WO2020075899A1 - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
WO2020075899A1
WO2020075899A1 PCT/KR2018/012868 KR2018012868W WO2020075899A1 WO 2020075899 A1 WO2020075899 A1 WO 2020075899A1 KR 2018012868 W KR2018012868 W KR 2018012868W WO 2020075899 A1 WO2020075899 A1 WO 2020075899A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
battery
positive electrode
negative electrode
redox flow
Prior art date
Application number
PCT/KR2018/012868
Other languages
French (fr)
Korean (ko)
Inventor
김부기
이동영
김기현
최담담
박상현
최강영
Original Assignee
스탠다드에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스탠다드에너지 주식회사 filed Critical 스탠다드에너지 주식회사
Publication of WO2020075899A1 publication Critical patent/WO2020075899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery, and more specifically, to reduce the reaction time by providing an electrolyte tank for storing the positive electrode electrolyte and the negative electrode electrolyte for each battery cell and a fluid control unit for transferring the electrolyte to the battery cell, reducing the classification time shunt current), and relates to a redox flow battery capable of maintaining the balance of the electrolyte stored in the anode electrolyte storage and the cathode electrolyte storage through an electrolyte connection.
  • renewable energy such as solar energy or wind energy has been spotlighted as a method for suppressing greenhouse gas emission, which is a major cause of global warming, and many studies have been conducted to spread their commercialization.
  • renewable energy is greatly affected by the location environment and natural conditions.
  • renewable energy has a disadvantage in that it cannot supply energy evenly and continuously because the output fluctuation is severe. Therefore, in order to use renewable energy for home or commercial use, a system capable of storing energy when the output is high and using stored energy when the output is low is used.
  • a large-capacity secondary battery is used as the energy storage system.
  • a large-capacity secondary battery storage system is introduced in a large-scale photovoltaic power generation and wind power generation complex.
  • the secondary battery for storing large-capacity power include a lead acid battery, a sodium sulfide (NaS) battery, and a redox flow battery (RFB).
  • the lead acid battery is widely used commercially compared to other batteries, but has disadvantages such as low efficiency and maintenance costs due to periodic replacement and treatment of industrial waste generated when replacing the battery.
  • a NaS battery it has an advantage of high energy efficiency, but has a disadvantage of operating at a high temperature over 300 ° C.
  • Redox flow batteries are capable of operating at room temperature and have the ability to independently design capacity and output, so many studies have been conducted with near-capacity secondary batteries.
  • Redox flow battery is a secondary battery (Secondary) capable of charging and discharging electric energy by forming a stack in which a separator (membrane), an electrode and a bipolar plate are arranged in series, similar to a fuel cell. battery).
  • the redox flow battery undergoes ion exchange while circulating the anode electrolyte and the cathode electrolyte supplied from the anode and cathode electrolyte storage tanks on both sides of the separator, and in this process, electrons are generated and charged and discharged.
  • Such a redox flow battery is known to be most suitable for an ESS (Energy storage system) because it has a longer life span than a conventional secondary battery and can be manufactured in a medium to large-sized system of kW to MW.
  • the tank for storing the anode electrolyte and the cathode electrolyte is separate.
  • a structure that is arranged with a certain space on the road for example, a certain ball on both sides or under the stack
  • the general battery should have a fast operation responsiveness in which charging and discharging operations are performed.
  • the redox flow battery when it is operated for charging and discharging in a stopped state, it takes time for the electrolyte to circulate inside the stack by the pump, and the responsiveness of the time required decreases. There is a problem in that the cost increases because a large number of chemical-resistant pipes are connected to the pump.
  • a typical redox flow battery is supplied with electrolyte to each battery cell through a manifold.
  • the electrolyte filled in the manifold serves as an electric passage connecting each cell.
  • the difference between the positive electrode and the negative electrode may be greater.
  • the balance of the positive electrode electrolyte and the negative electrode electrolyte is changed differently from the initial state by driving the redox flow battery, which decreases the driveable capacity of the redox flow battery and causes the battery to deteriorate. There is a problem.
  • the present invention is to solve the above-mentioned problems, and more specifically, to reduce the reaction time by providing an electrolyte tank for storing the positive electrode electrolyte and the negative electrode electrolyte for each battery cell and a fluid control unit for transferring the electrolyte to the battery cell, reducing the classification time.
  • the present invention relates to a redox flow battery capable of suppressing the generation of (shunt current) and maintaining the balance of the electrolyte stored in the anode electrolyte storage and the cathode electrolyte storage through an electrolyte connection.
  • the redox flow battery of the present invention for solving the above-mentioned problems, a battery cell including an anode electrode and a cathode electrode therein; and an electrolyte tank including an anode electrolyte storage unit and a cathode electrolyte storage unit; and the electrolyte tank and the It includes a battery module comprising an electrolyte flow path through which the electrolyte is transferred by connecting the battery cells; and a fluid control unit for transmitting the pressure generated from the outside to the electrolyte flow path, wherein the battery module is provided with one or two or more, the The battery module is characterized in that it further comprises an electrolytic solution connecting portion for circulating and charging and discharging the electrolyte independently or circulating and charging and discharging the electrolyte in the plurality of battery modules, and connecting the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion. Is to do.
  • the redox flow battery of the present invention for solving the above-described problem is connected to the fluid control unit, and is provided between a pressure generator capable of transferring pressure to the fluid control unit by forming pressure, and between the pressure generator and the fluid control unit And, it may further include a pressure control valve capable of selectively transmitting a positive pressure or a negative pressure to the fluid control unit.
  • the electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problem may be filled with a liquid or slurry containing at least one selected from the group consisting of water, an aqueous acid solution, and an active material, and the electrolyte connection portion , It can be filled with a porous material.
  • the electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problem may be formed of a hollow pipe, and the electrolyte connection portion may include a storage portion having a larger cross-sectional area than the hollow pipe.
  • the diameter of the redox flow battery of the present invention for solving the above-described problem or the diameter when the cross-sectional area of the electrolyte connection portion is converted into a circle of the same area may be less than 1/3 of the length of the electrolyte connection portion. have.
  • the volume of the electrolyte connection part of the redox flow battery of the present invention for solving the above-mentioned problem is 1 to 50% of the sum of the electrolyte solution stored in the positive electrode electrolyte storage part and the electrolyte solution stored in the negative electrode electrolyte storage part. You can.
  • the volume of the electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problem, when charging the battery module discharged while the electrolyte connection portion is closed, the electrolyte moves from the positive electrode to the negative electrode or from the negative electrode to the positive electrode. It may be 2% or more of the volume.
  • the electrolyte connection part of the redox flow battery of the present invention for solving the above-described problem may further include a connection part valve capable of closing or opening the electrolyte connection part, wherein the connection part valve is configured to charge or discharge the battery module. At this time, a portion of the electrolyte connection portion may be closed or the entire electrolyte connection portion may be closed.
  • the redox flow battery of the present invention for solving the above-described problem further includes a connection part pressure generator connected to the connection part valve and capable of transmitting pressure to the connection part valve by forming pressure, wherein the connection part valve comprises: A switch operated by a connection pressure generator may be included.
  • connection valve of the redox flow battery of the present invention for solving the above-described problem may include a switch operated by electricity.
  • Both ends of the electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problems are connected to the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion, and the end of the electrolyte connection portion is the positive electrode electrolyte storage portion or the In a position connected to the negative electrode electrolyte storage unit, a straight line distance from the battery cell to the inlet of the electrolyte into the positive electrode electrolyte storage unit or the negative electrode electrolyte storage unit, an end of the electrolyte connection unit is the positive electrode electrolyte storage unit or the negative electrode electrolyte storage In a position connected to the negative electrode, the positive electrode electrolyte storage unit or the negative electrode electrolyte storage unit may be at least twice the straight line distance from the electrolyte to the outlet.
  • the present invention has an advantage in that the transport path can be effectively reduced and the efficiency of the battery can be increased as each battery cell is provided with an electrolyte tank for storing the anode electrolyte and the cathode electrolyte.
  • the present invention has an advantage of effectively reducing the shunt current that may occur in each battery module by providing a fluid control unit using pressure instead of having a pump.
  • the present invention can maintain the electrolyte balance between the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion through the electrolyte connection portion connecting the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion, thereby preventing the performance of the battery from being reduced.
  • FIG. 1 is a view showing a redox flow battery in which a plurality of battery modules are combined according to an embodiment of the present invention.
  • FIG. 2 is a view showing the internal structure of a battery module according to an embodiment of the present invention.
  • FIG. 3 is a view showing a redox flow battery having a plurality of pressure generators and a plurality of fluid control units according to an embodiment of the present invention.
  • FIG. 4 is a view showing a redox flow battery in which a plurality of battery modules are combined according to an embodiment of the present invention.
  • FIG. 5 is a view showing that the storage portion is provided in the electrolyte connection according to an embodiment of the present invention.
  • FIG. 6 is a view showing that the valve is provided in the electrolyte connection according to an embodiment of the present invention.
  • FIG. 7 illustrates an internal structure of a battery module according to another embodiment of the present invention, and is a view when the battery module is viewed from the side.
  • FIG. 8 illustrates an internal structure of a battery module according to another embodiment of the present invention, and is a view when the battery module is viewed from the top.
  • FIG. 9 is a view showing the internal structure of the battery module according to another embodiment of the present invention, a view showing that the electrolyte connection is provided.
  • FIG. 10 is a view showing the internal structure of the battery module according to another embodiment of the present invention, a view showing that the storage portion is provided in the electrolyte connection.
  • FIG. 11 is a view showing the internal structure of a battery module according to another embodiment of the present invention, a view showing that the valve is provided in the electrolyte connection.
  • the term 'battery cell (battery cell)' is the smallest unit in which charge and discharge occur through the electrolyte, and is composed of a separator, a separator, and the like in which ion exchange occurs.
  • the term 'stack' means that a plurality of battery cells are stacked or configured.
  • the present invention relates to a redox flow battery, the electrolyte tank for storing the positive electrode electrolyte and the negative electrode electrolyte for each battery cell and a fluid control unit for transferring the electrolyte to the battery cell to reduce reaction time and reduce the shunt current.
  • the present invention relates to a redox flow battery that can suppress generation and maintain a balance of an electrolyte stored in a cathode electrolyte storage and a cathode electrolyte storage through an electrolyte connection.
  • the redox flow battery includes a battery module 100 including a battery cell 100, an electrolyte tank 200, a fluid control unit 300, and an electrolyte flow path 400. It includes, it is characterized in that it further comprises an electrolyte connection portion (600).
  • the battery cell 100 of the battery module 10 may include an anode electrode 110 and a cathode electrode 120 therein.
  • the battery cell 100 is a place where an electrochemical reaction may occur while moving, charging, and discharging the electrolyte supplied from the electrolyte tank 200, and the battery cell 100 includes a separator 130 and a separator ( 140) may be further included.
  • the battery cell 100 includes the separator 130 provided between the anode electrode 110 and the cathode electrode 120, the anode electrode 110, and the cathode electrode ( 120) may be provided on the outer surface of the separation plate 140.
  • the anode electrode 110, the cathode electrode 120, the separator 130, and the separator 140 may be located in the housing 150, and the electrolyte is moved and charged in the housing 150. , Electrochemical reactions such as discharge occur.
  • One of the battery cells 100 may be included in the electric module 10, and two or more of the battery cells 100 may be included.
  • any one or more components of the anode electrode 110, the cathode electrode 120, the separator 130, and the separator 140 may be omitted.
  • the electrolyte tank 200 includes an anode electrolyte storage unit 210 and a cathode electrolyte storage unit 220.
  • the electrolyte tank 200 is capable of storing the electrolyte solution, and the electrolyte solution stored in the electrolyte tank 200 is supplied to the battery cell 100 through the electrolyte passage.
  • the electrolyte solution stored in the positive electrode electrolyte storage unit 210 is supplied to the positive electrode 110 of the battery cell 100, and the electrolyte solution stored in the negative electrode electrolyte storage unit 220 is the battery It is supplied to the cathode electrode 120 of the cell 100.
  • the electrolyte flow path 400 connects the battery cell 100 and the electrolyte tank 200, and the electrolyte moves from the battery cell 100 to the electrolyte tank 200 through the electrolyte flow path 400. Or, the electrolyte moves from the electrolyte tank 200 to the battery cell 100.
  • a plurality of electrolyte passages 400 may be provided, from the battery cell 100 to the electrolyte passage to move the electrolyte from the electrolyte tank 200 to the battery cell 100 from the electrolyte tank 200
  • the electrolyte flow paths for moving the electrolyte may be formed separately from each other.
  • the electrolyte flow path 400 is provided with only one of each of the positive electrode and the negative electrode, the direction in which the electrolyte flows through one electrolyte flow path changes in the forward direction and the reverse direction, so that the electrolyte may circulate.
  • the fluid control unit 300 replaces an existing pump and is used to circulate the electrolyte, and the fluid control unit 300 transmits pressure generated externally to the electrolyte flow path 400 It is possible.
  • the fluid control unit 300 may be provided in the electrolyte flow path 400, but is not limited thereto, and may be provided in various locations as long as pressure can be transmitted to the electrolyte flow path 400.
  • the fluid control unit 300 may be provided in the electrolyte tank 200.
  • the fluid control unit 300 is provided to allow the electrolyte to flow in a predetermined direction using a change in pressure, and various structures may be applied as long as it prevents backflow and transfers the electrolyte through a change in pressure.
  • the fluid control unit 300 may be formed of a check valve, and the fluid control unit 300 may selectively receive positive pressure or negative pressure from the outside.
  • the fluid control unit 300 included in the battery module 10 may be provided with one or two or more. Specifically, the fluid control unit 300 may be provided separately from the fluid control unit to which the positive pressure is supplied and the fluid control unit to which the negative pressure is supplied, thereby forming a continuous flow of electrolyte.
  • Redox flow battery may further include a pressure generator 500, a pressure control valve 510, a fluid transfer pipe 310.
  • the pressure generator 500 is connected to the fluid control unit 300 and is capable of transmitting pressure to the fluid control unit 300 by forming pressure.
  • the pressure generator 500 may transmit positive pressure or negative pressure to the fluid control unit 300 while forming positive or negative pressure.
  • the pressure generator 500 is capable of transmitting pressure to the fluid control unit 300 by forming pressure
  • various devices may be used.
  • the pressure generator 500 may be a compressor or a pump for the formation of positive pressure, and the pressure generator 500 is provided with vacuum equipment, suction equipment or a venturi tube for formation of negative pressure. It can be an ejector.
  • positive and negative pressures generated by the pressure generator 500 may be used at the same time.
  • a plurality of pressure generators 500 may be provided.
  • the pressure generator 500 may be formed of a plurality of devices while the device for forming the positive pressure and the device for forming the negative pressure are separated.
  • the fluid transfer pipe 310 connects the fluid control unit 300 and the pressure generator 500 to transmit the pressure generated by the pressure generator 500 to the fluid control unit 300.
  • the fluid transfer pipe 310 may be filled with fluid, and the pressure formed by the pressure generator 500 may be transmitted to the fluid control unit 300 through the fluid of the fluid transfer pipe 310.
  • the fluid filled in the fluid transfer pipe 310 may be both gas and liquid, and may be freely selected according to the type of pressure to be operated.
  • the pressure control valve 510 is provided between the pressure generator 500 and the fluid control unit 300, and can selectively deliver positive pressure or negative pressure to the fluid control unit 300.
  • the pressure control valve 510 is for alternately supplying positive pressure and negative pressure to the fluid control unit 300, and may be formed in a structure that can freely control the opening and closing of the port according to the pressure supply cycle.
  • the pressure control valve 510 may be provided with a plurality of pipes and switches. By controlling the number and switching type of the plurality of pipes, the pressure control valve 510 can be supplied while alternately supplying positive and negative pressure to the fluid control unit 300. Specifically, the pressure control valve 510 is simultaneously connected to the pressure generator 500 to which the positive pressure and the negative pressure are supplied, and can select and supply the positive pressure and the negative pressure through the switch to the fluid control unit 300.
  • the pressure control valve 510 is not limited thereto, and various devices may be used if the positive and negative pressures can be selectively supplied to the fluid control unit 300.
  • a separate controller is provided to change the cycle of supplying the positive pressure and the negative pressure, or to change the number of switches and a plurality of pipes. By adjusting, the pressure may be supplied to the fluid control unit 300 while changing a cycle in which positive pressure and negative pressure are supplied.
  • the battery module 10 of the redox flow battery according to an embodiment of the present invention is provided with one or two or more, the battery module 10 is independently charged and discharged by circulating the electrolyte, or the plurality of the battery module ( It is possible to charge and discharge by circulating the electrolyte in 10).
  • the battery module 10 may be charged and discharged by independently circulating the electrolyte in one battery module 10 without interference or exchange between the battery modules 10, and the plurality of battery modules 10 It is also possible to charge and discharge while circulating the electrolyte solution by being connected to a certain number.
  • the battery modules 10 when a plurality of the battery modules 10 are connected, the battery modules 10 may be electrically connected in series or in parallel through a module connection unit 11, and the plurality of battery modules 10 When connected, the electrolyte tank 200 may be shared. As described above, when the battery module 10 is independently charged and discharged, or when a plurality of the battery modules 10 are connected, the required performance can be adjusted by sharing the electrolyte tank 200.
  • the pressure generator 500 may be shared.
  • the redox flow battery according to an embodiment of the present invention further includes an electrolyte connection portion 600 connecting the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220.
  • the electrolyte connection part 600 is provided to maintain the balance of the electrolyte between the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220, the electrolyte connection unit ( 600) may be filled with an electrolyte or a material capable of ion exchange.
  • the balance of the electrolytic solution means a physical (water level, volume, specific gravity or mass, etc.) or chemical (concentration or oxidation water, etc.) balance.
  • the electrolyte connection portion 600 may be made of a hollow pipe, and the electrolyte connection portion 600 may be filled with a liquid or slurry containing at least one selected from the group consisting of water, an aqueous acid solution, and an active material. will be.
  • the separation membrane 130 ion exchange membrane
  • the active material, water, acid, and the like included in the electrolyte are the positive electrode ( In 110, the cathode electrode 120 or the cathode electrode 120 may be moved to the anode electrode 110.
  • the active material, water, acid, etc. contained in the electrolyte solution moves from the positive electrode 110 to the negative electrode 120 or from the negative electrode 120 to the positive electrode 110, finally
  • the active material, water, acid, etc. included in the electrolyte solution are the cathode electrolyte storage unit 220 in the cathode electrolyte storage unit 210 or the cathode electrolyte storage unit 210 in the cathode electrolyte storage unit 220 Will move to
  • the ratio of the amount of the positive electrode electrolyte and the negative electrode electrolyte stored in the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 changes as 0.8: 1.2.
  • the balance of the stored electrolyte of the anode electrolyte storage unit 210 and the cathode electrolyte storage unit 220 does not match, and the water level of the anode electrolyte storage unit 210 and the cathode electrolyte storage unit 220 (level) can be changed from the initial state.
  • the amount of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 is not limited to 1: 1, but the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit
  • the initial state of the amount of 220 may not be 1: 1
  • the amount of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 is 1: 1 when the initial state is one of the present invention. It is only an embodiment of the.
  • each of the battery modules 10, such as a redox flow battery according to an embodiment of the present invention includes an electrolyte, and when the electrolyte movement between the battery modules 10 is limited and operates independently, the battery There is a problem in that the performance of the redox flow battery decreases due to a difference in performance and capacity balance between the modules 10.
  • a redox flow battery having a fluid control unit 300 according to an embodiment of the present invention operates the fluid control unit 300 that may occur between the positive electrode and the negative electrode or between the battery module 10 and the battery module 10. Differences in the balance of the electrolyte may occur due to variations.
  • the electrolyte connection unit 600 is to connect the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 to prevent this, and the electrolyte connection unit 600 is an electrolyte or a material capable of exchanging ions and substances, etc. As this is filled, it is possible to mix with the electrolyte of the anode electrolyte storage unit 210 and the electrolyte of the cathode electrolyte storage unit 220.
  • the negative electrode electrolyte solution is stored through the electrolyte connection unit 600.
  • a part of the electrolyte solution stored in the unit 220 may be mixed while moving to the anode electrolyte storage unit 210.
  • the electrolyte connection portion 600 is preferably made of a hollow pipe shape, but is not limited thereto, and connects the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220 to exchange electrolyte, ions, and substances This can be done in a variety of tube shapes, if possible.
  • the electrolyte connection part 600 is not limited to being made of a slurry containing at least one selected from the group consisting of water, an aqueous sulfuric acid solution, and an active material, and may be filled with electrolyte, ions, and other materials capable of material exchange.
  • the electrolyte connection part 600 may be filled with a porous material.
  • the performance of the battery may be reduced, but the battery by controlling some of the mixing by the electrolyte connection part 600 through the porous material A decrease in performance can be suppressed.
  • the level of the positive electrode electrolyte and the negative electrode electrolyte may change from time to time. have.
  • the porous material can suppress the battery performance reduction by suppressing the mixing due to the swaying.
  • porous material can prevent cross contamination by precipitates and impurities contained in the electrolyte.
  • the porous material may be activated carbon, mesh, felt, honeycomb or the like.
  • the porous material may be provided on the entire electrolyte connection portion 600, or may be provided only on a part of the electrolyte connection portion 600.
  • the volume of the electrolyte connection part 600 is 1 to 50% of the sum of the electrolyte solution stored in the positive electrode electrolyte storage part 210 and the electrolyte solution stored in the negative electrode electrolyte storage part 220 It is preferred.
  • the volume of the electrolyte connection portion 600 is large, the energy capacity compared to the unit volume of the battery module 10 may decrease, and when the volume of the electrolyte connection portion 600 is small, the mixing amount of the material included in the positive electrode and the negative electrode increases.
  • the volume of the electrolyte connection portion 600 is 1 to 50% of the sum of the electrolyte stored in the positive electrode electrolyte storage portion 210 and the electrolyte stored in the negative electrode electrolyte storage portion 220 It is preferred. The detailed description is as follows.
  • the length of the electrolyte connection portion 600 is short or small in volume, mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 may occur too actively. do.
  • the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 are actively mixed, the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220
  • the cathodic electrolyte may react with each other, resulting in energy loss or side reaction, which results in capacity loss. Due to this, the performance of the battery is reduced.
  • the volume of the electrolyte connection part 600 is preferably 1% or more of the sum of the electrolyte solution stored in the positive electrode electrolyte storage part 210 and the electrolyte solution stored in the negative electrode electrolyte solution storage part 220. .
  • the volume of the electrolyte connection portion 600 is preferably 50% or less of the sum of the electrolyte stored in the positive electrode electrolyte storage unit 210 and the electrolyte stored in the negative electrode electrolyte storage unit 220 .
  • the volume of the electrolyte connection portion 600 is, one end of the electrolyte connection portion 600 is connected to the positive electrode electrolyte storage unit 210, the other end of the electrolyte connection portion 600 is the negative electrode electrolyte storage unit 220 When connected to, represents the volume that can be stored fluid between both ends of the electrolyte connection portion 600.
  • Both ends of the electrolyte connection part 600 may be defined based on a starting point of a structure having a cross-sectional area change between the electrolyte connection parts 600.
  • the diameter when the diameter of the electrolyte connection portion 600 or the cross-sectional area of the electrolyte connection portion 600 is converted to the same area circle is preferably less than 1/3 of the length of the electrolyte connection portion 600.
  • the diameter of the electrolyte connecting portion 600 is too large compared to the length, mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 becomes active, and thus, as described above, Performance may be degraded.
  • the diameter when the diameter of the electrolyte connection portion 600 or the cross-sectional area of the electrolyte connection portion 600 is converted to the same area circle is preferably less than 1/3 of the length of the electrolyte connection portion 600.
  • the cross-sectional area of the electrolyte connection portion 600 is made of a circle, the diameter of the electrolyte connection portion 600 and the length of the electrolyte connection portion 600 are compared, and the cross-sectional area of the electrolyte connection portion 600 is a circle. If not, it is compared with the diameter when converted into a circle having the same area as the area of the cross-sectional area and the length of the electrolyte connecting portion 600.
  • the length of the electrolyte connection portion 600 represents the entire length of the electrolyte connection portion 600 from one end of the electrolyte connection portion 600 to the other end of the electrolyte connection portion 600.
  • the electrolyte connection portion 600 when the electrolyte connection portion 600 is formed of a hollow pipe, the electrolyte connection portion 600 may include a storage portion 610 having a larger cross-sectional area than the hollow pipe.
  • the storage unit 610 has a constant volume in the middle of the electrolyte connection unit 600, and is a space for storing materials capable of exchanging electrolytes, ions, and substances.
  • the storage unit 610 may serve as a buffer of a constant volume to prevent mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220.
  • the storage unit 610 is in the positive electrode electrolyte storage unit 210 to effectively prevent the positive electrode electrolyte solution of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte solution of the negative electrode electrolyte storage unit 220 from being mixed. It is preferable that the sum of the electrolyte solution stored and the electrolyte solution stored in the cathode electrolyte storage unit 220 is 1% or more.
  • the positive electrode electrolyte and the negative electrode electrolyte storage portion of the positive electrode electrolyte storage portion 210 are minimized while minimizing a decrease in battery performance by providing the storage portion 610 having a constant volume and serving as a buffer. It is possible to improve the balancing effect of 220).
  • the electrolyte connection part 600 may include a connection part valve 620 capable of closing or opening the electrolyte connection part 600.
  • the connection part valve 620 is disposed on the electrolyte connection part 600 and is capable of opening and closing the electrolyte connection part 600.
  • the positive electrode electrolyte solution of the positive electrode electrolyte solution storage unit 210 and the negative electrode electrolyte solution of the negative electrode electrolyte storage unit 220 are actively mixed through the electrolyte connection unit 600, battery performance is reduced. there is a problem.
  • the electrolyte connection part 600 is still open, and mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 is active according to the driving conditions of the redox flow battery. There is a risk that it will happen.
  • connection portion valve 620 is to prevent this, and the connection portion valve 620 may be provided to close the electrolyte connection portion 600 under specific conditions. For example, in some conditions during the charging or discharging process of the redox flow battery, the amount of the electrolyte component moving through the separator 130 may increase, and thus, a rapid performance decrease may occur. Therefore, in this condition, by closing the electrolyte connection portion 600 through the connection portion valve 620, it is possible to prevent performance degradation of the battery.
  • connection part valve 620 may be a valve that can be driven by external pressure or an electric device, or may be controlled through a separate control part.
  • a control unit is provided in the connection valve 620, when the battery module 10 is charged or discharged, the connection valve 620 closes a portion of the electrolyte connection portion 600, or the electrolyte connection portion 600 You can make the whole close.
  • the connection part valve 620 when only a part of the electrolyte connection part 600 is closed through the connection part valve 620, there is an effect of adjusting the cross-sectional area of the electrolyte connection part 600.
  • the electrolyte connection part 600 may be completely closed through the control part of the connection part valve 620, and only part of the electrolyte connection part 600 may be closed. It might be.
  • the connection valve 620 may open and close the electrolyte connection portion 600, or if only a part of the electrolyte connection portion 600 can be closed, various devices may be used.
  • the electrolyte connection portion 600 is to connect the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220, but if necessary, the electrolyte connection portion 600 is the battery cell 100, the fluid control unit ( 300), may be structurally connected to the electrolyte flow path 400. This means that the electrolyte connection part 600 can be connected to any part of the anode electrolyte and the cathode electrolyte. However, battery performance may vary depending on the mounting position.
  • the electrolyte connection part 600 is connected to the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220, and at the same time, the battery cell 100, the fluid control unit 300, the electrolyte flow path 400 ) And structurally.
  • the electrolyte connection portion 600 is not limited to connecting only the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220.
  • FIGS. 7 to 11 show a redox flow battery according to another embodiment of the present invention.
  • the redox flow battery according to another embodiment of the present invention illustrated in FIGS. 7 to 11 includes all the above-described features.
  • FIG. 7 is a view showing the internal structure of a battery module according to another embodiment of the present invention, a view when the battery module is viewed from the side
  • FIG. 8 shows the internal structure of a battery module according to another embodiment of the present invention , It is a view when the battery module is viewed from the top.
  • the + terminal 710 illustrated in FIG. 7 is electrically connected to a positive electrode 110 or a separator 140 or a conductive material contacting the separator 140 of the battery cell 100
  • the-terminal 720 is electrically connected to the negative electrode 120 of the battery cell or the separator 140 or a conductive material in contact with the separator.
  • the + terminal 710 and the-terminal 720 are provided for charging and discharging the redox flow battery.
  • the positive electrode electrolyte solution 211 of the positive electrode electrolyte storage unit 210 is transferred to the battery cell 100 through the electrolyte flow path 400 (positive electrode electrolyte flow path 401), and then reacted in the battery cell 100 After that, it returns to the anode electrolyte storage unit 210.
  • the negative electrode electrolyte solution 221 of the negative electrode electrolyte storage unit 220 was transferred to the battery cell 100 via the electrolyte flow path 400 (cathode electrolyte flow path 401), and reacted in the battery cell 100 Thereafter, the cathode electrolyte storage unit 220 is returned.
  • the positive electrode electrolyte 211 and the negative electrode electrolyte 221 may be transferred to the battery cell 100 through the fluid control unit 300 or returned to the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220. .
  • FIG. 7 is a side view showing a battery module according to an embodiment of the present invention
  • FIG. 8 is a top view of a battery module according to an embodiment of the present invention.
  • the positive electrode electrolyte 211 may be discharged from the positive electrode electrolyte storage unit 210 toward the battery cell 100.
  • a positive electrode electrolyte inlet 212 is provided at which the outlet 213 and the positive electrode electrolyte 211 may enter the positive electrode electrolyte storage unit 210 from the battery cell 100.
  • the negative electrode electrolyte solution 221 may be discharged from the negative electrode electrolyte storage unit 220 toward the battery cell 100 and the negative electrode electrolyte outlet 223
  • the negative electrode electrolyte solution 221 is provided with a negative electrode electrolyte inlet 222 through which the battery cell 100 can enter into the negative electrode electrolyte storage unit 220.
  • both ends of the electrolyte connection portion 600 are connected to the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220, and one end 611 of the electrolyte connection portion 600 is the It is connected to the anode electrolyte storage unit 210, and the other end 612 of the electrolyte connection unit 600 may be connected to the cathode electrolyte storage unit 220.
  • the positive electrode electrolyte storage portion from the battery cell 100 ( 210) or the straight line distance to the inlet 212,222 where the electrolyte enters the cathode electrolyte storage unit 220 the end 611,612 of the electrolyte connection unit 600 is the anode electrolyte storage unit 210 or the cathode electrolyte storage unit
  • the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 to the battery cell 100 to the outlet of the electrolyte to the outlet (213,223) is more than twice the straight distance desirable.
  • the distance from one end 611 of the electrolyte connection portion 600 coupled to the positive electrode electrolyte storage unit 210 to the positive electrode electrolyte inlet 212 is the positive electrode electrolyte storage unit. It is preferable that the distance from the end 611 of the electrolyte connection portion 600 coupled to the 210 to the anode electrolyte outlet 213 is more than twice.
  • the distance from the other end 612 of the electrolyte connection portion 600 coupled to the negative electrode electrolyte storage portion 220 to the negative electrode electrolyte inlet 222 is the same coupled to the negative electrode electrolyte storage portion 220 It is preferable that the distance from the other end 612 of the electrolyte connection portion 600 to the cathode electrolyte outlet 223 is twice or more.
  • the ends 611 and 612 of the electrolyte connection portion 600 are the positive electrode electrolyte 211 or the negative electrode electrolyte 221 from the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 to the battery cell 100.
  • the exit (213,223) exit the positive electrode electrolyte solution 211 or the negative electrode electrolyte solution (221) entering the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 from the battery cell 100 (212,222) ).
  • the positive electrode electrolyte 211 or the negative electrode electrolyte 221 which is not reacted is mainly disposed at the outlets 213 and 223 through which the positive electrode electrolyte 211 or the negative electrode electrolyte 221 exits, and the positive electrode electrolyte 211 or the negative electrode electrolyte 221 This is because the reacted positive and negative electrolytes are mainly disposed at the inlets 212 and 222.
  • the positive electrode electrolyte 211 or the negative electrode electrolyte 221 reacted with each other is mixed, there is a risk that the performance and capacity of the battery are further reduced.
  • the end 611, 612 of the electrolyte connection portion 600 is disposed far away from the inlet 212, 222 where the positive electrode electrolyte 211 or the negative electrode electrolyte 221 where the reaction proceeds does not decrease the performance and capacity of the battery Is preferred.
  • the ends 611 and 612 of the electrolyte connection part 600 are connected to the battery cell 100 from the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 to the positive electrode electrolyte ( 211) or the cathode electrolyte solution 221, rather than the exit 213, 223, the battery cell 100 to the cathode electrolyte storage section 210 or the cathode electrolyte storage section 220, the anode electrolyte 211 or cathode electrolyte ( As the 221 is disposed away from the incoming inlets 212 and 222, the electrolyte connection part 600 may include a storage part 610, and the electrolyte connection part 600 may include a connection part valve 620.
  • connection part pressure generator 630 capable of transmitting pressure to the connection part valve 620 forming pressure may be connected to the connection part valve 620 according to an embodiment of the present invention.
  • the connection part pressure generator 630 may be the same or share the pressure generator 500 described above, and may selectively form positive or negative pressure in the connection part valve 620. That is, the pressure generator 500 for driving the fluid control unit 300 and the connection unit pressure generator 630 for driving the connection valve 620 may be separately provided, and are independently driven through pressure control while using the same pressure generator. It can be.
  • connection part pressure generator 630 may be transmitted to the connection part valve 620 through a connection part pressure transmission pipe 631, and the connection part valve 620 may receive the pressure generated by the connection part pressure generator 630.
  • a switch 621 operated through may be included.
  • the connection valve 620 may include a switch operated by electricity.
  • the switch 621 included in the connection part valve 620 is electrically operated without a separate pressure generator, so that the electrolyte connection part 600 may be closed or opened, and the electrolyte connection part 600 may be partially closed.
  • the switch 621 is connected to the pressure generator 630 of the connection unit and operates through the pressure formed in the pressure generator 630 of the connection unit, so that the electrolyte connection unit 600 can be closed or opened, and the electrolyte connection unit ( 600) can be partially closed.
  • the volume of the electrolyte connection portion 600 is the electrolyte that moves from the anode to the cathode or the cathode to the anode through the separator 130 when the battery module 10 discharged while the electrolyte connection portion 600 is closed. It may be 2% or more of the volume.
  • the electrolyte connection portion 600 When the battery module 10 is charged or the battery module 10 is discharged, the electrolyte connection portion 600 must be closed through the connection valve 620 to prevent a decrease in battery performance. In this state, when the battery module 10 is charged, the electrolyte moves from the positive electrode to the negative electrode or from the negative electrode to the positive electrode.
  • the volume of the electrolyte connection part 600 is the battery in the state where the electrolyte connection part 600 is closed. When charging the module 10, it is preferable that it is 2% or more of the volume of the electrolyte that moves from the anode to the cathode or from the cathode to the anode.
  • the battery module (10)
  • the battery module (10)
  • the constant current is charged at a current density of 20 mA / cm 2 from the discharged state (single cell reference open voltage 0.6 V) to the reference open voltage 1.5 V (charged state)
  • the anode electrode moves from the anode electrode to the anode electrode. It may be 2% or more of the electrolyte volume. However, this is only one example, and depending on the conditions of charging and discharging, the amount of the electrolyte moving from the anode to the cathode or the cathode to the anode may vary.
  • the volume of the electrolyte connection portion 600 should be equal to or greater than a certain size.
  • the reference is the volume of the electrolyte that moves from the anode to the cathode or the cathode to the anode when charging the battery module 10 discharged while the electrolyte connection portion 600 is closed.
  • the volume of the electrolyte connecting portion 600 is charged when the battery module 10 discharged while the electrolyte connecting portion 600 is closed, when the volume of the electrolyte moving from the anode to the cathode or the cathode to the anode is 2% or more , It is possible to prevent the mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 is too active.
  • the volume of the electrolyte connection portion 600 is preferably 50% or less of the sum of the electrolyte stored in the positive electrode electrolyte storage unit 210 and the electrolyte stored in the negative electrode electrolyte storage unit 220.
  • Redox flow battery according to an embodiment of the present invention described above has the following effects.
  • the redox flow battery according to an embodiment of the present invention can effectively reduce the length of the transport path and increase the efficiency of the battery by providing the electrolyte tank 200 for storing the anode electrolyte and the cathode electrolyte for each battery cell 100
  • the redox flow battery according to an embodiment of the present invention by providing a fluid control unit 300 using pressure instead of having an expensive pump for each battery module, it is possible to secure cost competitiveness, each battery module (10)
  • the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 through the electrolyte connection unit 600 connecting the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 according to an embodiment of the present invention It has the advantage of being able to maintain the electrolyte balance, and thereby prevent the performance of the battery from being reduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a redox flow battery, comprising a battery module provided with: a battery cell comprising a positive electrode and a negative electrode therein; an electrolyte tank comprising a cathode electrolyte storage unit and an anode electrolyte storage unit; an electrolyte flow path connecting the electrolyte tank and the battery cell to transfer an electrolyte; and a fluid control unit for transmitting, to the electrolyte flow path, pressure generated from the outside, wherein one or more of the battery module is provided, the battery modules are charged and discharged by circulation of electrolyte in each battery module independently, or are charged and discharged by circulation of electrolyte in a plurality of the battery modules, and the battery modules each further comprises an electrolyte connection unit for connecting the cathode electrolyte storage unit and the anode electrolyte storage unit.

Description

레독스 흐름전지Redox flow battery
본 발명은 레독스 흐름전지에 관한 것으로, 더욱 상세하게는 전지셀마다 양극 전해액 및 음극 전해액을 보관하는 전해액 탱크와 전지셀로 전해액을 이송하기 위한 유체 제어부를 구비하여 반응 시간을 줄이고, 분류 전류(shunt current)의 발생을 억제할 수 있으며, 전해액 연결부를 통해 양극 전해액 저장부와 음극 전해액 저장부에 저장되는 전해액의 밸런스를 유지할 수 있는 레독스 흐름전지에 관한 것이다. The present invention relates to a redox flow battery, and more specifically, to reduce the reaction time by providing an electrolyte tank for storing the positive electrode electrolyte and the negative electrode electrolyte for each battery cell and a fluid control unit for transferring the electrolyte to the battery cell, reducing the classification time shunt current), and relates to a redox flow battery capable of maintaining the balance of the electrolyte stored in the anode electrolyte storage and the cathode electrolyte storage through an electrolyte connection.
최근 지구 온난화의 주요 원인인 온실가스 배출을 억제하기 위한 방법으로 태양광에너지나 풍력에너지 같은 재생에너지가 각광을 받고 있으며 이들의 실용화 보급을 위해 많은 연구가 진행되고 있다. 그러나 재생에너지는 입지환경이나 자연조건에 의해 크게 영향을 받는다. 더욱이, 재생에너지는 출력 변동이 심하기 때문에 에너지를 연속적으로 고르게 공급할 수 없다는 단점이 있다. 따라서 재생에너지를 가정용이나 상업용으로 사용하기 위해서는 출력이 높을 때 에너지를 저장하고 출력이 낮을 때 저장된 에너지를 사용할 수 있는 시스템을 도입하여 사용하고 있다.Recently, renewable energy such as solar energy or wind energy has been spotlighted as a method for suppressing greenhouse gas emission, which is a major cause of global warming, and many studies have been conducted to spread their commercialization. However, renewable energy is greatly affected by the location environment and natural conditions. Moreover, renewable energy has a disadvantage in that it cannot supply energy evenly and continuously because the output fluctuation is severe. Therefore, in order to use renewable energy for home or commercial use, a system capable of storing energy when the output is high and using stored energy when the output is low is used.
이러한 에너지 저장 시스템으로는 대용량 이차전지가 사용되는데, 일례로, 대규모 태양광발전 및 풍력발전 단지에는 대용량 이차전지 저장시스템이 도입되어져 있다. 상기 대용량의 전력저장을 위한 이차전지로는 납축전지, 황화나트륨(NaS)전지 그리고 레독스 흐름전지(RFB, redox flow battery) 등이 있다.A large-capacity secondary battery is used as the energy storage system. For example, a large-capacity secondary battery storage system is introduced in a large-scale photovoltaic power generation and wind power generation complex. Examples of the secondary battery for storing large-capacity power include a lead acid battery, a sodium sulfide (NaS) battery, and a redox flow battery (RFB).
상기 납축전지는 다른 전지에 비해 상업적으로 널리 사용되고 있으나 낮은 효율 및 주기적인 교체로 인한 유지보수의 비용과 전지 교체 시 발생하는 산업폐기물의 처리문제 등의 단점이 있다. NaS 전지의 경우 에너지 효율이 높은 것이 장점이나 300℃ 상의 고온에서 작동하는 단점이 있다. 레독스 흐름전지는 상온에서 작동 가능하며 용량과 출력을 각기 독립적으로 설계할 수 있는 특징이 있기 때문에 근 대용량 이차전지로 많은 연구가 진행되고 있다.The lead acid battery is widely used commercially compared to other batteries, but has disadvantages such as low efficiency and maintenance costs due to periodic replacement and treatment of industrial waste generated when replacing the battery. In the case of a NaS battery, it has an advantage of high energy efficiency, but has a disadvantage of operating at a high temperature over 300 ° C. Redox flow batteries are capable of operating at room temperature and have the ability to independently design capacity and output, so many studies have been conducted with near-capacity secondary batteries.
레독스 흐름전지는 연료전지와 유사하게 분리막(멤브레인), 전극 및 분리판(Bipolar plate)이 직렬(Series)로 배치되어 스택(Stack)을 구성함으로써, 전기에너지의 충방전이 가능한 이차전지(Secondary battery)의 기능을 가진다. 레독스 흐름전지는 분리막의 양측에 양극 및 음극 전해액 저장탱크에서 공급된 양극 전해액(Electrolyte)과 음극 전해액이 순환하면서 이온 교환이 이루어지고 이 과정에서 전자의 이동이 발생하여 충방전이 이루어진다. 이와 같은 레독스 흐름전지는 기존 이차전지에 비해 수명이 길고 kW 내지 MW급 중대형 시스템으로 제작할 수 있기 때문에 ESS(Energy storage system)에 가장 적합한 것으로 알려져 있다.Redox flow battery is a secondary battery (Secondary) capable of charging and discharging electric energy by forming a stack in which a separator (membrane), an electrode and a bipolar plate are arranged in series, similar to a fuel cell. battery). The redox flow battery undergoes ion exchange while circulating the anode electrolyte and the cathode electrolyte supplied from the anode and cathode electrolyte storage tanks on both sides of the separator, and in this process, electrons are generated and charged and discharged. Such a redox flow battery is known to be most suitable for an ESS (Energy storage system) because it has a longer life span than a conventional secondary battery and can be manufactured in a medium to large-sized system of kW to MW.
그러나 레독스 흐름전지는 양극 전해액과 음극 전해액을 저장하는 탱크가 별However, in the redox flow battery, the tank for storing the anode electrolyte and the cathode electrolyte is separate.
도로 일정 공간을 두고 배치되는 구조(예를 들면 스택의 양측 또는 하측에 일정 공A structure that is arranged with a certain space on the road (for example, a certain ball on both sides or under the stack)
간을 두고 전해액 탱크가 배치되는 구조)로, 스택과 전해액 탱크를 연결하는 전해액 순환관에 의해 전반적인 시스템의 부피에 있어서, 유사한 전력 저장 용량을 기준으로 다른 전력저장 장치인 납축전지나, 리튬이온 전지 및 리튬-황전지와 비교하A structure in which an electrolyte tank is disposed with a space between the stacks and the electrolyte circulation pipe connecting the stack and the electrolyte tank, and in the overall system volume, a lead-acid battery or a lithium-ion battery which is another power storage device based on a similar power storage capacity. And lithium-sulfur batteries
여 상대적으로 큰 단점이 있다.W has a relatively big drawback.
또한, 스택, 펌프 및 전해액 탱크와 연결되는 전해액 순환관이 다수 구비되어야 하므로, 각각의 스택에 전해액을 일정하게 공급하기 위해 일정 기준 이상의 펌프 용량이 요구되는데, 전해액 순환관의 길이가 길어질수록 펌프의 요구 용량이 증대되어 펌프의 크기 및 전지의 제조 단가가 증대되는 문제점이 있으며, 펌프용량 증대에 따른 소비전력이 증가하면서 전반적인 전지 효율이 저하되는 문제점이 수반되고 있다.In addition, since a plurality of electrolyte circulation pipes connected to the stack, the pump, and the electrolyte tank must be provided, a pump capacity of a certain standard or higher is required to supply the electrolyte to each stack constantly. As the length of the electrolyte circulation pipe increases, There is a problem that the size of the pump and the manufacturing cost of the battery are increased due to the increase in the required capacity, and the overall battery efficiency is lowered as the power consumption increases as the pump capacity increases.
아울러, 일반적인 전지는 충방전 동작이 수행되는 작동 응답성이 빨라야 한다. 그러나 레독스 흐름전지의 경우 정지된 상태에서 충방전을 위해 가동을 시킬 경우 펌프에 의해 전해액이 스택 내부로 순환되기까지 시간이 소요되고, 소요되는 시간 만큼의 응답성이 저하되며, 셀, 스택과 펌프를 연결하는 내화학성 배관이 다수 필요하므로 원가가 상승하는 문제점이 있었다.In addition, the general battery should have a fast operation responsiveness in which charging and discharging operations are performed. However, in the case of the redox flow battery, when it is operated for charging and discharging in a stopped state, it takes time for the electrolyte to circulate inside the stack by the pump, and the responsiveness of the time required decreases. There is a problem in that the cost increases because a large number of chemical-resistant pipes are connected to the pump.
여기에 통상적인 레독스 흐름전지는 매니폴드를 통해 각 전지셀로 전해액이 공급된다. 그런데, 매니폴드에 채워진 전해액은 각 셀을 잇는 전기 통로 역할을 하Here, a typical redox flow battery is supplied with electrolyte to each battery cell through a manifold. However, the electrolyte filled in the manifold serves as an electric passage connecting each cell.
므로 전자의 이동 경로가 될 수 있으며, 이러한 경로를 통해 분로 전류(shunt current)가 발생하여 충방전 시에 에너지의 일부가 분로 전류에 의해 손실되고 이는 효율 감소, 부품 손상, 셀 성능 불균일을 일으키는 주된 원인이 된다. 기존에는 이러한 분로 전류를 줄이기 위해 매니폴드의 길이를 증가시키고 단면적을 좁히는 방법을 주로 채택하였으나 이는 유체의 흐름 저항을 증가시켜 펌핑 손실을 발생시키므로 이를 극복할 수 있는 대안이 요구된다. Therefore, it can become the electron's moving path, and through this path, shunt current occurs, and part of the energy is lost by the shunt current during charging and discharging, which is the main cause of reduced efficiency, component damage, and cell performance irregularity. Cause. In the past, in order to reduce the shunt current, a method of increasing the length of the manifold and narrowing the cross-sectional area was mainly adopted, but this increases the flow resistance of the fluid, resulting in pumping loss, and an alternative to overcome this is required.
또한, 일반적으로 레독스 흐름전지를 구동하게 되면, 분리막을 통해 이온 교환이 이루어지면서 전해액 내부에 포함된 물질 등이 양극에서 음극 또는 음극에서 양극으로 이동하게 된다. 이와 같이 양극에서 음극 또는 음극에서 양극으로 전해액 내부에 포함된 물질이 이동하게 되면, 양극 전해액과 음극 전해액의 양이 초기 상태일 때 1:1 비율이었던 것이, 0.8:1.2와 같이 변하게 된다. In addition, in general, when the redox flow battery is driven, ion exchange is performed through a separation membrane, and materials contained in the electrolyte are moved from the positive electrode to the negative electrode or from the negative electrode to the positive electrode. As described above, when the material contained in the electrolyte is moved from the anode to the cathode or the cathode to the anode, when the amount of the anode electrolyte and the cathode electrolyte is in the initial state, the 1: 1 ratio is changed to 0.8: 1.2.
또한, 양극과 음극에 각각 전해액을 공급할 때 양극과 음극의 공급 시간, 공급 타이밍, 공급 압력이 같지 않을 경우 양극과 음극의 비율(양 또는 전해액 탱크 내부의 수위)은 차이가 더 커질 수 있다.In addition, when supplying the electrolyte to the positive electrode and the negative electrode, when the supply time, supply timing, and supply pressure of the positive electrode and the negative electrode are not the same, the difference between the positive electrode and the negative electrode (amount or water level in the electrolyte tank) may be greater.
즉, 레독스 흐름전지의 구동에 의해 양극 전해액과 음극 전해액의 밸런스가 초기상태와 다르게 변경되게 되는데, 이는 레독스 흐름전지의 구동 가능한 용량(capacity)을 감소시키게 되면서, 전지의 성능 저하를 야기하게 되는 문제가 있다. That is, the balance of the positive electrode electrolyte and the negative electrode electrolyte is changed differently from the initial state by driving the redox flow battery, which decreases the driveable capacity of the redox flow battery and causes the battery to deteriorate. There is a problem.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 더욱 상세하게는 전지셀마다 양극 전해액 및 음극 전해액을 보관하는 전해액 탱크와 전지셀로 전해액을 이송하기 위한 유체 제어부를 구비하여 반응 시간을 줄이고, 분류 전류(shunt current)의 발생을 억제할 수 있으며, 전해액 연결부를 통해 양극 전해액 저장부와 음극 전해액 저장부에 저장되는 전해액의 밸런스를 유지할 수 있는 레독스 흐름전지에 관한 것이다. The present invention is to solve the above-mentioned problems, and more specifically, to reduce the reaction time by providing an electrolyte tank for storing the positive electrode electrolyte and the negative electrode electrolyte for each battery cell and a fluid control unit for transferring the electrolyte to the battery cell, reducing the classification time. The present invention relates to a redox flow battery capable of suppressing the generation of (shunt current) and maintaining the balance of the electrolyte stored in the anode electrolyte storage and the cathode electrolyte storage through an electrolyte connection.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지는, 내부에 양극 전극과 음극 전극을 포함하는 전지셀;과 양극 전해액 저장부와 음극 전해액 저장부를 포함하는 전해액 탱크;와 상기 전해액 탱크와 상기 전지셀을 연결하여 전해액이 이송되는 전해액 유로;와 외부에서 생성된 압력을 상기 전해액 유로에 전달하는 유체 제어부;를 구비하는 전지 모듈을 포함하며, 상기 전지 모듈은 하나 또는 둘 이상이 구비되되, 상기 전지 모듈은 독립적으로 전해액을 순환시켜 충전 및 방전하거나, 복수 개의 상기 전지 모듈에서 전해액을 순환시켜 충전 및 방전하며, 상기 양극 전해액 저장부와 상기 음극 전해액 저장부를 연결하는 전해액 연결부를 더 포함하는 것을 특징으로 하는 것이다. The redox flow battery of the present invention for solving the above-mentioned problems, a battery cell including an anode electrode and a cathode electrode therein; and an electrolyte tank including an anode electrolyte storage unit and a cathode electrolyte storage unit; and the electrolyte tank and the It includes a battery module comprising an electrolyte flow path through which the electrolyte is transferred by connecting the battery cells; and a fluid control unit for transmitting the pressure generated from the outside to the electrolyte flow path, wherein the battery module is provided with one or two or more, the The battery module is characterized in that it further comprises an electrolytic solution connecting portion for circulating and charging and discharging the electrolyte independently or circulating and charging and discharging the electrolyte in the plurality of battery modules, and connecting the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion. Is to do.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지는, 상기 유체 제어부에 연결되며, 압력을 형성시켜 상기 유체 제어부에 압력을 전달할 수 있는 압력 발생기와, 상기 압력 발생기와 상기 유체 제어부 사이에 구비되며, 상기 유체 제어부에 양압 또는 음압을 선택적으로 전달할 수 있는 압력 제어 밸브를 더 포함할 수 있다. The redox flow battery of the present invention for solving the above-described problem is connected to the fluid control unit, and is provided between a pressure generator capable of transferring pressure to the fluid control unit by forming pressure, and between the pressure generator and the fluid control unit And, it may further include a pressure control valve capable of selectively transmitting a positive pressure or a negative pressure to the fluid control unit.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 전해액 연결부는, 물, 산 수용액, 활물질로 이루어지는 군에서 선택되는 1종 이상을 포함하는 액체 또는 슬러리로 채워질 수 있으며, 상기 전해액 연결부는, 다공성 물질로 채워질 수 있다. The electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problem may be filled with a liquid or slurry containing at least one selected from the group consisting of water, an aqueous acid solution, and an active material, and the electrolyte connection portion , It can be filled with a porous material.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 전해액 연결부는 중공형 파이프로 이루어질 수 있으며, 상기 전해액 연결부는, 상기 중공형 파이프보다 단면적이 넓은 저장부를 포함할 수 있다. The electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problem may be formed of a hollow pipe, and the electrolyte connection portion may include a storage portion having a larger cross-sectional area than the hollow pipe.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 전해액 연결부의 직경 또는 상기 전해액 연결부의 단면적을 동일 면적의 원으로 환산했을 때의 직경은, 상기 전해액 연결부의 길이의 1/3 이하일 수 있다. The diameter of the redox flow battery of the present invention for solving the above-described problem or the diameter when the cross-sectional area of the electrolyte connection portion is converted into a circle of the same area may be less than 1/3 of the length of the electrolyte connection portion. have.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 전해액 연결부의 부피는, 상기 양극 전해액 저장부에 저장되어 있는 전해액과 상기 음극 전해액 저장부에 저장되어 있는 전해액의 합의 1 내지 50 % 일 수 있다. The volume of the electrolyte connection part of the redox flow battery of the present invention for solving the above-mentioned problem is 1 to 50% of the sum of the electrolyte solution stored in the positive electrode electrolyte storage part and the electrolyte solution stored in the negative electrode electrolyte storage part. You can.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 전해액 연결부의 부피는, 상기 전해액 연결부가 닫힌 상태에서 방전된 상기 전지 모듈을 충전할 때, 양극에서 음극 또는 음극에서 양극으로 이동하는 전해액 부피의 2% 이상일 수 있다. The volume of the electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problem, when charging the battery module discharged while the electrolyte connection portion is closed, the electrolyte moves from the positive electrode to the negative electrode or from the negative electrode to the positive electrode. It may be 2% or more of the volume.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 전해액 연결부는, 상기 전해액 연결부를 닫거나 열 수 있는 연결부 밸브를 더 포함할 수 있으며, 상기 연결부 밸브는, 상기 전지 모듈이 충전 또는 방전될 때, 상기 전해액 연결부의 일부를 닫히게 하거나, 상기 전해액 연결부의 전체를 닫히게 할 수 있다. The electrolyte connection part of the redox flow battery of the present invention for solving the above-described problem may further include a connection part valve capable of closing or opening the electrolyte connection part, wherein the connection part valve is configured to charge or discharge the battery module. At this time, a portion of the electrolyte connection portion may be closed or the entire electrolyte connection portion may be closed.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지는, 상기 연결부 밸브에 연결되며, 압력을 형성시켜 상기 연결부 밸브에 압력을 전달할 수 있는 연결부 압력 발생기를 더 포함하며, 상기 연결부 밸브에는, 상기 연결부 압력 발생기에 의해 작동되는 스위치가 포함될 수 있다. The redox flow battery of the present invention for solving the above-described problem further includes a connection part pressure generator connected to the connection part valve and capable of transmitting pressure to the connection part valve by forming pressure, wherein the connection part valve comprises: A switch operated by a connection pressure generator may be included.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 연결부 밸브에는 전기에 의해 작동되는 스위치가 포함될 수 있다. The connection valve of the redox flow battery of the present invention for solving the above-described problem may include a switch operated by electricity.
상술한 문제점을 해결하기 위한 본 발명의 레독스 흐름전지의 상기 전해액 연결부의 양 끝단은 상기 양극 전해액 저장부와 상기 음극 전해액 저장부에 연결되며, 상기 전해액 연결부의 끝단이 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부와 연결되는 위치에서, 상기 전지셀로부터 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부로 전해액이 들어오는 입구까지의 직선 거리는, 상기 전해액 연결부의 끝단이 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부와 연결되는 위치에서, 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부에서 상기 전지셀로 전해액이 나가는 출구까지의 직선 거리의 2배 이상일 수 있다. Both ends of the electrolyte connection portion of the redox flow battery of the present invention for solving the above-described problems are connected to the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion, and the end of the electrolyte connection portion is the positive electrode electrolyte storage portion or the In a position connected to the negative electrode electrolyte storage unit, a straight line distance from the battery cell to the inlet of the electrolyte into the positive electrode electrolyte storage unit or the negative electrode electrolyte storage unit, an end of the electrolyte connection unit is the positive electrode electrolyte storage unit or the negative electrode electrolyte storage In a position connected to the negative electrode, the positive electrode electrolyte storage unit or the negative electrode electrolyte storage unit may be at least twice the straight line distance from the electrolyte to the outlet.
본 발명은 전지셀마다 양극 전해액 및 음극 전해액을 보관하는 전해액 탱크를 구비함에 따라 이송 경로를 효과적으로 줄일 수 있으며, 전지의 효율을 높일 수 있는 장점이 있다. 또한, 본 발명은 펌프를 구비하는 대신 압력을 이용한 유체 제어부를 구비함에 따라, 각 전지 모듈에서 발생할 수 있는 분로 전류를 효과적으로 감소시킬 수 있는 장점이 있다. The present invention has an advantage in that the transport path can be effectively reduced and the efficiency of the battery can be increased as each battery cell is provided with an electrolyte tank for storing the anode electrolyte and the cathode electrolyte. In addition, the present invention has an advantage of effectively reducing the shunt current that may occur in each battery module by providing a fluid control unit using pressure instead of having a pump.
이와 함께, 본 발명은 양극 전해액 저장부와 음극 전해액 저장부를 연결하는 전해액 연결부를 통해 양극 전해액 저장부와 음극 전해액 저장부의 전해액 밸런스를 유지할 수 있고, 이를 통해 전지의 성능이 감소 되는 것을 방지할 수 있는 장점이 있다. Along with this, the present invention can maintain the electrolyte balance between the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion through the electrolyte connection portion connecting the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion, thereby preventing the performance of the battery from being reduced. There are advantages.
도 1은 본 발명의 일 실시 예에 따라 다수의 전지 모듈이 결합된 레독스 흐름전지를 나타내는 도면이다. 1 is a view showing a redox flow battery in which a plurality of battery modules are combined according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따라 전지 모듈의 내부 구조를 나타내는 도면이다. 2 is a view showing the internal structure of a battery module according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따라 복수 개의 압력 발생기와 복수 개의 유체 제어부가 구비되는 레독스 흐름전지를 나타내는 도면이다.3 is a view showing a redox flow battery having a plurality of pressure generators and a plurality of fluid control units according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따라 다수의 전지 모듈이 결합된 레독스 흐름전지를 나타내는 도면이다. 4 is a view showing a redox flow battery in which a plurality of battery modules are combined according to an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따라 전해액 연결부에 저장부가 구비된 것을 나타내는 도면이다. 5 is a view showing that the storage portion is provided in the electrolyte connection according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따라 전해액 연결부에 밸브가 구비된 것을 나타내는 도면이다. 6 is a view showing that the valve is provided in the electrolyte connection according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시 예에 따른 전지 모듈의 내부 구조를 나타내는 것으로, 전지 모듈을 측면에서 보았을 때의 도면이다. 7 illustrates an internal structure of a battery module according to another embodiment of the present invention, and is a view when the battery module is viewed from the side.
도 8은 본 발명의 다른 실시 예에 따른 전지 모듈의 내부 구조를 나타내는 것으로, 전지 모듈을 상부에서 보았을 때의 도면이다. 8 illustrates an internal structure of a battery module according to another embodiment of the present invention, and is a view when the battery module is viewed from the top.
도 9는 본 발명의 다른 실시 예에 따른 전지 모듈의 내부 구조를 나타내는 것으로, 전해액 연결부가 구비된 것을 나타내는 도면이다. 9 is a view showing the internal structure of the battery module according to another embodiment of the present invention, a view showing that the electrolyte connection is provided.
도 10은 본 발명의 다른 실시 예에 따른 전지 모듈의 내부 구조를 나타내는 것으로, 전해액 연결부에 저장부가 구비된 것을 나타내는 도면이다.10 is a view showing the internal structure of the battery module according to another embodiment of the present invention, a view showing that the storage portion is provided in the electrolyte connection.
도 11은 본 발명의 다른 실시 예에 따른 전지 모듈의 내부 구조를 나타내는 것으로, 전해액 연결부에 밸브가 구비된 것을 나타내는 도면이다. 11 is a view showing the internal structure of a battery module according to another embodiment of the present invention, a view showing that the valve is provided in the electrolyte connection.
이하, 본 발명의 다양한 실시 예가 첨부된 도면과 연관되어 기재된다. 본 발명의 다양한 실시 예는 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들이 도면에 예시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 본 발명의 다양한 실시 예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 다양한 실시 예의 사상 및 기술 범위에 포함되는 모든 변경 및/또는 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용되었다.Hereinafter, various embodiments of the present invention will be described in connection with the accompanying drawings. Various embodiments of the present invention may have various modifications and various embodiments, and specific embodiments are illustrated in the drawings and related detailed descriptions are described. However, this is not intended to limit the various embodiments of the present invention to specific embodiments, and should be understood to include all modifications and / or equivalents or substitutes included in the spirit and scope of the various embodiments of the present invention. In connection with the description of the drawings, similar reference numerals have been used for similar elements.
본 발명의 다양한 실시 예에서 사용될 수 있는 "포함한다" 또는 "포함할 수 있다" 등의 표현은 발명(disclosure)된 해당 기능, 동작 또는 구성요소 등의 존재를 가리키며, 추가적인 하나 이상의 기능, 동작 또는 구성요소 등을 제한하지 않는다. 또한, 본 발명의 다양한 실시예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Expressions such as “comprises” or “can include” that may be used in various embodiments of the present invention indicate the existence of a corresponding function, operation, or component that has been invented, and additional one or more functions, operations, or The components and the like are not limited. Further, in various embodiments of the present invention, terms such as “include” or “have” are intended to indicate that there are features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, It should be understood that one or more other features or numbers, steps, actions, components, parts, or combinations thereof are not excluded in advance.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되어 있을 수도 있지만, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재하지 않는 것으로 이해될 수 있어야 할 것이다.When it is stated that an element is "connected" to another element, the other element may be directly connected to the other element, but another new element between the other element and the other element It should be understood that may exist. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it will be understood that no new component exists between the component and the other components. You should be able to.
본 발명의 다양한 실시 예에서 사용한 용어는 단지 특정일 실시 예를 설명하기 위해 사용된 것으로, 본 발명의 다양한 실시 예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Terms used in various embodiments of the present invention are used only to describe specific specific embodiments, and are not intended to limit various embodiments of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명의 다양한 실시 예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which various embodiments of the present invention pertain.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명의 다양한 실시 예에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Terms, such as those defined in a commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and are ideally or excessively formal unless explicitly defined in various embodiments of the present invention. It is not interpreted as meaning.
본 발명에서 용어 ‘전지셀(battery cell)’은 전해액을 통해 충방전이 일어나는 최소 단위로, 이온 교환이 일어나는 분리막, 분리판 등을 포함하여 구성된다. 본 발명에서 용어 ‘스택’은 전지셀이 복수 개 적층되거나 구성된 것을 뜻한다.In the present invention, the term 'battery cell (battery cell)' is the smallest unit in which charge and discharge occur through the electrolyte, and is composed of a separator, a separator, and the like in which ion exchange occurs. In the present invention, the term 'stack' means that a plurality of battery cells are stacked or configured.
본 발명은 레독스 흐름전지에 관한 것으로, 전지셀마다 양극 전해액 및 음극 전해액을 보관하는 전해액 탱크와 전지셀로 전해액을 이송하기 위한 유체 제어부를 구비하여 반응 시간을 줄이고, 분류 전류(shunt current)의 발생을 억제할 수 있으며, 전해액 연결부를 통해 양극 전해액 저장부와 음극 전해액 저장부에 저장되는 전해액의 밸런스를 유지할 수 있는 레독스 흐름전지에 관한 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세하게 설명하기로 한다. The present invention relates to a redox flow battery, the electrolyte tank for storing the positive electrode electrolyte and the negative electrode electrolyte for each battery cell and a fluid control unit for transferring the electrolyte to the battery cell to reduce reaction time and reduce the shunt current. The present invention relates to a redox flow battery that can suppress generation and maintain a balance of an electrolyte stored in a cathode electrolyte storage and a cathode electrolyte storage through an electrolyte connection. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1을 참조하면, 본 발명의 실시 예에 따른 레독스 흐름전지는, 전지셀(100), 전해액 탱크(200), 유체 제어부(300), 전해액 유로(400)를 구비하는 전지 모듈(10)을 포함하며, 전해액 연결부(600)를 더 포함하는 것을 특징으로 하는 것이다. Referring to FIG. 1, the redox flow battery according to an embodiment of the present invention includes a battery module 100 including a battery cell 100, an electrolyte tank 200, a fluid control unit 300, and an electrolyte flow path 400. It includes, it is characterized in that it further comprises an electrolyte connection portion (600).
상기 전지 모듈(10)의 상기 전지셀(100)은 내부에 양극 전극(110)과 음극 전극(120)을 포함할 수 있다. 상기 전지셀(100)은 상기 전해액 탱크(200)로부터 공급받은 전해액의 이동, 충전, 방전하면서 전기 화학적인 반응이 일어날 수 있는 곳으로, 상기 전지셀(100)은 분리막(130), 분리판(140)을 더 포함할 수 있다. The battery cell 100 of the battery module 10 may include an anode electrode 110 and a cathode electrode 120 therein. The battery cell 100 is a place where an electrochemical reaction may occur while moving, charging, and discharging the electrolyte supplied from the electrolyte tank 200, and the battery cell 100 includes a separator 130 and a separator ( 140) may be further included.
구체적으로, 도 2를 참조하면, 상기 전지셀(100)은 상기 양극 전극(110)과 상기 음극 전극(120) 사이에 구비되는 상기 분리막(130)과 상기 양극 전극(110)과 상기 음극 전극(120)의 외측면에 구비되는 분리판(140)을 포함할 수 있다. 상기 양극 전극(110), 상기 음극 전극(120), 상기 분리막(130), 상기 분리판(140)은 하우징(150)에 위치할 수 있는 것으로, 상기 하우징(150) 내부에서 전해액의 이동, 충전, 방전 등의 전기 화학적인 반응이 일어난다. 상기 전기 모듈(10)에는 하나의 상기 전지셀(100)이 포함될 수 있으며, 둘 이상의 상기 전지셀(100)이 포함될 수도 있다. 또한, 상기 전지셀(100)의 구동 환경에 따라 상기 양극 전극(110), 상기 음극 전극(120), 상기 분리판(130), 상기 분리막(140) 중 어느 하나 이상의 부품은 생략될 수 있다.Specifically, referring to FIG. 2, the battery cell 100 includes the separator 130 provided between the anode electrode 110 and the cathode electrode 120, the anode electrode 110, and the cathode electrode ( 120) may be provided on the outer surface of the separation plate 140. The anode electrode 110, the cathode electrode 120, the separator 130, and the separator 140 may be located in the housing 150, and the electrolyte is moved and charged in the housing 150. , Electrochemical reactions such as discharge occur. One of the battery cells 100 may be included in the electric module 10, and two or more of the battery cells 100 may be included. In addition, depending on the driving environment of the battery cell 100, any one or more components of the anode electrode 110, the cathode electrode 120, the separator 130, and the separator 140 may be omitted.
상기 전해액 탱크(200)는 양극 전해액 저장부(210)와 음극 전해액 저장부(220)를 포함하는 것이다. 상기 전해액 탱크(200)는 전해액을 저장할 수 있는 것으로, 상기 전해액 탱크(200)에 저장된 전해액은 전해액 유로를 통해 상기 전지셀(100)로 공급된다. The electrolyte tank 200 includes an anode electrolyte storage unit 210 and a cathode electrolyte storage unit 220. The electrolyte tank 200 is capable of storing the electrolyte solution, and the electrolyte solution stored in the electrolyte tank 200 is supplied to the battery cell 100 through the electrolyte passage.
구체적으로, 상기 양극 전해액 저장부(210)에 저장되어 있는 전해액은 상기 전지셀(100)의 상기 양극 전극(110)으로 공급되며, 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액은 상기 전지셀(100)의 상기 음극 전극(120)으로 공급된다. Specifically, the electrolyte solution stored in the positive electrode electrolyte storage unit 210 is supplied to the positive electrode 110 of the battery cell 100, and the electrolyte solution stored in the negative electrode electrolyte storage unit 220 is the battery It is supplied to the cathode electrode 120 of the cell 100.
상기 전해액 탱크(200)에서부터 전해액 유로를 통해 상기 전지셀(100)에 공급된 전해액은, 상기 전지셀(100) 내부에서 반응한 이후에, 전해액 유로를 통해 다시 상기 전해액 탱크(200)로 들어가 순환하게 된다. The electrolyte supplied from the electrolyte tank 200 to the battery cell 100 through the electrolyte flow path, after reacting inside the battery cell 100, enters the electrolyte tank 200 again through the electrolyte flow path and circulates. Is done.
상기 전해액 유로(400)는 상기 전지셀(100)과 상기 전해액 탱크(200)를 연결하는 것으로, 상기 전해액 유로(400)를 통해 상기 전지셀(100)로부터 상기 전해액 탱크(200)로 전해액이 이동하거나, 상기 전해액 탱크(200)로부터 상기 전지셀(100)로 전해액이 이동한다. The electrolyte flow path 400 connects the battery cell 100 and the electrolyte tank 200, and the electrolyte moves from the battery cell 100 to the electrolyte tank 200 through the electrolyte flow path 400. Or, the electrolyte moves from the electrolyte tank 200 to the battery cell 100.
상기 전해액 유로(400)는 복수 개가 구비될 수 있는 것으로, 상기 전지셀(100)에서 상기 전해액 탱크(200)로 전해액을 이동시키는 전해액 유로와 상기 전해액 탱크(200)에서 상기 전지셀(100)로 전해액을 이동시키는 전해액 유로는 서로 분리되어 형성될 수 있다. 또는, 상기 전해액 유로(400)가 양극과 음극 각각 한 개만 구비될 경우 하나의 전해액 유로를 통해 전해액이 흐르는 방향이 정방향, 역방향으로 바뀌어 전해액이 순환할 수 있다. A plurality of electrolyte passages 400 may be provided, from the battery cell 100 to the electrolyte passage to move the electrolyte from the electrolyte tank 200 to the battery cell 100 from the electrolyte tank 200 The electrolyte flow paths for moving the electrolyte may be formed separately from each other. Alternatively, when the electrolyte flow path 400 is provided with only one of each of the positive electrode and the negative electrode, the direction in which the electrolyte flows through one electrolyte flow path changes in the forward direction and the reverse direction, so that the electrolyte may circulate.
본 발명의 실시 예에 따른 상기 유체 제어부(300)는 기존의 펌프를 대체하고 전해액의 순환을 위해 사용되는 것으로, 상기 유체 제어부(300)는 외부에서 생성된 압력을 상기 전해액 유로(400)에 전달할 수 있는 것이다. 상기 유체 제어부(300)는 상기 전해액 유로(400)에 구비될 수 있으나, 이에 한정되지는 않으며, 상기 전해액 유로(400)에 압력을 전달할 수 있다면 다양한 위치에 구비될 수 있다. 가령, 상기 유체 제어부(300)는 상기 전해액 탱크(200)에 구비될 수도 있다. The fluid control unit 300 according to an embodiment of the present invention replaces an existing pump and is used to circulate the electrolyte, and the fluid control unit 300 transmits pressure generated externally to the electrolyte flow path 400 It is possible. The fluid control unit 300 may be provided in the electrolyte flow path 400, but is not limited thereto, and may be provided in various locations as long as pressure can be transmitted to the electrolyte flow path 400. For example, the fluid control unit 300 may be provided in the electrolyte tank 200.
상기 유체 제어부(300)는 압력의 변화를 이용하여 전해액이 정해진 방향으로 흐를 수 있도록 구비되는 것으로, 역류를 방지하고 압력의 변화를 통해 전해액의 이송이 가능한 형태라면 다양한 구조가 적용될 수 있다. 가령, 상기 유체 제어부(300)는 체크 밸브로 이루어질 수 있으며, 상기 유체 제어부(300)는 외부에서부터 양압 또는 음압을 선택적으로 전달받을 수 있다. The fluid control unit 300 is provided to allow the electrolyte to flow in a predetermined direction using a change in pressure, and various structures may be applied as long as it prevents backflow and transfers the electrolyte through a change in pressure. For example, the fluid control unit 300 may be formed of a check valve, and the fluid control unit 300 may selectively receive positive pressure or negative pressure from the outside.
상기 전지 모듈(10)에 포함되는 상기 유체 제어부(300)는 하나 또는 둘 이상이 구비될 수 있다. 구체적으로, 상기 유체 제어부(300)는 양압이 공급되는 유체 제어부와 음압이 공급되는 유체 제어부가 분리되어 구비될 수 있는 것으로, 이를 통해 연속적인 전해액의 흐름을 형성할 수 있다. The fluid control unit 300 included in the battery module 10 may be provided with one or two or more. Specifically, the fluid control unit 300 may be provided separately from the fluid control unit to which the positive pressure is supplied and the fluid control unit to which the negative pressure is supplied, thereby forming a continuous flow of electrolyte.
본 발명의 실시 예에 따른 레독스 흐름전지는 압력 발생기(500), 압력 제어밸브(510), 유체 이송관(310)을 더 포함할 수 있다. 도 3을 참조하면, 상기 압력 발생기(500)는 상기 유체 제어부(300)에 연결되며, 압력을 형성시켜 상기 유체 제어부(300)에 압력을 전달할 수 있는 것이다. 상기 압력 발생기(500)는 양압 또는 음압을 형성시키면서, 상기 유체 제어부(300)에 양압 또는 음압을 전달할 수 있다. Redox flow battery according to an embodiment of the present invention may further include a pressure generator 500, a pressure control valve 510, a fluid transfer pipe 310. Referring to FIG. 3, the pressure generator 500 is connected to the fluid control unit 300 and is capable of transmitting pressure to the fluid control unit 300 by forming pressure. The pressure generator 500 may transmit positive pressure or negative pressure to the fluid control unit 300 while forming positive or negative pressure.
상기 압력 발생기(500)는 압력을 형성시켜 상기 유체 제어부(300)에 압력을 전달할 수 있는 것이라면, 다양한 장치가 사용될 수 있다. 본 발명의 일 실시 예에 따르면, 상기 압력 발생기(500)는 양압의 형성을 위해 컴프레서나 펌프일 수 있으며, 상기 압력 발생기(500)는 음압의 형성을 위해 진공장비, 흡입장비 또는 벤츄리관을 구비한 이젝터(ejector)일 수 있다. 또는, 상기 압력발생기(500)에서 발생하는 양압과 음압을 동시에 사용할 수도 있다. If the pressure generator 500 is capable of transmitting pressure to the fluid control unit 300 by forming pressure, various devices may be used. According to an embodiment of the present invention, the pressure generator 500 may be a compressor or a pump for the formation of positive pressure, and the pressure generator 500 is provided with vacuum equipment, suction equipment or a venturi tube for formation of negative pressure. It can be an ejector. Alternatively, positive and negative pressures generated by the pressure generator 500 may be used at the same time.
또한, 상기 압력 발생기(500)는 복수 개가 구비될 수도 있다. 구체적으로, 상기 압력 발생기(500)는 양압을 형성시키는 장치와 음압을 형성시키는 장치가 분리되면서 복수 개로 이루어질 수도 있다. In addition, a plurality of pressure generators 500 may be provided. Specifically, the pressure generator 500 may be formed of a plurality of devices while the device for forming the positive pressure and the device for forming the negative pressure are separated.
상기 유체 이송관(310)은 상기 유체 제어부(300)와 상기 압력 발생기(500)를 연결하는 것으로, 상기 압력 발생기(500)에서 발생한 압력을 상기 유체 제어부(300)로 전달할 수 있는 것이다. 상기 유체 이송관(310)은 유체로 채워질 수 있으며, 상기 압력 발생기(500)에서 형성된 압력이 상기 유체 이송관(310)의 유체를 통해 상기 유체 제어부(300)로 전달될 수 있다. 상기 유체 이송관(310)에 채워지는 유체는 기체, 액체 모두 사용될 수 있으며, 작동되는 압력의 종류에 따라 자유롭게 선택될 수 있다. The fluid transfer pipe 310 connects the fluid control unit 300 and the pressure generator 500 to transmit the pressure generated by the pressure generator 500 to the fluid control unit 300. The fluid transfer pipe 310 may be filled with fluid, and the pressure formed by the pressure generator 500 may be transmitted to the fluid control unit 300 through the fluid of the fluid transfer pipe 310. The fluid filled in the fluid transfer pipe 310 may be both gas and liquid, and may be freely selected according to the type of pressure to be operated.
상기 압력 제어밸브(510)는 상기 압력 발생기(500)와 상기 유체 제어부(300) 사이에 구비되며, 상기 유체 제어부(300)에 양압 또는 음압을 선택적으로 전달할 수 있는 것이다. 상기 압력 제어밸브(510)는 상기 유체 제어부(300)에 양압과 음압을 번갈아가면서 공급하기 위한 것으로, 압력 공급 주기에 맞추어 포트의 열림과 닫힘을 자유롭게 조절할 수 있는 구조로 이루어질 수 있다. The pressure control valve 510 is provided between the pressure generator 500 and the fluid control unit 300, and can selectively deliver positive pressure or negative pressure to the fluid control unit 300. The pressure control valve 510 is for alternately supplying positive pressure and negative pressure to the fluid control unit 300, and may be formed in a structure that can freely control the opening and closing of the port according to the pressure supply cycle.
상기 압력 제어밸브(510)는 복수 개의 관과 스위치가 구비될 수 있는 것으로, 복수 개의 관의 개수와 스위칭 형태를 조절하여 상기 유체 제어부(300)에 양압과 음압을 번갈아가면서 공급할 수 있는 것이다. 구체적으로, 상기 압력 제어밸브(510)는 양압과 음압이 공급되는 압력 발생기(500)에 동시에 연결되고, 스위치를 통해 양압과 음압을 선택하여 상기 유체 제어부(300)에 공급할 수 있다. The pressure control valve 510 may be provided with a plurality of pipes and switches. By controlling the number and switching type of the plurality of pipes, the pressure control valve 510 can be supplied while alternately supplying positive and negative pressure to the fluid control unit 300. Specifically, the pressure control valve 510 is simultaneously connected to the pressure generator 500 to which the positive pressure and the negative pressure are supplied, and can select and supply the positive pressure and the negative pressure through the switch to the fluid control unit 300.
다만, 상기 압력 제어밸브(510)는 이에 한정되는 것은 아니며, 상기 유체 제어부(300)에 선택적으로 양압과 음압을 공급할 수 있다면, 다양한 장치가 사용될 수 있다. 또한, 상기 압력 제어밸브(510)를 통해 상기 유체 제어부(300)에 양압과 음압을 공급할 때, 별도의 컨트롤러를 구비하여 양압과 음압이 공급되는 주기를 변경하거나 또는 스위치와 복수 개의 관의 개수를 조절함에 따라, 양압과 음압이 공급되는 주기를 변경하면서 상기 유체 제어부(300)에 압력을 공급할 수도 있다. However, the pressure control valve 510 is not limited thereto, and various devices may be used if the positive and negative pressures can be selectively supplied to the fluid control unit 300. In addition, when supplying the positive pressure and the negative pressure to the fluid control unit 300 through the pressure control valve 510, a separate controller is provided to change the cycle of supplying the positive pressure and the negative pressure, or to change the number of switches and a plurality of pipes. By adjusting, the pressure may be supplied to the fluid control unit 300 while changing a cycle in which positive pressure and negative pressure are supplied.
본 발명의 실시 예에 따른 레독스 흐름전지의 상기 전지 모듈(10)은 하나 또는 둘 이상이 구비되되, 상기 전지 모듈(10)은 독립적으로 전해액을 순환시켜 충방전하거나, 복수 개의 상기 전지 모듈(10)에서 전해액을 순환시켜 충방전할 수 있는 것이다. The battery module 10 of the redox flow battery according to an embodiment of the present invention is provided with one or two or more, the battery module 10 is independently charged and discharged by circulating the electrolyte, or the plurality of the battery module ( It is possible to charge and discharge by circulating the electrolyte in 10).
즉, 상기 전지 모듈(10)은 상기 전지 모듈(10) 간의 간섭이나 교환 없이 하나의 상기 전지 모듈(10)에서 독립적으로 전해액을 순환시켜 충전 및 방전할 수도 있으며, 복수 개의 상기 전지 모듈(10)이 일정한 개수로 연결되어 전해액을 순환시키면서 충전 및 방전할 수도 있는 것이다. That is, the battery module 10 may be charged and discharged by independently circulating the electrolyte in one battery module 10 without interference or exchange between the battery modules 10, and the plurality of battery modules 10 It is also possible to charge and discharge while circulating the electrolyte solution by being connected to a certain number.
도 4를 참조하면, 복수 개의 상기 전지 모듈(10)이 연결될 때는, 상기 전지 모듈(10)은 모듈 연결부(11)를 통해 직렬 또는 병렬로 전기적으로 연결될 수 있으며, 복수 개의 상기 전지 모듈(10)이 연결될 때는 전해액 탱크(200)를 공유할 수도 있다. 이와 같이 상기 전지 모듈(10)이 독립적으로 충전 및 방전되거나, 복수 개의 상기 전지 모듈(10)이 연결될 때 전해액 탱크(200)를 공유함에 따라 요구되는 성능을 조절할 수 있다. Referring to FIG. 4, when a plurality of the battery modules 10 are connected, the battery modules 10 may be electrically connected in series or in parallel through a module connection unit 11, and the plurality of battery modules 10 When connected, the electrolyte tank 200 may be shared. As described above, when the battery module 10 is independently charged and discharged, or when a plurality of the battery modules 10 are connected, the required performance can be adjusted by sharing the electrolyte tank 200.
또한, 복수 개의 상기 전지 모듈(10)이 연결될 때는 모듈 연결부(11)를 통해 직렬 또는 병렬로 연결될 수도 있으며, 복수 개의 상기 전지 모듈(10)이 연결될 때는 압력 발생기(500)를 공유할 수도 있다. In addition, when a plurality of the battery modules 10 are connected, they may be connected in series or in parallel through a module connection unit 11, and when a plurality of the battery modules 10 are connected, the pressure generator 500 may be shared.
본 발명의 실시 예에 따른 레독스 흐름전지는, 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)를 연결하는 전해액 연결부(600)를 더 포함한다. 도 1 내지 도 3을 참조하면, 상기 전해액 연결부(600)는 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220) 사이에서 전해액의 밸런스를 유지하기 위해 구비된 것으로, 상기 전해액 연결부(600)는 전해액 또는 이온 교환이 가능한 물질로 채워질 수 있는 것이다. 여기서, 전해액의 밸런스라 함은 물리적(수위, 부피, 비중 또는 질량 등) 또는 화학적 (농도 또는 산화수 등) 밸런스를 의미한다.The redox flow battery according to an embodiment of the present invention further includes an electrolyte connection portion 600 connecting the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220. 1 to 3, the electrolyte connection part 600 is provided to maintain the balance of the electrolyte between the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220, the electrolyte connection unit ( 600) may be filled with an electrolyte or a material capable of ion exchange. Here, the balance of the electrolytic solution means a physical (water level, volume, specific gravity or mass, etc.) or chemical (concentration or oxidation water, etc.) balance.
구체적으로, 상기 전해액 연결부(600)는 중공형 파이프로 이루어질 수 있으며, 상기 전해액 연결부(600)는 물, 산 수용액, 활물질로 이루어지는 군에서 선택되는 1종 이상을 포함하는 액체 또는 슬러리로 채워질 수 있는 것이다. Specifically, the electrolyte connection portion 600 may be made of a hollow pipe, and the electrolyte connection portion 600 may be filled with a liquid or slurry containing at least one selected from the group consisting of water, an aqueous acid solution, and an active material. will be.
본 발명의 실시 예에 따른 레독스 흐름전지를 구동하게 되면, 분리막(130)(이온교환막)을 통해 이온 교환이 이루어지면서 전해액 내부에 포함된 활물질, 물, 산(acid) 등이 상기 양극 전극(110)에서 상기 음극 전극(120) 또는 상기 음극 전극(120)에서 상기 양극 전극(110)으로 이동할 수 있게 된다. When the redox flow battery according to the embodiment of the present invention is driven, ion exchange is performed through the separation membrane 130 (ion exchange membrane), and the active material, water, acid, and the like included in the electrolyte are the positive electrode ( In 110, the cathode electrode 120 or the cathode electrode 120 may be moved to the anode electrode 110.
전해액 내부에 포함된 활물질, 물, 산(acid) 등이 상기 양극 전극(110)에서 상기 음극 전극(120) 또는 상기 음극 전극(120)에서 상기 양극 전극(110)으로 이동하게 되면, 최종적으로는 전해액 내부에 포함된 활물질, 물, 산(acid) 등이 상기 양극 전해액 저장부(210)에서 상기 음극 전해액 저장부(220) 또는 상기 음극 전해액 저장부(220)에서 상기 양극 전해액 저장부(210)로 이동하게 된다. When the active material, water, acid, etc. contained in the electrolyte solution moves from the positive electrode 110 to the negative electrode 120 or from the negative electrode 120 to the positive electrode 110, finally The active material, water, acid, etc. included in the electrolyte solution are the cathode electrolyte storage unit 220 in the cathode electrolyte storage unit 210 or the cathode electrolyte storage unit 210 in the cathode electrolyte storage unit 220 Will move to
따라서, 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)에 저장되어 있는 양극 전해액과 음극 전해액의 양이 초기 상태일 때, 가령, 1:1의 비율이었더라도, 본 발명의 실시 예에 따른 레독스 흐름전지 구동 중에는 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)에 저장되어 있는 양극 전해액과 음극 전해액의 양의 비율이 0.8:1.2와 같이 변하게 된다. Therefore, when the amount of the positive electrode electrolyte and the negative electrode electrolyte stored in the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 is in an initial state, for example, a ratio of 1: 1 is practiced. During the operation of the redox flow battery according to an example, the ratio of the amount of the positive electrode electrolyte and the negative electrode electrolyte stored in the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 changes as 0.8: 1.2.
즉, 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)의 저장되어 있는 전해액의 밸런스가 맞지 않게 되며, 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)의 수위(level)가 초기 상태와 바뀔 수 있게 된다. 이와 같은 현상이 발생하면서 레독스 흐름전지의 반복적인 충전 및 방전이 진행되면, 레독스 흐름전지의 구동 가능한 용량(capacity)이 감소하게 되는 문제가 있다. (여기서, 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)의 양이 초기 상태일 때 1:1로 한정되는 것은 아니며, 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)의 양이 초기 상태는 1:1이 아닐 수도 있다. 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)의 양이 초기 상태일 때 1:1인 것은 본 발명의 하나의 실시 예에 불과하다.)That is, the balance of the stored electrolyte of the anode electrolyte storage unit 210 and the cathode electrolyte storage unit 220 does not match, and the water level of the anode electrolyte storage unit 210 and the cathode electrolyte storage unit 220 (level) can be changed from the initial state. When such a phenomenon occurs and repetitive charging and discharging of the redox flow battery progresses, there is a problem in that the drive capacity of the redox flow battery is reduced. (In this case, the amount of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 is not limited to 1: 1, but the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit The initial state of the amount of 220 may not be 1: 1 The amount of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 is 1: 1 when the initial state is one of the present invention. It is only an embodiment of the.)
특히, 본 발명의 실시 예에 따른 레독스 흐름전지와 같이 상기 전지 모듈(10) 각각이 전해액을 포함하고, 상기 전지 모듈(10) 간의 전해액 이동이 제한되면서 독립적으로 작동하게 되는 경우에는, 상기 전지 모듈(10)의 간의 성능 및 용량 밸런스 차이가 발생하여 전체적인 레독스 흐름전지의 성능이 감소하게 되는 문제가 있다. 또한, 본 발명의 실시 예에 따른 유체 제어부(300)를 구비하는 레독스 흐름전지는 양극과 음극 사이 또는 전지 모듈(10)과 전지 모듈(10) 사이에서 발생할 수 있는 유체 제어부(300)의 작동 편차에 의해 전해액의 밸런스 차이가 더 발생할 수도 있다. In particular, each of the battery modules 10, such as a redox flow battery according to an embodiment of the present invention includes an electrolyte, and when the electrolyte movement between the battery modules 10 is limited and operates independently, the battery There is a problem in that the performance of the redox flow battery decreases due to a difference in performance and capacity balance between the modules 10. In addition, a redox flow battery having a fluid control unit 300 according to an embodiment of the present invention operates the fluid control unit 300 that may occur between the positive electrode and the negative electrode or between the battery module 10 and the battery module 10. Differences in the balance of the electrolyte may occur due to variations.
상기 전해액 연결부(600)는 이를 방지하기 위해 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)를 연결하는 것으로, 상기 전해액 연결부(600)는 전해액 또는 이온 및 물질 교환이 가능한 물질 등이 채워지면서, 상기 양극 전해액 저장부(210)의 전해액 및 상기 음극 전해액 저장부(220)의 전해액과 혼합될 수 있는 것이다. The electrolyte connection unit 600 is to connect the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 to prevent this, and the electrolyte connection unit 600 is an electrolyte or a material capable of exchanging ions and substances, etc. As this is filled, it is possible to mix with the electrolyte of the anode electrolyte storage unit 210 and the electrolyte of the cathode electrolyte storage unit 220.
조금 더 구체적으로, 상기 양극 전극(110)에서 상기 음극 전극(120)으로 이동한 물질에 의해 상기 음극 전해액 저장부(220)의 수위가 높아진 경우, 상기 전해액 연결부(600)를 통해 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액 일부가 상기 양극 전해액 저장부(210)로 이동하면서 혼합될 수 있게 된다. More specifically, when the water level of the negative electrode electrolyte storage unit 220 is increased by a material moved from the positive electrode electrode 110 to the negative electrode electrode 120, the negative electrode electrolyte solution is stored through the electrolyte connection unit 600. A part of the electrolyte solution stored in the unit 220 may be mixed while moving to the anode electrolyte storage unit 210.
상기 전해액 연결부(600)는 중공형 파이프로 형상으로 이루어지는 것이 바람직하지만, 이에 한정되는 것은 아니며, 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)를 연결하면서 전해액, 이온 및 물질 교환이 가능하다면 다양한 관 형태로 이루어질 수 있다. The electrolyte connection portion 600 is preferably made of a hollow pipe shape, but is not limited thereto, and connects the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220 to exchange electrolyte, ions, and substances This can be done in a variety of tube shapes, if possible.
이러한 전해액, 이온 또는 물질 교환을 통해 물리적, 화학적 밸런싱이 이루어지며 이에 대한 상세한 설명은 다음과 같다. Physical and chemical balancing is achieved through the exchange of electrolyte, ions, or substances, and detailed descriptions thereof are as follows.
상기 전해액 연결부(600)는 물, 황산 수용액, 활물질로 이루어지는 군에서 선택되는 1종 이상을 포함하는 슬러리로 이루어지는 것으로 한정되는 것은 아니며, 전해액, 이온 및 물질 교환이 가능한 다른 물질로 채워질 수 있다. The electrolyte connection part 600 is not limited to being made of a slurry containing at least one selected from the group consisting of water, an aqueous sulfuric acid solution, and an active material, and may be filled with electrolyte, ions, and other materials capable of material exchange.
이와 함께, 상기 전해액 연결부(600)는 다공성 물질로 채워질 수도 있다. 전해액 연결부(600)에 의한 밸런싱이 이루어질 때 양극과 음극에 포함된 물질의 혼합이 크게 발생할 경우 전지의 성능이 감소할 수 있으나, 다공성 물질을 통해 전해액 연결부(600)에 의한 혼합을 일부 조절하여 전지 성능의 감소를 억제할 수 있다.In addition, the electrolyte connection part 600 may be filled with a porous material. When the mixing of the materials contained in the positive electrode and the negative electrode occurs significantly when balancing by the electrolyte connection part 600 is performed, the performance of the battery may be reduced, but the battery by controlling some of the mixing by the electrolyte connection part 600 through the porous material A decrease in performance can be suppressed.
본 발명의 실시 예와 같이 유체 제어부(300)를 포함한 레독스 흐름전지 경우 유체 제어부(300) 내부의 압력이 수시로 변하므로 양극 전해액과 음극 전해액의 수위가 수시로 변할 수 있다.(출렁거림이 발생할 수 있다.)In the case of the redox flow battery including the fluid control unit 300 as in the embodiment of the present invention, since the pressure inside the fluid control unit 300 changes at any time, the level of the positive electrode electrolyte and the negative electrode electrolyte may change from time to time. have.)
이와 같은 변화는 상술한 분리막(130)을 통해 물질이 이동하는 것이 아니므로, 수위 변화에 의해 전해액 연결부(600)를 통한 물질의 이동이 빈번하게 발생할 경우 전지 성능이 감소할 수 있게 된다. 다공성 물질은 이와 같은 출렁거림에 의한 혼합을 억제하여 전지 성능 감소를 억제할 수 있다. Since such a change does not move the material through the above-described separator 130, battery performance may be reduced when the movement of the material through the electrolyte connection part 600 frequently occurs due to a change in water level. The porous material can suppress the battery performance reduction by suppressing the mixing due to the swaying.
또한, 다공성 물질은 전해액에 포함된 침전물, 불순물에 의한 교차 오염을 방지할 수 있다. 다공성 물질은 활성탄, 메쉬, 펠트, 허니콤 등이 사용될 수 있다. 다공성 물질은 전해액 연결부(600) 전체에 구비될 수도 있으며, 전해액 연결부(600)의 일부에만 구비될 수도 있다. In addition, the porous material can prevent cross contamination by precipitates and impurities contained in the electrolyte. The porous material may be activated carbon, mesh, felt, honeycomb or the like. The porous material may be provided on the entire electrolyte connection portion 600, or may be provided only on a part of the electrolyte connection portion 600.
본 발명의 실시 예에 따르면, 상기 전해액 연결부(600)의 부피는 상기 양극 전해액 저장부(210)에 저장되어 있는 전해액과 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액의 합의 1 내지 50%인 것이 바람직하다. 상기 전해액 연결부(600)의 부피가 클 경우 전지 모듈(10)의 단위 부피 대비 에너지용량이 감소할 수 있고, 상기 전해액 연결부(600)의 부피가 작을 경우 양극과 음극에 포함된 물질의 혼합량이 커져 전지 성능이 감소할 수 있으므로, 상기 전해액 연결부(600)의 부피는 상기 양극 전해액 저장부(210)에 저장되어 있는 전해액과 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액의 합의 1 내지 50%인 것이 바람직하다. 이에 대한 상세한 설명은 다음과 같다.According to an embodiment of the present invention, the volume of the electrolyte connection part 600 is 1 to 50% of the sum of the electrolyte solution stored in the positive electrode electrolyte storage part 210 and the electrolyte solution stored in the negative electrode electrolyte storage part 220 It is preferred. When the volume of the electrolyte connection portion 600 is large, the energy capacity compared to the unit volume of the battery module 10 may decrease, and when the volume of the electrolyte connection portion 600 is small, the mixing amount of the material included in the positive electrode and the negative electrode increases. Since battery performance may decrease, the volume of the electrolyte connection portion 600 is 1 to 50% of the sum of the electrolyte stored in the positive electrode electrolyte storage portion 210 and the electrolyte stored in the negative electrode electrolyte storage portion 220 It is preferred. The detailed description is as follows.
레독스 흐름전지의 구동으로 인해, 상기 양극 전극(110)에서 상기 음극 전극(120)으로 이동한 물질에 의해 상기 음극 전해액 저장부(220)의 수위가 높아진 경우, 상기 전해액 연결부(600)를 통해 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액 일부가 상기 양극 전해액 저장부(210)로 이동하면서 혼합될 수 있게 된다. (상기 음극 전극(120)에서 상기 양극 전극(110)으로 물질이 이동할 수도 있으며, 상기 양극 전극(110)에서 상기 음극 전극(120)으로 물질이 이동하는 것은 하나의 실시 예에 불과하다.)When the water level of the negative electrode electrolyte storage unit 220 is increased by a material moved from the positive electrode 110 to the negative electrode 120 due to the driving of the redox flow battery, through the electrolyte connection unit 600 A part of the electrolyte solution stored in the cathode electrolyte solution storage unit 220 may be mixed while moving to the cathode electrolyte storage unit 210. (Materials may be moved from the cathode electrode 120 to the anode electrode 110, and the material is moved from the anode electrode 110 to the cathode electrode 120 is only one example.)
이때, 상기 전해액 연결부(600)의 길이가 짧거나 부피가 작은 경우, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 너무 활발하게 일어날 수 있게 된다. 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 활발한 경우, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액이 서로 반응하여 에너지 손실이 발생하거나 부반응이 발생할 수 있고, 이는 용량 손실을 야기하게 된다. 이로 인해 전지의 성능이 감소하게 된다. At this time, when the length of the electrolyte connection portion 600 is short or small in volume, mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 may occur too actively. do. When the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 are actively mixed, the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 The cathodic electrolyte may react with each other, resulting in energy loss or side reaction, which results in capacity loss. Due to this, the performance of the battery is reduced.
즉, 상기 전해액 연결부(600)의 길이가 너무 짧거나 부피가 너무 작아, 상기 전해액 연결부(600)를 통해 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 너무 활발하게 일어나면, 오히려 전지의 성능이 감소하게 되는 것이다. 이를 방지하기 위해, 상기 전해액 연결부(600)의 부피는, 상기 양극 전해액 저장부(210)에 저장되어 있는 전해액과 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액의 합의 1% 이상인 것이 바람직하다. That is, the length of the electrolyte connection portion 600 is too short or the volume is too small, the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte solution of the negative electrode electrolyte storage unit 220 through the electrolyte connection unit 600 If the mixing is too vigorous, rather the performance of the battery is reduced. To prevent this, the volume of the electrolyte connection part 600 is preferably 1% or more of the sum of the electrolyte solution stored in the positive electrode electrolyte storage part 210 and the electrolyte solution stored in the negative electrode electrolyte solution storage part 220. .
그러나 상기 전해액 연결부(600)의 부피가 너무 클 경우, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 효과가 감소하거나 전지 모듈(10)의 부피가 커질 수 있기 때문에, 상기 전해액 연결부(600)의 부피는, 상기 양극 전해액 저장부(210)에 저장되어 있는 전해액과 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액의 합의 50% 이하인 것이 바람직하다. However, if the volume of the electrolyte connection portion 600 is too large, the effects of the positive electrode electrolyte in the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte in the negative electrode electrolyte storage portion 220 decrease or the volume of the battery module 10 is reduced. Since it may be large, the volume of the electrolyte connection portion 600 is preferably 50% or less of the sum of the electrolyte stored in the positive electrode electrolyte storage unit 210 and the electrolyte stored in the negative electrode electrolyte storage unit 220 .
여기서, 상기 전해액 연결부(600)의 부피는, 상기 전해액 연결부(600)의 일단이 상기 양극 전해액 저장부(210)와 연결되고, 상기 전해액 연결부(600)의 타단이 상기 음극 전해액 저장부(220)에 연결되어 있는 경우, 상기 전해액 연결부(600)의 양 끝단 사이에 유체가 저장될 수 있는 부피를 나타낸다. Here, the volume of the electrolyte connection portion 600 is, one end of the electrolyte connection portion 600 is connected to the positive electrode electrolyte storage unit 210, the other end of the electrolyte connection portion 600 is the negative electrode electrolyte storage unit 220 When connected to, represents the volume that can be stored fluid between both ends of the electrolyte connection portion 600.
상기 전해액 연결부(600)의 양 끝단과 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)의 경계가 모호한 경우, 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220) 내부에서 상기 전해액 연결부(600) 사이에 단면적의 변화가 있는 구조의 시작점을 기준으로 상기 전해액 연결부(600)의 양 끝단을 정의할 수 있다. When the boundary between the both ends of the electrolyte connection portion 600 and the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 is ambiguous, the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 Both ends of the electrolyte connection part 600 may be defined based on a starting point of a structure having a cross-sectional area change between the electrolyte connection parts 600.
또한, 상기 전해액 연결부(600)의 직경 또는 상기 전해액 연결부(600)의 단면적을 동일 면적 원으로 환산했을 때의 직경은, 상기 전해액 연결부(600)의 길이의 1/3 이하인 것이 바람직하다. 상기 전해액 연결부(600)의 길이 대비 직경이 너무 크게 되면, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 활발하게 되어 상술한 바와 같이 전지의 성능이 저하될 수 있다. In addition, the diameter when the diameter of the electrolyte connection portion 600 or the cross-sectional area of the electrolyte connection portion 600 is converted to the same area circle is preferably less than 1/3 of the length of the electrolyte connection portion 600. When the diameter of the electrolyte connecting portion 600 is too large compared to the length, mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 becomes active, and thus, as described above, Performance may be degraded.
따라서, 상기 전해액 연결부(600)의 직경 또는 상기 전해액 연결부(600)의 단면적을 동일 면적 원으로 환산했을 때의 직경은, 상기 전해액 연결부(600)의 길이의 1/3 이하인 것이 바람직하다. 구체적으로, 상기 전해액 연결부(600)의 단면적이 원으로 이루어진 경우에는, 상기 전해액 연결부(600)의 직경과 상기 전해액 연결부(600)의 길이를 비교하며, 상기 전해액 연결부(600)의 단면적이 원이 아닌 경우에는, 단면적의 넓이와 동일한 면적 원으로 환산했을 때의 직경과 상기 전해액 연결부(600)의 길이와 비교한다. 여기서, 상기 전해액 연결부(600)의 길이는, 상기 전해액 연결부(600)의 일단에서부터 상기 전해액 연결부(600)의 타단에 이르는 상기 전해액 연결부(600)의 전체 길이를 나타낸다. Therefore, the diameter when the diameter of the electrolyte connection portion 600 or the cross-sectional area of the electrolyte connection portion 600 is converted to the same area circle is preferably less than 1/3 of the length of the electrolyte connection portion 600. Specifically, when the cross-sectional area of the electrolyte connection portion 600 is made of a circle, the diameter of the electrolyte connection portion 600 and the length of the electrolyte connection portion 600 are compared, and the cross-sectional area of the electrolyte connection portion 600 is a circle. If not, it is compared with the diameter when converted into a circle having the same area as the area of the cross-sectional area and the length of the electrolyte connecting portion 600. Here, the length of the electrolyte connection portion 600 represents the entire length of the electrolyte connection portion 600 from one end of the electrolyte connection portion 600 to the other end of the electrolyte connection portion 600.
도 5를 참조하면, 상기 전해액 연결부(600)가 중공형 파이프로 이루어질 때, 상기 전해액 연결부(600)는 상기 중공형 파이프보다 단면적이 넓은 저장부(610)를 포함할 수 있다. 상기 저장부(610)는 상기 전해액 연결부(600)의 중간에서 일정한 부피를 가지면서, 전해액, 이온 및 물질 교환이 가능한 물질을 저장할 수 있는 공간이다. Referring to FIG. 5, when the electrolyte connection portion 600 is formed of a hollow pipe, the electrolyte connection portion 600 may include a storage portion 610 having a larger cross-sectional area than the hollow pipe. The storage unit 610 has a constant volume in the middle of the electrolyte connection unit 600, and is a space for storing materials capable of exchanging electrolytes, ions, and substances.
상술한 바와 같이, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 활발하게 되면, 전지의 성능이 감소될 수 있다. 상기 저장부(610)는 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액이 혼합되는 것을 억제하기 위해, 일정한 부피의 버퍼(buffer) 역할을 할 수 있는 것이다. As described above, when the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 are actively mixed, the performance of the battery may be reduced. The storage unit 610 may serve as a buffer of a constant volume to prevent mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220. will be.
이때, 상기 저장부(610)는 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액이 혼합되는 것을 효과적으로 방지하기 위해, 상기 양극 전해액 저장부(210)에 저장되어 있는 전해액과 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액의 합의 1% 이상인 것이 바람직하다. In this case, the storage unit 610 is in the positive electrode electrolyte storage unit 210 to effectively prevent the positive electrode electrolyte solution of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte solution of the negative electrode electrolyte storage unit 220 from being mixed. It is preferable that the sum of the electrolyte solution stored and the electrolyte solution stored in the cathode electrolyte storage unit 220 is 1% or more.
이와 같이 일정한 부피를 가지면서 버퍼(buffer) 역할을 하는 상기 저장부(610)를 구비함에 따라 전지 성능의 감소를 최소화하면서, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 밸런싱 효과를 향상시킬 수 있게 된다. The positive electrode electrolyte and the negative electrode electrolyte storage portion of the positive electrode electrolyte storage portion 210 are minimized while minimizing a decrease in battery performance by providing the storage portion 610 having a constant volume and serving as a buffer. It is possible to improve the balancing effect of 220).
도 6을 참조하면, 상기 전해액 연결부(600)는 상기 전해액 연결부(600)를 닫거나 열수 있는 연결부 밸브(620)를 포함할 수 있다. 상기 연결부 밸브(620)는 상기 전해액 연결부(600) 상에 배치되며, 상기 전해액 연결부(600)를 열고 닫을 수 있는 것이다. Referring to FIG. 6, the electrolyte connection part 600 may include a connection part valve 620 capable of closing or opening the electrolyte connection part 600. The connection part valve 620 is disposed on the electrolyte connection part 600 and is capable of opening and closing the electrolyte connection part 600.
상술한 바와 같이 상기 전해액 연결부(600)를 통해 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 활발하게 발생하는 경우 전지의 성능이 감소하게 되는 문제가 있다. 상기 전해액 연결부(600)가 계속 열려있는 상태에 있으며, 레독스 흐름전지의 구동 조건에 따라 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 활발하게 발생하게 될 위험이 있다. As described above, when the positive electrode electrolyte solution of the positive electrode electrolyte solution storage unit 210 and the negative electrode electrolyte solution of the negative electrode electrolyte storage unit 220 are actively mixed through the electrolyte connection unit 600, battery performance is reduced. there is a problem. The electrolyte connection part 600 is still open, and mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 is active according to the driving conditions of the redox flow battery. There is a risk that it will happen.
상기 연결부 밸브(620)를 이를 방지하기 위한 것으로, 특정 조건에서 상기 전해액 연결부(600)를 닫기 위해 상기 연결부 밸브(620)가 구비될 수 있다. 가령, 레독스 흐름전지의 충전 또는 방전 과정 중 일부 조건에서는 분리막(130)을 통해 이동하는 전해액 성분의 양이 많아질 수 있고, 이로 인해 급격한 성능저하가 발생할 수 있다. 따라서 이 조건에서는 상기 연결부 밸브(620)를 통해 상기 전해액 연결부(600)를 닫히게 함으로써, 전지의 성능 저하를 방지할 수 있게 된다. The connection portion valve 620 is to prevent this, and the connection portion valve 620 may be provided to close the electrolyte connection portion 600 under specific conditions. For example, in some conditions during the charging or discharging process of the redox flow battery, the amount of the electrolyte component moving through the separator 130 may increase, and thus, a rapid performance decrease may occur. Therefore, in this condition, by closing the electrolyte connection portion 600 through the connection portion valve 620, it is possible to prevent performance degradation of the battery.
상기 연결부 밸브(620)는 외부의 압력 또는 전기장치에 의해 구동될 수 있는 밸브일 수 있으며, 별도의 제어부를 통해 제어될 수도 있다. 상기 연결부 밸브(620)에 제어부가 구비된 경우, 연결부 밸브(620)는 상기 전지 모듈(10)이 충전 또는 방전될 때, 상기 전해액 연결부(600)의 일부를 닫히게 하거나, 상기 전해액 연결부(600)의 전체를 닫히게 할 수 있다. 여기서, 상기 연결부 밸브(620)를 통해 상기 전해액 연결부(600)의 일부만 닫히게 하는 경우, 이를 통해 상기 전해액 연결부(600)의 단면적을 조절하는 효과가 있다.The connection part valve 620 may be a valve that can be driven by external pressure or an electric device, or may be controlled through a separate control part. When a control unit is provided in the connection valve 620, when the battery module 10 is charged or discharged, the connection valve 620 closes a portion of the electrolyte connection portion 600, or the electrolyte connection portion 600 You can make the whole close. Here, when only a part of the electrolyte connection part 600 is closed through the connection part valve 620, there is an effect of adjusting the cross-sectional area of the electrolyte connection part 600.
즉, 상기 전지 모듈(10)의 충전 또는 방전의 조건에 따라, 상기 연결부 밸브(620)의 제어부를 통해 상기 전해액 연결부(600)를 완전히 닫히게 할 수도 있으며, 상기 전해액 연결부(600)의 일부만 닫히게 할 수도 있는 것이다. 상기 연결부 밸브(620)는 상기 전해액 연결부(600)를 열고 닫을 수 있거나, 상기 전해액 연결부(600)의 일부만을 닫히게 할 수 있다면, 다양한 장치가 사용될 수 있다. That is, depending on the conditions of charging or discharging of the battery module 10, the electrolyte connection part 600 may be completely closed through the control part of the connection part valve 620, and only part of the electrolyte connection part 600 may be closed. It might be. The connection valve 620 may open and close the electrolyte connection portion 600, or if only a part of the electrolyte connection portion 600 can be closed, various devices may be used.
상기 전해액 연결부(600)는 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)를 연결하는 것이지만, 필요에 따라서 상기 전해액 연결부(600)는 상기 전지셀(100), 상기 유체 제어부(300), 상기 전해액 유로(400)와 구조적으로 연결될 수도 있다. 이는 양극 전해액과 음극 전해액이 있는 어느 부위에도 상기 전해액 연결부(600)를 연결할 수 있음을 의미한다. 단, 장착 위치에 따라 전지 성능의 변화는 발생할 수 있다.The electrolyte connection portion 600 is to connect the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220, but if necessary, the electrolyte connection portion 600 is the battery cell 100, the fluid control unit ( 300), may be structurally connected to the electrolyte flow path 400. This means that the electrolyte connection part 600 can be connected to any part of the anode electrolyte and the cathode electrolyte. However, battery performance may vary depending on the mounting position.
즉, 상기 전해액 연결부(600)는 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)를 연결되는 동시에, 상기 전지셀(100), 상기 유체 제어부(300), 상기 전해액 유로(400)와 구조적으로 연결될 수 있는 것이다. 본 발명의 실시 예에 따르면, 상기 전해액 연결부(600)는 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)만을 연결하는 것으로 한정되는 것은 아니다. That is, the electrolyte connection part 600 is connected to the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220, and at the same time, the battery cell 100, the fluid control unit 300, the electrolyte flow path 400 ) And structurally. According to an embodiment of the present invention, the electrolyte connection portion 600 is not limited to connecting only the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220.
도 7 내지 도 11은 본 발명의 다른 실시 예에 따른 레독스 흐름전지를 나타내는 것이다. 도 7 내지 도 11에 도시되어 있는 본 발명의 다른 실시 예에 따른 레독스 흐름전지도, 전지셀(100), 전해액 탱크(200), 유체 제어부(300), 전해액 연결부(600)를 포함하는 것으로, 각 구성관의 연결관계는 상술한 것과 동일하며, 각 구성의 배치 관계만 변경된 것이다. 도 7 내지 도 11에 도시되어 있는 본 발명의 다른 실시 예에 따른 레독스 흐름전지도 상술한 특징을 모두 포함하고 있는 것이다. 7 to 11 show a redox flow battery according to another embodiment of the present invention. Redox flow map according to another embodiment of the present invention shown in Figures 7 to 11, including a battery cell 100, the electrolyte tank 200, the fluid control unit 300, the electrolyte connection 600 , The connection relation of each component is the same as described above, and only the arrangement relation of each component is changed. The redox flow battery according to another embodiment of the present invention illustrated in FIGS. 7 to 11 includes all the above-described features.
도 7은 본 발명의 다른 실시 예에 따른 전지 모듈의 내부 구조를 나타내는 것으로, 전지 모듈을 측면에서 보았을 때의 도면이며, 도 8은 본 발명의 다른 실시 예에 따른 전지 모듈의 내부 구조를 나타내는 것으로, 전지 모듈을 상부에서 보았을 때의 도면이다. 도 7에 도시되어 있는 + 단자(710)는 전지셀(100)의 양극 전극(110) 또는 분리판(140) 또는 분리판(140)과 접촉한 전도성 물질과 전기적으로 연결되어 있는 것이며, - 단자(720)는 전지셀의 음극 전극(120) 또는 분리판(140) 또는 분리판과 접촉한 전도성 물질과 전기적으로 연결되어 있는 것이다. 상기 + 단자(710)와 상기 - 단자(720)는 레독스 흐름전지의 충전 및 방전을 위해 구비된 것이다. 7 is a view showing the internal structure of a battery module according to another embodiment of the present invention, a view when the battery module is viewed from the side, and FIG. 8 shows the internal structure of a battery module according to another embodiment of the present invention , It is a view when the battery module is viewed from the top. The + terminal 710 illustrated in FIG. 7 is electrically connected to a positive electrode 110 or a separator 140 or a conductive material contacting the separator 140 of the battery cell 100, and the-terminal 720 is electrically connected to the negative electrode 120 of the battery cell or the separator 140 or a conductive material in contact with the separator. The + terminal 710 and the-terminal 720 are provided for charging and discharging the redox flow battery.
상술한 바와 같이 양극 전해액 저장부(210)의 양극 전해액(211)은 전해액 유로(400)(양극 전해액 유로(401))를 거쳐 전지셀(100)로 이송되었다가, 전지셀(100)에서 반응한 이후에 양극 전해액 저장부(210)로 돌아오게 된다. 동일하게, 음극 전해액 저장부(220)의 음극 전해액(221)은 전해액 유로(400)(음극 전해액 유로(401))를 거쳐 전지셀(100)로 이송되었다가, 전지셀(100)에서 반응한 이후에 음극 전해액 저장부(220)로 돌아오게 된다. As described above, the positive electrode electrolyte solution 211 of the positive electrode electrolyte storage unit 210 is transferred to the battery cell 100 through the electrolyte flow path 400 (positive electrode electrolyte flow path 401), and then reacted in the battery cell 100 After that, it returns to the anode electrolyte storage unit 210. Similarly, the negative electrode electrolyte solution 221 of the negative electrode electrolyte storage unit 220 was transferred to the battery cell 100 via the electrolyte flow path 400 (cathode electrolyte flow path 401), and reacted in the battery cell 100 Thereafter, the cathode electrolyte storage unit 220 is returned.
이때, 유체 제어부(300)를 통해 양극 전해액(211) 및 음극 전해액(221)이 전지셀(100)로 이송되거나, 양극 전해액 저장부(210) 및 음극 전해액 저장부(220)로 돌아올 수 있게 된다. At this time, the positive electrode electrolyte 211 and the negative electrode electrolyte 221 may be transferred to the battery cell 100 through the fluid control unit 300 or returned to the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220. .
도 7은 본 발명의 실시 예에 따른 전지 모듈의 측면을 도시한 것이며, 도 8은 본 발명의 실시 예에 따른 전지 모듈의 윗면을 도시한 것이다. 도 7 및 도 8을 참조하면, 상기 양극 전해액 저장부(210) 내부에는, 상기 양극 전해액(211)이 상기 양극 전해액 저장부(210)에서부터 상기 전지셀(100)을 향하여 배출될 수 있는 양극 전해액 출구(213)와 상기 양극 전해액(211)이 상기 전지셀(100)에서 상기 양극 전해액 저장부(210) 내부로 들어올 수 있는 양극 전해액 입구(212)가 구비되어 있다. 7 is a side view showing a battery module according to an embodiment of the present invention, and FIG. 8 is a top view of a battery module according to an embodiment of the present invention. 7 and 8, inside the positive electrode electrolyte storage unit 210, the positive electrode electrolyte 211 may be discharged from the positive electrode electrolyte storage unit 210 toward the battery cell 100. A positive electrode electrolyte inlet 212 is provided at which the outlet 213 and the positive electrode electrolyte 211 may enter the positive electrode electrolyte storage unit 210 from the battery cell 100.
동일하게, 상기 음극 전해액 저장부(220) 내부에는, 상기 음극 전해액(221)이 상기 음극 전해액 저장부(220)에서부터 상기 전지셀(100)을 향하여 배출될 수 있는 음극 전해액 출구(223)와 상기 음극 전해액(221)이 상기 전지셀(100)에서 상기 음극 전해액 저장부(220) 내부로 들어올 수 있는 음극 전해액 입구(222)가 구비되어 있다. Similarly, inside the negative electrode electrolyte storage unit 220, the negative electrode electrolyte solution 221 may be discharged from the negative electrode electrolyte storage unit 220 toward the battery cell 100 and the negative electrode electrolyte outlet 223 The negative electrode electrolyte solution 221 is provided with a negative electrode electrolyte inlet 222 through which the battery cell 100 can enter into the negative electrode electrolyte storage unit 220.
도 9를 참조하면, 전해액 연결부(600)의 양 끝단은 상기 양극 전해액 저장부(210)와 상기 음극 전해액 저장부(220)에 연결되는 것으로, 상기 전해액 연결부(600)의 일단(611)은 상기 양극 전해액 저장부(210)에 연결되며, 상기 전해액 연결부(600)의 타단(612)은 상기 음극 전해액 저장부(220)에 연결될 수 있다. Referring to FIG. 9, both ends of the electrolyte connection portion 600 are connected to the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte storage portion 220, and one end 611 of the electrolyte connection portion 600 is the It is connected to the anode electrolyte storage unit 210, and the other end 612 of the electrolyte connection unit 600 may be connected to the cathode electrolyte storage unit 220.
이때, 상기 전해액 연결부(600)의 끝단(611,612)이 상기 양극 전해액 저장부 (210) 또는 상기 음극 전해액 저장부(220)와 연결되는 위치에서, 상기 전지셀(100)로부터 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)로 전해액이 들어오는 입구(212,222)까지의 직선거리는, 상기 전해액 연결부(600)의 끝단(611,612)이 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)와 연결되는 위치에서, 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)에서 상기 전지셀(100)로 전해액이 나가는 출구(213,223) 까지의 직선거리의 2배 이상인 것이 바람직하다. At this time, at the position where the ends 611 and 612 of the electrolyte connection portion 600 are connected to the positive electrode electrolyte storage portion 210 or the negative electrode electrolyte storage portion 220, the positive electrode electrolyte storage portion from the battery cell 100 ( 210) or the straight line distance to the inlet 212,222 where the electrolyte enters the cathode electrolyte storage unit 220, the end 611,612 of the electrolyte connection unit 600 is the anode electrolyte storage unit 210 or the cathode electrolyte storage unit At a position connected to 220, the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 to the battery cell 100 to the outlet of the electrolyte to the outlet (213,223) is more than twice the straight distance desirable.
조금 더 구체적으로, 도 9를 참조하면, 상기 양극 전해액 저장부(210)에 결합되는 상기 전해액 연결부(600)의 일단(611)에서 상기 양극 전해액 입구(212) 까지의 거리는, 상기 양극 전해액 저장부(210)에 결합되는 상기 전해액 연결부(600)의 일단(611)에서 상기 양극 전해액 출구(213) 까지의 거리에 2배 이상인 것이 바람직하다. (동일하게, 상기 음극 전해액 저장부(220)에 결합되는 상기 전해액 연결부(600)의 타단(612)에서 상기 음극 전해액 입구(222)까지의 거리는, 상기 음극 전해액 저장부(220)에 결합되는 상기 전해액 연결부(600)의 타단(612)에서 상기 음극 전해액 출구(223)까지의 거리에 2배 이상인 것이 바람직하다.)More specifically, referring to FIG. 9, the distance from one end 611 of the electrolyte connection portion 600 coupled to the positive electrode electrolyte storage unit 210 to the positive electrode electrolyte inlet 212 is the positive electrode electrolyte storage unit. It is preferable that the distance from the end 611 of the electrolyte connection portion 600 coupled to the 210 to the anode electrolyte outlet 213 is more than twice. (Samely, the distance from the other end 612 of the electrolyte connection portion 600 coupled to the negative electrode electrolyte storage portion 220 to the negative electrode electrolyte inlet 222 is the same coupled to the negative electrode electrolyte storage portion 220 It is preferable that the distance from the other end 612 of the electrolyte connection portion 600 to the cathode electrolyte outlet 223 is twice or more.)
즉, 상기 전해액 연결부(600)의 끝단(611,612)은, 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)에서 상기 전지셀(100)로 양극 전해액(211) 또는 음극 전해액(221)이 나가는 출구(213,223) 보다, 상기 전지셀(100)에서 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)로 양극 전해액(211) 또는 음극 전해액(221)이 들어오는 입구(212,222)에서 멀리 배치되는 것이 바람직하다. That is, the ends 611 and 612 of the electrolyte connection portion 600 are the positive electrode electrolyte 211 or the negative electrode electrolyte 221 from the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 to the battery cell 100. ) Than the exit (213,223) exit, the positive electrode electrolyte solution 211 or the negative electrode electrolyte solution (221) entering the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 from the battery cell 100 (212,222) ).
이는, 양극 전해액(211) 또는 음극 전해액(221)이 나가는 출구(213,223)에는 반응하지 않은 양극 전해액(211) 또는 음극 전해액(221)이 주로 배치되며, 양극 전해액(211) 또는 음극 전해액(221)이 들어오는 입구(212,222)에는 반응한 양극 전해액과 음극 전해액이 주로 배치되기 때문이다. 서로 반응한 양극 전해액(211) 또는 음극 전해액(221)이 혼합되면, 전지의 성능 및 용량이 더 많이 감소될 위험이 있다. In this case, the positive electrode electrolyte 211 or the negative electrode electrolyte 221 which is not reacted is mainly disposed at the outlets 213 and 223 through which the positive electrode electrolyte 211 or the negative electrode electrolyte 221 exits, and the positive electrode electrolyte 211 or the negative electrode electrolyte 221 This is because the reacted positive and negative electrolytes are mainly disposed at the inlets 212 and 222. When the positive electrode electrolyte 211 or the negative electrode electrolyte 221 reacted with each other is mixed, there is a risk that the performance and capacity of the battery are further reduced.
즉, 상기 전해액 연결부(600)의 끝단(611,612)이 서로 반응이 진행된 양극 전해액(211) 또는 음극 전해액(221)이 들어오는 입구(212,222)에 멀리 배치되는 것이 전지의 성능 및 용량을 감소시키지 않는 측면에서 바람직하다. That is, the end 611, 612 of the electrolyte connection portion 600 is disposed far away from the inlet 212, 222 where the positive electrode electrolyte 211 or the negative electrode electrolyte 221 where the reaction proceeds does not decrease the performance and capacity of the battery Is preferred.
도 10 및 도 11을 참조하면, 상기 전해액 연결부(600)의 끝단(611,612)은, 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)에서 상기 전지셀(100)로 양극 전해액(211) 또는 음극 전해액(221)이 나가는 출구(213,223) 보다, 상기 전지셀(100)에서 상기 양극 전해액 저장부(210) 또는 상기 음극 전해액 저장부(220)로 양극 전해액(211) 또는 음극 전해액(221)이 들어오는 입구(212,222)에서 멀리 배치되면서, 상기 전해액 연결부(600)에는 저장부(610)가 포함될 수 있으며, 상기 전해액 연결부(600)에는 연결부 밸브(620)가 포함될 수 있다. 10 and 11, the ends 611 and 612 of the electrolyte connection part 600 are connected to the battery cell 100 from the positive electrode electrolyte storage unit 210 or the negative electrode electrolyte storage unit 220 to the positive electrode electrolyte ( 211) or the cathode electrolyte solution 221, rather than the exit 213, 223, the battery cell 100 to the cathode electrolyte storage section 210 or the cathode electrolyte storage section 220, the anode electrolyte 211 or cathode electrolyte ( As the 221 is disposed away from the incoming inlets 212 and 222, the electrolyte connection part 600 may include a storage part 610, and the electrolyte connection part 600 may include a connection part valve 620.
도 11을 참조하면, 본 발명의 실시 예에 따른 상기 연결부 밸브(620)에는 압력을 형성시키는 상기 연결부 밸브(620)에 압력을 전달할 수 있는 연결부 압력 발생기(630)가 연결될 수 있다. 상기 연결부 압력 발생기(630)는 상술한 압력 발생기(500)와 동일하거나 공유할 수 있는 것이며, 상기 연결부 밸브(620)에 양압 또는 음압을 선택적으로 형성시킬 수 있는 것이다. 즉, 유체 제어부(300) 구동을 위한 압력 발생기(500)와 연결부 밸브(620) 구동을 위한 연결부 압력 발생기(630)는 별도로 구비될 수도 있고, 같은 압력 발생기를 사용하면서도 압력 제어를 통해 독립적으로 구동될 수 있는 것이다.Referring to FIG. 11, a connection part pressure generator 630 capable of transmitting pressure to the connection part valve 620 forming pressure may be connected to the connection part valve 620 according to an embodiment of the present invention. The connection part pressure generator 630 may be the same or share the pressure generator 500 described above, and may selectively form positive or negative pressure in the connection part valve 620. That is, the pressure generator 500 for driving the fluid control unit 300 and the connection unit pressure generator 630 for driving the connection valve 620 may be separately provided, and are independently driven through pressure control while using the same pressure generator. It can be.
상기 연결부 압력 발생기(630)에서 발생한 압력은 연결부 압력 전달관(631)을 통해 상기 연결부 밸브(620)에 전달될 수 있으며, 상기 연결부 밸브(620)에는 상기 연결부 압력 발생기(630)에서 발생한 압력을 통해 작동되는 스위치(621)가 포함될 수 있다. 또한, 상기 연결부 밸브(620)에는 전기에 의해 작동되는 스위치가 포함될 수도 있다. The pressure generated by the connection part pressure generator 630 may be transmitted to the connection part valve 620 through a connection part pressure transmission pipe 631, and the connection part valve 620 may receive the pressure generated by the connection part pressure generator 630. A switch 621 operated through may be included. In addition, the connection valve 620 may include a switch operated by electricity.
상기 연결부 밸브(620)에 포함되는 상기 스위치(621)는 별도의 압력 발생기 없이 전기적으로 작동되면서, 상기 전해액 연결부(600)를 닫거나 열리게 할 수 있으며, 상기 전해액 연결부(600)를 일부만 닫히게 할 수도 있다. 또한, 상기 스위치(621)는 상기 연결부 압력 발생기(630)와 연결되어 상기 연결부 압력 발생기(630)에서 형성된 압력을 통해서도 작동되면서, 상기 전해액 연결부(600)를 닫거나 열리게 할 수 있으며, 상기 전해액 연결부(600)를 일부만 닫히게 할 수도 있다.The switch 621 included in the connection part valve 620 is electrically operated without a separate pressure generator, so that the electrolyte connection part 600 may be closed or opened, and the electrolyte connection part 600 may be partially closed. . In addition, the switch 621 is connected to the pressure generator 630 of the connection unit and operates through the pressure formed in the pressure generator 630 of the connection unit, so that the electrolyte connection unit 600 can be closed or opened, and the electrolyte connection unit ( 600) can be partially closed.
상기 전해액 연결부(600)의 부피는, 상기 전해액 연결부(600)가 닫힌 상태에서 방전된 상기 전지 모듈(10)을 충전할 때, 분리막(130)을 통해 양극에서 음극 또는 음극에서 양극으로 이동하는 전해액 부피의 2% 이상일 수 있다. The volume of the electrolyte connection portion 600 is the electrolyte that moves from the anode to the cathode or the cathode to the anode through the separator 130 when the battery module 10 discharged while the electrolyte connection portion 600 is closed. It may be 2% or more of the volume.
상기 전지 모듈(10)이 충전 또는 상기 전지 모듈(10)을 방전될 때는, 상기 연결부 밸브(620)를 통해 상기 전해액 연결부(600)를 닫아야 전지 성능이 감소하는 것을 방지할 수 있게 된다. 이와 같은 상태에서 상기 전지 모듈(10)을 충전시키면, 양극에서 음극 또는 음극에서 양극으로 전해액이 이동하게 되는데, 상기 전해액 연결부(600)의 부피는, 상기 전해액 연결부(600)를 닫은 상태에서 상기 전지 모듈(10)을 충전시킬 때, 양극에서 음극 또는 음극에서 양극으로 이동하는 전해액 부피의 2% 이상인 것이 바람직하다. When the battery module 10 is charged or the battery module 10 is discharged, the electrolyte connection portion 600 must be closed through the connection valve 620 to prevent a decrease in battery performance. In this state, when the battery module 10 is charged, the electrolyte moves from the positive electrode to the negative electrode or from the negative electrode to the positive electrode. The volume of the electrolyte connection part 600 is the battery in the state where the electrolyte connection part 600 is closed. When charging the module 10, it is preferable that it is 2% or more of the volume of the electrolyte that moves from the anode to the cathode or from the cathode to the anode.
구체적으로, 상기 전해액 연결부(600)의 부피는, 상기 전해액 연결부(600)를 닫힌 상태로 두고(분리막을 제외하고 양극에서 음극으로 전해액이 물리적으로 이동할 수 있는 경로가 없는 상태), 상기 전지 모듈(10)이 방전 상태(단전지 기준 개방전압 0.6V)에서 기준 개방전압 1.5V까지(충전상태)의 전류 밀도 20mA/cm2로 정전류 충전시 양극 전극에서 음극 전극 또는 음극 전극에서 양극 전극으로 이동하는 전해액 부피의 2% 이상일 수 있다. 다만, 이는 하나의 실시 예에 불과하며, 충전 및 방전의 조건에 따라, 양극에서 음극 또는 음극에서 양극으로 이동하는 전해액의 양은 달라질 수 있다. Specifically, the volume of the electrolyte connection portion 600, leaving the electrolyte connection portion 600 in a closed state (there is no path through which the electrolyte can physically move from the positive electrode to the negative electrode except for the separator), the battery module ( 10) When the constant current is charged at a current density of 20 mA / cm 2 from the discharged state (single cell reference open voltage 0.6 V) to the reference open voltage 1.5 V (charged state), the anode electrode moves from the anode electrode to the anode electrode. It may be 2% or more of the electrolyte volume. However, this is only one example, and depending on the conditions of charging and discharging, the amount of the electrolyte moving from the anode to the cathode or the cathode to the anode may vary.
상술한 바와 같이, 상기 전해액 연결부(600)의 부피가 작은 경우, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 너무 활발하게 일어나면서 전지의 성능이 감소될 위험이 있다. 따라서, 상기 전해액 연결부(600)의 부피를 일정 크기 이상으로 해야 한다. As described above, when the volume of the electrolyte connection portion 600 is small, the mixing of the positive electrode electrolyte in the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte in the negative electrode electrolyte storage portion 220 occurs too vigorously. There is a risk of reduced performance. Therefore, the volume of the electrolyte connection portion 600 should be equal to or greater than a certain size.
이때 기준이 되는 것이, 상기 전해액 연결부(600)가 닫힌 상태에서 방전된 상기 전지 모듈(10)을 충전할 때, 양극에서 음극 또는 음극에서 양극으로 이동하는 전해액의 부피이다. 상기 전해액 연결부(600)의 부피를 상기 전해액 연결부(600)가 닫힌 상태에서 방전된 상기 전지 모듈(10)을 충전할 때, 양극에서 음극 또는 음극에서 양극으로 이동하는 전해액 부피의 2% 이상으로 하면, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 혼합이 너무 활발하게 일어나는 것을 방지할 수 있게 된다. At this time, the reference is the volume of the electrolyte that moves from the anode to the cathode or the cathode to the anode when charging the battery module 10 discharged while the electrolyte connection portion 600 is closed. When the volume of the electrolyte connecting portion 600 is charged when the battery module 10 discharged while the electrolyte connecting portion 600 is closed, when the volume of the electrolyte moving from the anode to the cathode or the cathode to the anode is 2% or more , It is possible to prevent the mixing of the positive electrode electrolyte of the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte of the negative electrode electrolyte storage unit 220 is too active.
그러나 상술한 바와 같이, 상기 전해액 연결부(600)의 부피가 너무 클 경우, 상기 양극 전해액 저장부(210)의 양극 전해액과 상기 음극 전해액 저장부(220)의 음극 전해액의 밸런싱 효과가 감소할 수 있기 때문에, 상기 전해액 연결부(600)의 부피는, 상기 양극 전해액 저장부(210)에 저장되어 있는 전해액과 상기 음극 전해액 저장부(220)에 저장되어 있는 전해액의 합의 50% 이하인 것이 바람직하다. However, as described above, when the volume of the electrolyte connection portion 600 is too large, a balancing effect between the positive electrode electrolyte solution of the positive electrode electrolyte storage portion 210 and the negative electrode electrolyte solution of the negative electrode electrolyte storage portion 220 may be reduced. Therefore, the volume of the electrolyte connection portion 600 is preferably 50% or less of the sum of the electrolyte stored in the positive electrode electrolyte storage unit 210 and the electrolyte stored in the negative electrode electrolyte storage unit 220.
상술한 본 발명의 실시 예에 따른 레독스 흐름전지는 다음과 같은 효과가 있다. Redox flow battery according to an embodiment of the present invention described above has the following effects.
본 발명의 실시 예에 따른 레독스 흐름전지는 전지셀(100)마다 양극 전해액 및 음극 전해액을 보관하는 전해액 탱크(200)를 구비함에 따라 이송 경로의 길이를 효과적으로 줄일 수 있으며, 전지의 효율을 높일 수 있는 장점이 있다. 또한, 본 발명의 실시 예에 따른 레독스 흐름전지는, 각 전지 모듈마다 고가의 펌프를 구비하는 대신 압력을 이용한 유체 제어부(300)를 구비함에 따라, 원가경쟁력을 확보할 수 있고, 각 전지 모듈(10)간에 발생할 수 있는 분로 전류를 효과적으로 감소시키거나 차단할 수 있는 장점이 있다. The redox flow battery according to an embodiment of the present invention can effectively reduce the length of the transport path and increase the efficiency of the battery by providing the electrolyte tank 200 for storing the anode electrolyte and the cathode electrolyte for each battery cell 100 There are advantages. In addition, the redox flow battery according to an embodiment of the present invention, by providing a fluid control unit 300 using pressure instead of having an expensive pump for each battery module, it is possible to secure cost competitiveness, each battery module (10) There is an advantage that can effectively reduce or block the shunt current that can occur between.
이와 함께, 본 발명의 실시 예에 따른 양극 전해액 저장부(210)와 음극 전해액 저장부(220)를 연결하는 전해액 연결부(600)를 통해 양극 전해액 저장부(210)와 음극 전해액 저장부(220)의 전해액 밸런스를 유지할 수 있고, 이를 통해 전지의 성능이 감소 되는 것을 방지할 수 있는 장점이 있다. In addition, the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 through the electrolyte connection unit 600 connecting the positive electrode electrolyte storage unit 210 and the negative electrode electrolyte storage unit 220 according to an embodiment of the present invention It has the advantage of being able to maintain the electrolyte balance, and thereby prevent the performance of the battery from being reduced.
이상, 본 발명을 바람직한 실시 예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시 예에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다. 따라서, 본 발명의 진정한 기술적 보호 범위를 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.As described above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications may be provided without departing from the scope of the present invention. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (14)

  1. 내부에 양극 전극과 음극 전극을 포함하는 전지셀;과A battery cell including an anode electrode and a cathode electrode therein; and
    양극 전해액 저장부와 음극 전해액 저장부를 포함하는 전해액 탱크;와 An electrolyte tank including an anode electrolyte storage unit and a cathode electrolyte storage unit; and
    상기 전해액 탱크와 상기 전지셀을 연결하여 전해액이 이송되는 전해액 유로;와 An electrolyte passage through which the electrolyte is transferred by connecting the electrolyte tank and the battery cell; and
    외부에서 생성된 압력을 상기 전해액 유로에 전달하는 유체 제어부;를 구비하는 전지 모듈을 포함하며, It includes a battery module having a; fluid control unit for transmitting the pressure generated from the outside to the electrolyte passage,
    상기 전지 모듈은 하나 또는 둘 이상이 구비되되, 상기 전지 모듈은 독립적으로 전해액을 순환시켜 충전 및 방전하거나, 복수 개의 상기 전지 모듈에서 전해액을 순환시켜 충전 및 방전하며,The battery module is provided with one or two or more, the battery module is independently charged and discharged by circulating the electrolyte, or circulating and charging and discharging the electrolyte in the plurality of battery modules,
    상기 양극 전해액 저장부와 상기 음극 전해액 저장부를 연결하는 전해액 연결부를 더 포함하는 것을 특징으로 하는 레독스 흐름전지. A redox flow battery further comprising an electrolyte connection portion connecting the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion.
  2. 제1항에 있어서,According to claim 1,
    상기 유체 제어부에 연결되며, 압력을 형성시켜 상기 유체 제어부에 압력을 전달할 수 있는 압력 발생기와, A pressure generator connected to the fluid control unit and capable of transmitting pressure to the fluid control unit by forming pressure;
    상기 압력 발생기와 상기 유체 제어부 사이에 구비되며, 상기 유체 제어부에 양압 또는 음압을 선택적으로 전달할 수 있는 압력 제어 밸브를 더 포함하는 것을 특징으로 하는 레독스 흐름전지. A redox flow battery provided between the pressure generator and the fluid control unit, and further comprising a pressure control valve capable of selectively transferring positive pressure or negative pressure to the fluid control unit.
  3. 제1항에 있어서, According to claim 1,
    상기 전해액 연결부는,The electrolyte connection portion,
    물, 산 수용액, 활물질로 이루어지는 군에서 선택되는 1종 이상을 포함하는 액체 또는 슬러리로 채워지는 것을 특징으로 하는 레독스 흐름전지. Redox flow battery characterized in that it is filled with a liquid or slurry containing at least one selected from the group consisting of water, aqueous acid solution, active material.
  4. 제1항에 있어서, According to claim 1,
    상기 전해액 연결부는, The electrolyte connection portion,
    다공성 물질로 채워지는 것을 특징으로 하는 레독스 흐름전지.Redox flow battery characterized in that it is filled with a porous material.
  5. 제1항에 있어서, According to claim 1,
    상기 전해액 연결부는 중공형 파이프로 이루어지는 것을 특징으로 하는 레독스 흐름전지. Redox flow battery, characterized in that the electrolyte connection portion is made of a hollow pipe.
  6. 제5항에 있어서, The method of claim 5,
    상기 전해액 연결부는,The electrolyte connection portion,
    상기 중공형 파이프보다 단면적이 넓은 저장부를 포함하는 것을 특징으로 하는 레독스 흐름전지. Redox flow battery, characterized in that it comprises a storage section having a larger cross-sectional area than the hollow pipe.
  7. 제5항에 있어서, The method of claim 5,
    상기 전해액 연결부의 직경 또는 상기 전해액 연결부의 단면적을 동일 면적의 원으로 환산했을 때의 직경은, The diameter when the diameter of the electrolyte connection portion or the cross-sectional area of the electrolyte connection portion is converted into a circle of the same area,
    상기 전해액 연결부의 길이의 1/3 이하인 것을 특징으로 하는 레독스 흐름전지.Redox flow battery, characterized in that less than 1/3 of the length of the electrolyte connection.
  8. 제5항에 있어서, The method of claim 5,
    상기 전해액 연결부의 부피는,The volume of the electrolyte connection portion,
    상기 양극 전해액 저장부에 저장되어 있는 전해액과 상기 음극 전해액 저장부에 저장되어 있는 전해액의 합의 1 내지 50 % 인 것을 특징으로 하는 레독스 흐름전지. Redox flow battery, characterized in that 1 to 50% of the sum of the electrolyte stored in the cathode electrolyte storage and the electrolyte stored in the cathode electrolyte storage.
  9. 제8항에 있어서, The method of claim 8,
    상기 전해액 연결부의 부피는, The volume of the electrolyte connection portion,
    상기 전해액 연결부가 닫힌 상태에서 방전된 상기 전지 모듈을 충전할 때, 양극에서 음극 또는 음극에서 양극으로 이동하는 전해액 부피의 2% 이상인 것을 특징으로 하는 레독스 흐름전지. Redox flow battery, characterized in that at least 2% of the volume of the electrolyte that moves from the positive electrode to the negative electrode or the negative electrode to the positive electrode when charging the battery module discharged in the closed state of the electrolyte connection.
  10. 제1항에 있어서, According to claim 1,
    상기 전해액 연결부는, The electrolyte connection portion,
    상기 전해액 연결부를 닫거나 열 수 있는 연결부 밸브를 더 포함하는 것을 특징으로 하는 레독스 흐름전지. Redox flow battery further comprises a connection valve that can open or close the electrolyte connection.
  11. 제10항에 있어서, The method of claim 10,
    상기 연결부 밸브는, 상기 전지 모듈이 충전 또는 방전될 때, The connection valve, when the battery module is charged or discharged,
    상기 전해액 연결부의 일부를 닫히게 하거나, 상기 전해액 연결부의 전체를 닫히게 하는 것을 특징으로 하는 레독스 흐름전지. Redox flow battery, characterized in that to close a portion of the electrolyte connection portion, or to close the entire electrolyte connection portion.
  12. 제10항에 있어서, The method of claim 10,
    상기 연결부 밸브에 연결되며, 압력을 형성시켜 상기 연결부 밸브에 압력을 전달할 수 있는 연결부 압력 발생기를 더 포함하며, It is connected to the connection valve, and further comprises a connection pressure generator that can form a pressure to transmit pressure to the connection valve,
    상기 연결부 밸브에는, 상기 연결부 압력 발생기에 의해 작동되는 스위치가 포함되는 것을 특징으로 하는 레독스 흐름전지. Redox flow battery, characterized in that the connection valve includes a switch operated by the connection pressure generator.
  13. 제10항에 있어서, The method of claim 10,
    상기 연결부 밸브에는 전기에 의해 작동되는 스위치가 포함되는 것을 특징으로 하는 레독스 흐름전지.Redox flow battery, characterized in that the connection valve includes a switch operated by electricity.
  14. 제1항에 있어서, According to claim 1,
    상기 전해액 연결부의 양 끝단은 상기 양극 전해액 저장부와 상기 음극 전해액 저장부에 연결되며, Both ends of the electrolyte connection portion are connected to the positive electrode electrolyte storage portion and the negative electrode electrolyte storage portion,
    상기 전해액 연결부의 끝단이 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부와 연결되는 위치에서, 상기 전지셀로부터 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부로 전해액이 들어오는 입구까지의 직선 거리는, In a position where the end of the electrolyte connection portion is connected to the positive electrode electrolyte storage portion or the negative electrode electrolyte storage portion, a straight line distance from the battery cell to the inlet of the electrolyte into the positive electrode electrolyte storage portion or the negative electrode electrolyte storage portion
    상기 전해액 연결부의 끝단이 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부와 연결되는 위치에서, 상기 양극 전해액 저장부 또는 상기 음극 전해액 저장부에서 상기 전지셀로 전해액이 나가는 출구까지의 직선 거리의 2배 이상인 것을 특징으로 하는 레독스 흐름전지. Where the end of the electrolyte connection portion is connected to the positive electrode electrolyte storage portion or the negative electrode electrolyte storage portion, twice the straight distance from the positive electrode electrolyte storage portion or the negative electrode electrolyte storage portion to the outlet where the electrolyte exits the battery cell Redox flow battery characterized in that the above.
PCT/KR2018/012868 2018-10-11 2018-10-26 Redox flow battery WO2020075899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0121189 2018-10-11
KR1020180121189A KR20200041121A (en) 2018-10-11 2018-10-11 Redox flow battery

Publications (1)

Publication Number Publication Date
WO2020075899A1 true WO2020075899A1 (en) 2020-04-16

Family

ID=70163965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012868 WO2020075899A1 (en) 2018-10-11 2018-10-26 Redox flow battery

Country Status (2)

Country Link
KR (1) KR20200041121A (en)
WO (1) WO2020075899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023034667A1 (en) * 2021-08-31 2023-03-09 Ess Tech, Inc. Systems and methods for circulating electrolyte and electric current in series coupled redox flow battery cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220014737A (en) 2020-07-29 2022-02-07 유한회사 세레스 Smart Battery Management System for Redox Flow Battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100040A (en) * 2014-02-24 2015-09-02 오씨아이 주식회사 Redox flow battery
KR20160074430A (en) * 2014-12-18 2016-06-28 주식회사 엘지화학 Regenerating module for electrolyte of flow battery and regenerating method for electrolyte of flow battery using the same
KR20170132005A (en) * 2016-05-23 2017-12-01 롯데케미칼 주식회사 Redox flow battery
KR101803825B1 (en) * 2017-04-10 2017-12-04 스탠다드에너지(주) Redox flow battery
KR101803824B1 (en) * 2017-03-31 2018-01-10 스탠다드에너지(주) Redox flow battery
KR20180031998A (en) * 2016-09-21 2018-03-29 주식회사 엘지화학 Apparatus for mixing of electrolyte for redox flow battery
KR101855290B1 (en) * 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100040A (en) * 2014-02-24 2015-09-02 오씨아이 주식회사 Redox flow battery
KR20160074430A (en) * 2014-12-18 2016-06-28 주식회사 엘지화학 Regenerating module for electrolyte of flow battery and regenerating method for electrolyte of flow battery using the same
KR20170132005A (en) * 2016-05-23 2017-12-01 롯데케미칼 주식회사 Redox flow battery
KR20180031998A (en) * 2016-09-21 2018-03-29 주식회사 엘지화학 Apparatus for mixing of electrolyte for redox flow battery
KR101855290B1 (en) * 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery
KR101803824B1 (en) * 2017-03-31 2018-01-10 스탠다드에너지(주) Redox flow battery
KR101803825B1 (en) * 2017-04-10 2017-12-04 스탠다드에너지(주) Redox flow battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023034667A1 (en) * 2021-08-31 2023-03-09 Ess Tech, Inc. Systems and methods for circulating electrolyte and electric current in series coupled redox flow battery cells

Also Published As

Publication number Publication date
KR20200041121A (en) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2018182376A1 (en) Redox flow battery having electrolyte flow path independently provided therein
WO2017179795A1 (en) Redox flow battery
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
US3540934A (en) Multiple cell redox battery
WO2016099217A1 (en) Module for regenerating electrolyte of flow battery and method for regenerating electrolyte of flow battery by using same
WO2012102500A2 (en) Air-metal secondary battery unit and air-metal secondary battery module including same
WO2020180169A1 (en) Membrane humidifier for fuel cell, and fuel cell system comprising same
CN111244502A (en) Integrated reversible fuel cell system and pure gas circulation control system thereof
WO2018190496A1 (en) Redox flow battery
WO2018160050A2 (en) Redox flow battery
WO2014035020A1 (en) Manifold for redox flow battery for reducing shunt current and redox flow battery comprising same
WO2020075899A1 (en) Redox flow battery
WO2018169358A1 (en) Redox flow battery
CN102593491A (en) Liquid flow cell stack and cell system comprising same
WO2011043565A2 (en) Metal-air cell charging apparatus, metal-air cell assembly, and metal-air cell charging system comprising same
KR102216144B1 (en) Redox flow battery
WO2012115485A2 (en) Flat tubular solid-oxide fuel cell, and flat tubular solid-oxide water electrolysis apparatus
WO2012091463A2 (en) Fuel cell system and stack
KR20200080950A (en) Redox flow battery using balancing flow path
WO2014104732A1 (en) Separator for fuel cell, and fuel cell comprising same
WO2020085551A1 (en) Redox flow battery
WO2017138737A1 (en) Zinc-air secondary battery
EP3719902B1 (en) Method of operating a redox flow battery
KR102147948B1 (en) Redox flow battery
CN100361340C (en) Controlling connection method for integrated fuel battery pile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/08/2021)