WO2018181942A1 - 原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置 - Google Patents

原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置 Download PDF

Info

Publication number
WO2018181942A1
WO2018181942A1 PCT/JP2018/013742 JP2018013742W WO2018181942A1 WO 2018181942 A1 WO2018181942 A1 WO 2018181942A1 JP 2018013742 W JP2018013742 W JP 2018013742W WO 2018181942 A1 WO2018181942 A1 WO 2018181942A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
size distribution
coarse
fine
measuring device
Prior art date
Application number
PCT/JP2018/013742
Other languages
English (en)
French (fr)
Inventor
尚史 山平
嵩啓 西野
丈英 平田
津田 和呂
坪井 俊樹
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US16/498,110 priority Critical patent/US11391662B2/en
Priority to JP2018534986A priority patent/JP6590072B2/ja
Priority to KR1020197028470A priority patent/KR102410066B1/ko
Priority to EP18776037.6A priority patent/EP3605064B1/en
Priority to CN201880023175.0A priority patent/CN110476053B/zh
Publication of WO2018181942A1 publication Critical patent/WO2018181942A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N2015/025Methods for single or grouped particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/03Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/144Imaging characterised by its optical setup

Definitions

  • the present invention relates to a raw material particle size distribution measuring device, a particle size distribution measuring method, and a porosity measuring device for measuring the particle size distribution of a raw material used in a blast furnace or the like.
  • furnace ventilation is one of the important indicators in the manufacturing process, and one of the factors that influence this furnace ventilation is the particle size distribution of the raw materials. is there.
  • the particle size distribution of raw materials has been grasped by periodic raw material sampling and sieve analysis.
  • sieve analysis takes time, it is difficult to reflect real-time results in blast furnace operation. For this reason, the technique which grasps
  • furnace ventilation is one of the important indicators in the manufacturing process, and one of the factors that influence this furnace ventilation is the particle size distribution of the raw materials. is there.
  • the particle size distribution of raw materials has been grasped by periodic raw material sampling and sieve analysis.
  • sieve analysis takes time, it is difficult to reflect real-time results in blast furnace operation. For this reason, the technique which grasps
  • JP 2014-924494 A Japanese Patent Laying-Open No. 2015-124436
  • Patent Document 1 can measure the particle size distribution of the granular raw material in real time, but uses a single camera or laser distance meter, so the fine particle side of the raw material is limited by the resolution of these sensors. The measurement accuracy of particle size distribution cannot be ensured. Since a very small amount of fine powder affects the air permeability in the blast furnace, high-precision measurement is required.
  • the charge detection device disclosed in Patent Document 2 is a device that measures the powder rate of the charge by detecting the water content of the charge. It is a powder rate of the charge with a small particle diameter adhering through, and the particle size of the charge with a large particle diameter cannot be measured with high accuracy.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to measure the particle size distribution of the raw material containing coarse particles and fine particles with high accuracy, and the particle size distribution of the raw material. It is an object of the present invention to provide a measurement method and a porosity measuring device that measures the porosity using the measured particle size distribution.
  • a coarse particle measuring device for acquiring information indicating the particle size distribution of coarse particles for acquiring information indicating the particle size distribution of coarse particles
  • a fine particle measuring device for acquiring information indicating the particle size distribution of fine particles for acquiring information indicating the particle size distribution of fine particles
  • information indicating the particle size distribution of the coarse particles Calculate the particle size distribution of the particles, calculate the particle size distribution of the fine particles using information indicating the particle size distribution of the fine particles, and use the particle size distribution of the coarse particles and the particle size distribution of the fine particles to determine the particle size of the whole raw material
  • a raw material particle size distribution measuring device having a computing device for calculating the distribution.
  • the information indicating the particle size distribution of the fine particles is image data of the raw material, and the particle size distribution of the fine particles is calculated using an average luminance obtained by averaging the luminance of the image data.
  • Particle size distribution measuring device has a spectroscopic measuring unit that measures the spectral reflectance by dispersing the reflected light from the raw material, and the fine particle measuring device is information indicating the particle size distribution of the fine particles.
  • Spectral reflectances of a plurality of wavelengths are acquired, and the arithmetic unit calculates a score of a predetermined basis vector obtained by performing principal component analysis or partial least squares (PLS) on the spectral reflectances of the plurality of wavelengths.
  • PLS partial least squares
  • the raw material particle size distribution measuring apparatus wherein the particle size distribution of the fine particles is calculated using (4)
  • a coarse particle measurement step for obtaining information indicating the particle size distribution of coarse particles, a fine particle measurement step for obtaining information indicating the particle size distribution of fine particles, and the particle size of the coarse particles obtained in the coarse particle measurement step The coarse particle size distribution calculating step for calculating the coarse particle size distribution using the information indicating the distribution, and the fine particle size distribution using the information indicating the fine particle size distribution obtained in the fine particle measuring step.
  • the coarse particle size distribution and the fine particle size distribution are linear models
  • the coarse particle size distribution is the linear model
  • the fine particle size is the linear model.
  • a porosity measuring device for measuring a porosity of a raw material stacked in a container, wherein the raw material includes coarse particles having a large particle size and fine particles having a small particle size, and the particle size of the coarse particle Coarse particle measuring device for measuring distribution, fine particle measuring device for measuring particle size distribution of the fine particles, coarse particle size distribution measured by the coarse particle measuring device, and measured by the fine particle measuring device
  • An arithmetic unit that calculates the porosity of the raw material in a state of being stacked in the container, using a fine particle size distribution
  • a porosity measurement device comprising: (7) The coarse particle measuring device and the fine particle measuring device are provided above a conveyor that conveys the raw material to a container, and the arithmetic device calculates a porosity of the raw material in a state of being stacked in the container.
  • the porosity measuring device according to (6).
  • the arithmetic unit is configured so that the calculated particle size distribution of the coarse particles and the particle size distribution of the fine particles coincide with the particle size distribution of the coarse particles and the particle size distribution of the fine particles measured in advance using a sieve.
  • the porosity measuring device according to (6) or (7), wherein calibration is performed.
  • the arithmetic unit calibrates the coarse particle size distribution measured by the coarse particle measuring device using a calibration curve for calibrating the coarse particle size distribution, and calibrates the fine particle size distribution.
  • the porosity measuring device according to (8), wherein the particle size distribution of the fine particles measured by the fine particle measuring device is calibrated by using.
  • the raw material particle size distribution measuring apparatus of the present invention By using the raw material particle size distribution measuring apparatus of the present invention, the particle size distribution of raw materials including coarse particles and fine powder can be measured with high accuracy. Furthermore, the raw material particle size distribution measuring device is a state in which the coarse particle size distribution and the fine particle size distribution are charged and stacked in a container such as a blast furnace by performing porosity conversion based on the porosity calculation model. The porosity of the raw material can also be measured. With such a raw material particle size distribution measuring device, the particle size distribution and porosity of coke charged in the blast furnace are measured in real time, and the state of the raw material in the blast furnace is grasped to cope with the state of the raw material in the blast furnace. Blast furnace operation is possible, which can contribute to stabilization of blast furnace operation.
  • FIG. 1 is a schematic diagram showing an example of a raw material particle size distribution measuring apparatus according to the present embodiment and a configuration around it.
  • FIG. 2 is a graph showing the relationship between the average luminance and the coke powder rate.
  • FIG. 3 is a graph showing the relationship between the estimated powder ratio of coke powder calculated using absorbance and the measured powder ratio.
  • FIG. 4 is a graph showing the relationship between the estimated powder rate of coke powder and the measured powder rate calculated from the score obtained by applying PLS.
  • FIG. 5 is a graph showing the particle size distribution by coke sieve analysis.
  • FIG. 6 is a graph showing the relationship between the logarithm of the sieve diameter obtained by sieving the coke conveyed by the conveyor and the normal probability of the cumulative mass ratio under the sieve.
  • FIG. 1 is a schematic diagram showing an example of a raw material particle size distribution measuring apparatus according to the present embodiment and a configuration around it.
  • FIG. 2 is a graph showing the relationship between the average luminance and the coke powder rate.
  • FIG. 7 is a graph comparing the measurement result of the particle size distribution by sieve analysis with the measurement result of the particle size distribution by the raw material particle size distribution measuring apparatus.
  • FIG. 8 is a graph showing the relationship between the measured harmonic average particle diameter by sieve analysis and the estimated harmonic average particle diameter calculated by the raw material measuring apparatus.
  • FIG. 1 is a schematic diagram showing an example of a raw material particle size distribution measuring apparatus according to the present embodiment and a configuration around it.
  • the coke 30 as the raw material charged in the blast furnace is first stored in the hopper 12.
  • the coke 30 discharged from the hopper 12 is sieved by the sieve 14, and fine particles having a particle size smaller than the sieve diameter of the sieve 14 are sieved off, and then conveyed to a blast furnace (not shown) by the conveyor 16.
  • the coke 30 includes fine particles that are not sieved with the sieve 14 and that are smaller than the sieve diameter of the sieve 14 that adheres to the coke larger than the sieve diameter. .
  • the coke 30 conveyed by the conveyor 16 includes coarse grains larger than the sieve diameter of the sieve 14 and fine grains smaller than the sieve diameter that cannot be sieved out by the sieve 14.
  • the sieve diameter of the sieve 14 is, for example, 35 mm.
  • a blast furnace is an example of a container.
  • the raw material particle size distribution measuring device 10 includes an arithmetic device 20, a coarse particle measuring device 22, and a fine particle measuring device 24.
  • the coarse particle measuring device 22 is provided above the conveyor 16.
  • the coarse particle measuring device 22 performs a coarse particle measurement step, and acquires information indicating the coarse particle size distribution of the coke 30 conveyed by the conveyor 16 in real time.
  • the fine particle measuring device 24 is provided above the conveyor 16.
  • the fine particle measurement device 24 performs a fine particle measurement step, and acquires information indicating the particle size distribution of the fine particles of the coke 30 conveyed by the conveyor 16 in real time.
  • the coarse grains of the coke 30 are lump coke having a particle size larger than the sieve diameter of the sieve 14, and the fine grains of the coke 30 are coke powder having a particle diameter equal to or smaller than the sieve diameter of the sieve 14. .
  • the computing device 20 is a general-purpose computer such as a workstation or a personal computer having a computing unit 26 and a storage unit 28, for example.
  • the calculation unit 26 is, for example, a CPU or the like, and controls the operations of the coarse particle measuring device 22 and the fine particle measuring device 24 using programs and data stored in the storage unit 28.
  • the computing unit 26 acquires information indicating the coarse particle size distribution and information indicating the fine particle size distribution, and calculates the particle size distribution of the coke 30 including the coarse particles and the fine particles using these.
  • the storage unit 28 stores in advance a program for controlling the coarse particle measurement device 22 and the fine particle measurement device 24, a program for executing the calculation in the calculation unit 26, an arithmetic expression used during the execution of the program, and the like. ing.
  • the coarse particle measuring device 22 is, for example, a laser distance meter.
  • the laser distance meter measures the distance from the laser distance meter to the coke 30 on the conveyor 16 in real time under the control of the calculation unit 26.
  • the laser distance meter acquires profile data of the coke 30 that is the distance from the laser distance meter to the coke 30 as information indicating the particle size distribution of coarse particles.
  • the laser distance meter outputs the profile data of the coke 30 to the arithmetic unit 20.
  • the laser distance meter preferably has the same measurement area as the width of the conveyor 16 and can measure all of the coke 30 conveyed by the conveyor 16.
  • the laser distance meter measures the coke 30 conveyed by the conveyor 16, for example, by scanning the laser in a line in a direction perpendicular to the conveying direction at a cycle of 1000 to 10000 lines / second, and measuring the measured line data Are arranged in the time direction to form two-dimensional profile data of the coke 30.
  • the calculation unit 26 When the calculation unit 26 acquires the two-dimensional profile data of the coke 30 from the laser distance meter, the calculation unit 26 performs a particle separation process of the coke 30 on the profile data.
  • the particle separation process is a process for identifying the particles shown in the two-dimensional profile data as different ones, and can be implemented by, for example, a known watershed algorithm.
  • the computing unit 26 calculates the particle size of the coke 30 separated by the particle separation process using a circular approximate fitting method, counts the number of particles for each predetermined particle size range, forms a histogram, and calculates the coke 30.
  • the particle size distribution of the coarse particles is calculated.
  • the calculation unit 26 performs such a coarse particle size distribution calculation step to calculate the coarse particle size distribution of the coke 30 in real time.
  • the layer thickness of the coke 30 on the conveyor 16 is about 100 mm.
  • the particle size distribution calculated using the profile data of the coke 30 is the particle size distribution of the coke 30 existing in the upper layer of the coke layer, and becomes a particle size distribution in which a large amount of coke is distributed. Therefore, it is known that the particle size distribution calculated using the profile data of the coke 30 is larger than the actual particle size distribution.
  • the difference between the particle size distribution on the upper layer side of the coke 30 and the particle size distribution of the entire layer is measured in advance by sieving analysis and stored in the storage unit 28.
  • the calculation unit 26 may correct the calculated coarse particle size distribution using the difference in the particle size distribution stored in the storage unit 28. Thereby, the measurement accuracy of the coarse particle size distribution is improved.
  • the fine particle measuring device 24 is, for example, a camera equipped with strobe lighting. Under the control of the calculation unit 26, the camera images the coke 30 at predetermined time intervals, and acquires image data of the coke 30 in real time as information indicating the fine particle size distribution. The camera outputs the image data to the calculation unit 26.
  • An imaging sensor such as a CCD or CMOS provided in the camera is an imaging unit that images the coke 30 and generates image data.
  • the calculation unit 26 When the calculation unit 26 acquires image data from the camera, it calculates the average luminance by arithmetically averaging the luminance (0 to 255) of each pixel of one image data.
  • the storage unit 28 stores in advance a relational expression in which the average luminance and the powder rate of coke having a particle size of 1 mm or less (hereinafter sometimes referred to as coke powder) are associated with each other. Then, the powder rate of the coke powder is calculated as the fine particle size distribution of the coke 30 using the average luminance and the relational expression.
  • the calculation unit 26 performs such a fine particle size distribution calculation step to calculate the fine particle size distribution of the coke 30 in real time.
  • the powder ratio of coke powder means the mass ratio of coke powder to the total coke mass.
  • the particle size distribution of the fine particles having a particle diameter of 1 mm or less of the sieve 14 is 1 mm or less. It can be expressed by the powder ratio of the coke powder. Therefore, if the powder rate of the coke powder can be measured, the particle size distribution of fine particles having a mesh size equal to or smaller than that of the sieve 14 can be measured.
  • FIG. 2 is a graph showing the relationship between average luminance and coke powder rate.
  • the vertical axis represents the measured powder ratio (mass%) of the coke powder measured by sieving the coke after drying
  • the horizontal axis represents the luminance of each pixel in the image data generated by imaging the coke. The average value.
  • the calculation unit 26 calculates the average luminance and the relational expression described above. Can be used to calculate the powder rate of coke powder.
  • the computing unit 26 calculates the particle size distribution of the coke 30 using the coarse particle size distribution, the average luminance, and the fine particle size distribution using the above relational expression.
  • a spectroscopic device having a spectroscopic measurement unit that measures the spectral reflectance by spectrally reflecting the reflected light from the coke 30 may be used.
  • the spectroscopic device acquires in real time the spectral reflectance of the absorption wavelength of water and the spectral reflectance of two reference wavelengths that are not the absorption wavelengths of water sandwiching the wavelength as information indicating the particle size distribution of the fine particles.
  • the spectroscopic device acquires the spectral reflectance at a speed of 1 measurement / second or more, and outputs the spectral reflectances of the three wavelengths to the calculation unit 26.
  • the calculation unit 26 calculates the absorbance at the absorption wavelength of water using the acquired spectral reflectance of the three wavelengths and the following equation (1).
  • X 1- [ ⁇ 2 / ⁇ ⁇ ⁇ 1 + (1- ⁇ ) ⁇ ⁇ 3 ⁇ ] (1)
  • X is the absorbance at the absorption wavelength of water
  • ⁇ 1 and ⁇ 3 are the spectral reflectances at the reference wavelength
  • ⁇ 2 is the spectral reflectance at the absorption wavelength of water
  • is a weight.
  • ⁇ at the time of calculating the three-color ratio is 0.5.
  • the calculation unit 26 calculates the ratio of the spectral reflectance of the water absorption wavelength to the spectral reflectance of the two reference wavelengths that are not the water absorption wavelengths, and then calculates the water absorption wavelength.
  • the absorbance at the absorption wavelength of water is calculated by subtracting the spectral reflectances of two wavelengths that are not the absorption wavelength of water from the spectral reflectance of.
  • the storage unit 28 stores a relational expression in which the absorbance at the absorption wavelength of water is associated with the powder rate of the coke powder, and the calculation unit 26 calculates the absorbance at the absorption wavelength of water and the relational expression. From the above, the powder rate of coke powder is calculated by simple regression. Thus, even when a spectroscopic device is used as the fine particle measuring device 24, the calculation unit 26 can calculate the fine particle size distribution of the coke 30 in real time.
  • FIG. 3 is a graph showing the relationship between the estimated powder ratio of coke powder calculated using absorbance and the measured powder ratio.
  • the vertical axis represents the estimated powder ratio (mass%) of the coke powder
  • the horizontal axis represents the measured powder ratio (mass%) of the coke powder measured by sieving the coke after drying.
  • a high correlation with a correlation coefficient of 0.73 was confirmed between the estimated powder rate of the coke powder calculated from the absorbance and the measured powder rate of the coke powder obtained by sieving the coke. It was confirmed that the powder rate of coke powder can be calculated with high accuracy using
  • the spectroscopic device may acquire the spectral reflectance of 9 wavelengths in the visible light region and the infrared region in real time as information indicating the particle size distribution of the fine particles.
  • the spectral reflectance wavelength acquired by the spectroscopic device is, for example, blue, green, red, 1.32 ⁇ m, 1.46 ⁇ m, 1.60 ⁇ m, 1.80 ⁇ m, 1.96 ⁇ m, 2 from the short wavelength side. .10 ⁇ m.
  • the spectroscopic device outputs the spectral reflectances of the nine wavelengths to the calculation unit 26. Blue is a wavelength in the range of 435 to 480 nm, green is a wavelength in the range of 500 to 560 nm, and red is a wavelength in the range of 610 to 750 nm.
  • the calculation unit 26 When the calculation unit 26 acquires the spectral reflectances of the nine wavelengths, the calculation unit 26 calculates a score of a predetermined base vector using an arithmetic expression stored in the storage unit 28.
  • the computing unit 26 calculates the powder rate of the coke powder using the relational expression in which the score and the powder rate of the coke powder are associated with each other.
  • the predetermined basis vector score is a basis showing a strong correlation to the change in the powder rate of the coke 30 out of nine basis vectors obtained by performing principal component analysis on the spectral reflectance obtained from the spectroscopic device. Vector score.
  • the storage unit 28 stores an arithmetic expression for calculating a score from the spectral reflectances of nine wavelengths and a relational expression in which the score is associated with the powder rate of coke powder.
  • An arithmetic expression for calculating the score and a relational expression between the score and the coke powder ratio are calculated by the following procedure.
  • the spectral reflectances of nine wavelengths of coke conveyed by the conveyor 16 are measured using a spectroscopic device.
  • the spectral reflectances of the nine measured wavelengths are subjected to principal component analysis, and nine basis vectors for the first to ninth principal components and nine scores calculated from the basis vectors are obtained.
  • coke whose spectral reflectance is measured is collected, and the coke is subjected to sieve analysis to measure the powder rate of coke powder having a particle size of 1 mm or less.
  • the powder ratio was sieved using a sieve having an opening of 1 mm, and was calculated as a ratio of the mass difference between the coke before and after sieving to the mass before sieving.
  • This operation is carried out using coke having different powder ratios and moisture contents, and a plurality of data each having a set of the powder ratio and nine scores obtained by sieve analysis are obtained. Of these plural data, nine scores are compared between cokes having different powder ratios, and n (n is a natural number smaller than 9) scores showing a strong correlation with changes in the coke powder ratio are specified.
  • the score can be calculated using the basis vector of the score.
  • the relational expression in which the score and the powder ratio of the coke powder are associated with each other is, for example, the powder ratio (Y) of the coke powder as an objective variable, and the identified n scores are explanatory variables (X 1 , X 2 ,. (2) which is a regression equation with Xn ).
  • Equation (1) e + f 1 ⁇ X 1 + f 2 ⁇ X 2 +... + F n ⁇ X n.
  • Equation (1) e, f 1 , f 2 ,..., F n are regression equation parameters.
  • n scores that strongly correlate with changes in the coke powder rate it is possible to identify the powder rate from the data of coke powder rates and nine scores with different moisture content and moisture content. Since the n-number of score set and the data can be obtained respectively by using these data and the least-squares method, the parameters b, a 1, a 2 of the equation (1), ..., and a n can be calculated .
  • This mathematical formula (2) is a relational expression that associates the identified score with the powder rate of the coke powder.
  • a plurality of data having a set of reflectances may be acquired, and a partial least square method (PLS) may be applied to the data to directly obtain a score showing a strong correlation with the coke powder rate.
  • PLS partial least square method
  • an arithmetic expression for calculating a score showing a strong correlation with the coke powder ratio can be calculated from the basis vector of the score obtained by PLS.
  • the relational expression between the powder rate and the score is the same regression equation as the mathematical formula (1).
  • the parameters of the regression equation in Equation (1) can also be calculated by a least square method with a plurality of data obtained by setting the score obtained by PLS and the powder rate as one set.
  • FIG. 4 is a graph showing the relationship between the estimated powder rate of coke powder and the measured powder rate calculated from the score obtained by applying PLS.
  • the horizontal axis is the actually measured powder ratio (mass%)
  • the vertical axis is the estimated powder ratio (mass%).
  • the measured powder ratio was calculated as the ratio of the difference in the mass of coke before and after sieving to the mass before sieving, after drying the coke, as in the method described above, and sieving using a 1 mm sieve.
  • a laser scattering type particle size distribution measuring apparatus that can measure the particle size distribution of the coke powder from the light intensity distribution pattern drawn by the scattered light as the fine particle measuring unit may be used.
  • the laser scattering type particle size distribution measuring apparatus acquires the particle size distribution of the coke powder in real time (every 30 seconds).
  • the laser scattering particle size distribution measuring device outputs the particle size distribution of the coke powder to the calculation unit 26.
  • FIG. 5 is a graph showing the particle size distribution by the sieve analysis of the coke 30 conveyed by the conveyor 16.
  • the one-dot chain line in FIG. 5 indicates the mesh diameter of the sieve 14. Fine particles having a sieve diameter equal to or smaller than the sieve diameter of the sieve 14 are removed from the coke 30 by sieving with the sieve 14, so that the ratio of fine grains in a region less than the sieve mesh diameter on the left side of the alternate long and short dash line is reduced.
  • FIG. 6 is a graph showing the relationship between the logarithm of the sieve diameter obtained by sieving the coke 30 conveyed by the conveyor 16 and the normal probability of the cumulative mass ratio under the sieve.
  • the horizontal axis is a logarithm of the sieve diameter obtained by analyzing the coke 30 and the vertical axis is a plot of the cumulative mass ratio of coke under the sieve diameter on the normal probability scale.
  • the approximate straight line 1 indicates the approximate straight line of the fine coke 30
  • the approximate straight line 2 indicates the approximate straight line of the coarse coke 30
  • the alternate long and short dash line indicates the mesh diameter of the sieve 14. .
  • fine coke 30 having a mesh size smaller than the sieve diameter of the sieve 14 is also present.
  • the fine coke 30 in the region below the sieve diameter on the left side of the one-dot chain line is coke powder adhering to the coarse grains of the coke 30, and its particle size is much smaller than the sieve diameter of the sieve 14. Therefore, below the sieve diameter of the sieve 14, the cumulative mass ratio under the sieve does not increase with respect to the particle size of the coke 30.
  • the relationship between the particle size of the fine coke 30 and the cumulative mass ratio under the sieve is greatly different from the relationship between the coarse particle size of the coke 30 and the cumulative mass ratio under the sieve. It turned out that it becomes two different linear distribution.
  • the particle size distribution measuring apparatus 10 information indicating the particle size distribution of fine particles having a mesh size equal to or less than the sieve diameter of the sieve 14 using different coarse particle measuring apparatuses 22 and fine particle measuring apparatuses 24, respectively, and the sieve 14.
  • the information which shows the particle size distribution of the coarse particle larger than the sieve diameter is separately obtained, and the calculation unit 26 calculates the particle size distribution of the coarse particle and the particle size distribution of the fine particle using these information.
  • the calculation unit 26 performs a raw material particle size distribution calculation step, sets the coarse particle size distribution and the fine particle size distribution as a linear model in terms of the cumulative mass ratio under the sieve, and combines the linear models with the particle size of the coke 30 as a whole. Calculate the distribution.
  • FIG. 7 is a graph comparing the particle size distribution measurement result by sieve analysis and the particle size distribution measurement result by the raw material particle size distribution measuring device.
  • the horizontal axis is a logarithm of the sieve diameter of coke
  • the vertical axis is a plot of the cumulative mass ratio under the sieve of coke 30 at the sieve diameter on a normal probability scale.
  • the measurement result of the raw material measuring apparatus shown in FIG. 7 is a result of measurement using a raw material particle size distribution measuring apparatus including a digital camera equipped with a strobe illumination as a fine particle measuring part using a laser distance meter as a coarse particle measuring part. It is.
  • FIG. 7 there are a round plot showing the cumulative mass ratio under the sieve of the coke 30 measured by the sieve analysis, and a triangular plot showing the cumulative mass ratio under the sieve of the coke 30 measured by the particle size distribution measuring apparatus 10. Match. From this result, by using the particle size distribution measuring apparatus 10 according to the present embodiment, the coarse particle size distribution and the fine particle size distribution of the coke 30 are separately calculated, and these are combined in the cumulative mass ratio under the sieve. It was confirmed that the particle size distribution of the coke 30 can be measured with high accuracy.
  • the calculation unit 26 is a known method in which the coarse particle size distribution of the coke 30 measured by the coarse particle measurement device 22 and the fine particle size distribution of the coke 30 measured by the fine particle measurement device 24 are measured in advance by sieve analysis. You may calibrate so that it may correspond with the particle size distribution of the coke 30 of this.
  • the calculation unit 26 calibrates the coarse particle size distribution measured by the coarse particle measuring device 22 using the calibration curve for calibrating the coarse particle size distribution, and uses the calibration curve for calibrating the fine particle size distribution.
  • the fine particle size distribution measured by the fine particle measuring device 24 may be calibrated.
  • the relationship between the particle size distribution in the fine particles of the coke 30 and the cumulative mass ratio under the sieve is greatly different from the relationship between the particle size distribution in the coarse grains of the coke 30 and the cumulative mass ratio under the sieve.
  • the coarse particle size measurement device 22 and the fine particle measurement device 24 are used to measure the coarse particle size distribution and the fine particle size distribution, and calculate two or more values of the cumulative mass ratio under the sieve for the particle size.
  • the value calculated by this measurement is defined as a measurement value 1.
  • the coke 30 that has been measured is sampled and subjected to sieve analysis to measure the particle size distribution.
  • a value measured by this measurement is defined as a measured value 2. This measurement is repeated twice or more, and a combination of measurement value 1 and measurement value 2 is acquired at least 2 sets, more preferably 10 sets or more.
  • a s1 and C S1 are calculated by using data of two or more points of the particle size distribution measured by the equation (3) and the fine particle measuring device 24 and the cumulative mass ratio under the sieve.
  • a l1 and C l1 are calculated using data of two points or more of the particle size distribution measured by the equation (4) and the coarse particle measuring device 22 and the cumulative mass ratio under the sieve.
  • a s2 and C S2 are calculated by using data of two or more points of the particle size distribution measured by the numerical formula (5) and the sieve analysis and the cumulative mass ratio under the sieve.
  • a l2 and C l2 are calculated using Equation (6) and data of two or more points of the particle size distribution measured by the sieve analysis and the cumulative mass ratio under the sieve.
  • a s2 D as a s1 + E as (7)
  • C s2 D bs C s1 + E bs Equation (8)
  • a l2 D al a l1 + E al (9)
  • C l2 D bl C l1 + E bl ⁇ equation (10)
  • D as , E as , D bs , E bs , D al , E al , D bl , and E bl are parameters to be obtained, respectively.
  • the straight lines defined by D as , E as , D bs , E bs , D al , E al , D bl , E bl calculated using these mathematical formulas (7) to (10) are modeled by linear approximation. It becomes a calibration curve.
  • the fine particles of the coke 30 sieved by the sieve 14 do not change the value of the cumulative mass ratio under the sieve with respect to the particle size, as shown in FIG. 6, so there is a problem even if the parameters a s1 and a s2 are reduced. There is no.
  • a s3 and C s3 are calculated using data of two or more points of the particle size distribution measured by the equation (11) and the fine particle measuring device 24 and the cumulative mass ratio under the sieve.
  • a l3 and C l3 are calculated using data of two or more points of the particle size distribution measured by the equation (12) and the coarse particle measuring device 22 and the cumulative mass ratio under the sieve.
  • the calculated parameters D as , E as , D bs , E bs , D al , E al , D bl , E bl and a s3 , C s3 calculated using the above formulas (11) and (12) are used.
  • a l3 and C l3 calculates the a s4, b s4, a l4 and b l4 using the following equation (13) to (16).
  • Formula (17) using a s4 and C s4 calculated from the above formulas (13) to (16) is a formula that corrects the relationship between the particle size distribution measured by the fine particle measuring device 24 and the cumulative mass ratio under the sieve. in and, a l4 and C l4 formulas (18) using, the formula for correcting the relationship between the measured particle size distribution and undersize cumulative mass ratio by the coarse measurement apparatus 22.
  • the calculation unit 26 corrects the particle size distribution of the coarse particles using the calibration curve for correcting the particle size distribution of the particle size measurement range of the coarse particle measurement device 22, and the particle size distribution of the particle size measurement range of the fine particle measurement device 24.
  • the fine particle size distribution is corrected using a calibration curve that corrects.
  • FIG. 8 is a graph showing the relationship between the measured harmonic average particle diameter obtained by sieve analysis and the estimated harmonic average particle diameter calculated by the raw material measuring apparatus.
  • the horizontal axis represents the estimated harmonic average particle diameter of the coke 30 measured by the particle size distribution measuring apparatus 10
  • the vertical axis represents the actually measured harmonic average particle diameter of the coke 30 measured by sieve analysis.
  • the measurement result of the raw material measurement apparatus shown in FIG. 8 is a measurement value measured using a raw material measurement apparatus provided with a digital camera equipped with a laser distance meter as a coarse particle measurement apparatus and a strobe illumination as a fine particle measurement apparatus. It is the result corrected using the calibration curve mentioned above.
  • the harmonic average particle diameter of the coke 30 measured by sieving analysis and the harmonic average particle diameter of the coke 30 measured using the particle size distribution measuring apparatus 10 according to the present embodiment match. I understand that.
  • the porosity is calculated using, for example, a model of Sato and Taguchi (Non-Patent Document 1) that handles coarse particles and fine particles separately.
  • the model is not limited to this model, and other models for calculating the porosity may be adopted.
  • the porosity ⁇ can be calculated by the following mathematical formula (19).
  • D p is a harmonic average particle diameter, and I sp is a value defined by the following mathematical formulas (20), (21), and (22).
  • Equation (21) is the center diameter of each particle size
  • W i is the sieving mass ratio of each particle size.
  • Ip defined by Equation (21) is an amount that represents the dispersion of the particle size distribution, and is an amount that is more affected by coarse particles than fine particles.
  • Is defined by Equation (22) is an amount that represents the dispersion of the specific surface area, and is an amount that is greatly affected by fine particles.
  • the particle size distribution measuring apparatus 10 is a porosity measuring apparatus.
  • the porosity measuring device uses the coarse particle measuring device 22 and the fine particle measuring device 24 which are separate measuring devices to measure the coarse particle size distribution and the fine particle size distribution of the coke 30 conveyed by the conveyor 16 in real time.
  • the porosity of the coke 30 stacked in the blast furnace can be measured in real time using the coarse particle size distribution and the fine particle size distribution.
  • the coarse particle size distribution and the fine particle size distribution can be measured with high accuracy, and the measurement accuracy of the porosity of the coke 30 is also improved. .
  • the coke 30 conveyed by the conveyor 16 is described as an example of the raw material, but is not limited thereto.
  • it may replace with coke and may be a lump ore or a sintered ore.
  • the present invention can be more suitably applied when it has a step of removing fine particles using a sieve before they are charged into a blast furnace.
  • the coarse particle measuring device 22 of the present embodiment Although an example in which a laser distance meter is used as the coarse particle measuring device 22 of the present embodiment has been shown, it is not limited thereto.
  • the coarse particle measuring device 22 can be used.
  • a part of the function of the arithmetic unit 20 described in the present embodiment may be performed by the coarse particle measuring device 22 and the fine particle measuring device 24, and the coarse particle measuring device 22 calculates the particle size distribution of the coarse particles.
  • the fine particle measuring device 24 may calculate the fine particle size distribution.
  • the coarse particle size distribution is set to coke 30 having a particle size larger than the sieve size of sieve 14, and the fine particle size is set to coke 30 having a particle size equal to or smaller than the sieve size of sieve 14.
  • the particle size distribution of the coarse particles and the fine particles may be determined in a range where the measurement accuracy of at least one of the particle size distribution of the coarse particle measurement device 24 and the particle size distribution of the fine particle measurement device 24 is high. Good.
  • a particle size distribution of 10 mm or more can be measured with high accuracy. The range may be less than 10 mm.
  • the sieving cumulative mass ratio is expressed as a straight line using a lognormal distribution function
  • the present invention is not limited thereto.
  • another function that can express the particle size distribution on the coarse grain side and the fine grain side as a linear model with the vicinity of the sieve diameter of the sieve 14 as a boundary may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

粗粒と細粒とを含む原料の粒度分布を高い精度で測定できる原料の粒度分布測定装置、粒度分布測定方法、および測定された粒度分布を用いて空隙率を測定する空隙率測定装置を提供する。 原料の粒度分布測定装置であって、粗粒の粒度分布を示す情報を取得する粗粒測定装置と、細粒の粒度分布を示す情報を取得する細粒測定装置と、粗粒の粒度分布を示す情報を用いて粗粒の粒度分布を算出し、細粒の粒度分布を示す情報を用いて細粒の粒度分布を算出し、粗粒の粒度分布と細粒の粒度分布とを用いて原料全体の粒度分布を算出する演算装置とを有する。

Description

原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置
 本発明は、高炉などで使用する原料の粒度分布を測定する原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置に関する。
 鉱物などの原料を用いた高炉のような製造プロセスにおいて、炉内通気は、製造プロセスにおける重要な指標の一つになっており、この炉内通気を左右する要因の一つが原料の粒度分布である。従来は、定期的な原料のサンプリングと篩分析で原料の粒度分布を把握していた。しかしながら、篩分析は時間がかかるので、高炉操業へのリアルタイムな結果の反映が難しい。このため、高炉へ搬送される原料の粒度分布をリアルタイムに把握する技術が求められていた。
 鉱物などの原料を用いた高炉のような製造プロセスにおいて、炉内通気は、製造プロセスにおける重要な指標の一つになっており、この炉内通気を左右する要因の一つが原料の粒度分布である。従来は、定期的な原料のサンプリングと篩分析で原料の粒度分布を把握していた。しかしながら、篩分析は時間がかかるので、高炉操業へのリアルタイムな結果の反映が難しい。このため、高炉へ搬送される原料の粒度分布をリアルタイムに把握する技術が求められていた。
特開2014-92494号公報 特開2015-124436号公報
山田、外4名、「大型高炉の装入物分布と通気性」、KAWASAKI STEEL GIHO Vol.6(1974)No.1,p.16-37
 特許文献1に開示された測定方法は、粒状原料の粒度分布をリアルタイムに測定できるが、単一のカメラやレーザー距離計を用いているので、これらのセンサの分解能の制約で原料の細粒側の粒度分布の測定精度を確保できない。微量な細粉も高炉内の通気性に影響を及ぼすので、精度の高い測定が必要になる。
 特許文献2に開示された装入物検出装置は、装入物の水分量を検出することで装入物の粉率を測定する装置であるが、水分量と相関が高いのは、水分を介して付着した粒径の小さい装入物の粉率であり、粒径の大きい装入物の粒度を高精度に測定できない。
 本発明は、従来技術が抱える上記課題を鑑みてなされたものであり、その目的は、粗粒と細粒とを含む原料の粒度分布を高い精度で測定できる原料の粒度分布測定装置、粒度分布測定方法、および測定された粒度分布を用いて空隙率を測定する空隙率測定装置を提供することにある。
 このような課題を解決する本発明の特徴は、以下の通りである。
(1)粗粒の粒度分布を示す情報を取得する粗粒測定装置と、細粒の粒度分布を示す情報を取得する細粒測定装置と、前記粗粒の粒度分布を示す情報を用いて粗粒の粒度分布を算出し、前記細粒の粒度分布を示す情報を用いて細粒の粒度分布を算出し、前記粗粒の粒度分布と前記細粒の粒度分布とを用いて原料全体の粒度分布を算出する演算装置とを有する、原料の粒度分布測定装置。
(2)前記細粒の粒度分布を示す情報は原料の画像データであり、前記画像データの輝度を平均した平均輝度を用いて前記細粒の粒度分布を算出する、(1)に記載の原料の粒度分布測定装置。
(3)前記細粒測定装置は、前記原料からの反射光を分光して分光反射率を測定する分光測定部を有し、前記細粒測定装置は、前記細粒の粒度分布を示す情報として複数の波長の分光反射率を取得し、前記演算装置は、前記複数の波長の分光反射率を主成分分析または部分的最小2乗法(PLS)して得られた予め定められた基底ベクトルのスコアを用いて前記細粒の粒度分布を算出する、(1)に記載の原料の粒度分布測定装置。
(4)粗粒の粒度分布を示す情報を取得する粗粒測定ステップと、細粒の粒度分布を示す情報を取得する細粒測定ステップと、前記粗粒測定ステップで取得された粗粒の粒度分布を示す情報を用いて粗粒の粒度分布を算出する粗粒の粒度分布算出ステップと、前記細粒測定ステップで取得された細粒の粒度分布を示す情報を用いて細粒の粒度分布を算出する細粒の粒度分布算出ステップと、前記粗粒の粒度分布と、前記細粒の粒度分布とを用いて、原料全体の粒度分布を算出する原料の粒度分布算出ステップと、を有する原料の粒度分布測定方法。
(5)前記原料の粒度分布算出ステップでは、前記粗粒の粒度分布および前記細粒の粒度分布を直線モデルとし、前記直線モデルとした粗粒の粒度分布と、前記直線モデルとした細粒の粒度分布とを組み合わせて原料全体の粒度分布を算出する、(4)に記載の原料の粒度分布測定方法。
(6)容器内で積み重なった原料の空隙率を測定する空隙率測定装置であって、前記原料は、粒径の大きい粗粒と、粒径の小さい細粒とを含み、前記粗粒の粒度分布を測定する粗粒測定装置と、前記細粒の粒度分布を測定する細粒測定装置と、前記粗粒測定装置により測定された粗粒の粒度分布と、前記細粒測定装置によって測定された細粒の粒度分布とを用いて、前記容器内で積み重なった状態における前記原料の空隙率を算出する演算装置と、
を備える、空隙率測定装置。
(7)前記粗粒測定装置および前記細粒測定装置は、前記原料を容器へ搬送するコンベアの上方に設けられ、前記演算装置は、前記容器内で積み重なった状態における前記原料の空隙率を算出する、(6)に記載の空隙率測定装置。
(8)前記演算装置は、算出された前記粗粒の粒度分布および前記細粒の粒度分布が、予め篩を用いて測定された粗粒の粒度分布および細粒の粒度分布に一致するように校正する、(6)または(7)に記載の空隙率測定装置。
(9)前記演算装置は、粗粒の粒度分布を校正する検量線を用いて前記粗粒測定装置によって測定された前記粗粒の粒度分布を校正し、細粒の粒度分布を校正する検量線を用いて前記細粒測定装置によって測定された前記細粒の粒度分布を校正する、(8)に記載の空隙率測定装置。
 本発明の原料の粒度分布測定装置を用いることで、粗粒と細粉を含む原料の粒度分布を高い精度で測定できる。さらに、原料の粒度分布測定装置は、粗粒の粒度分布と細粒の粒度分布とを空隙率算出モデルに基づいた空隙率変換を行なうことで高炉のような容器に装入されて積み重なった状態における原料の空隙率も測定できる。このような原料の粒度分布測定装置で、高炉内に装入されるコークスの粒度分布や空隙率をリアルタイムに測定し、高炉内の原料の状態を把握することで高炉内の原料の状態に対応した高炉操業が可能になり、これにより高炉操業の安定化に寄与できる。
図1は、本実施形態に係る原料の粒度分布測定装置の一例とその周辺の構成を示す模式図である。 図2は、平均輝度とコークス粉の粉率との関係を示すグラフである。 図3は、吸光度を用いて算出したコークス粉の推定粉率と実測粉率との関係を示すグラフである。 図4は、PLSを適用して得られたスコアから算出したコークス粉の推定粉率と実測粉率との関係を示すグラフである。 図5は、コークスの篩分析による粒度分布を示すグラフである。 図6は、コンベアによって搬送されるコークスを篩分析した篩目径の対数と篩下累積質量比率の正規確率との関係を示すグラフである。 図7は、篩分析による粒度分布の測定結果と、原料の粒度分布測定装置による粒度分布の測定結果を比較したグラフである。 図8は、篩分析による実測調和平均粒子径と、原料測定装置で算出された推定調和平均粒子径との関係を示すグラフである。
 以下、高炉を用いた製造プロセスにおいて、コンベアによって搬送される高炉原料の1つであるコークスの粒度分布の測定を例に本発明の実施形態を説明する。図1は、本実施形態に係る原料の粒度分布測定装置の一例とその周辺の構成を示す模式図である。高炉に装入される原料であるコークス30は、まず、ホッパ12に貯留される。ホッパ12から排出されたコークス30は、篩14で篩われて、篩14の篩目径よりも小さい粒径の細粒が篩い落とされた後に、コンベア16によって高炉(図示せず)に搬送される。しかしながら、篩14を用いて篩う時間が限られていることから、コークス30は、篩14で篩い切れず、篩目径より大きいコークスに付着する篩14の篩目径以下の細粒も含む。このため、コンベア16によって搬送されるコークス30は、篩14の篩目径より大きい粗粒と、篩14で篩い切れなかった篩目径以下の細粒とを含む。本実施形態において、篩14の篩目径は、例えば、35mmである。高炉は、容器の一例である。
 原料の粒度分布測定装置10は、演算装置20と、粗粒測定装置22と、細粒測定装置24とを備える。粗粒測定装置22は、コンベア16の上方に設けられる。粗粒測定装置22は、粗粒測定ステップを実施して、コンベア16によって搬送されるコークス30の粗粒の粒度分布を示す情報をリアルタイムに取得する。細粒測定装置24は、同じく、コンベア16の上方に設けられる。細粒測定装置24は、細粒測定ステップを実施して、コンベア16によって搬送されるコークス30の細粒の粒度分布を示す情報をリアルタイムに取得する。本実施形態において、コークス30の粗粒は、篩14の篩目径より大きい粒径の塊コークスであり、コークス30の細粒は、篩14の篩目径以下の粒径のコークス粉である。
 演算装置20は、例えば、演算部26と格納部28とを有するワークステーションやパソコン等の汎用コンピュータである。演算部26は、例えば、CPU等であって、格納部28に保存されたプログラムやデータを用いて、粗粒測定装置22および細粒測定装置24の動作を制御する。演算部26は、粗粒の粒度分布を示す情報および細粒の粒度分布を示す情報を取得し、これらを用いて粗粒および細粒を含むコークス30の粒度分布を算出する。格納部28には、粗粒測定装置22および細粒測定装置24を制御するためのプログラム、演算部26における演算を実行するためのプログラム、当該プログラム実行中に使用する演算式等が予め格納されている。
 本実施形態において、粗粒測定装置22は、例えば、レーザー距離計である。レーザー距離計は、演算部26の制御により、リアルタイムにレーザー距離計からコンベア16上のコークス30までの距離を測定する。レーザー距離計は、粗粒の粒度分布を示す情報としてレーザー距離計からコークス30までの距離であるコークス30のプロフィールデータを取得する。レーザー距離計は、コークス30のプロフィールデータを演算装置20に出力する。レーザー距離計は、コンベア16の幅と同じ測定領域を有し、コンベア16によって搬送されるコークス30の全てを測定できることが好ましい。レーザー距離計は、コンベア16によって搬送されるコークス30を、例えば、搬送方向と直交方向にライン状にレーザーを走査して1000~10000ライン/秒の周期で測定し、測定されたライン状のデータを時間方向に並べてコークス30の二次元プロフィールデータとする。
 演算部26は、レーザー距離計からコークス30の二次元プロフィールデータを取得すると、当該プロフィールデータに対してコークス30の粒子分離処理を行う。粒子分離処理とは二次元プロフィールデータ内に映っている粒子をそれぞれ別々のものとして識別するための処理であり、例えば、公知のWatershedアルゴリズムという処理方法で実施できる。演算部26は、粒子分離処理によって分離されたコークス30の粒径を、円形近似フィッティング法を用いて算出し、予め定められた粒径の範囲ごとに粒子数をカウントしてヒストグラム化してコークス30の粗粒の粒度分布を算出する。演算部26は、このような粗粒の粒度分布算出ステップを実施して、コークス30の粗粒の粒度分布をリアルタイムに算出する。
 コンベア16上のコークス30の層厚は、100mm程度である。一般的に粒状物は、積み重ねられると粒度の大きい粒子が上層側に、粒度の小さい粒子が下層側に偏析する。コークス層においても同様にコークス30は偏析し、コークス層の上層側には粒度の大きいコークスが多くなり、下層側には粒度の小さいコークスが多くなる。コークス30のプロフィールデータを用いて算出された粒度分布は、コークス層の上層に存在するコークス30の粒度分布であり、粒度の大きいコークスが多く分布した粒度分布になる。したがって、コークス30のプロフィールデータを用いて算出された粒度分布は、実際の粒度分布より大きくなることが知られている。
 この現象については、コークス層における偏析が経時で変化しないと仮定し、コークス30の上層側の粒度分布と、層全体の粒度分布との差を予め篩分析により測定して格納部28に格納しておき、演算部26は、算出された粗粒の粒度分布を、格納部28に格納された粒度分布の差を用いて補正してもよい。これにより、粗粒の粒度分布の測定精度が向上する。
 細粒測定装置24は、例えば、ストロボ照明を備えたカメラである。カメラは、演算部26の制御により、予め定められた時間ごとにコークス30を撮像し、細粒の粒度分布を示す情報としてコークス30の画像データをリアルタイムに取得する。カメラは、当該画像データを演算部26に出力する。カメラが備えるCCD、CMOS等の撮像センサは、コークス30を撮像して画像データを生成する撮像部である。
 演算部26は、カメラから画像データを取得すると、1つの画像データの各画素の輝度(0~255)を算術平均して平均輝度を算出する。格納部28には、予め、平均輝度と、粒度1mm以下のコークス(以後、コークス粉と記載する場合がある)の粉率とが対応つけられた関係式が格納されており、演算部26は、平均輝度と当該関係式を用いてコークス30の細粒の粒度分布としてコークス粉の粉率を算出する。演算部26は、このような細粒の粒度分布算出ステップを実施して、コークス30の細粒の粒度分布をリアルタイムに算出する。コークス粉の粉率とは、全コークス質量に占めるコークス粉の質量割合を意味する。後述するように、篩14の篩目径以下の粒径のコークスのほとんどが粒径1mm以下のコークス粉であるので、篩14の篩目径以下の細粒の粒度分布は粒径1mm以下となるコークス粉の粉率で表すことができる。従って、コークス粉の粉率が測定できれば、篩14の篩目径以下の細粒の粒度分布を測定できることになる。
 図2は、平均輝度とコークス粉の粉率との関係を示すグラフである。図2において、縦軸はコークスを乾燥後篩分析して測定したコークス粉の実測粉率(質量%)であり、横軸はコークスを撮像して生成された画像データにおける各画素の輝度を算術平均した値である。
 図2に示すように、コークス粉の粉率と平均輝度とは高い相関がある。このため、図2に実線で示した平均輝度とコークス粉の粉率との関係式を算出し、予め格納部28に格納しておくことで、演算部26は、平均輝度と上記関係式とを用いてコークス粉の粉率を算出できる。演算部26は、粗粒の粒度分布と、平均輝度および上記関係式を用いて細粒の粒度分布を算出すると、これらを用いてコークス30の粒度分布を算出する。
 細粒測定装置24として、コークス30からの反射光を分光して分光反射率を測定する分光測定部を有する分光装置を用いてもよい。この場合に分光装置は、細粒の粒度分布を示す情報として、水の吸収波長の分光反射率と、当該波長を挟む水の吸収波長ではない2つのリファレンス波長の分光反射率をリアルタイムに取得する。分光装置は、例えば、1測定/秒以上の速度で分光反射率を取得し、当該3つの波長の分光反射率を演算部26に出力する。
 演算部26は、取得した3つの波長の分光反射率と下記(1)式とを用いて水の吸収波長における吸光度を算出する。
 X=1-[λ2/{α・λ1+(1-α)・λ3}]・・・(1)
 但し、(1)式において、Xは水の吸収波長における吸光度であり、λ1、λ3はリファレンス波長の分光反射率であり、λ2は水の吸収波長の分光反射率であり、αは重みであり、3色比率演算時におけるαは0.5である。キャリブレーション時においては、λ1=λ2=λ3=1でありX=0となる。
 上記(1)式に示すように、演算部26は、水の吸収波長ではない2つのリファレンス波長の分光反射率に対する水の吸収波長の分光反射率の比率を計算した上で、水の吸収波長の分光反射率から水の吸収波長ではない2つの波長の分光反射率を減じることで、水の吸収波長における吸光度を算出する。
 格納部28には、水の吸収波長における吸光度とコークス粉の粉率とが対応つけられた関係式が格納されており、演算部26は、算出した水の吸収波長における吸光度と当該関係式とから単回帰でコークス粉の粉率を算出する。このように、細粒測定装置24として分光装置を用いた場合であっても、演算部26は、コークス30の細粒の粒度分布をリアルタイムに算出できる。
 図3は、吸光度を用いて算出したコークス粉の推定粉率と実測粉率との関係を示すグラフである。図3において、縦軸はコークス粉の推定粉率(質量%)であり、横軸はコークスを乾燥後篩分析して測定したコークス粉の実測粉率(質量%)である。図3に示すように、吸光度から算出したコークス粉の推定粉率とコークスを篩分析して得られたコークス粉の実測粉率とに相関係数0.73という高い相関関係が確認され、吸光度を用いてコークス粉の粉率が高い精度で算出できることが確認された。
 さらに、細粒測定装置24として分光装置を用いる場合において、分光装置は、細粒の粒度分布を示す情報として、可視光領域および赤外領域の9波長の分光反射率をリアルタイムに取得してもよい。この場合において分光装置が取得する分光反射率の波長は、例えば、波長の短い側から、青、緑、赤、1.32μm、1.46μm、1.60μm、1.80μm、1.96μm、2.10μmである。分光装置は、当該9つの波長の分光反射率を演算部26に出力する。青とは、435~480nmの範囲の波長であり、緑とは、500~560nmの範囲の波長であり、赤とは、610~750nmの範囲の波長である。
 演算部26は、9つの波長の分光反射率を取得すると、格納部28に格納されている演算式を用いて、予め定められた基底ベクトルのスコアを算出する。演算部26は、当該スコアとコークス粉の粉率とが対応つけられた関係式とを用いて、コークス粉の粉率を算出する。ここで、予め定められた基底ベクトルのスコアとは、分光装置から取得した分光反射率を主成分分析して得られる9つの基底ベクトルのうち、コークス30の粉率の変化に強い相関を示す基底ベクトルのスコアである。
 格納部28には、9つの波長の分光反射率からスコアを算出する演算式と、当該スコアとコークス粉の粉率とが対応つけられた関係式が格納されている。スコアを算出する演算式と、当該スコアとコークス粉の粉率との関係式は、以下の手順で算出される。
 まず、分光装置を用いてコンベア16によって搬送されるコークスの9つの波長の分光反射率を測定する。測定された9つの波長の分光反射率を主成分分析し、第1~第9主成分における9つの基底ベクトルと、当該基底ベクトルから算出される9つのスコアを得る。次に、分光反射率を測定したコークスを採取し、当該コークスを篩分析して粒径1mm以下のコークス粉の粉率を実測する。粉率は、コークスを乾燥させた後、目開き1mmの篩を用いて篩い、篩い前後のコークスの質量差の篩前の質量に対する割合として算出した。
 この操作を粉率や含有水分量の異なるコークスを用いて実施して、それぞれ篩分析して得られた粉率と9つのスコアを1組としたデータを複数取得する。これら複数のデータのうち、9つのスコアを粉率が異なるコークス間で比較し、コークスの粉率の変化と強い相関を示すn個(nは9より小さい自然数)のスコアを特定する。スコアは、当該スコアの基底ベクトルを用いて算出できる。
 スコアとコークス粉の粉率とが対応つけられた関係式は、例えば、コークス粉の粉率(Y)を目的変数とし、特定されたn個のスコアを説明変数(X、X、・・・、X)とした回帰式である数式(2)である。
 Y=e+f×X+f×X+・・・+f×X・・・数式(2)
 但し、数式(1)において、e、f、f、・・・、fは、回帰式のパラメータである。
 コークス粉の粉率の変化と強い相関を示すn個のスコアを特定することで、粉率や含有水分量の異なるコークスの粉率と9つのスコアを1組としたデータから、粉率と特定したn個のスコアを1組としたデータをそれぞれ取得できるので、これらデータと最小二乗法を用いて、数式(1)のパラメータb、a、a、・・・、aが算出できる。この数式(2)が、特定されたスコアとコークス粉の粉率とを対応づける関係式となる。
 コークス30の粉率の変化に強い相関を示すスコアを特定する際に、9つの波長の分光反射率を主成分分析する例を示したが、これに限らず、粉率と9つの波長の分光反射率を1組とした複数のデータを取得し、当該データに部分的最小2乗法(PLS)を適用し、コークスの粉率に強い相関を示すスコアを直接的に求めてもよい。この場合において、コークスの粉率に強い相関を示すスコアを算出する演算式は、PLSによって求められたスコアの基底ベクトルから算出できる。粉率とスコアとの関係式は、数式(1)と同じ回帰式となる。数式(1)における回帰式のパラメータも、PLSによって求められたスコアと、粉率とを1組とした複数のデータと、最小二乗法により算出できる。
 図4は、PLSを適用して得られたスコアから算出したコークス粉の推定粉率と実測粉率との関係を示すグラフである。図4において、横軸は実測粉率(質量%)であり、縦軸は推定粉率(質量%)である。実測粉率は、上述した方法と同じく、コークスを乾燥させた後、目開き1mmの篩を用いて篩い、篩い前後のコークスの質量差の篩前の質量に対する割合として算出した。推定粉率は、コークスの粉率を目的変数とし、PLSを適用させて得られたコークスの粉率と強い相関を示す2つのスコアを説明変数とした回帰式で算出されたコークスの粉率である。図4に示すように、コークスの推定粉率と実測粉率とには強い相関が見られ、その相関係数はR=0.78であった。これらの結果から、PLSを適用して得られたスコアから算出することでも十分な精度でコークスの粉率が測定できることが確認された。
 さらに、細粒測定部として、コークス30にレーザーを照射し、散乱光が描く光強度分布パターンからコークス粉の粒度分布を測定できるレーザー散乱式粒度分布測定装置を用いてもよい。この場合において、レーザー散乱式粒度分布測定装置は、コークス粉の粒度分布をリアルタイム(30秒ごと)に取得する。レーザー散乱式粒度分布測定装置は、当該コークス粉の粒度分布を演算部26に出力する。
 図5は、コンベア16によって搬送されるコークス30の篩分析による粒度分布を示すグラフである。図5の一点鎖線は、篩14の篩目径を示す。篩14の篩目径以下の細粒は篩14で篩われることでコークス30から除かれるので、一点鎖線より左側の篩目径未満の領域の細粒の比率は小さくなる。
 図6は、コンベア16によって搬送されるコークス30を篩分析した篩目径の対数と篩下累積質量比率の正規確率との関係を示すグラフである。図6において、横軸はコークス30を篩分析した篩目径の対数であり、縦軸はその篩目径におけるコークスの篩下累積質量比率を正規確率目盛でプロットしたものである。図6に示した例において、近似直線1がコークス30の細粒の近似直線を示し、近似直線2がコークス30の粗粒の近似直線を示し、一点鎖線は、篩14の篩目径を示す。
 図6に示すように、篩14で篩われたコークス30には、微量であるものの篩14の篩目径以下の細粒のコークス30も存在する。一点鎖線より左側の篩目径未満の領域の細粒のコークス30は、コークス30の粗粒に付着したコークス粉であり、篩14の篩目径よりもその粒度は非常に小さい。そのため、篩14の篩目径以下において、篩下累積質量比率は、コークス30の粒度に対して増加していない。
 一方、篩目径より大きい粗粒については、コークス30の粒度に対して増加している。コークス30の粗粒を破砕・粉砕された粒子と考えると、コークス30の粗粒の累積篩上質量比率の分布は、ロジン・ラムラー分布により近似できることが知られている。これは粒子が自然に破砕・粉砕される場合、その粒度分布には規則性があることを示している。したがって、ロジン・ラムラー分布に従っていない図6に示す関係は、自然な破砕・粉砕とは異なる現象であるといえる。
 図6に示すように、コークス30の細粒における粒度と篩下累積質量比率の関係は、コークス30の粗粒における粒度と篩下累積質量比率の関係と大きく異なり、篩目径の前後を境に、異なる2つの直線的な分布になることがわかった。本実施形態に係る粒度分布測定装置10では、それぞれ異なる粗粒測定装置22と細粒測定装置24とを用いて、篩14の篩目径以下の細粒の粒度分布を示す情報と、篩14の篩目径より大きい粗粒の粒度分布を示す情報を別々に取得し、演算部26は、これら情報を用いて、粗粒の粒度分布と細粒の粒度分布を算出する。演算部26は、原料の粒度分布算出ステップを実施し、粗粒の粒度分布と細粒の粒度分布とを篩下累積質量比率で直線モデルとし、当該直線モデルを組み合わせることでコークス30全体の粒度分布を算出する。
 図7は、篩分析による粒度分布の測定結果と、原料の粒度分布測定装置による粒度分布の測定結果を比較したグラフである。図7において、横軸はコークスの篩目径の対数であり、縦軸はその篩目径におけるコークス30の篩下累積質量比率を正規確率目盛でプロットしたものである。図7に示した原料測定装置の測定結果は、粗粒測定部としてレーザー距離計を用い、細粒測定部としてストロボ照明を備えたデジタルカメラを備える原料の粒度分布測定装置を用いて測定した結果である。
 図7に示すように、篩分析によって測定されたコークス30の篩下累積質量比率を示す丸プロットと、粒度分布測定装置10によって測定されたコークス30の篩下累積質量比率を示す三角プロットとが一致している。この結果から、本実施形態に係る粒度分布測定装置10を用いて、コークス30の粗粒の粒度分布と細粒の粒度分布とを別々に算出し、これらを篩下累積質量比率で組み合わせることでコークス30の粒度分布を高い精度で測定できることが確認された。
 演算部26は、粗粒測定装置22によって測定されたコークス30の粗粒の粒度分布と、細粒測定装置24によって測定されたコークス30の細粒の粒度分布を、篩分析によって予め測定した既知のコークス30の粒度分布に一致するように校正してもよい。演算部26は、粗粒の粒度分布を校正する検量線を用いて、粗粒測定装置22が測定した粗粒の粒度分布を校正し、細粒の粒度分布を校正する検量線を用いて、細粒測定装置24が測定した細粒の粒度分布を校正してもよい。上述したように、コークス30の細粒における粒度分布と篩下累積質量比率の関係は、コークス30の粗粒における粒度分布と篩下累積質量比率の関係と大きく異なるので、演算部26は、これらの結果を異なる直線近似でモデル化した検量線を用いて校正することで、より精度の高い粒度の測定が可能となる。
 検量線の作成は、以下の手順で行なう。まず、粗粒測定装置22および細粒測定装置24を用いて、粗粒の粒度分布および細粒の粒度分布を測定し、粒度に対する篩下累積質量比率の値を2点以上算出する。この測定により算出された値を測定値1とする。次に、この測定を行なったコークス30をサンプリングし、篩分析して粒度分布の測定を行なう。この測定により測定された値を測定値2とする。この測定を2回以上繰り返し行い、測定値1と測定値2の組み合わせを最低で2セット、より好ましくは10セット以上取得する。
 次に、篩14の篩目径以下の細粒の篩下累積質量比率をyとし、篩14の篩目径より大きい粗粒の篩下累積質量比率をyとし、図6と同様に、篩目径の大きさの対数を横軸(x軸)に、その篩目径における篩下累積質量比率を正規確率目盛で縦軸(y軸)にプロットした測定値1を直線で回帰すると下記数式(3)および数式(4)が得られる。
 y=as1(x-CS1)・・・数式(3)
 y=al1(x-Cl1)・・・数式(4)
 上記数式(3)および数式(4)において、篩14の篩目径(対数値)をxとすると、xは、x≧xとなる粒度を表し、xは、x<xとなる粒度を表し、as1、CS1、al1およびCl1は求めるパラメータである。そして、数式(3)と細粒測定装置24で測定された粒度分布と篩下累積質量比率の2点以上のデータを用いてas1およびCS1を算出する。同様に、数式(4)と粗粒測定装置22で測定された粒度分布と篩下累積質量比率の2点以上のデータを用いてal1およびCl1を算出する。
 篩14の篩目径以下の細粒の篩下累積質量比率yおよび篩14の篩目径より大きい粗粒の篩下累積質量比率yを、測定値2を用いて同様に直線で回帰すると、下記数式(5)および数式(6)が得られる。
 y=as2(x-CS2)・・・数式(5)
 y=al2(x-Cl2)・・・数式(6)
 上記数式(5)および数式(6)において、篩14の篩目径をxとすると、xは、x≧xとなる粒度を表し、xは、x<xとなる粒度を表し、as2、CS2、al2およびCl2は求めるパラメータである。そして、数式(5)と篩分析で測定された粒度分布と篩下累積質量比率の2点以上のデータを用いてas2およびCS2を算出する。同様に、数式(6)と篩分析で測定された粒度分布と篩下累積質量比率の2点以上のデータと、を用いてal2およびCl2を算出する。
 次に、数式(3)、数式(5)を用いて算出されたas1とas2、CS1とCS2を直線で回帰すると下記数式(7)および数式(8)が得られ、数式(4)、数式(6)を用いて算出されたal1とal2、Cl1とCl2を直線で回帰すると、下記数式(9)および数式(10)が得られる。
 as2=Dass1+Eas・・・数式(7)
 Cs2=Dbss1+Ebs・・・数式(8)
 al2=Dall1+Eal・・・数式(9)
 Cl2=Dbll1+Ebl・・・数式(10)
 上記数式(7)~(10)において、Das、Eas、Dbs、Ebs、Dal、Eal、Dbl、Eblはそれぞれ求めるパラメータである。これら数式(7)~(10)を用いて算出されたDas、Eas、Dbs、Ebs、Dal、Eal、Dbl、Eblによって規定される直線が、直線近似でモデル化した検量線になる。細粒測定装置24が粉率を測定する場合においては、数式(3)および数式(5)の式におけるas1、Cs1およびas2、Cs2の値が1点のデータからは決定できないという問題がある。その場合には、パラメータをy=Csl、y=Cs2としas1およびas2を削減して、1点データでも対応付けできるようにしてもよい。特に、篩14で篩われたコークス30の細粒は、図6に示すように、粒度に対して篩下累積質量比率の値が変化しないので、パラメータas1およびas2を削減しても問題はない。
 次に、検量線を用いた粒度分布の補正方法について説明する。コンベア16によって搬送されるコークス30を粗粒測定装置22および細粒測定装置24を用いて測定して測定値3を得る。篩14の篩目径以下の細粒の篩下累積質量比率yおよび篩14の篩目径より大きい粗粒の篩下累積質量比率yを、数式(3)~(6)を求めた方法と同様に直線で回帰すると、下記数式(11)および数式(12)が得られる。
 y=as3(x-CS3)・・・数式(11)
 y=al3(x-Cl3)・・・数式(12)
 上記数式(11)および数式(12)において、篩14の篩目径をxとすると、xは、x≧xとなる粒度を表し、xは、x<xとなる粒度を表し、as3、Cs3、al3およびCl3は求めるパラメータである。そして、数式(11)と細粒測定装置24で測定された粒度分布と篩下累積質量比率の2点以上のデータを用いてas3およびCs3を算出する。同様に、数式(12)と粗粒測定装置22で測定された粒度分布と篩下累積質量比率の2点以上のデータを用いてal3およびCl3を算出する。そして、算出したパラメータDas、Eas、Dbs、Ebs、Dal、Eal、Dbl、Eblと、上記数式(11)および数式(12)を用いて算出したas3、Cs3、al3およびCl3と、下記数式(13)~(16)を用いてas4、bs4、al4およびbl4を算出する。
 as4=Dass3+Eas・・・数式(13)
 Cs4=Dbss3+Ebs・・・数式(14)
 al4=Dall3+Eal・・・数式(15)
 Cl4=Dbll3+Ebl・・・数式(16)
 上記数式(13)~(16)から算出されたas4およびCs4を用いた数式(17)が、細粒測定装置24によって測定された粒度分布と篩下累積質量比率の関係を補正する数式であり、al4およびCl4を用いた数式(18)が、粗粒測定装置22によって測定された粒度分布と篩下累積質量比率の関係を補正する数式になる。
 y=as4(x-CS4)・・・数式(17)
 y=al4(x-Cl4)・・・数式(18)
 このように、演算部26は、粗粒測定装置22の粒度測定範囲の粒度分布を補正する検量線を用いて粗粒の粒度分布を補正し、細粒測定装置24の粒度測定範囲の粒度分布を補正する検量線を用いて細粒の粒度分布を補正する。これにより、本実施形態に係る粒度分布測定装置10は、コークス30の粒度分布をより高い精度で測定できる。
 図8は、篩分析による実測調和平均粒子径と、原料測定装置で算出された推定調和平均粒子径との関係を示すグラフである。図8において、横軸は粒度分布測定装置10で測定されたコークス30の推定調和平均粒径であり、縦軸は篩分析によって測定されたコークス30の実測調和平均粒径である。図8に示した原料測定装置の測定結果は、粗粒測定装置としてレーザー距離計を備え、細粒測定装置としてストロボ照明を備えたデジタルカメラを備える原料測定装置を用いて測定した測定値を、上述した検量線を用いて補正した結果である。図8に示すように、篩分析により測定されたコークス30の調和平均粒子径と、本実施形態に係る粒度分布測定装置10を用いて測定されたコークス30の調和平均粒子径とが一致していることがわかる。
 次に、高炉内で積み重ねられたコークス30の空隙率の算出方法について説明する。空隙率の算出は、本実施形態に係る粒度分布測定装置10を用いて実施できる。本実施形態において、空隙率の測定は、例えば、粗粒と細粒とを別々に扱う佐藤、田口のモデル(非特許文献1)を用いて空隙率を算出する。但し、このモデルに限定するものではなく、他の空隙率を算出するモデルを採用してもよい。上記モデルによると、空隙率εは、下記の数式(19)で算出できる。
Figure JPOXMLDOC01-appb-M000001
 
 上記数式(19)において、a、b、c、dはパラメータであり、粒子の種類によって実験的に決定される量である。例えば、コークスの場合においては、a=0.153、b=0.418、c=0.01225、d=0.416である。Dは、調和平均粒径であり、Ispは、以下の数式(20)、数式(21)および数式(22)で定義される値である。
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000004
 
 数式(21)、(22)において、Dは、各粒度の中心径であり、Wは、各粒度の篩下質量比率である。数式(21)によって定義されるIpは、粒度分布の分散を表す量であり、細粒に比べて粗粒の影響が大きい量である。一方、数式(22)によって定義されるIsは、比表面積の分散を表す量であり、細粒の影響が大きい量である。このように、上記モデルは、粗粒の粒度分布と細粒の粒度分布とを別々に測定できる粒度分布測定装置10と親和性が高い。
 これら数式(19)~(22)が格納部28に格納された本実施形態に係る粒度分布測定装置10を空隙率測定装置とする。空隙率測定装置は、コンベア16によって搬送されるコークス30の粗粒の粒度分布と細粒の粒度分布を、別々の測定装置である粗粒測定装置22と細粒測定装置24とを用いてリアルタイムに測定し、粗粒の粒度分布と細粒の粒度分布を用いて高炉内で積み重ねられたコークス30の空隙率をリアルタイムに測定できる。これにより、高炉のような製造プロセスにおいて、高炉内に装入されたコークス30の状態をリアルタイムに把握しながら高炉の操業を行なうことができるので、高炉の安定操業に寄与できる。
 当該測定値をそれぞれの測定範囲に対応した検量線を用いて校正することで、粗粒の粒度分布および細粒の粒度分布を高精度に測定でき、コークス30の空隙率の測定精度も向上する。
 本実施形態において、原料として、コンベア16によって搬送されるコークス30を例に説明したがこれに限られない。例えば、高炉に装入される原料の例であれば、コークスに代えて、塊鉱石であってもよく、焼結鉱であってもよい。さらに、これらが高炉に装入される前に、篩を用いて細粒を取り除く工程を有する場合に、さらに好適に適用できる。
 本実施形態の粗粒測定装置22としてレーザー距離計を用いた例を示したが、これに限られない。例えば、カメラと照明の組み合わせなど、コンベア16上のコークス30上面を観察でき、粗粒の粒度分布を測定できるものであれば、粗粒測定装置22に用いることができる。さらに、本実施形態で説明した演算装置20の機能の一部を、粗粒測定装置22および細粒測定装置24が実施してもよく、粗粒測定装置22が粗粒の粒度分布を算出し、細粒測定装置24が細粒の粒度分布を算出してもよい。
 さらに、本実施形態において、粗粒の粒度分布を篩14の篩目径より大きい粒径のコークス30とし、細粒の粒度を篩14の篩目径以下の粒径のコークス30とした例を示した。しかしながら、粗粒および細粒の粒度分布を、粗粒測定装置22の粒度分布の測定精度の高い範囲および細粒測定装置24の粒度分布のうちの少なくとも一方の測定精度の高い範囲で定めてもよい。例えば、粗粒測定装置22としてレーザー距離計を用いた場合においては、10mm以上の粒度分布であれば高い精度で測定できるので、粗粒の粒度分布の範囲を10mm以上とし、細粒の粒度分布の範囲を10mm未満としてもよい。本実施形態においては、対数正規分布関数を用いて篩下累積質量比率を直線として表現した例を示したが、これに限らない。篩14で篩われたコークスの粒度分布について、篩14の篩目径の近傍を境に粗粒側と細粒側の粒度分布とが直線モデルとして表現できる別の関数を用いてもよい。
 10 粒度分布測定装置
 12 ホッパ
 14 篩
 16 コンベア
 20 演算装置
 22 粗粒測定装置
 24 細粒測定装置
 26 演算部
 28 格納部
 30 コークス

Claims (9)

  1.  粗粒の粒度分布を示す情報を取得する粗粒測定装置と、
     細粒の粒度分布を示す情報を取得する細粒測定装置と、
     前記粗粒の粒度分布を示す情報を用いて粗粒の粒度分布を算出し、
     前記細粒の粒度分布を示す情報を用いて細粒の粒度分布を算出し、
     前記粗粒の粒度分布と前記細粒の粒度分布とを用いて原料全体の粒度分布を算出する演算装置とを有する、原料の粒度分布測定装置。
  2.  前記細粒の粒度分布を示す情報は原料の画像データであり、
     前記画像データの輝度を平均した平均輝度を用いて前記細粒の粒度分布を算出する、請求項1に記載の原料の粒度分布測定装置。
  3.  前記細粒測定装置は、前記原料からの反射光を分光して分光反射率を測定する分光測定部を備え、
     前記細粒測定装置は、前記細粒の粒度分布を示す情報として複数の波長の分光反射率を取得し、
     前記演算装置は、前記複数の波長の分光反射率を主成分分析または部分的最小2乗法(PLS)して得られた予め定められた基底ベクトルのスコアを用いて前記細粒の粒度分布を算出する、請求項1に記載の原料の粒度分布測定装置。
  4.  粗粒の粒度分布を示す情報を取得する粗粒測定ステップと、
     細粒の粒度分布を示す情報を取得する細粒測定ステップと、
     前記粗粒測定ステップで取得された粗粒の粒度分布を示す情報を用いて粗粒の粒度分布を算出する粗粒の粒度分布算出ステップと、
     前記細粒測定ステップで取得された細粒の粒度分布を示す情報を用いて細粒の粒度分布を算出する細粒の粒度分布算出ステップと、
     前記粗粒の粒度分布と、前記細粒の粒度分布とを用いて、原料全体の粒度分布を算出する原料の粒度分布算出ステップと、を有する原料の粒度分布測定方法。
  5.  前記原料の粒度分布算出ステップでは、前記粗粒の粒度分布および前記細粒の粒度分布を直線モデルとし、前記直線モデルとした粗粒の粒度分布と、前記直線モデルとした細粒の粒度分布とを組み合わせて原料全体の粒度分布を算出する、請求項4に記載の原料の粒度分布測定方法。
  6.  容器内で積み重なった原料の空隙率を測定する空隙率測定装置であって、
     前記原料は、粒径の大きい粗粒と、粒径の小さい細粒とを含み、
     前記粗粒の粒度分布を測定する粗粒測定装置と、
     前記細粒の粒度分布を測定する細粒測定装置と、
     前記粗粒測定装置により測定された粗粒の粒度分布と、前記細粒測定装置によって測定された細粒の粒度分布とを用いて、前記容器内で積み重なった状態における前記原料の空隙率を算出する演算装置と、
    を備える、空隙率測定装置。
  7.  前記粗粒測定装置および前記細粒測定装置は、前記原料を容器へ搬送するコンベアの上方に設けられ、
     前記演算装置は、前記容器内で積み重なった状態における前記原料の空隙率を算出する、請求項6に記載の空隙率測定装置。
  8.  前記演算装置は、算出された前記粗粒の粒度分布および前記細粒の粒度分布が、予め篩を用いて測定された粗粒の粒度分布および細粒の粒度分布に一致するように校正する、請求項6または請求項7に記載の空隙率測定装置。
  9.  前記演算装置は、粗粒の粒度分布を校正する検量線を用いて前記粗粒測定装置によって測定された前記粗粒の粒度分布を校正し、細粒の粒度分布を校正する検量線を用いて前記細粒測定装置によって測定された前記細粒の粒度分布を校正する、請求項8に記載の空隙率測定装置。
PCT/JP2018/013742 2017-03-30 2018-03-30 原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置 WO2018181942A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/498,110 US11391662B2 (en) 2017-03-30 2018-03-30 Raw material particle size distribution measuring apparatus, particle size distribution measuring method, and porosity measuring apparatus
JP2018534986A JP6590072B2 (ja) 2017-03-30 2018-03-30 原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置
KR1020197028470A KR102410066B1 (ko) 2017-03-30 2018-03-30 원료의 입도 분포 측정 장치, 입도 분포 측정 방법 및 공극률 측정 장치
EP18776037.6A EP3605064B1 (en) 2017-03-30 2018-03-30 Raw material particle size distribution measuring device, particle size distribution measuring method, and void ratio measuring device
CN201880023175.0A CN110476053B (zh) 2017-03-30 2018-03-30 原料的粒度分布测定装置、粒度分布测定方法以及空隙率测定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067152 2017-03-30
JP2017067152 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181942A1 true WO2018181942A1 (ja) 2018-10-04

Family

ID=63676221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013742 WO2018181942A1 (ja) 2017-03-30 2018-03-30 原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置

Country Status (6)

Country Link
US (1) US11391662B2 (ja)
EP (1) EP3605064B1 (ja)
JP (1) JP6590072B2 (ja)
KR (1) KR102410066B1 (ja)
CN (1) CN110476053B (ja)
WO (1) WO2018181942A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082274A (zh) * 2019-05-22 2019-08-02 陕西秦海检测科技有限公司 大型原级配粗颗粒土水平渗透变形试验仪及试验方法
WO2019193971A1 (ja) * 2018-04-03 2019-10-10 Jfeスチール株式会社 粒度分布測定装置及び粒度分布測定方法
CN111639431A (zh) * 2020-06-01 2020-09-08 扬州大学 二元颗粒混合物最小孔隙比预测方法
JP2020160038A (ja) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 粗粒割合の測定方法、浮遊選鉱方法
WO2020196487A1 (ja) * 2019-03-28 2020-10-01 Jfeスチール株式会社 粉率測定装置、粉率測定システム、粉率測定方法、コンピュータプログラム、高炉及び高炉操業方法
WO2020204165A1 (ja) * 2019-04-05 2020-10-08 Jfeスチール株式会社 粉率測定方法及び装置
WO2021085221A1 (ja) 2019-10-31 2021-05-06 Jfeスチール株式会社 高炉操業方法
JP2021165341A (ja) * 2020-04-07 2021-10-14 日本製鉄株式会社 コークスの粒度分布の広がり度合いを予測する方法
KR20210125529A (ko) * 2019-04-02 2021-10-18 제이에프이 스틸 가부시키가이샤 입도 분포 감시 장치, 입도 분포 감시 방법, 컴퓨터 프로그램, 노, 고로, 노의 제어 방법, 및 고로 조업 방법
RU2778816C1 (ru) * 2019-04-05 2022-08-25 ДжФЕ СТИЛ КОРПОРЕЙШН Способ и аппарат для измерения доли мелких частиц
WO2024047951A1 (ja) * 2022-09-02 2024-03-07 Jfeスチール株式会社 鉄鉱石ペレットの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415197B1 (ko) * 2016-11-30 2022-06-29 제이에프이 스틸 가부시키가이샤 분율 측정 장치 및 분율 측정 시스템
KR102284590B1 (ko) * 2019-12-24 2021-08-03 전북대학교산학협력단 목재의 공극형태에 따른 공극률 측정방법
CN111507980B (zh) * 2020-05-22 2022-05-10 福州大学 动态图像法检测矿石碎磨产品粒度分布的校正方法
CN112098299A (zh) * 2020-09-18 2020-12-18 武汉冠油科技有限公司 一种水松纸透气度在线检测系统及方法
CN114199728B (zh) * 2020-09-18 2023-09-01 宝武碳业科技股份有限公司 一种用于针状焦自动分析检测方法和检测装置
CN112461718B (zh) * 2020-11-18 2022-08-26 中国石油大学(华东) 孔隙度与颗粒粒径分布关系表征方法
CN113970510B (zh) * 2021-10-20 2024-04-30 天地(唐山)矿业科技有限公司 一种基于人工仿生的浮选尾矿粒度在线检测装置及方法
KR20230167619A (ko) * 2022-06-02 2023-12-11 주식회사 포스코 입도 관리 장치 및 방법
CN115365263A (zh) * 2022-07-20 2022-11-22 重庆工业职业技术学院 厨余垃圾粉碎处理装置
CN115808376B (zh) * 2022-12-12 2024-05-07 滨州学院 一种激光熔覆粉末流聚集性测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164677A (ja) * 1991-12-13 1993-06-29 Kawasaki Steel Corp 粒状性物体の粒度分布測定方法
JPH06288892A (ja) * 1993-03-31 1994-10-18 Japan Tobacco Inc 粒度測定装置
WO1997014950A1 (en) * 1995-10-16 1997-04-24 Scientific Industrial Automation Pty. Limited Method and apparatus for sizing particulate material
JP2001337028A (ja) * 2000-05-30 2001-12-07 Nikkiso Co Ltd 粒度分布測定方法および装置
US20050248762A1 (en) * 2004-05-04 2005-11-10 Metso Automation Oy Measurement of an object
JP2014092494A (ja) 2012-11-05 2014-05-19 Shinko Engineering & Maintenance Co Ltd 粒径測定装置及び粒径測定方法
JP2015105898A (ja) * 2013-11-30 2015-06-08 鹿島建設株式会社 地盤材料の表面水量管理方法及びシステム
JP2015124436A (ja) 2013-12-27 2015-07-06 Jfeスチール株式会社 高炉装入物検出装置
JP2016200518A (ja) * 2015-04-11 2016-12-01 鹿島建設株式会社 地盤材料の粒度分布測定方法及びシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005501B1 (ko) 1993-06-16 1997-04-16 박득표 화상처리를 이용한 무접촉식 입도측정장치
KR0134468B1 (ko) * 1995-07-31 1998-04-23 배순훈 베어링 압입장치
JP2000329683A (ja) 1999-05-20 2000-11-30 Ube Ind Ltd ベルトコンベアで搬送されるばら物の粒度検知方法
JP4701892B2 (ja) 2005-07-20 2011-06-15 株式会社島津製作所 粒度分布測定装置
JP4883799B2 (ja) * 2007-07-31 2012-02-22 鹿島建設株式会社 地盤材料の粒度計測システム及びプログラム
JP5841763B2 (ja) * 2011-07-09 2016-01-13 豊 相川 粉粒体の充填率または空隙率の算出方法
JP5896465B2 (ja) * 2012-06-12 2016-03-30 鹿島建設株式会社 粒状材料の粒度分布計測方法及びシステム
JP2014025720A (ja) 2012-07-24 2014-02-06 Nippon Steel & Sumikin Engineering Co Ltd 含水率粒径測定装置
JP6062217B2 (ja) 2012-11-11 2017-01-18 鹿島建設株式会社 堆積粒状材の粒径計測方法及びシステム並びにプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164677A (ja) * 1991-12-13 1993-06-29 Kawasaki Steel Corp 粒状性物体の粒度分布測定方法
JPH06288892A (ja) * 1993-03-31 1994-10-18 Japan Tobacco Inc 粒度測定装置
WO1997014950A1 (en) * 1995-10-16 1997-04-24 Scientific Industrial Automation Pty. Limited Method and apparatus for sizing particulate material
JP2001337028A (ja) * 2000-05-30 2001-12-07 Nikkiso Co Ltd 粒度分布測定方法および装置
US20050248762A1 (en) * 2004-05-04 2005-11-10 Metso Automation Oy Measurement of an object
JP2014092494A (ja) 2012-11-05 2014-05-19 Shinko Engineering & Maintenance Co Ltd 粒径測定装置及び粒径測定方法
JP2015105898A (ja) * 2013-11-30 2015-06-08 鹿島建設株式会社 地盤材料の表面水量管理方法及びシステム
JP2015124436A (ja) 2013-12-27 2015-07-06 Jfeスチール株式会社 高炉装入物検出装置
JP2016200518A (ja) * 2015-04-11 2016-12-01 鹿島建設株式会社 地盤材料の粒度分布測定方法及びシステム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605064A4
TAKAO YAMADA: "Distribution of Burden Materials and Gas Permeability in a Large Volume Blast Furnace", KAWASAKI STEEL GIHO, vol. 6, no. 1, 1974, pages 16 - 37, XP055559196
YAMADA, TAKAO ET AL.: "Distribution of Burden Materials and Gas Permeability in a Large Volume Blast Furnace", KAWASAKI STEEL GIHO, vol. 6, no. 1, January 1974 (1974-01-01), pages 16 - 37, XP055559196 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187637B2 (en) 2018-04-03 2021-11-30 Jfe Steel Corporation Particle size distribution measurement apparatus and particle size distribution measurement method
WO2019193971A1 (ja) * 2018-04-03 2019-10-10 Jfeスチール株式会社 粒度分布測定装置及び粒度分布測定方法
JP7215354B2 (ja) 2019-03-25 2023-01-31 住友金属鉱山株式会社 粗粒割合の測定方法、浮遊選鉱方法
JP2020160038A (ja) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 粗粒割合の測定方法、浮遊選鉱方法
CN113614254A (zh) * 2019-03-28 2021-11-05 杰富意钢铁株式会社 粉末比率测定装置、粉末比率测定系统、粉末比率测定方法、计算机程序、高炉以及高炉操作方法
WO2020196487A1 (ja) * 2019-03-28 2020-10-01 Jfeスチール株式会社 粉率測定装置、粉率測定システム、粉率測定方法、コンピュータプログラム、高炉及び高炉操業方法
JPWO2020196487A1 (ja) * 2019-03-28 2021-04-08 Jfeスチール株式会社 粉率測定装置、粉率測定システム、粉率測定方法、コンピュータプログラム、高炉及び高炉操業方法
KR102603372B1 (ko) * 2019-03-28 2023-11-16 제이에프이 스틸 가부시키가이샤 분율 측정 장치, 분율 측정 시스템, 분율 측정 방법, 컴퓨터 프로그램, 고로 및 고로 조업 방법
CN113614254B (zh) * 2019-03-28 2022-11-18 杰富意钢铁株式会社 粉末比率测定装置、粉末比率测定系统、粉末比率测定方法、高炉以及高炉操作方法
KR20210122821A (ko) * 2019-03-28 2021-10-12 제이에프이 스틸 가부시키가이샤 분율 측정 장치, 분율 측정 시스템, 분율 측정 방법, 컴퓨터 프로그램, 고로 및 고로 조업 방법
EP3950968A4 (en) * 2019-03-28 2022-05-04 JFE Steel Corporation POWDER RATIO MEASUREMENT DEVICE, POWDER RATIO MEASUREMENT SYSTEM, POWDER RATIO MEASUREMENT METHOD, COMPUTER PROGRAM, BLAST FURNACE AND BLAST FURNACE OPERATING METHOD
EP3951351A4 (en) * 2019-04-02 2022-05-25 JFE Steel Corporation PARTICLE SIZE DISTRIBUTION MONITORING DEVICE, PARTICLE SIZE DISTRIBUTION MONITORING METHOD, COMPUTER PROGRAM, FURNACE, BLAST FURNACE, FURNACE CONTROL METHOD AND BLAST FURNACE OPERATING METHOD
KR20210125529A (ko) * 2019-04-02 2021-10-18 제이에프이 스틸 가부시키가이샤 입도 분포 감시 장치, 입도 분포 감시 방법, 컴퓨터 프로그램, 노, 고로, 노의 제어 방법, 및 고로 조업 방법
KR102606934B1 (ko) 2019-04-02 2023-11-29 제이에프이 스틸 가부시키가이샤 입도 분포 감시 장치, 입도 분포 감시 방법, 컴퓨터 프로그램, 노, 고로, 노의 제어 방법, 및 고로 조업 방법
TWI747227B (zh) * 2019-04-05 2021-11-21 日商杰富意鋼鐵股份有限公司 粉率測定方法及裝置
WO2020204165A1 (ja) * 2019-04-05 2020-10-08 Jfeスチール株式会社 粉率測定方法及び装置
RU2778816C1 (ru) * 2019-04-05 2022-08-25 ДжФЕ СТИЛ КОРПОРЕЙШН Способ и аппарат для измерения доли мелких частиц
JPWO2020204165A1 (ja) * 2019-04-05 2021-04-30 Jfeスチール株式会社 粉率測定方法及び装置
CN110082274A (zh) * 2019-05-22 2019-08-02 陕西秦海检测科技有限公司 大型原级配粗颗粒土水平渗透变形试验仪及试验方法
CN110082274B (zh) * 2019-05-22 2024-05-10 陕西秦海检测科技有限公司 大型原级配粗颗粒土水平渗透变形试验仪及试验方法
KR20220066146A (ko) 2019-10-31 2022-05-23 제이에프이 스틸 가부시키가이샤 고로 조업 방법
WO2021085221A1 (ja) 2019-10-31 2021-05-06 Jfeスチール株式会社 高炉操業方法
JP2021165341A (ja) * 2020-04-07 2021-10-14 日本製鉄株式会社 コークスの粒度分布の広がり度合いを予測する方法
JP7406099B2 (ja) 2020-04-07 2023-12-27 日本製鉄株式会社 コークスの粒度分布の広がり度合いを予測する方法
CN111639431B (zh) * 2020-06-01 2024-02-13 扬州大学 二元颗粒混合物最小孔隙比预测方法
CN111639431A (zh) * 2020-06-01 2020-09-08 扬州大学 二元颗粒混合物最小孔隙比预测方法
WO2024047951A1 (ja) * 2022-09-02 2024-03-07 Jfeスチール株式会社 鉄鉱石ペレットの製造方法

Also Published As

Publication number Publication date
CN110476053A (zh) 2019-11-19
CN110476053B (zh) 2022-07-26
JP6590072B2 (ja) 2019-10-16
US20210102885A1 (en) 2021-04-08
KR102410066B1 (ko) 2022-06-16
US11391662B2 (en) 2022-07-19
JPWO2018181942A1 (ja) 2019-04-04
EP3605064B1 (en) 2023-06-14
KR20190123765A (ko) 2019-11-01
EP3605064A1 (en) 2020-02-05
EP3605064A4 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP6590072B2 (ja) 原料の粒度分布測定装置、粒度分布測定方法および空隙率測定装置
CN111954800B (zh) 粒度分布测定装置和粒度分布测定方法
JP6252504B2 (ja) 高炉装入物検出方法
CN109844498B (zh) 粉末比率测定装置以及粉末比率测定系统
Obregón et al. Discrimination limit between mean gray values for the prediction of powder concentrations
JP6566180B1 (ja) 粒度分布測定装置及び粒度分布測定方法
WO2019189262A1 (ja) 粉率測定装置、粉率測定システムおよび高炉操業方法
JP6879276B2 (ja) 気中分散微粒子の発生判定方法及び装置並びに塊状物質の性状測定方法及び装置
JP6950839B2 (ja) 粉率測定装置、粉率測定システム、粉率測定方法、コンピュータプログラム、高炉及び高炉操業方法
BR112020020009B1 (pt) Dispositivo e método de medição de proporção de finos para medir a proporção de finos que aderem à superfície de um material na forma de grumos, sistema de medição de proporção de finos, método de operação de alto-forno

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534986

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028470

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018776037

Country of ref document: EP

Effective date: 20191030