WO2018169358A1 - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
WO2018169358A1
WO2018169358A1 PCT/KR2018/003112 KR2018003112W WO2018169358A1 WO 2018169358 A1 WO2018169358 A1 WO 2018169358A1 KR 2018003112 W KR2018003112 W KR 2018003112W WO 2018169358 A1 WO2018169358 A1 WO 2018169358A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
stack
end plate
cathode
connection passage
Prior art date
Application number
PCT/KR2018/003112
Other languages
French (fr)
Korean (ko)
Inventor
정현진
김대식
최원석
김태언
정진교
서동균
김진후
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2018169358A1 publication Critical patent/WO2018169358A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow cell, and more particularly, to a redox flow cell connecting end plates of neighboring stacks to each other.
  • zinc bromine redox flow cells are a type of flow cell that produce electricity through redox reactions between the electrolyte and the electrodes.
  • a redox flow battery is formed by repeatedly laminating a bipolar electrode and a membrane, and laminating a current collector plate and an end plate on both sides of the outermost layer, and supplying electrolyte to oxidize the electrolyte. It includes a stack in which the reduction reaction occurs, a pump and a pipe for supplying the electrolyte solution to the stack, and an electrolyte tank for storing the electrolyte solution flowing out after the internal reaction in the stack.
  • the electrolyte tank includes an anode electrolyte tank containing an anode electrolyte containing zinc, and a cathode electrolyte tank containing a cathode electrolyte containing bromine.
  • the anode electrolyte tank and the cathode electrolyte tank are connected by an overflow tube to supply the insufficient electrolyte solution to each other.
  • the redox flow battery may include a plurality of stacks for increasing capacity.
  • the end plates provided at both ends of each stack are supplied with an electrolyte solution from the outside, and are provided with a flow path for outflowing the electrolyte solution circulating through the stack to the outside.
  • the end plate is connected to an external pipe to transfer the electrolyte, the length of the pipe is increased, and thus the internal pressure of the stack is changed.
  • One aspect of the present invention is to provide a redox flow battery that forms a connection passage through which the electrolyte flows in the end plate to minimize the length of the pipe outside the end plate.
  • One aspect of the present invention is to provide a redox flow battery that directly injects the electrolyte into the stack to minimize the difference in the internal pressure of the stack due to the difference in viscosity and specific gravity of the electrolyte during charging and discharging.
  • the first stack and the second stack including the unit stack for generating a current and disposed adjacent to supply the electrolyte solution to the first stack and the second stack and the first
  • An electrolyte tank for storing the electrolyte flowing out of the first stack and the second stack, and connecting the electrolyte tank with the first stack and the second stack to drive the electrolyte pump into the first stack and the second stack.
  • An electrolyte inflow line, and an electrolyte outlet line connecting the electrolyte tank, the first stack, and the second stack to discharge the electrolyte from the first and second stacks, respectively, the first and second stacks, respectively.
  • a membrane and a spacer and an electrode plate to be repeatedly stacked, a collector plate and an end plate are sequentially stacked on both ends of the stacking direction, and the interior set between the membrane and the electrode plate
  • the end plate of the first stack forms an eleventh connection hole connected to the first connection passage, and the end plate of the neighboring second stack forms a twelfth connection hole connected to the first channel.
  • the eleventh connection hole and the twelfth connection hole may be connected to the first fitting member.
  • the end plate of the first stack forms a twenty-first connection hole connected to the second channel
  • the end plate of the neighboring second stack forms a twenty-second connection hole connected to the second connection passage
  • the twenty-first connecting hole and the twenty-second connecting hole may be connected to the second fitting member.
  • the first connection passage may have a diameter smaller than or equal to the diameter of the electrolyte inflow line
  • the second connection passage may have a diameter smaller than or equal to the diameter of the electrolyte outlet line.
  • connection passage in the end plate of the stack connects the electrolyte inlet and the electrolyte outlet to the flow channel can minimize the length of the pipe from the outside of the end plate.
  • connection passage in the end plate directly injecting the electrolyte in the stack it is possible to minimize the internal pressure difference of the stack due to the difference in viscosity and specific gravity of the electrolyte during charging and discharging.
  • the efficiency of the redox flow battery can be increased, the durability of the stack can be improved, and long-term cycle stability can be achieved.
  • the load of the electrolyte pump is reduced, so that the reaction speed in the stack can be improved.
  • FIG. 1 is a block diagram of a redox flow battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a stack applied to FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 2.
  • FIG. 5 is a side view of the end plate applied to the stack of FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 5.
  • the redox flow battery according to an embodiment of the present invention includes a stack 120 generating an electric current and an electrolyte tank 210 and 220 supplying an electrolyte to the stack 120 and storing an electrolyte flowing out of the stack 120. It includes.
  • FIG. 2 is a perspective view illustrating a stack applied to FIG. 1.
  • the stack 120 includes a first stack 121 and a second stack 122 disposed adjacent to each other.
  • the first and second stacks 121 and 122 are formed by stacking five unit stacks 110 on each side and electrically connecting them.
  • the unit stack 110 is configured to generate a current in the circulation of the electrolyte.
  • the electrolyte tanks 210 and 220 supply electrolyte to the first stack 121 and the second stack 122, and flow out from the first stack 121 and the second stack 122. It is configured to store the electrolyte, it is connected to the electrolyte inlet line (La1 Lc1) and the electrolyte outlet line (La2, Lc2).
  • the electrolyte tanks 210 and 220 include an anode electrolyte tank 210 containing an anode electrolyte containing zinc, and a cathode electrolyte tank 220 containing a cathode electrolyte containing bromine (for convenience, a cathode electrolyte solution).
  • a two-phase electrolyte tank for accommodating two phases is omitted.
  • the electrolyte inflow line La1 Lc1 connects the anode and cathode electrolyte tanks 210 and 220 to the stack 120 to introduce electrolyte into the stack 120 by driving the electrolyte pumps Pa and Pc.
  • the electrolyte outlet lines La2 and Lc2 connect the anode and cathode electrolyte tanks 210 and 220 to the stack 120 to discharge the electrolyte solution after the reaction via the stack 120 from the stack 120.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 2.
  • the first stack 121 and the second stack 122 are sequentially stacked on both ends of the membrane 10, the spacer 20, the electrode plate 30, and the stacking direction.
  • a first flow channel CH1 including the current collector plates 61 and 62 and end plates 71 and 73 and 72 and 74 to supply the electrolyte solution to the first stack 121 and supplying the electrolyte solution.
  • the second channel CH2 is included in the second stack 122.
  • the electrode plate 30 includes an anode electrode 32 on one side and a cathode electrode 31 on the other side.
  • FIG. 5 is a side view of the end plates 71 and 73 applied to the stack of FIG. 2
  • FIG. 6 is a sectional view taken along the line VI-VI of FIG. 5
  • FIG. 7 is a sectional view taken along the line VII-VII of FIG. 5. .
  • the end plate 71 is the electrolyte inlet (H21) connected to the electrolyte inlet line (La1), and the electrolyte inlet (H21) It includes a first connection passage (P1) for connecting to the first channel (CH1).
  • the first connection passage P1 is directly connected to the electrolyte inlet H21 of the electrolyte inlet line La1, the length of the pipe connected to the outside of the end plate 71, that is, the electrolyte inlet line La1 is shortened, and the electrolyte solution.
  • the load of the pump Pa can be reduced.
  • the first connection passage P1 may have a diameter smaller than or equal to the diameter of the electrolyte inflow line La1.
  • the diameter of the first connection passage (P1) may adjust the flow rate of the anode electrolyte flowing in.
  • the end plate 72 connects the electrolyte outlet H22 connected to the electrolyte outlet line La2, and the electrolyte outlet H22 to the first flow channel. And a first connection passage P1 connecting to CH1).
  • the first connection passage P1 is directly connected to the electrolyte outlet H22 of the electrolyte outlet line La2, the length of the pipe connected to the outside of the end plate 72, that is, the electrolyte outlet line La2 is shortened, and the electrolyte solution.
  • the load of the pump Pa can be reduced.
  • the first connection passage P1 may have a diameter smaller than or equal to the diameter of the electrolyte outlet line La2. The diameter of the first connection passage P1 may adjust the flow rate of the anode electrolyte flowing out.
  • the end plate 73 is an electrolyte outlet H32 connected to the electrolyte outlet line Lc2, and an electrolyte outlet H32. It includes a second connection passage (P2) for connecting to the second channel (CH2).
  • the second connection passage P2 is directly connected to the electrolyte outlet H32 of the electrolyte outlet line Lc2, the length of the pipe connected to the outside of the end plate 73, that is, the electrolyte outlet line Lc2, is shortened, and the electrolyte solution.
  • the load of the pump Pc can be reduced.
  • the second connection passage P2 may have a diameter smaller than or equal to the diameter of the electrolyte outlet line Lc2. The diameter of the second connection passage P2 may adjust the flow rate of the cathode electrolyte flowing out.
  • the end plate 74 connects the electrolyte inlet port H31 connected to the electrolyte inlet line Lc1, and the electrolyte inlet port H31 to the second flow channel. And a second connection passage (P2) connecting to CH2).
  • the second connection passage P2 is directly connected to the electrolyte inlet H31 of the electrolyte inflow line Lc1, the length of the pipe connected to the outside of the end plate 74, that is, the electrolyte inflow line Lc1 is shortened, and the electrolyte solution.
  • the load of the pump Pc can be reduced.
  • the second connection passage P2 may have a diameter smaller than or equal to the diameter of the electrolyte inflow line Lc1.
  • the diameter of the second connection passage (P2) can adjust the flow rate of the incoming cathode electrolyte.
  • the end plate 71 of the first stack 121 is an eleventh connection hole H11 connected to the first channel CH1 and the first connection passage P1.
  • a twelfth connection hole H12 connected to the first flow channel CH1 of the end plate 73 of the neighboring second stack 122.
  • the eleventh connection hole H11 and the twelfth connection hole H12 of the end plates 71 and 73 are connected to the first fitting member F1.
  • the first fitting member F1 minimizes the connection distance between the end plates 71 and 73, thereby preventing the flow rate charge of the introduced cathode electrolyte.
  • the end plates 72 and 74 are connected in the same structure on the cathode electrolyte outlet side by an eleventh fitting member F11 connected to a connection hole (not shown), thereby minimizing the connection distance and the flow rate of the electrolyte solution. The charge can be prevented.
  • the end plate 71 of the first stack 121 forms the twenty-first connection hole H41 connected to the second flow channel CH2
  • the end plate 73 of the second stack 122 forms a twenty-second connecting hole H42 connected to the second channel CH2 and the second connecting passage P2.
  • the twenty-first connecting hole H41 and the twenty-second connecting hole H42 of the end plates 71 and 73 are connected to the second fitting member F2.
  • the second fitting member F2 minimizes the connection distance between the end plates 71 and 73, thereby preventing the flow rate charge of the cathode electrolyte flowing out.
  • the end plates 72 and 74 are connected in the same structure at the anode electrolyte inflow side by a twenty-first fitting member F21 connected to a connection hole (not shown), thereby minimizing the connection distance and the flow rate of the electrolyte. The charge can be prevented.
  • the charge and discharge efficiency was 72.2%, and when the end plates 71, 73, 72, and 74 of this embodiment were applied, the charge and discharge efficiency was increased to 73.4%. That is, the present embodiment improves the reaction speed in the first and second stacks 121 and 122 to increase the efficiency of the redox flow battery.
  • the anode electrolyte tank 210 supplies an anode electrolyte between the membrane 10 and the anode electrode 32 of the stack 120 and the unit stack 110, and the membrane 10 and the anode electrode.
  • the anode electrolyte which flows out between (32) is accommodated.
  • the cathode electrolyte tank 220 accommodates the cathode electrolyte supplied between the stack 120 and the membrane 10 of the unit stack 110 and the cathode electrode 31.
  • the anode electrolyte inflow line La1 connects the anode electrolyte tank 210 to the first and second stacks 121 and 122
  • the cathode electrolyte inflow line Lc1 connects the cathode electrolyte tank 220 to the first.
  • the second stacks 121 and 122 connects the cathode electrolyte tank 220 to the first.
  • the anode electrolyte outlet line La2 connects the anode electrolyte tank 210 to the first and second stacks 121 and 122, and the cathode electrolyte outlet line Lc2 is connected to the first and second stacks 121 and 122.
  • the cathode electrolyte tank 220 is connected.
  • the anode and cathode electrolyte inflow lines La1 and Lc1 are connected to the anode electrolyte tanks H21 and H31 of the first and second stacks 121 and 122 via the anode and cathode electrolyte pumps Pa and Pc. 210 and the cathode electrolyte tank 220, respectively.
  • the anode and cathode electrolyte outlet lines La2 and Lc2 connect the anode electrolyte tank 210 and the cathode electrolyte tank 220 to the electrolyte outlets H22 and H32 of the first and second stacks 121 and 122, respectively.
  • the anode electrolyte tank 210 contains an anode electrolyte containing zinc, and the membrane 10 and the anode electrode 32 of the first and second stacks 121 and 122 are driven by the anode electrolyte pump Pa.
  • the anode electrolyte is circulated between
  • the cathode electrolyte tank 220 includes a cathode electrolyte containing bromine, and the membrane 10 and the cathode electrode of the first and second stacks 121 and 122 are driven by the cathode electrolyte pump Pc. 31) circulate the cathode electrolyte between.
  • the cathode electrolyte inflow line Lc1 and the cathode electrolyte outflow line Lc2 connect the cathode electrolyte tank 220 to the first and second stacks 121 and 122 through the four-way valve 205. It is possible to selectively perform inflow and outflow operations of the cathode electrolyte to the second stacks 121 and 122.
  • the unit stack 110 may be adjacent to other unit stacks 110 that are adjacent to each other through the bus bars B1 and B2 (see FIGS. 1, 3, and 4). Electrically connected.
  • the first and second stacks 121 and 122 discharge current generated inside the unit stacks 110 through the bus bars B1 and B2, or are connected to an external power source 206 to connect the anode electrolyte tank ( 210 may be charged with a current.
  • the unit stack 110 may be formed by stacking a plurality of unit cells C1 and C2.
  • this embodiment illustrates a unit stack 110 formed by stacking two unit cells C1 and C2. Since the unit stack 110 is stacked as illustrated in FIG. 2, first and second stacks 121 and 122 are formed. The first and second stacks 121 and 122 are adjacent to each other and disposed on the side surface.
  • the unit stack 110 further includes a flow frame, that is, a membrane flow frame 40 and an electrode flow frame 50. Since the unit stack 110 includes two unit cells C1 and C2, two membranes having one electrode flow frame 50 in the center and symmetrical structures on both sides of the electrode flow frame 50 are provided. Two end plates 71, 73; 72, 74 are arranged outside the flow frame 40 and the membrane flow frame 40, respectively.
  • the membrane 10 is configured to pass ions and is coupled to the membrane flow frame 40 at the center of the thickness direction of the membrane flow frame 40.
  • the electrode plate 30 is coupled to the electrode flow frame 50 at the center of the thickness direction of the electrode flow frame 50.
  • the end plates 71 and 73, the membrane flow frame 40, the electrode flow frame 50, the membrane flow frame 40 and the end plates 72 and 74 are disposed, and the membrane 10 and the electrode plate 30 are disposed.
  • the membrane flow frame 40, the electrode flow frame 50, and the end plates 71, 73; 72, 74 are joined with each other through the spacers 20, the two unit cells C1, C2 are connected.
  • the unit stack 110 is provided.
  • the electrode plate 30 forms the cathode electrode 31 on one side and the anode electrode 32 on the other side at the portion where the two unit cells C1 and C2 are connected, thereby forming the two unit cells C1 and C2.
  • the membrane flow frame 40, the electrode flow frame 50 and the end plates 71, 73; 72, 74 are bonded to each other to establish an internal volume S between the membrane 10 and the electrode plate 30, First and second channel channels CH1 and CH2 for supplying an electrolyte solution to the internal volume S are provided.
  • the first and second flow channels CH1 and CH2 are configured to supply the electrolyte at uniform pressure and amount on both sides of the membrane 10, respectively.
  • the membrane flow frame 40, the electrode flow frame 50, and the end plates 71, 73; 72, 74 may be formed of an electrical insulating material including a synthetic resin component, and may be bonded by heat fusion or vibration fusion. have.
  • the first channel CH1 connects the electrolyte inlet H21, the internal volume S and the electrolyte outlet H22, and drives the membrane 10 and the cathode electrode 31 by driving the cathode electrolyte pump Pc.
  • the cathode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction.
  • the second channel CH2 connects the electrolyte inlet H31, the internal volume S and the electrolyte outlet H32, and drives the membrane 10 and the anode electrode 32 by driving the anode electrolyte pump Pa.
  • the anode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction.
  • the anode electrolyte is redox-reacted at the anode electrode 32 side of the internal volume S to generate a current and stored in the anode electrolyte tank 210.
  • the cathode electrolyte is redox-reacted at the cathode electrode 31 side of the internal volume S to generate a current and stored in the cathode electrolyte tank 220.
  • bromine included in the cathode electrolyte is produced and stored in the cathode electrolyte tank 220.
  • zinc contained in the anode electrolyte is deposited and stored on the anode electrode 32.
  • a reverse reaction of equation 1 occurs between the membrane 10 and the cathode electrode 31, and a reverse reaction of equation 2 occurs between the membrane 10 and the anode electrode 32.
  • the current collector plates 61 and 62 collect the currents generated by the cathode electrode 31 and the anode electrode 32, or the outermost electrode plate so as to supply current to the cathode electrode 31 and the anode electrode 32 from the outside. 30, 30) and are electrically connected.
  • electrode plate 31 cathode electrode
  • first and second stacks 200 electrolyte tank
  • H21 (anode) electrolyte inlet
  • H22 (anode) electrolyte outlet
  • H31 (cathode) electrolyte inlet
  • H32 (cathode) electrolyte outlet
  • La1, Lc1 (anode, cathode) electrolyte inflow line
  • La2, Lc2 (anode, cathode) electrolyte spill line
  • Pc electrolyte pump P1
  • P2 first and second connection passages
  • F1 F11: 1st, 11th fitting member F2, F21: 2nd, 21st fitting member

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

An aspect of the present invention is to provide a redox flow battery which minimizes the pipeline length outside an end plate by forming, at the end plate, a connection passage through which an electrolyte flows. A redox flow battery according to an embodiment of the present invention comprises: a first stack, the end plate of which includes an electrolyte inlet connected to an electrolyte inflow line, and a first connection passage connecting the electrolyte inlet to a first flow channel; and a second stack, the end plate of which includes an electrolyte outlet connected to an electrolyte outflow line, and a second connection passage connecting the electrolyte outlet to a second flow channel.

Description

레독스 흐름 전지Redox flow battery
본 발명은 레독스 흐름 전지에 관한 것으로서, 보다 상세하게는 이웃하는 스택들의 엔드 플레이트를 서로 연결하는 레독스 흐름 전지에 관한 것이다.The present invention relates to a redox flow cell, and more particularly, to a redox flow cell connecting end plates of neighboring stacks to each other.
알려진 바에 따르면, 아연 브로민 레독스 흐름 전지는 흐름 전지의 일종으로써 전해액과 전극 사이에서 일어나는 산화 환원 반응으로 전기를 생산한다.As is known, zinc bromine redox flow cells are a type of flow cell that produce electricity through redox reactions between the electrolyte and the electrodes.
예를 들면, 레독스 흐름 전지는 바이폴라 전극판(bipolar electrode)과 멤브레인(membrane)을 반복적으로 적층하고, 적층된 최외곽의 양측에 집전판과 엔드 플레이트를 차례로 적층하여 형성되어 전해액이 공급되어 산화 환원 반응이 일어나는 스택, 스택에 전해액을 공급하는 펌프와 배관, 스택에서 내부 반응 후, 유출되는 전해액을 저장하는 전해액 탱크를 포함한다.For example, a redox flow battery is formed by repeatedly laminating a bipolar electrode and a membrane, and laminating a current collector plate and an end plate on both sides of the outermost layer, and supplying electrolyte to oxidize the electrolyte. It includes a stack in which the reduction reaction occurs, a pump and a pipe for supplying the electrolyte solution to the stack, and an electrolyte tank for storing the electrolyte solution flowing out after the internal reaction in the stack.
레독스 흐름 전지에서, 전해액 탱크는 아연을 포함하는 애노드 전해액(anolyte)을 수용하는 애노드 전해액 탱크, 및 브로민을 포함하는 캐소드 전해액(catholyte)을 수용하는 캐소드 전해액 탱크를 포함한다. 애노드 전해액 탱크와 캐소드 전해액 탱크는 오버 플로우 관으로 연결되어 부족한 전해액을 서로 공급한다.In a redox flow cell, the electrolyte tank includes an anode electrolyte tank containing an anode electrolyte containing zinc, and a cathode electrolyte tank containing a cathode electrolyte containing bromine. The anode electrolyte tank and the cathode electrolyte tank are connected by an overflow tube to supply the insufficient electrolyte solution to each other.
레독스 흐름 전지은 용량 증대를 위하여 스택을 복수로 구비할 수 있다. 이 경우, 각 스택의 양단에 구비되는 엔드 플레이트는 외부로부터 전해액을 공급받고, 스택을 순환한 전해액을 외부로 유출하는 유로를 구비하여 배관으로 연결된다. 그러나 엔드 플레이트가 외부의 배관에 연결되어 전해액을 이송하므로 배관의 길이가 길어지고 이에 따라 스택의 내부 압력이 변화된다.The redox flow battery may include a plurality of stacks for increasing capacity. In this case, the end plates provided at both ends of each stack are supplied with an electrolyte solution from the outside, and are provided with a flow path for outflowing the electrolyte solution circulating through the stack to the outside. However, since the end plate is connected to an external pipe to transfer the electrolyte, the length of the pipe is increased, and thus the internal pressure of the stack is changed.
배관이 길어지는 경우, 충전 및 방전시 발생되는 전해액의 점도 및 비중 차이로 인하여, 스택 내에서 전해액의 크로스오버가 발생되어 전해액 탱크에서 전해액의 수위 차이가 발생된다. 따라서 전하량 효율이 저하되고, 에너지 효율이 저하된다. 그러므로 엔드 플레이트의 외부에서 배관의 길이를 최소화할 필요가 있다.When the pipe is long, due to the difference in viscosity and specific gravity of the electrolyte generated during charging and discharging, crossover of the electrolyte occurs in the stack, the difference in the level of the electrolyte in the electrolyte tank occurs. Therefore, charge quantity efficiency falls and energy efficiency falls. Therefore, it is necessary to minimize the length of the pipe outside the end plate.
본 발명의 일 측면은 엔드 플레이트에 전해액이 흐르는 연결통로를 형성하여 엔드 플레이트 외부에서 배관의 길이를 최소화하는 레독스 흐름 전지를 제공하는 것이다. 본 발명의 일 측면은 스택 내에 전해액을 직접 주입하므로 충전 및 방전시 전해액의 점도 및 비중 차이로 인한 스택의 내부 압력 차이를 최소화하는 레독스 흐름 전지를 제공하는 것이다.One aspect of the present invention is to provide a redox flow battery that forms a connection passage through which the electrolyte flows in the end plate to minimize the length of the pipe outside the end plate. One aspect of the present invention is to provide a redox flow battery that directly injects the electrolyte into the stack to minimize the difference in the internal pressure of the stack due to the difference in viscosity and specific gravity of the electrolyte during charging and discharging.
본 발명의 일 실시예에 따른 레독스 흐름 전지는, 전류를 생성하는 단위 스택들을 포함하고 이웃하여 배치되는 제1스택과 제2스택, 상기 제1스택과 제2스택에 전해액을 공급하고 상기 제1스택과 제2스택에서 유출되는 전해액을 저장하는 전해액 탱크, 상기 전해액 탱크와 상기 제1스택과 제2스택을 연결하여 전해액 펌프의 구동으로 상기 전해액을 상기 제1스택과 제2스택에 유입하는 전해액 유입라인, 및 상기 전해액 탱크와 상기 제1스택과 제2스택을 연결하여 상기 전해액을 상기 제1스택과 제2스택으로부터 유출하는 전해액 유출라인을 포함하며, 상기 제1스택과 제2스택 각각은, 반복적으로 적층되는 멤브레인과 스페이서 및 전극판, 적층 방향의 양단에 차례로 적층되는 집전판과 엔드 플레이트, 및 상기 멤브레인과 상기 전극판 사이에 설정되는 내부 용적에 전해액을 공급하는 제1유로 채널과 제2유로 채널을 각각 포함하며, 상기 제1스택의 엔드 플레이트는, 상기 전해액 유입라인에 연결되는 전해액 유입구, 및 상기 전해액 유입구를 상기 제1유로 채널에 연결하는 제1 연결통로를 포함하고, 상기 제2스택의 엔드 플레이트는, 상기 전해액 유출라인에 연결되는 전해액 유출구, 및 상기 전해액 유출구를 상기 제2유로 채널에 연결하는 제2연결통로를 포함한다.Redox flow battery according to an embodiment of the present invention, the first stack and the second stack, including the unit stack for generating a current and disposed adjacent to supply the electrolyte solution to the first stack and the second stack and the first An electrolyte tank for storing the electrolyte flowing out of the first stack and the second stack, and connecting the electrolyte tank with the first stack and the second stack to drive the electrolyte pump into the first stack and the second stack. An electrolyte inflow line, and an electrolyte outlet line connecting the electrolyte tank, the first stack, and the second stack to discharge the electrolyte from the first and second stacks, respectively, the first and second stacks, respectively. Silver, a membrane and a spacer and an electrode plate to be repeatedly stacked, a collector plate and an end plate are sequentially stacked on both ends of the stacking direction, and the interior set between the membrane and the electrode plate A first flow channel and a second flow channel for supplying an electrolyte to a volume, respectively, wherein the end plate of the first stack includes an electrolyte inlet connected to the electrolyte inlet line, and the electrolyte inlet to the first channel. And a first connection passage connecting to each other, wherein the end plate of the second stack includes an electrolyte outlet connected to the electrolyte outlet line, and a second connection passage connecting the electrolyte outlet to the second channel.
상기 제1스택의 엔드 플레이트는 상기 제1연결통로에 연결되는 제11연결 구멍을 형성하고, 이웃하는 상기 제2스택의 엔드 플레이트는 상기 제1유로 채널에 연결되는 제12연결 구멍을 형성하며, 상기 제11연결 구멍과 상기 제12연결 구멍은 제1피팅 부재로 연결될 수 있다.The end plate of the first stack forms an eleventh connection hole connected to the first connection passage, and the end plate of the neighboring second stack forms a twelfth connection hole connected to the first channel. The eleventh connection hole and the twelfth connection hole may be connected to the first fitting member.
상기 제1스택의 엔드 플레이트는 상기 제2유로 채널에 연결되는 제21연결 구멍을 형성하고, 이웃하는 상기 제2스택의 엔드 플레이트는 상기 제2연결통로에 연결되는 제22연결 구멍을 형성하며, 상기 제21연결 구멍과 상기 제22연결 구멍은 제2피팅 부재로 연결될 수 있다.The end plate of the first stack forms a twenty-first connection hole connected to the second channel, the end plate of the neighboring second stack forms a twenty-second connection hole connected to the second connection passage, The twenty-first connecting hole and the twenty-second connecting hole may be connected to the second fitting member.
상기 제1연결통로는 상기 전해액 유입라인의 직경보다 작거나 동일한 직경을 가지며, 상기 제2연결통로는 상기 전해액 유출라인의 직경보다 작거나 같은 직경을 가질 수 있다.The first connection passage may have a diameter smaller than or equal to the diameter of the electrolyte inflow line, and the second connection passage may have a diameter smaller than or equal to the diameter of the electrolyte outlet line.
본 발명의 일 실시예는, 스택의 엔드 플레이트에 연결통로를 구비하여 전해액 유입구와 전해액 유출구를 유로 채널에 연결하므로 엔드 플레이트의 외부에서 배관의 길이를 최소화 할 수 있다.In one embodiment of the present invention, by providing a connection passage in the end plate of the stack connects the electrolyte inlet and the electrolyte outlet to the flow channel can minimize the length of the pipe from the outside of the end plate.
또한, 본 발명의 일 실시예는, 엔드 플레이트에 연결통로를 형성하여 스택 내에 전해액을 직접 주입하므로 충전 및 방전시 전해액의 점도 및 비중 차이로 인한 스택의 내부 압력 차이를 최소화 할 수 있다.In addition, one embodiment of the present invention, by forming a connection passage in the end plate directly injecting the electrolyte in the stack it is possible to minimize the internal pressure difference of the stack due to the difference in viscosity and specific gravity of the electrolyte during charging and discharging.
따라서 레독스 흐름 전지의 효율이 증가되고, 스택의 내구성이 향상되며, 장기 사이클 안정성이 도모될 수 있다. 또한 배관의 길이가 축소되어, 전해액 펌프의 부하가 감소되므로 스택 내의 반응 속도가 향상될 수 있다.Therefore, the efficiency of the redox flow battery can be increased, the durability of the stack can be improved, and long-term cycle stability can be achieved. In addition, since the length of the pipe is reduced, the load of the electrolyte pump is reduced, so that the reaction speed in the stack can be improved.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지의 구성도이다.1 is a block diagram of a redox flow battery according to an embodiment of the present invention.
도 2는 도 1에 적용되는 스택을 도시한 사시도이다.FIG. 2 is a perspective view illustrating a stack applied to FIG. 1.
도 3은 도 2의 Ⅲ-Ⅲ 선에 따른 단면도이다.3 is a cross-sectional view taken along line III-III of FIG. 2.
도 4는 도 2의 Ⅳ-Ⅳ 선에 따른 단면도이다.4 is a cross-sectional view taken along line IV-IV of FIG. 2.
도 5는 도 2의 스택에 적용되는 엔드 플레이트의 측면도이다.5 is a side view of the end plate applied to the stack of FIG.
도 6은 도 5의 Ⅵ-Ⅵ 선에 따른 단면도이다.6 is a cross-sectional view taken along line VI-VI of FIG. 5.
도 7은 도 5의 Ⅶ-Ⅶ 선에 따른 단면도이다.7 is a cross-sectional view taken along the line VII-VII of FIG. 5.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지의 구성도이다. 도 1을 참조하면, 일 실시예의 레독스 흐름 전지는 전류를 발생시키는 스택(120) 및 스택(120)에 전해액을 공급하고 스택(120)에서 유출되는 전해액을 저장하는 전해액 탱크(210, 220)를 포함한다.1 is a block diagram of a redox flow battery according to an embodiment of the present invention. Referring to FIG. 1, the redox flow battery according to an embodiment of the present invention includes a stack 120 generating an electric current and an electrolyte tank 210 and 220 supplying an electrolyte to the stack 120 and storing an electrolyte flowing out of the stack 120. It includes.
도 2는 도 1에 적용되는 스택을 도시한 사시도이다. 도 2를 참조하면, 스택(120)은 이웃하여 배치되는 제1스택(121)과 제2스택(122)를 포함하다. 제1, 제2스택(121, 122)은 각각 5개의 단위 스택들(110)을 서로의 측면에 적층하여 전기적으로 연결하여 형성된다. 단위 스택(110)은 전해액의 순환으로 전류를 발생시키도록 구성된다.FIG. 2 is a perspective view illustrating a stack applied to FIG. 1. Referring to FIG. 2, the stack 120 includes a first stack 121 and a second stack 122 disposed adjacent to each other. The first and second stacks 121 and 122 are formed by stacking five unit stacks 110 on each side and electrically connecting them. The unit stack 110 is configured to generate a current in the circulation of the electrolyte.
다시 도 1을 참조하면, 전해액 탱크(210, 220)는 제1스택(121)과 제2스택(122)에 전해액을 공급하고, 제1스택(121)과 제2스택(122)에서 유출되는 전해액을 저장하도록 구성되어, 전해액 유입라인(La1 Lc1)과 전해액 유출라인(La2, Lc2)으로 연결된다.Referring back to FIG. 1, the electrolyte tanks 210 and 220 supply electrolyte to the first stack 121 and the second stack 122, and flow out from the first stack 121 and the second stack 122. It is configured to store the electrolyte, it is connected to the electrolyte inlet line (La1 Lc1) and the electrolyte outlet line (La2, Lc2).
예를 들면, 전해액 탱크(210, 220)는 아연을 포함하는 애노드 전해액을 수용하는 애노드 전해액 탱크(210), 및 브로민을 포함하는 캐소드 전해액을 수용하는 캐소드 전해액 탱크(220)(편의상, 캐소드 전해액의 2상을 수용하는 2상 전해액 탱크를 도시 생략함)를 포함한다.For example, the electrolyte tanks 210 and 220 include an anode electrolyte tank 210 containing an anode electrolyte containing zinc, and a cathode electrolyte tank 220 containing a cathode electrolyte containing bromine (for convenience, a cathode electrolyte solution). A two-phase electrolyte tank for accommodating two phases is omitted.
전해액 유입라인(La1 Lc1)은 애노드, 캐소드 전해액 탱크(210, 220)와 스택(120)을 연결하여 전해액 펌프(Pa, Pc)의 구동으로 스택(120)에 전해액을 유입한다. 전해액 유출라인(La2, Lc2)은 애노드, 캐소드 전해액 탱크(210, 220)와 스택(120)을 연결하여 스택(120)을 경유한 반응 후의 전해액을 스택(120)으로부터 유출한다.The electrolyte inflow line La1 Lc1 connects the anode and cathode electrolyte tanks 210 and 220 to the stack 120 to introduce electrolyte into the stack 120 by driving the electrolyte pumps Pa and Pc. The electrolyte outlet lines La2 and Lc2 connect the anode and cathode electrolyte tanks 210 and 220 to the stack 120 to discharge the electrolyte solution after the reaction via the stack 120 from the stack 120.
도 3은 도 2의 Ⅲ-Ⅲ 선에 따른 단면도이고, 도 4는 도 2의 Ⅳ-Ⅳ 선에 따른 단면도이다. 도 2 내지 도 4를 참조하면, 제1스택(121)과 제2스택(122)은 반복적으로 적층되는 멤브레인(10)과 스페이서(20) 및 전극판(30), 적층 방향의 양단에 차례로 적층되는 집전판(61, 62)과 엔드 플레이트(71, 73; 72, 74)를 포함하고, 전해액을 공급하는 제1유로 채널(CH1)이 제1스택(121)에 포함되며, 전해액을 공급하는 제2유로 채널(CH2)은 제2스택(122)에 포함된다. 전극판(30)은 일측의 애노드 전극(32)과 다른 일측의 캐소드 전극(31)을 포함한다.3 is a cross-sectional view taken along line III-III of FIG. 2, and FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 2. 2 to 4, the first stack 121 and the second stack 122 are sequentially stacked on both ends of the membrane 10, the spacer 20, the electrode plate 30, and the stacking direction. A first flow channel CH1 including the current collector plates 61 and 62 and end plates 71 and 73 and 72 and 74 to supply the electrolyte solution to the first stack 121 and supplying the electrolyte solution. The second channel CH2 is included in the second stack 122. The electrode plate 30 includes an anode electrode 32 on one side and a cathode electrode 31 on the other side.
도 5는 도 2의 스택에 적용되는 엔드 플레이트(71, 73)의 측면도이고, 도 6은 도 5의 Ⅵ-Ⅵ 선에 따른 단면도이며, 도 7은 도 5의 Ⅶ-Ⅶ 선에 따른 단면도이다.FIG. 5 is a side view of the end plates 71 and 73 applied to the stack of FIG. 2, FIG. 6 is a sectional view taken along the line VI-VI of FIG. 5, and FIG. 7 is a sectional view taken along the line VII-VII of FIG. 5. .
도 2, 도 3, 도 5 및 도 6을 참조하면, 제1스택(121)에서, 엔드 플레이트(71)는 전해액 유입라인(La1)에 연결되는 전해액 유입구(H21), 및 전해액 유입구(H21)를 제1유로 채널(CH1)에 연결하는 제1연결통로(P1)를 포함한다. 2, 3, 5 and 6, in the first stack 121, the end plate 71 is the electrolyte inlet (H21) connected to the electrolyte inlet line (La1), and the electrolyte inlet (H21) It includes a first connection passage (P1) for connecting to the first channel (CH1).
제1연결통로(P1)가 전해액 유입라인(La1)의 전해액 유입구(H21)에 직접 연결되므로 엔드 플레이트(71)의 외부에 연결되는 배관, 즉 전해액 유입라인(La1)의 길이가 단축되고, 전해액 펌프(Pa)의 부하가 감소될 수 있다.Since the first connection passage P1 is directly connected to the electrolyte inlet H21 of the electrolyte inlet line La1, the length of the pipe connected to the outside of the end plate 71, that is, the electrolyte inlet line La1 is shortened, and the electrolyte solution. The load of the pump Pa can be reduced.
제1연결통로(P1)는 전해액 유입라인(La1)의 직경보다 작거나 동일한 직경을 가질 수 있다. 제1연결통로(P1)의 직경은 유입되는 애노드 전해액의 유량을 조절할 수 있다.The first connection passage P1 may have a diameter smaller than or equal to the diameter of the electrolyte inflow line La1. The diameter of the first connection passage (P1) may adjust the flow rate of the anode electrolyte flowing in.
도 2 및 도 3을 참조하면, 제1스택(121)에서, 엔드 플레이트(72)는 전해액 유출라인(La2)에 연결되는 전해액 유출구(H22), 및 전해액 유출구(H22)를 제1유로 채널(CH1)에 연결하는 제1연결통로(P1)를 포함한다. 2 and 3, in the first stack 121, the end plate 72 connects the electrolyte outlet H22 connected to the electrolyte outlet line La2, and the electrolyte outlet H22 to the first flow channel. And a first connection passage P1 connecting to CH1).
제1연결통로(P1)가 전해액 유출라인(La2)의 전해액 유출구(H22)에 직접 연결되므로 엔드 플레이트(72)의 외부에 연결되는 배관, 즉 전해액 유출라인(La2)의 길이가 단축되고, 전해액 펌프(Pa)의 부하가 감소될 수 있다.Since the first connection passage P1 is directly connected to the electrolyte outlet H22 of the electrolyte outlet line La2, the length of the pipe connected to the outside of the end plate 72, that is, the electrolyte outlet line La2 is shortened, and the electrolyte solution. The load of the pump Pa can be reduced.
제1연결통로(P1)는 전해액 유출라인(La2)의 직경보다 작거나 동일한 직경을 가질 수 있다. 제1연결통로(P1)의 직경은 유출되는 애노드 전해액의 유량을 조절할 수 있다.The first connection passage P1 may have a diameter smaller than or equal to the diameter of the electrolyte outlet line La2. The diameter of the first connection passage P1 may adjust the flow rate of the anode electrolyte flowing out.
도 2, 도 4, 도 5 및 도 7을 참조하면, 제2스택(122)에서, 엔드 플레이트(73)는 전해액 유출라인(Lc2)에 연결되는 전해액 유출구(H32), 및 전해액 유출구(H32)를 제2유로 채널(CH2)에 연결하는 제2연결통로(P2)를 포함한다. 2, 4, 5, and 7, in the second stack 122, the end plate 73 is an electrolyte outlet H32 connected to the electrolyte outlet line Lc2, and an electrolyte outlet H32. It includes a second connection passage (P2) for connecting to the second channel (CH2).
제2연결통로(P2)가 전해액 유출라인(Lc2)의 전해액 유출구(H32)에 직접 연결되므로 엔드 플레이트(73)의 외부에 연결되는 배관, 즉 전해액 유출라인(Lc2)의 길이가 단축되고, 전해액 펌프(Pc)의 부하가 감소될 수 있다.Since the second connection passage P2 is directly connected to the electrolyte outlet H32 of the electrolyte outlet line Lc2, the length of the pipe connected to the outside of the end plate 73, that is, the electrolyte outlet line Lc2, is shortened, and the electrolyte solution. The load of the pump Pc can be reduced.
제2연결통로(P2)는 전해액 유출라인(Lc2)의 직경보다 작거나 동일한 직경을 가질 수 있다. 제2연결통로(P2)의 직경은 유출되는 캐소드 전해액의 유량을 조절할 수 있다.The second connection passage P2 may have a diameter smaller than or equal to the diameter of the electrolyte outlet line Lc2. The diameter of the second connection passage P2 may adjust the flow rate of the cathode electrolyte flowing out.
도 2 및 도 4를 참조하면, 제2스택(122)에서, 엔드 플레이트(74)는 전해액 유입라인(Lc1)에 연결되는 전해액 유입구(H31), 및 전해액 유입구(H31)를 제2유로 채널(CH2)에 연결하는 제2연결통로(P2)를 포함한다. 2 and 4, in the second stack 122, the end plate 74 connects the electrolyte inlet port H31 connected to the electrolyte inlet line Lc1, and the electrolyte inlet port H31 to the second flow channel. And a second connection passage (P2) connecting to CH2).
제2연결통로(P2)가 전해액 유입라인(Lc1)의 전해액 유입구(H31)에 직접 연결되므로 엔드 플레이트(74)의 외부에 연결되는 배관, 즉 전해액 유입라인(Lc1)의 길이가 단축되고, 전해액 펌프(Pc)의 부하가 감소될 수 있다.Since the second connection passage P2 is directly connected to the electrolyte inlet H31 of the electrolyte inflow line Lc1, the length of the pipe connected to the outside of the end plate 74, that is, the electrolyte inflow line Lc1 is shortened, and the electrolyte solution. The load of the pump Pc can be reduced.
제2연결통로(P2)는 전해액 유입라인(Lc1)의 직경보다 작거나 동일한 직경을 가질 수 있다. 제2연결통로(P2)의 직경은 유입되는 캐소드 전해액의 유량을 조절할 수 있다.The second connection passage P2 may have a diameter smaller than or equal to the diameter of the electrolyte inflow line Lc1. The diameter of the second connection passage (P2) can adjust the flow rate of the incoming cathode electrolyte.
다시 도 2, 도 5 및 도 6을 참조하면, 제1스택(121)의 엔드 플레이트(71)는 제1유로 채널(CH1) 및 제1연결통로(P1)에 연결되는 제11연결 구멍(H11)을 형성하고, 이웃하는 제2스택(122)의 엔드 플레이트(73)의 제1유로 채널(CH1)에 연결되는 제12연결 구멍(H12)을 형성한다. 2, 5, and 6, the end plate 71 of the first stack 121 is an eleventh connection hole H11 connected to the first channel CH1 and the first connection passage P1. ) And a twelfth connection hole H12 connected to the first flow channel CH1 of the end plate 73 of the neighboring second stack 122.
제1, 제2스택(121, 122)에서, 엔드 플레이트(71, 73)의 제11연결 구멍(H11)과 제12연결 구멍(H12)은 제1피팅 부재(F1)로 연결된다. 제1피팅 부재(F1)는 엔드 플레이트(71, 73)의 연결 거리를 최소화 하여, 유입되는 캐소드 전해액의 유속 전하를 방지한다. In the first and second stacks 121 and 122, the eleventh connection hole H11 and the twelfth connection hole H12 of the end plates 71 and 73 are connected to the first fitting member F1. The first fitting member F1 minimizes the connection distance between the end plates 71 and 73, thereby preventing the flow rate charge of the introduced cathode electrolyte.
도 2를 참조하면, 엔드 플레이트(72, 74)는 연결 구멍(미도시)에 연결되는 제11피팅 부재(F11)에 의하여 캐소드 전해액 유출 측에서 동일한 구조로 연결되어, 연결 거리 최소화 및 전해액의 유속 전하를 방지할 수 있다.Referring to FIG. 2, the end plates 72 and 74 are connected in the same structure on the cathode electrolyte outlet side by an eleventh fitting member F11 connected to a connection hole (not shown), thereby minimizing the connection distance and the flow rate of the electrolyte solution. The charge can be prevented.
다시 도 2, 도 5 및 도 7을 참조하면, 제1스택(121)의 엔드 플레이트(71)는 제2유로 채널(CH2)에 연결되는 제21연결 구멍(H41)을 형성하고, 이웃하는 제2스택(122)의 엔드 플레이트(73)는 제2유로 채널(CH2) 및 제2연결통로(P2)에 연결되는 제22연결 구멍(H42)을 형성한다. Referring to FIGS. 2, 5, and 7 again, the end plate 71 of the first stack 121 forms the twenty-first connection hole H41 connected to the second flow channel CH2, The end plate 73 of the second stack 122 forms a twenty-second connecting hole H42 connected to the second channel CH2 and the second connecting passage P2.
제1, 제2스택(121, 122)에서, 엔드 플레이트(71, 73)의 제21연결 구멍(H41)과 제22연결 구멍(H42)은 제2피팅 부재(F2)로 연결된다. 제2피팅 부재(F2)는 엔드 플레이트(71, 73)의 연결 거리를 최소화 하여, 유출되는 캐소드 전해액의 유속 전하를 방지한다. In the first and second stacks 121 and 122, the twenty-first connecting hole H41 and the twenty-second connecting hole H42 of the end plates 71 and 73 are connected to the second fitting member F2. The second fitting member F2 minimizes the connection distance between the end plates 71 and 73, thereby preventing the flow rate charge of the cathode electrolyte flowing out.
도 2를 참조하면, 엔드 플레이트(72, 74)는 연결 구멍(미도시)에 연결되는 제21피팅 부재(F21)에 의하여 애노드 전해액 유입 측에서 동일한 구조로 연결되어, 연결 거리 최소화 및 전해액의 유속 전하를 방지할 수 있다.Referring to FIG. 2, the end plates 72 and 74 are connected in the same structure at the anode electrolyte inflow side by a twenty-first fitting member F21 connected to a connection hole (not shown), thereby minimizing the connection distance and the flow rate of the electrolyte. The charge can be prevented.
동일 조건에서, 종래의 엔드 플레이트를 적용하는 경우, 충방전 효율이 72.2%이고, 본 실시예의 엔드 플레이트(71, 73; 72, 74)를 적용하는 경우, 충방전 효율이 73.4%로 증대되었다. 즉 본 실시예는 제1, 제2스택(121, 122) 내의 반응 속도를 향상시켜 레독스 흐름 전지의 효율을 증대시킨다.Under the same conditions, when the conventional end plate was applied, the charge and discharge efficiency was 72.2%, and when the end plates 71, 73, 72, and 74 of this embodiment were applied, the charge and discharge efficiency was increased to 73.4%. That is, the present embodiment improves the reaction speed in the first and second stacks 121 and 122 to increase the efficiency of the redox flow battery.
다시 도 1을 참조하면, 애노드 전해액 탱크(210)는 스택(120) 및 단위 스택(110)의 멤브레인(10)과 애노드 전극(32) 사이에 애노드 전해액을 공급하고, 멤브레인(10)과 애노드 전극(32) 사이를 경유하여 유출되는 애노드 전해액을 수용한다.Referring back to FIG. 1, the anode electrolyte tank 210 supplies an anode electrolyte between the membrane 10 and the anode electrode 32 of the stack 120 and the unit stack 110, and the membrane 10 and the anode electrode. The anode electrolyte which flows out between (32) is accommodated.
캐소드 전해액 탱크(220)는 스택(120) 및 단위 스택(110)의 멤브레인(10)과 캐소드 전극(31) 사이에 공급하는 캐소드 전해액을 수용한다.The cathode electrolyte tank 220 accommodates the cathode electrolyte supplied between the stack 120 and the membrane 10 of the unit stack 110 and the cathode electrode 31.
이를 위하여, 애노드 전해액 유입라인(La1)은 애노드 전해액 탱크(210)를 제1, 제2스택(121, 122)에 연결하고, 캐소드 전해액 유입라인(Lc1)은 캐소드 전해액 탱크(220)을 제1, 제2스택(121, 122)에 연결한다.To this end, the anode electrolyte inflow line La1 connects the anode electrolyte tank 210 to the first and second stacks 121 and 122, and the cathode electrolyte inflow line Lc1 connects the cathode electrolyte tank 220 to the first. And the second stacks 121 and 122.
애노드 전해액 유출라인(La2)은 제1, 제2스택(121, 122)에 애노드 전해액 탱크(210)를 연결하고, 캐소드 전해액 유출라인(Lc2)은 제1, 제2스택(121, 122)에 캐소드 전해액 탱크(220)를 연결한다.The anode electrolyte outlet line La2 connects the anode electrolyte tank 210 to the first and second stacks 121 and 122, and the cathode electrolyte outlet line Lc2 is connected to the first and second stacks 121 and 122. The cathode electrolyte tank 220 is connected.
애노드, 캐소드 전해액 유입라인(La1, Lc1)은 애노드, 캐소드 전해액 펌프(Pa, Pc)를 개재하여, 제1, 제2스택(121, 122)의 전해액 유입구(H21, H31)를 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220)에 각각 연결한다. 애노드, 캐소드 전해액 유출라인(La2, Lc2)은 제1, 제2스택(121, 122)의 전해액 유출구(H22, H32)에 애노드 전해액 탱크(210)와 캐소드 전해액 탱크(220)를 각각 연결한다.The anode and cathode electrolyte inflow lines La1 and Lc1 are connected to the anode electrolyte tanks H21 and H31 of the first and second stacks 121 and 122 via the anode and cathode electrolyte pumps Pa and Pc. 210 and the cathode electrolyte tank 220, respectively. The anode and cathode electrolyte outlet lines La2 and Lc2 connect the anode electrolyte tank 210 and the cathode electrolyte tank 220 to the electrolyte outlets H22 and H32 of the first and second stacks 121 and 122, respectively.
애노드 전해액 탱크(210)는 아연을 포함하는 애노드 전해액(anolyte)을 내장하며, 애노드 전해액 펌프(Pa)의 구동으로 제1, 제2스택(121, 122)의 멤브레인(10)과 애노드 전극(32) 사이에 애노드 전해액을 순환시킨다.The anode electrolyte tank 210 contains an anode electrolyte containing zinc, and the membrane 10 and the anode electrode 32 of the first and second stacks 121 and 122 are driven by the anode electrolyte pump Pa. The anode electrolyte is circulated between
캐소드 전해액 탱크(220)는 브로민을 포함하는 캐소드 전해액(catholyte)을 내장하며, 캐소드 전해액 펌프(Pc)의 구동으로 제1, 제2스택(121, 122)의 멤브레인(10)과 캐소드 전극(31) 사이에 캐소드 전해액을 순환시킨다.The cathode electrolyte tank 220 includes a cathode electrolyte containing bromine, and the membrane 10 and the cathode electrode of the first and second stacks 121 and 122 are driven by the cathode electrolyte pump Pc. 31) circulate the cathode electrolyte between.
캐소드 전해액 유입라인(Lc1) 및 캐소드 전해액 유출라인(Lc2)은 4방향 밸브(205)를 개재하여, 캐소드 전해액 탱크(220)를 제1, 제2스택(121, 122)에 연결하므로 제1, 제2스택(121, 122)에 대한 캐소드 전해액의 유입과 유출 작동을 선택적으로 수행할 수 있게 한다.The cathode electrolyte inflow line Lc1 and the cathode electrolyte outflow line Lc2 connect the cathode electrolyte tank 220 to the first and second stacks 121 and 122 through the four-way valve 205. It is possible to selectively perform inflow and outflow operations of the cathode electrolyte to the second stacks 121 and 122.
또한, 제1, 제2스택(121, 122)에서 단위 스택(110)은 버스바(B1, B2)(도 1, 도 3, 및 도 4 참조)를 통하여 이웃하는 다른 단위 스택(110)과 전기적으로 연결된다. 제1, 제2스택(121, 122)은 버스바(B1, B2)를 통하여 단위 스택들(110)의 내부에서 생성된 전류를 방전하거나, 외부의 전원(206)에 연결되어 애노드 전해액 탱크(210)에 전류를 충전할 수 있다.In addition, in the first and second stacks 121 and 122, the unit stack 110 may be adjacent to other unit stacks 110 that are adjacent to each other through the bus bars B1 and B2 (see FIGS. 1, 3, and 4). Electrically connected. The first and second stacks 121 and 122 discharge current generated inside the unit stacks 110 through the bus bars B1 and B2, or are connected to an external power source 206 to connect the anode electrolyte tank ( 210 may be charged with a current.
예를 들면, 단위 스택(110)은 단위 셀들(C1, C2)을 복수로 적층하여 형성될 수 있다. 편의상, 본 실시예는 2개의 단위 셀들(C1, C2)을 적층하여 형성된 단위 스택(110)을 예시한다. 단위 스택(110)을 도 2에 도시된 바와 같이 적층하므로 제1, 제2스택(121, 122)이 형성된다. 제1, 제2스택(121, 122)은 서로 이웃하여 측면에 배치된다.For example, the unit stack 110 may be formed by stacking a plurality of unit cells C1 and C2. For convenience, this embodiment illustrates a unit stack 110 formed by stacking two unit cells C1 and C2. Since the unit stack 110 is stacked as illustrated in FIG. 2, first and second stacks 121 and 122 are formed. The first and second stacks 121 and 122 are adjacent to each other and disposed on the side surface.
다시 도 3 및 도 4를 참조하면, 단위 스택(110)은 흐름 프레임, 즉 멤브레인 흐름 프레임(40)과 전극 흐름 프레임(50)을 더 포함한다. 단위 스택(110)은 2개의 단위 셀(C1, C2)을 구비하므로 1개의 전극 흐름 프레임(50)을 중앙에 구비하고, 전극 흐름 프레임(50)의 양측에 좌우 대칭 구조로 배치되는 2개의 멤브레인 흐름 프레임(40), 및 멤브레인 흐름 프레임(40)의 외곽에 각각 2개의 엔드 플레이트(71, 73; 72, 74)를 배치한다.3 and 4, the unit stack 110 further includes a flow frame, that is, a membrane flow frame 40 and an electrode flow frame 50. Since the unit stack 110 includes two unit cells C1 and C2, two membranes having one electrode flow frame 50 in the center and symmetrical structures on both sides of the electrode flow frame 50 are provided. Two end plates 71, 73; 72, 74 are arranged outside the flow frame 40 and the membrane flow frame 40, respectively.
멤브레인(10)은 이온을 통과시키도록 구성되고, 멤브레인 흐름 프레임(40)에 멤브레인 흐름 프레임(40)의 두께 방향 중심에 결합된다. 전극판(30)은 전극 흐름 프레임(50)에 전극 흐름 프레임(50)의 두께 방향 중심에 결합된다.The membrane 10 is configured to pass ions and is coupled to the membrane flow frame 40 at the center of the thickness direction of the membrane flow frame 40. The electrode plate 30 is coupled to the electrode flow frame 50 at the center of the thickness direction of the electrode flow frame 50.
엔드 플레이트(71, 73), 멤브레인 흐름 프레임(40), 전극 흐름 프레임(50), 멤브레인 흐름 프레임(40) 및 엔드 플레이트(72, 74)을 배치하고, 멤브레인(10)과 전극판(30) 사이에 각각 스페이서(20)를 개재하여 멤브레인 흐름 프레임(40), 전극 흐름 프레임(50) 및 엔드 플레이트(71, 73; 72, 74)을 서로 접합함으로써, 2개의 단위 셀(C1, C2)을 구비한 단위 스택(110)이 형성된다.The end plates 71 and 73, the membrane flow frame 40, the electrode flow frame 50, the membrane flow frame 40 and the end plates 72 and 74 are disposed, and the membrane 10 and the electrode plate 30 are disposed. By joining the membrane flow frame 40, the electrode flow frame 50, and the end plates 71, 73; 72, 74 with each other through the spacers 20, the two unit cells C1, C2 are connected. The unit stack 110 is provided.
전극판(30)은 2개의 단위 셀(C1, C2)이 연결되는 부분에서는 일측으로 캐소드 전극(31)을 형성하고 다른 측으로 애노드 전극(32)을 형성하여, 2개의 단위 셀(C1, C2)을 직렬로 연결하는 바이폴라 전극을 형성한다.The electrode plate 30 forms the cathode electrode 31 on one side and the anode electrode 32 on the other side at the portion where the two unit cells C1 and C2 are connected, thereby forming the two unit cells C1 and C2. To form a bipolar electrode connecting in series.
멤브레인 흐름 프레임(40), 전극 흐름 프레임(50) 및 엔드 플레이트(71, 73; 72, 74)는 서로 접착되어 멤브레인(10)과 전극판(30) 사이에 내부 용적(S)을 설정하며, 내부 용적(S)에 전해액을 공급하는 제1, 제2유로 채널(CH1, CH2)을 구비한다. 제1, 제2유로 채널(CH1, CH2)은 멤브레인(10)의 양면에서 각각 균일한 압력과 양으로 전해액을 공급하도록 구성된다.The membrane flow frame 40, the electrode flow frame 50 and the end plates 71, 73; 72, 74 are bonded to each other to establish an internal volume S between the membrane 10 and the electrode plate 30, First and second channel channels CH1 and CH2 for supplying an electrolyte solution to the internal volume S are provided. The first and second flow channels CH1 and CH2 are configured to supply the electrolyte at uniform pressure and amount on both sides of the membrane 10, respectively.
일례로써, 멤브레인 흐름 프레임(40), 전극 흐름 프레임(50) 및 및 엔드 플레이트(71, 73; 72, 74)은 합성수지 성분을 포함하는 전기 절연재로 형성되어, 열융착 또는 진동 융착으로 접착될 수 있다.As an example, the membrane flow frame 40, the electrode flow frame 50, and the end plates 71, 73; 72, 74 may be formed of an electrical insulating material including a synthetic resin component, and may be bonded by heat fusion or vibration fusion. have.
제1유로 채널(CH1)은 전해액 유입구(H21), 내부 용적(S) 및 전해액 유출구(H22)를 연결하여, 캐소드 전해액 펌프(Pc)의 구동에 의하여, 멤브레인(10)과 캐소드 전극(31) 사이에 설정되는 내부 용적(S)으로 캐소드 전해액을 유입하여 반응 후, 유출 가능하게 한다.The first channel CH1 connects the electrolyte inlet H21, the internal volume S and the electrolyte outlet H22, and drives the membrane 10 and the cathode electrode 31 by driving the cathode electrolyte pump Pc. The cathode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction.
제2유로 채널(CH2)은 전해액 유입구(H31), 내부 용적(S) 및 전해액 유출구(H32)를 연결하여, 애노드 전해액 펌프(Pa)의 구동에 의하여, 멤브레인(10)과 애노드 전극(32) 사이에 설정되는 내부 용적(S)으로 애노드 전해액을 유입하여 반응 후, 유출 가능하게 한다.The second channel CH2 connects the electrolyte inlet H31, the internal volume S and the electrolyte outlet H32, and drives the membrane 10 and the anode electrode 32 by driving the anode electrolyte pump Pa. The anode electrolyte is introduced into the internal volume S set therebetween to allow flow out after the reaction.
애노드 전해액은 내부 용적(S)의 애노드 전극(32) 측에서 산화환원 반응하여 전류를 생성하여 애노드 전해액 탱크(210)에 저장된다. 캐소드 전해액은 내부 용적(S)의 캐소드 전극(31) 측에서 산화환원 반응하여 전류를 생성하여 캐소드 전해액 탱크(220)에 저장된다.The anode electrolyte is redox-reacted at the anode electrode 32 side of the internal volume S to generate a current and stored in the anode electrolyte tank 210. The cathode electrolyte is redox-reacted at the cathode electrode 31 side of the internal volume S to generate a current and stored in the cathode electrolyte tank 220.
충전시, 멤브레인(10)과 캐소드 전극(31) 사이에서,During charging, between the membrane 10 and the cathode electrode 31,
2Br- → 2Br+2e- (식 1)2Br - → 2Br + 2e - (formula 1)
와 같은 화학 반응이 일어나서, 캐소드 전해액에 포함된 브로민이 생산되어 캐소드 전해액 탱크(220)에 저장된다. As a chemical reaction occurs, bromine included in the cathode electrolyte is produced and stored in the cathode electrolyte tank 220.
충전시, 멤브레인(10)과 애노드 전극(32) 사이에서,During charging, between the membrane 10 and the anode electrode 32,
Zn2++2e- → Zn (식 2)Zn 2+ + 2e - → Zn (Equation 2)
와 같은 화학 반응이 일어나서, 애노드 전해액에 포함된 아연이 애노드 전극(32)에 증착되어 저장된다.As a chemical reaction occurs, zinc contained in the anode electrolyte is deposited and stored on the anode electrode 32.
방전시, 멤브레인(10)과 캐소드 전극(31) 사이에서, 식 1의 역 반응이 일어나고, 멤브레인(10)과 애노드 전극(32) 사이에서 식 2의 역 반응이 일어난다.During discharge, a reverse reaction of equation 1 occurs between the membrane 10 and the cathode electrode 31, and a reverse reaction of equation 2 occurs between the membrane 10 and the anode electrode 32.
집전판(61, 62)은 캐소드 전극(31)과 애노드 전극(32)에서 생성된 전류를 모으거나, 외부에서 캐소드 전극(31)과 애노드 전극(32)에 전류를 공급하도록 최외곽 전극판(30, 30)에 접착되어 전기적으로 연결된다.The current collector plates 61 and 62 collect the currents generated by the cathode electrode 31 and the anode electrode 32, or the outermost electrode plate so as to supply current to the cathode electrode 31 and the anode electrode 32 from the outside. 30, 30) and are electrically connected.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.
- 부호의 설명 -Description of the sign
10: 멤브레인 20: 스페이서10: membrane 20: spacer
30: 전극판 31: 캐소드 전극30: electrode plate 31: cathode electrode
32: 애노드 전극 61, 62: 집전판32: anode electrode 61, 62: current collector plate
71, 73: 엔드 플레이트 72, 74: 엔드 플레이트71, 73: end plate 72, 74: end plate
110: 단위 스택 120: 스택110: unit stack 120: stack
121, 122: 제1, 제2스택 200: 전해액 탱크121 and 122: first and second stacks 200: electrolyte tank
CH1, CH2: 제1, 제2유로 채널 H11, H12: 제11, 제12연결 구멍CH1, CH2: 1st, 2nd channel H11, H12: 11th, 12th connection hole
H21: (애노드)전해액 유입구 H22: (애노드)전해액 유출구H21: (anode) electrolyte inlet H22: (anode) electrolyte outlet
H31: (캐소드)전해액 유입구 H32: (캐소드)전해액 유출구H31: (cathode) electrolyte inlet H32: (cathode) electrolyte outlet
H41: 제21연결 구멍 H42: 제22연결 구멍H41: 21st connection hole H42: 22nd connection hole
La1, Lc1: (애노드, 캐소드)전해액 유입라인La1, Lc1: (anode, cathode) electrolyte inflow line
La2, Lc2: (애노드, 캐소드)전해액 유출라인La2, Lc2: (anode, cathode) electrolyte spill line
Pa, Pc: 전해액 펌프 P1, P2: 제1, 제2연결통로Pa, Pc: electrolyte pump P1, P2: first and second connection passages
F1, F11: 제1, 제11피팅 부재 F2, F21: 제2, 제21피팅 부재F1, F11: 1st, 11th fitting member F2, F21: 2nd, 21st fitting member

Claims (4)

  1. 멤브레인 및 전극판이 반복 적층되고, 서로 이웃하여 배치되며, 양단에 엔드플레이트가 적층되는 제1스택 및 제2스택;을 포함하고,And a first stack and a second stack in which the membrane and the electrode plate are repeatedly stacked and disposed adjacent to each other, and end plates are stacked at both ends thereof.
    상기 제1스택 및 제2스택 각각은 내부 용적에 전해액을 공급하는 제1유로 채널 및 제2유로 채널을 각각 포함하며,Each of the first stack and the second stack includes a first flow channel and a second flow channel, respectively, for supplying an electrolyte to an internal volume.
    상기 제1스택의 엔드 플레이트는,The end plate of the first stack,
    상기 제1스택 및 제2스택으로 전해액을 유입하는 전해액 유입라인에 연결되는 전해액 유입구 및 상기 전해액 유입구를 상기 제1유로 채널에 연결하는 제1연결통로를 포함하고,An electrolyte inlet connected to an electrolyte inflow line for introducing electrolyte into the first and second stacks, and a first connection passage connecting the electrolyte inlet to the first channel;
    상기 제2스택의 엔드 플레이트는,The end plate of the second stack,
    상기 제1스택 및 제2스택으로부터 상기 전해액을 유출하는 전해액 유출라인에 연결되는 전해액 유출구 및 상기 전해액 유출구를 상기 제2유로 채널에 연결하는 제2연결통로를 포함하는 레독스 흐름 전지.A redox flow battery comprising an electrolyte outlet connected to an electrolyte outlet line for outflowing the electrolyte solution from the first and second stacks, and a second connection passage connecting the electrolyte outlet to the second channel.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1스택의 엔드 플레이트는 상기 제1연결통로에 연결되는 제11연결 구멍을 형성하고,The end plate of the first stack forms an eleventh connection hole connected to the first connection passage,
    이웃하는 상기 제2스택의 엔드 플레이트는 상기 제1유로 채널에 연결되는 제12연결 구멍을 형성하며,An end plate of the neighboring second stack forms a twelfth connection hole connected to the first channel;
    상기 제11연결 구멍과 상기 제12연결 구멍은 제1피팅 부재로 연결되는 레독스 흐름 전지.And the eleventh connection hole and the twelfth connection hole are connected to the first fitting member.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1스택의 엔드 플레이트는 상기 제2유로 채널에 연결되는 제21연결 구멍을 형성하고,An end plate of the first stack forms a twenty-first connection hole connected to the second channel;
    이웃하는 상기 제2스택의 엔드 플레이트는 상기 제2연결통로에 연결되는 제22연결 구멍을 형성하며,An end plate of the neighboring second stack forms a twenty-second connecting hole connected to the second connecting passage,
    상기 제21연결 구멍과 상기 제22연결 구멍은 제2피팅 부재로 연결되는 레독스 흐름 전지.And the twenty-first connecting hole and the twenty-second connecting hole are connected to a second fitting member.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1연결통로는The first connection passage
    상기 전해액 유입라인의 직경보다 작거나 동일한 직경을 가지며,It has a diameter less than or equal to the diameter of the electrolyte inlet line,
    상기 제2연결통로는 The second connection passage
    상기 전해액 유출라인의 직경보다 작거나 같은 직경을 가지는 레독스 흐름 전지.Redox flow battery having a diameter less than or equal to the diameter of the electrolyte outlet line.
PCT/KR2018/003112 2017-03-16 2018-03-16 Redox flow battery WO2018169358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170033285A KR20180105937A (en) 2017-03-16 2017-03-16 Redox flow battery
KR10-2017-0033285 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018169358A1 true WO2018169358A1 (en) 2018-09-20

Family

ID=63523782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003112 WO2018169358A1 (en) 2017-03-16 2018-03-16 Redox flow battery

Country Status (2)

Country Link
KR (1) KR20180105937A (en)
WO (1) WO2018169358A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200053224A (en) 2018-11-08 2020-05-18 롯데케미칼 주식회사 Redox flow battery having circuit for preventing reverse voltage and control method thereof
KR20200062794A (en) 2018-11-27 2020-06-04 롯데케미칼 주식회사 Redox flow battery system having circuit for voltage balancing and decreasing shunt current
KR20200065862A (en) 2018-11-30 2020-06-09 롯데케미칼 주식회사 Apparatus for improving performance of redox flow battery using electrolyte pressure and method thereof
KR20200065861A (en) 2018-11-30 2020-06-09 롯데케미칼 주식회사 Apparatus for improving performance of redox flow battery using power consumption of pump and method thereof
KR102357656B1 (en) 2019-11-28 2022-02-03 남도금형(주) Separator plate for redox flow battery having current collector function and manufacturing method thereof
KR102357657B1 (en) 2019-11-28 2022-02-04 남도금형(주) Redox Flow Battery Stack Structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054548A (en) * 2011-11-17 2013-05-27 한국에너지기술연구원 Redox flow battery
JP2014529858A (en) * 2011-08-22 2014-11-13 ゼットビービー エナジー コーポレーション Reversible polarity operation and switching method for a ZnBr flow battery connected to a common DC bus
KR101511228B1 (en) * 2013-11-28 2015-04-10 롯데케미칼 주식회사 Redox flow battery
KR20170005630A (en) * 2015-07-06 2017-01-16 롯데케미칼 주식회사 Redox flow battery
KR20170005629A (en) * 2015-07-06 2017-01-16 롯데케미칼 주식회사 Redox flow battery
KR20170025153A (en) * 2015-08-27 2017-03-08 한국에너지기술연구원 Redox flow battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529858A (en) * 2011-08-22 2014-11-13 ゼットビービー エナジー コーポレーション Reversible polarity operation and switching method for a ZnBr flow battery connected to a common DC bus
KR20130054548A (en) * 2011-11-17 2013-05-27 한국에너지기술연구원 Redox flow battery
KR101511228B1 (en) * 2013-11-28 2015-04-10 롯데케미칼 주식회사 Redox flow battery
KR20170005630A (en) * 2015-07-06 2017-01-16 롯데케미칼 주식회사 Redox flow battery
KR20170005629A (en) * 2015-07-06 2017-01-16 롯데케미칼 주식회사 Redox flow battery
KR20170025153A (en) * 2015-08-27 2017-03-08 한국에너지기술연구원 Redox flow battery

Also Published As

Publication number Publication date
KR20180105937A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018169358A1 (en) Redox flow battery
JP3626096B2 (en) Redox flow battery system and cell connection structure
US7687193B2 (en) Electrochemical battery incorporating internal manifolds
WO2017179795A1 (en) Redox flow battery
WO2017007228A1 (en) Redox flow battery
WO2012020941A2 (en) Battery pack of novel structure
WO2014035020A1 (en) Manifold for redox flow battery for reducing shunt current and redox flow battery comprising same
WO2014038764A1 (en) Integrated complex electrode cell having inner seal structure and redox flow cell comprising same
CN116247260A (en) Flow battery pile
WO2013183885A1 (en) Stack structure for fuel cell and composition thereof
WO2017007227A1 (en) Redox flow battery
WO2018062888A1 (en) Redox flow cell
WO2012091463A2 (en) Fuel cell system and stack
WO2012115485A2 (en) Flat tubular solid-oxide fuel cell, and flat tubular solid-oxide water electrolysis apparatus
WO2020075899A1 (en) Redox flow battery
JP2006040591A (en) Redox flow battery
WO2022146059A1 (en) High voltage-type redox flow battery comprising soc balancing device
WO2014104732A1 (en) Separator for fuel cell, and fuel cell comprising same
WO2018182226A1 (en) Redox flow battery
WO2014092357A1 (en) Stack structure for fuel cell
WO2019035685A1 (en) Redox flow battery
WO2021172607A1 (en) Zinc-bromine flow battery including conductive intermediate layer
CN219040521U (en) Battery module of flow battery
KR102283441B1 (en) A Battery Cell for Redox flow battery having a mixed serial and parallel structure
WO2018117331A1 (en) Air-zinc battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768723

Country of ref document: EP

Kind code of ref document: A1