
42 Downstream cathode piping
5 Negative electrode electrolyte circuit
51 Upstream negative piping
52 Downstream negative electrode piping
6 Communication pipe
6a Regulating valve for communication
71 Positive Electrolyte Mixing Pipe
71a Positive side merging piping 71b Positive side branch piping
72 Negative electrode electrolyte mixing piping
72a Negative side merging pipe part 72b Negative side branch pipe part
73 Upstream part of the positive side mixing pipe 74 Upstream part of the negative side mixing pipe
75 Mixing pipe junction
76 Downstream part of the positive side mixing pipe 77 Downstream part of the negative side mixing pipe
81 floor heater
811,811a, 811b, 811c Floor heating panel 812 Heat exchanger
813 Hot water circuit 814 Pump 815 Heating section
82 fan heater
821 Indoor unit 822 Air heat exchanger 823 Fan
83 Heat pump chiller
831 Indoor unit 832 Heat exchanger 833 Refrigerant circuit
91 First adjustment valve 92 Second adjustment valve
93,93a Third regulating valve 94,94a Fourth regulating valve
95,95a, 95b, 95c 5th regulating valve 96,96b, 96c 6th regulating valve
97,97b, 97c 7th regulating valve 98,98b, 98c 8th regulating valve
99,99b, 99c Nine adjustment valve 100,100b, 100c Tenth adjustment valve
101,101c 11th regulating valve 102,102c 12th regulating valve
103c 13th regulating valve
1A cell 2A positive electrode cell 2B negative electrode cell
2C Diaphragm 3A Positive electrode 3B Negative electrode
4A Positive tank 4B Negative tank
5A, 5B pump 6A, 6B conduit

Claims (8)

正極電解液及び負極電解液が供給される電池セルと、正極電解液が貯留される正極タンクと、負極電解液が貯留される負極タンクと、正極電解液を電池セルに循環供給する正極電解液循環路と、負極電解液を電池セルに循環供給する負極電解液循環路と、各電解液循環路に設けるポンプとを構成要素として含む電解液循環型電池と、
各電解液循環路を流れる正極電解液と負極電解液とを適量混合する混合流路とを備え、
混合流路で発生した電解液の熱を加熱システムに用いることを特徴とする熱利用システム。
A battery cell to which a positive electrode electrolyte and a negative electrode electrolyte are supplied, a positive electrode tank in which the positive electrode electrolyte is stored, a negative electrode tank in which the negative electrode electrolyte is stored, and a positive electrode electrolyte that circulates and supplies the positive electrode electrolyte to the battery cells An electrolyte circulation battery including a circulation path, a negative electrode electrolyte circulation path that circulates and supplies the negative electrode electrolyte solution to the battery cell, and a pump provided in each electrolyte circulation path;
A mixing channel for mixing an appropriate amount of a positive electrode electrolyte and a negative electrode electrolyte flowing through each electrolyte circuit;
A heat utilization system characterized in that heat of an electrolyte generated in a mixing channel is used in a heating system.
混合流路に設ける正極電解液と負極電解液との混合量を調整する調整弁と、
混合流路の電解液発熱箇所の温度を検出する温度検出手段と、
この温度検出手段の検出結果に基づいて調整弁により混合流路における電解液の混合量の制御を行う制御手段とを備えることを特徴とする請求項1に記載の熱利用システム。
An adjustment valve for adjusting the mixing amount of the positive electrode electrolyte and the negative electrode electrolyte provided in the mixing channel;
Temperature detection means for detecting the temperature of the electrolyte solution heat generation point in the mixing channel;
The heat utilization system according to claim 1, further comprising: a control unit that controls a mixing amount of the electrolytic solution in the mixing flow path by an adjustment valve based on a detection result of the temperature detection unit.
混合流路が、各電解液循環路のポンプ下流側に接続される上流部と、これら上流部を流れる正極電解液と負極電解液とが合流する合流部と、合流部を流れる電解液を分流して各電解液循環路の上流部接続位置より下流側に戻す下流部とを有することを特徴とする請求項1または請求項2に記載の熱利用システム。   The mixing channel separates the upstream part connected to the pump downstream side of each electrolyte circulation path, the merging part where the positive and negative electrolytes flowing through these upstream parts merge, and the electrolyte flowing through the merging part. The heat utilization system according to claim 1, further comprising a downstream portion that flows and returns to the downstream side from the upstream portion connection position of each electrolyte circulation path. 合流部は、合流した電解液が複数に分流されて流れる分岐流路と、各分岐流路への電解液の流量を制御する調整弁とを有していることを特徴とする請求項3に記載の熱利用システム。   The merge section includes a branch flow path in which the merged electrolyte solutions are divided and flowed, and an adjustment valve that controls a flow rate of the electrolyte solution to each branch flow path. The described heat utilization system. 正極電解液の上流部と、負極電解液の上流部とをそれぞれ複数に分岐させ、分岐後の流路を合流させて複数の合流部を形成するとともに、上流部に各合流部への電解液の流量を制御する調整弁を備えていることを特徴とする請求項3に記載の熱利用システム。   The upstream part of the positive electrode electrolyte and the upstream part of the negative electrode electrolyte are branched into a plurality of parts, and the flow paths after branching are merged to form a plurality of merged parts, and the electrolytes to the merged parts in the upstream part The heat utilization system according to claim 3, further comprising an adjustment valve that controls a flow rate of the heat. 混合流路における電解液発熱部分を床下に配置していることを特徴とする請求項1に記載の熱利用システム。   The heat utilization system according to claim 1, wherein the heat generation part of the electrolyte solution in the mixing channel is disposed under the floor. 床下に温水管を配置して温水管を流れる水を混合流路の電解液発熱部分を流れる電解液の熱で加熱することを特徴とする請求項1に記載の熱利用システム。   The heat utilization system according to claim 1, wherein a hot water pipe is disposed under the floor, and water flowing through the hot water pipe is heated by heat of the electrolytic solution flowing through the electrolytic solution heating portion of the mixing channel. ヒートポンプチラーに設ける冷媒配管を流れる冷媒を混合流路の電解液発熱部分を流れる電解液の熱で加熱することを特徴とする請求項1に記載の熱利用システム。   The heat utilization system according to claim 1, wherein the refrigerant flowing through the refrigerant pipe provided in the heat pump chiller is heated by the heat of the electrolytic solution flowing through the electrolytic solution heating portion of the mixing channel.
JP2006005445A 2006-01-12 2006-01-12 Heat utilization system Withdrawn JP2007188730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005445A JP2007188730A (en) 2006-01-12 2006-01-12 Heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005445A JP2007188730A (en) 2006-01-12 2006-01-12 Heat utilization system

Publications (1)

Publication Number Publication Date
JP2007188730A true JP2007188730A (en) 2007-07-26

Family

ID=38343754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005445A Withdrawn JP2007188730A (en) 2006-01-12 2006-01-12 Heat utilization system

Country Status (1)

Country Link
JP (1) JP2007188730A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206566A (en) * 2012-03-27 2013-10-07 Sumitomo Electric Ind Ltd Heat exchanger for redox flow battery, and redox flow battery
CN103985831A (en) * 2014-05-16 2014-08-13 力帆实业(集团)股份有限公司 Temperature control battery box and temperature control method thereof
JP2014531716A (en) * 2011-09-21 2014-11-27 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery stack with integrated heat exchanger
WO2017203899A1 (en) * 2016-05-25 2017-11-30 住友電気工業株式会社 Redox flow battery piping, method for manufacturing redox flow battery piping, piping unit, and redox flow battery
CN107732269A (en) * 2017-11-27 2018-02-23 大连热电新能源应用技术研究院有限公司 The residual neat recovering system and all-vanadium flow battery cooling means of all-vanadium flow battery
WO2018182226A1 (en) * 2017-03-30 2018-10-04 롯데케미칼 주식회사 Redox flow battery
WO2019111325A1 (en) * 2017-12-05 2019-06-13 日立化成株式会社 Warming device and warming system
CN114824374A (en) * 2020-12-21 2022-07-29 广东三水合肥工业大学研究院 Temperature control device for all-vanadium redox flow battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531716A (en) * 2011-09-21 2014-11-27 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery stack with integrated heat exchanger
US9774044B2 (en) 2011-09-21 2017-09-26 United Technologies Corporation Flow battery stack with an integrated heat exchanger
JP2013206566A (en) * 2012-03-27 2013-10-07 Sumitomo Electric Ind Ltd Heat exchanger for redox flow battery, and redox flow battery
CN103985831A (en) * 2014-05-16 2014-08-13 力帆实业(集团)股份有限公司 Temperature control battery box and temperature control method thereof
WO2017203899A1 (en) * 2016-05-25 2017-11-30 住友電気工業株式会社 Redox flow battery piping, method for manufacturing redox flow battery piping, piping unit, and redox flow battery
JPWO2017203899A1 (en) * 2016-05-25 2019-03-28 住友電気工業株式会社 Piping for redox flow battery, method for producing piping for redox flow battery, piping unit, redox flow battery
WO2018182226A1 (en) * 2017-03-30 2018-10-04 롯데케미칼 주식회사 Redox flow battery
CN107732269A (en) * 2017-11-27 2018-02-23 大连热电新能源应用技术研究院有限公司 The residual neat recovering system and all-vanadium flow battery cooling means of all-vanadium flow battery
CN107732269B (en) * 2017-11-27 2023-07-04 大连热电新能源应用技术研究院有限公司 Waste heat recovery system of all-vanadium redox flow battery and cooling method of all-vanadium redox flow battery
WO2019111325A1 (en) * 2017-12-05 2019-06-13 日立化成株式会社 Warming device and warming system
CN114824374A (en) * 2020-12-21 2022-07-29 广东三水合肥工业大学研究院 Temperature control device for all-vanadium redox flow battery
CN114824374B (en) * 2020-12-21 2023-10-31 广东三水合肥工业大学研究院 Temperature control device for all-vanadium redox flow battery

Similar Documents

Publication Publication Date Title
US7179556B2 (en) Fuel cell system
JP2007188730A (en) Heat utilization system
CN209786084U (en) cooling system for vehicle fuel cell system
US20130011704A1 (en) Redox Flow Battery System with Multiple Independent Stacks
CN100379065C (en) Fuel-cell generating system capable of starting and operating in low-temperature environment
US8313871B2 (en) Fuel cell heating
US20060150652A1 (en) Cooling/heating apparatus using waste heat from fuel cell
CN105874635A (en) Fuel cell system and method for controlling fuel cell system
Hwang Thermal control and performance assessment of a proton exchanger membrane fuel cell generator
KR20100035182A (en) Fuel cell system and its control method
KR20090057307A (en) Air conditioning control system
US20200329531A1 (en) Heating apparatus comprising a battery and a power inverter for introducing energy from the battery to the electric supply device
CN112060981A (en) Thermal management system and control method of fuel cell vehicle
EP2157381A1 (en) Cogeneration system
JP2007188731A (en) Electrolytic solution circulation type battery system
JP5359195B2 (en) Solar system
US7179555B2 (en) Fuel cell system
JP2011217590A (en) Air conditioning system
JP2003168462A (en) Fuel cell cooling system and electric vehicle
JP2016515190A (en) Heating equipment and method of operating heating equipment
CN116344861A (en) Proton exchange membrane hydrogen fuel cell cogeneration system
KR101848614B1 (en) Thermal Management System for vehicles
CN115900054A (en) Energy cabin integrating fuel cell cogeneration and control method
JP2012077961A (en) Heating mode switching device
CN112864414A (en) Fuel cell comprehensive heat management system and fuel cell electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090209

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090521