WO2018181750A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2018181750A1
WO2018181750A1 PCT/JP2018/013328 JP2018013328W WO2018181750A1 WO 2018181750 A1 WO2018181750 A1 WO 2018181750A1 JP 2018013328 W JP2018013328 W JP 2018013328W WO 2018181750 A1 WO2018181750 A1 WO 2018181750A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
steering
shaft
wheel
torque
Prior art date
Application number
PCT/JP2018/013328
Other languages
French (fr)
Japanese (ja)
Inventor
敬造 荒木
水野 晃
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to JP2019510145A priority Critical patent/JP6898428B2/en
Priority to CN201880023112.5A priority patent/CN110475710A/en
Priority to EP18778002.8A priority patent/EP3604099A4/en
Priority to US16/498,464 priority patent/US20200231200A1/en
Publication of WO2018181750A1 publication Critical patent/WO2018181750A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/20Connecting steering column to steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • B62D9/02Steering deflectable wheels not otherwise provided for combined with means for inwardly inclining vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/18Connections between forks and handlebars or handlebar stems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/01Motorcycles with four or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/22Arrangements for reducing or eliminating reaction, e.g. vibration, from parts, e.g. wheels, of the steering system
    • B62D7/224Arrangements for reducing or eliminating reaction, e.g. vibration, from parts, e.g. wheels, of the steering system acting between the steering wheel and the steering gear, e.g. on the steering column

Definitions

  • the present invention relates to a vehicle including a vehicle body provided with three or more wheels including a steering wheel having a trail.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-716878 discloses a vehicle body The tilt angle of the vehicle body and the actual steering angle of the steered wheel are calculated based on the input of the steering unit, the vehicle speed sensor, and the lateral G sensor, respectively, and the tilt angle and actual A technique for changing the rudder angle is disclosed.
  • the inventors have developed a vehicle having a mode in which the wheel 12F turns in a state in which the wheel 12F can rotate by merely giving camber angles to the left and right wheels 12L and 12R in the vehicle described in Patent Document 1.
  • a vehicle according to the present invention includes a vehicle body provided with three or more wheels including at least a steering wheel and a pair of wheels arranged in the vehicle width direction, and the vehicle body is inclined.
  • An inclination member an input member that inputs a turning direction by rotating, an input shaft that transmits the rotation of the input member, and the steering wheel by turning while turning the input member.
  • a fastening force that allows the steering angle of the steered wheel to follow the turning axis of the vehicle body tilting the steering shaft that can be rotated independently of the dynamic operation, the input shaft, and the steering shaft;
  • a coupling mechanism that couples with a fastening force that enables torque transmission from the steering shaft to the input shaft.
  • connection mechanism may be configured such that the difference between the rotation angle of the input shaft and the rotation angle of the steering shaft or / and the rotation angular velocity of the input shaft and the rotation of the steering shaft.
  • the fastening force varies depending on the difference from the dynamic angular velocity.
  • the coupling mechanism increases the fastening force as the difference between the rotation angle of the input shaft and the rotation angle of the steering shaft increases.
  • the fastening force increases as the difference between the rotational angular velocity of the input shaft and the rotational angular velocity of the steering shaft increases.
  • the vehicle according to the present invention is characterized in that the coupling mechanism is a spring mechanism.
  • the vehicle according to the present invention is characterized in that the coupling mechanism is a damper mechanism.
  • the vehicle according to the present invention is characterized in that an upper limit is set for the rotational torque when the damper mechanism transmits the rotational torque to each other's shaft.
  • the vehicle according to the present invention is characterized in that the damper mechanism is a variable damper using a viscous MR fluid.
  • the vehicle according to the present invention further includes a spring mechanism that changes a fastening force according to a difference between a rotation angle of the input shaft and a rotation angle of the steering shaft.
  • the vehicle according to the present invention is characterized in that the inclined portion inclines the vehicle body by causing a difference in driving force between the pair of wheels.
  • the vehicle according to the present invention further includes a steering torque adjustment mechanism for adjusting a steering torque applied to the steering shaft.
  • the vehicle according to the present invention includes a vehicle speed detection unit that detects a vehicle speed, and the steering torque adjustment mechanism adjusts a steering torque applied to the steering shaft according to a vehicle speed detected by the vehicle speed detection unit. It is characterized by that.
  • the torque generated by the steering torque adjustment mechanism eliminates the rotational phase difference between the input shaft and the steering shaft. It is characterized by a wide orientation and size.
  • the torque generated by the steering torque adjusting mechanism is set to increase as the vehicle speed increases. .
  • the vehicle according to the present invention has a fastening force that allows the steering angle of the steered wheel to follow the input shaft and the steering shaft in a turning direction due to the inclination of the vehicle body, and from the steering shaft to the steering shaft. Since there is provided a coupling mechanism for coupling with the input shaft with a fastening force that enables torque transmission, according to such a vehicle according to the present invention, when the vehicle body is inclined due to road surface inclination or unevenness, Even if a sudden disturbance such as receiving a crosswind occurs, it is possible to reduce the instability of driving and to ensure driving stability. Will never turn.
  • the driver can detect the vehicle body through the tactile sense from the input member.
  • the vehicle is traveling on the slope or unevenness of the road surface and that the vehicle body is receiving a crosswind, so that the driving operation is not delayed.
  • FIG. 1 is a schematic diagram of a vehicle 10 according to an embodiment of the present invention. 1 is a block diagram showing a system configuration of a vehicle 10 according to an embodiment of the present invention. It is a figure which illustrates notionally driving by vehicles 10 concerning an embodiment of the present invention. It is a figure which shows the example of the connection mechanism (spring mechanism) in the vehicle 10 which concerns on embodiment of this invention.
  • FIG. 1 is a right side view showing the configuration of the vehicle in the embodiment of the present invention
  • FIG. 2 is a diagram showing the configuration of the lean mechanism of the vehicle in the embodiment of the present invention
  • FIG. 3 is the vehicle in the embodiment of the present invention. It is a rear view which shows the structure.
  • 3A is a diagram showing a state where the vehicle body is standing upright
  • FIG. 3B is a diagram showing a state where the vehicle body is inclined.
  • reference numeral 10 denotes a vehicle according to the present embodiment, a main body portion 20, a riding portion 11 as a steering portion on which a driver rides and steers, and a front wheel disposed at the center in the width direction in front of the vehicle body. And a left wheel 12L and a right wheel 12R as non-steering wheels that are non-steerable driving wheels disposed rearward as rear wheels.
  • the wheel 12F, the wheel 12L, and the wheel 12R on the right side are attached, and a main body part other than the wheel of the vehicle 10 such as the riding part 11 is defined as a vehicle body.
  • the vehicle 10 operates as a lean mechanism for leaning the vehicle body from side to side, that is, as a lean mechanism, that is, a vehicle body tilt mechanism, supporting the left and right wheels 12L and 12R, and the link mechanism 30. And a lean motor 25 as a tilt actuator device.
  • the lean mechanism of the vehicle 10 may be expressed conceptually as “inclined part”.
  • the “steering wheel” corresponds to the wheel 12F in the present embodiment
  • the “pair of wheels arranged in the vehicle width direction” corresponds to the left and right wheels 12L and 12R.
  • the vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle. Further, although the steered wheel may function as a drive wheel, in the present embodiment, the description will be made assuming that the steered wheel does not function as a drive wheel.
  • the lean mechanism that tilts the vehicle body of the vehicle 10 left and right includes the link mechanism 30 and the lean motor 25.
  • the lean mechanism is not limited to this.
  • the lean mechanism it is possible to adopt a configuration in which the vehicle body is inclined by causing a driving force difference between the left and right wheels 12L and 12R.
  • the vehicle 10 basically, at the time of turning, the angles of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle are changed, and the vehicle body including the riding portion 11 and the main body portion 20 is changed to the turning inner wheel. By tilting to the side, it is possible to improve the turning performance and ensure the driver's comfort.
  • the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
  • the left and right wheels 12L and 12R are upright with respect to the road surface 18, that is, the camber angle is 0 degree.
  • the left and right wheels 12L and 12R are inclined in the right direction with respect to the road surface 18, that is, a camber angle is given.
  • the link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R.
  • a right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R;
  • the lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically.
  • the left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof.
  • the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
  • the rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable.
  • a rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft.
  • the rotational drive device 51 may be a motor other than an in-wheel motor.
  • the lean motor 25 is a rotary electric actuator including an electric motor and the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body.
  • the body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 ⁇ / b> U on the upper side of the link mechanism 30.
  • the rotation axis of the lean motor 25 functions as an inclination axis for inclining the main body 20, and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U. Then, when the lean motor 25 is driven to rotate the rotation shaft with respect to the body, the upper lateral link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined.
  • the lean motor 25 may have its rotation shaft fixed to the main body 20 and the central vertical member 21 and its body fixed to the upper horizontal link unit 31U.
  • the lean motor 25 includes a lean angle sensor 125 that detects a change in the lean angle caused by the link mechanism 30.
  • the lean angle sensor 125 is a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the lean motor 25, and includes, for example, a resolver, an encoder, and the like.
  • the lean motor 25 when the lean motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20. Therefore, a change in the angle of the upper horizontal link unit 31U relative to the central vertical member 21, that is, a change in the link angle can be detected by detecting the rotation angle of the rotation shaft with respect to the body.
  • the lean motor 25 includes a lock mechanism (not shown) that fixes the rotation shaft to the body so as not to rotate.
  • the lock mechanism is a mechanical mechanism, and preferably does not consume electric power while the rotation shaft is fixed to the body so as not to rotate.
  • the lock mechanism can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
  • the boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown).
  • the connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
  • the boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c.
  • the seat 11a is a part for a driver to sit while the vehicle 10 is traveling.
  • the footrest 11b is a part for supporting the driver's foot, and is disposed below the front side (right side in FIG. 1) of the seat 11a.
  • a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20.
  • the battery device is an energy supply source for the rotation drive device 51 and the lean motor 25.
  • a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
  • a steering device 41 is disposed in front of the seat 11a.
  • the steering device 41 includes members necessary for steering such as an input member 41a as a steering device that is operated by a driver to input steering command information such as a steering direction and a steering angle, a meter such as a speed meter, an indicator, and a switch. It is arranged.
  • the driver operates the input member 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.).
  • the steering device other devices such as a steering wheel, a jog dial, a touch panel, and a push button can be used instead of the input member 41a.
  • the wheel 12F is connected to the steering shaft 13 via a front wheel fork 17 which is a part of a suspension device (suspension device).
  • the suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring.
  • the turning direction is inputted to the input member 41a by being turned by a driver.
  • An input shaft 43 that transmits the rotation of the input member 41a is connected to the input member 41a. Further, the rotation center of the input shaft 43 and the rotation center of the steering shaft 13 are set to be the same.
  • the damper mechanism 70 is provided between the input shaft 43 and the steering shaft 13. Details of the damper mechanism 70 will be described later.
  • the mode in which the steering angle of the wheel 12F as the steering wheel is controlled according to the operation of the input member 41a and the steering angle of the wheel 12F can be rotated independently of the operation of the input member 41a.
  • a mode to set a state between the ground point O of the steering shaft of the wheel 12F (not shown) and the intersection point P of the road steering wheel, there is a predetermined trail L T, at the time of turning in the latter mode, rotatable state
  • the wheel 12F is automatically steered so as to follow the camber angles of the left and right wheels 12L and 12R.
  • the intersection P between the steering shaft of the wheel 12F and the road surface is ahead of the ground contact point O of the steering wheel.
  • the rotation of the wheel 12F refers to the operation of the wheel 12F based on the rotation of the steering shaft of the wheel 12F, not the rotation of the wheel 12F itself when the vehicle 10 is traveling.
  • FIG. 4 is a schematic diagram of the vehicle 10 according to the embodiment of the present invention, in which camber angles are given to the left and right wheels 12L and 12R, and the vehicle 10 is turning by lean control.
  • the weight of the vehicle 10 is m
  • the acceleration of gravity is g
  • the lean angle in the lean control of the vehicle 10 is ⁇
  • the speed of the vehicle 10 during turning is V
  • the turning radius is R
  • F 1 and F 2 are It can be represented by the following formulas (1) and (2).
  • the vehicle turning radius R can be obtained by the following equation (6).
  • Expression (6) indicates that in the vehicle 10 according to the present invention, the traveling direction of the vehicle 10 can be determined by determining the vehicle speed V during turning and the lean angle ⁇ of the vehicle 10. .
  • the rotation angle of the input shaft 43 of the input member 41a that is, the turning angle of the input member 41a as the steering angle command value input by the driver operating the input member 41a is an input member operation angle sensor as input steering angle detection means. 123.
  • the handle operating angle sensor 123 is composed of, for example, an encoder.
  • a steering motor 65 as a steering actuator device is disposed in the vicinity of the steering shaft 13. In the mode in which the steering angle is controlled according to the operation of the input member 41 a using the wheel 12F as a steering wheel, the steering motor 65 is provided. However, based on the cutting angle of the input member 41a detected by the input member operation angle sensor 123, the lower end of the steering shaft member is rotated.
  • the steering angle output from the steering motor 65 and transmitted to the wheel 12F via the steering shaft 13 and the front wheel fork 17 is detected by a front wheel steering angle sensor 124 as output steering angle detection means.
  • the front wheel steering angle sensor 124 is, for example, a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the steering motor 65, and includes a resolver, an encoder, and the like.
  • the distance between the left and right wheels 12L and 12R axle is the axle and the rear wheel of the wheel 12F is a front wheel, i.e., the wheel base is L H.
  • the steering angle of the wheel 12F can be rotated by stopping the control of the steering motor 65.
  • the steering motor 65 may be controlled to 0 torque, or the steering motor 65 and the steering shaft 13 may be separated by a clutch or the like. good.
  • the vehicle 10 includes an accelerator 45 as a drive command device that inputs a drive force generation command as a part of the control device 41.
  • the accelerator 45 is a device that inputs a driving force generation command as a command for causing the rotational driving device 51 to generate a driving force in accordance with the degree of depression of the driver.
  • the brake 46 is applied to the vehicle 10 when the driver steps on the brake 46.
  • the shift switch 47 is a switch for the driver to select the travel mode of the vehicle 10, and in the present embodiment, the shift switch 47 has at least four travel modes: a drive range, a neutral range, a reverse range, and a parking range. . These driving modes are the same as those of an automobile equipped with a general automatic transmission.
  • a vehicle speed sensor 122 as a vehicle speed detecting means for detecting a vehicle speed that is the traveling speed of the vehicle 10 is disposed at the lower end of the front wheel fork 17 that supports the axle of the wheel 12F.
  • the vehicle speed sensor 122 is a sensor that detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
  • FIG. 5 is a block diagram showing a system configuration of the vehicle 10 in the embodiment of the present invention.
  • ECU is an abbreviation for Electronic Control Unit, and is a general-purpose information processing mechanism including a CPU, a ROM that holds a program that operates on the CPU, and a RAM that is a work area of the CPU.
  • Vehicle ECU 100 cooperates and operates with each component connected to vehicle ECU 100 shown in the figure. Further, the vehicle ECU 100 executes various control processes in the vehicle 10 of the present invention based on programs and data stored and held in storage means such as a ROM in the vehicle ECU 100.
  • the rotational drive device 51R the rotational drive device ECU101 that controls the rotational drive device 51L based on the command value output from the vehicle ECU 100, and the command value output from the vehicle ECU 100 are used.
  • steering wheel control unit expresses the control operation by each ECU as described above conceptually.
  • the vehicle speed sensor 122 detects the vehicle speed of the vehicle 10, and the vehicle speed data detected by the vehicle speed sensor 122 is input to the vehicle ECU 100.
  • the input member operation angle sensor 123 detects a cutting angle of the input member 41a, and the operation angle data of the input member 41a detected by the input member operation angle sensor 123 is input to the vehicle ECU 100.
  • the front wheel steering angle sensor 124 detects the steering angle of the front wheel 12F, and the steering angle data of the wheel 12F detected by the front wheel steering angle sensor 124 is input to the vehicle ECU 100.
  • the lean angle sensor 125 detects the amount of inclination of the vehicle 10, and the amount of inclination data of the vehicle 10 detected by the lean angle sensor 125 is input to the vehicle ECU 100.
  • Accelerator position sensor 145 detects the amount of depression of accelerator 45 by the driver, and the amount of depression of accelerator 45 detected by accelerator position sensor 145 is input to vehicle ECU 100.
  • the brake position sensor 146 detects the amount of depression of the brake 46 by the driver, and the amount of depression of the brake 46 detected by the brake position sensor 146 is input to the vehicle ECU 100.
  • the shift switch position sensor 147 detects whether the shift switch 47 is in the drive range, neutral range, or reverse range. The position detected by the shift switch position sensor 147 is input to the vehicle ECU 100.
  • the camera 149 acquires moving image data in front of the vehicle 10 and transmits the acquired moving image data to the vehicle ECU 100.
  • the vehicle ECU 100 performs prediction or estimation on the vehicle 10 by analyzing the moving image data transmitted from the camera 149.
  • the camera 149 is used for such a purpose, but a radar or the like may be used.
  • the gyro sensor 150 detects at least the roll angle, roll rate, and yaw rate of the vehicle 10, and transmits the detected data to the vehicle ECU 100.
  • the vehicle ECU 100 uses the received roll angle, roll rate, and yaw rate data for control of the vehicle 10.
  • each data input to the vehicle ECU 100 is used to control the rotation drive device 51R, the rotation drive device 51L, the lean motor 25, and the steering motor ECU 103.
  • the traveling mode by the vehicle 10 configured as described above will be described.
  • the vehicle 10 according to the present invention actively steers the wheel 12F, which is a steered wheel, at low speed, but sets the steering angle of the steered wheel to be rotatable at high speed.
  • the lean control of the wheels 12L and 12R is performed with fear of necessity both at low speed and at high speed.
  • the traveling mode at low speed of the vehicle 10 is referred to as a first mode
  • the traveling mode at high speed is referred to as a second mode.
  • FIG. 6 is a diagram conceptually illustrating traveling by the vehicle 10 in the embodiment of the present invention.
  • the input member 41 a of the input member 41 a has a cutting angle of 60 ° to the right and the vehicle speed is increased from 0 km / h.
  • the vehicle speed at the boundary between the first mode and the second mode is 15 km / h will be described as an example, but the boundary value is not limited to this.
  • switching between the first mode and the second mode is performed based on the vehicle speed of the vehicle 10 detected by the vehicle speed sensor 122, but such switching is detected by the vehicle speed sensor 122. This may be performed based on parameters other than the vehicle speed, and as a result, the first mode may be switched to a low speed and the second mode may be switched to a high speed.
  • the relationship between the front wheel steering angle ⁇ W ( ⁇ W 1 is the initial steering angle of the wheel 12F (front wheel)) and the lean angle ⁇ with respect to the turning angle ⁇ H of the input member 41a is expressed by the following equation (7 ) And (8).
  • the dotted line indicates the steering angle ⁇ W of the wheel 12F
  • the solid line indicates the lean angle ⁇ in the vehicle 10.
  • the lean angle ⁇ in the vehicle 10 may remain 0 until a predetermined speed (for example, 3 km / h), and then gradually increase.
  • the gradual increase described in the claims includes the contents of the present embodiment in which the lean angle ⁇ remains zero until a predetermined speed (for example, 3 km / h).
  • the mode is switched from the first mode to the second mode.
  • the steering angle of the wheel 12F that is the steering wheel is in a freely rotatable state, and the lean angle ⁇ is The angle is 30 ° defined by the equation (8).
  • the turning of the vehicle 10 is controlled only by the lean angle ⁇ , and the steering angle of the wheel 12F is made to be freely rotatable, so that the lean angle ⁇ is set.
  • the vehicle turns against the driver's intention in the event of sudden disturbance such as when the vehicle body is tilted due to road surface inclination or unevenness, or when a side wind is received.
  • sudden disturbance such as when the vehicle body is tilted due to road surface inclination or unevenness, or when a side wind is received.
  • the driver can know only by vision and G that the vehicle body is traveling on a slope or unevenness on the road surface and that the vehicle body is receiving a crosswind, and the driving operation is delayed. there were.
  • a predetermined transmission that enables torque transmission from the steering shaft 13 to the input shaft 43 between the input shaft 43 and the steering shaft 13 is performed.
  • a spring mechanism is used as a coupling mechanism for coupling with a fastening force.
  • the predetermined fastening force is set to be a fastening force that allows the steering angle of the wheel 12F to follow the turning direction caused by the inclination of the vehicle body.
  • FIG. 7 is a view showing an example of a coupling mechanism (spring mechanism) in the vehicle 10 according to the embodiment of the present invention.
  • FIG. 7A shows an example of a shaft structure when the spring 80 is used.
  • the input shaft 43 is provided with a radiation rod 44 extending radially with respect to the center of rotation, and a lower rod 45 extending downward from the radiation rod 44.
  • the steering shaft 13 is provided with a radiation rod 14 that extends in the radial direction with respect to the center of rotation, and an upper rod 15 that extends upward from the radiation rod 14.
  • the spring 80 is attached between the lower rod 45 of the input shaft 43 and the upper rod 15 of the steering shaft 13 as shown in FIG.
  • FIG. 8 is a diagram for explaining the relationship between the angular difference between the shafts and the torque generated by the spring 80.
  • the vehicle 10 according to the present invention has a fastening force that allows the steering angle of the steering wheel (the wheel 12F) to follow the input shaft 43 and the steering shaft 13 in the turning direction due to the inclination of the vehicle body,
  • a coupling mechanism that couples the steering shaft 13 to the input shaft 43 with a fastening force that enables torque transmission
  • the road surface is inclined and uneven. This makes it possible to reduce running instability and ensure driving stability even when a sudden disturbance such as when the vehicle body is tilted or a side wind is received. The vehicle does not turn against the driver's intention.
  • the input shaft 43 and the steering shaft 13 are connected via a coupling mechanism. Therefore, according to such a vehicle according to the present invention, the driver can feel the tactile sense from the input member. Through this, it is possible to perceive that the vehicle body is traveling on a slope or unevenness on the road surface or that the vehicle body is receiving a crosswind, and the driving operation is not delayed.
  • FIG. 9 is a view showing an example of a coupling mechanism (damper mechanism 70) in the vehicle 10 according to another embodiment of the present invention.
  • the drawing shows the input shaft 43, the steering shaft 13, and the damper mechanism 70 extracted.
  • a damper mechanism 70 shown in FIG. 9 is configured by a rotary damper 73.
  • the angular velocity ⁇ 1 of the input shaft 43 can be expressed by the following equation (10), and the angular velocity ⁇ 2 of the steering shaft 13 can be expressed by the following equation (11).
  • the torque T 2 generated by the damper mechanism 70 is obtained by multiplying the difference between the angular velocity ⁇ 1 of the input shaft 43 and the angular velocity ⁇ 2 of the steering shaft 13 by a predetermined constant c.
  • c a predetermined constant
  • the steering shaft 13 can be connected via the damper mechanism 70 that is a coupling mechanism.
  • the torque generated by the damper mechanism 70 transmits information related to the inclination of the road surface, unevenness, and the inclination of the vehicle body due to the crosswind to the driver. As a result, the driver can quickly perform the counter operation for each disturbance as described above.
  • FIG. 10 is a diagram for explaining the relationship between the angular velocity difference ⁇ between the angular velocity ⁇ 1 of the input shaft 43 and the angular velocity ⁇ 2 of the steering shaft 13 and the torque generated by the damper mechanism 70.
  • FIG. 10A shows the relationship of Expression (12). If the angular velocity difference ⁇ is too large, the torque T 1 generated by the damper mechanism 70 is too large, and a large torque is transmitted to the input member 41a via the input shaft 43, which may be a burden on the driver.
  • an upper limit is set for the rotational torque (torque transmission amount) when the rotational torque is transmitted to the shafts.
  • a damper mechanism 70 a damper having a limit on the generated torque can be appropriately used.
  • a variable damper using MR (Magneto-Rheological) fluid as the damper mechanism 70, a more precise torque transmission amount can be performed.
  • MR Magnetic-Rheological
  • the torque transmission amount can be controlled in accordance with each parameter such as the angle difference ⁇ between the two and the vehicle speed of the vehicle 10.
  • a rotary damper or a variable damper is used as the damper mechanism 70 serving as a coupling mechanism.
  • a linear damper 74 that performs buffering against linear movement may be used. it can.
  • FIG. 11 is a view showing an example of a coupling mechanism (damper mechanism 70) in the vehicle 10 according to another embodiment of the present invention.
  • FIG. 11A shows an example of a shaft structure when the linear damper 74 is used.
  • the input shaft 43 is provided with a radiation rod 44 extending in the radial direction with respect to the rotation center and a lower rod 45 extending downward from the radiation rod 44.
  • the steering shaft 13 is provided with a radiation rod 14 that extends in the radial direction with respect to the center of rotation, and an upper rod 15 that extends upward from the radiation rod 14.
  • the straight damper 74 is attached between the lower rod 45 of the input shaft 43 and the upper rod 15 of the steering shaft 13 as shown in FIG.
  • the same effect as that of the first embodiment can be enjoyed, and the widely used linear damper 74 can be used, thereby reducing the cost.
  • FIG. 12 is a diagram illustrating an example of a coupling mechanism in the vehicle 10 according to another embodiment of the present invention.
  • a spring 80 is provided between the lower rod 45 of the input shaft 43 and the upper rod 15 of the steering shaft 13.
  • the same effect as that of the first embodiment can be enjoyed, and the torque characteristic of the damper mechanism 70 can be appropriately changed.
  • the input shaft 43 and the steering shaft 13 are such that the steering angle of the steering wheel (wheel 12F) follows the turning direction due to the inclination of the vehicle body. Connected with a relatively weak connection. As a result, the steering response of the steered wheels (wheels 12F) is moderately delayed, contributing to prevention of the vehicle 10 from falling. Moreover, since it is possible to prevent the steering wheel (wheel 12F) from being delayed too much, it is possible to prevent deterioration of responsiveness when the steering wheel (wheel 12F) is rotatable.
  • FIG. 13 is a diagram showing the relationship of the steering angle required according to the vehicle speed when the inclination angle ⁇ of the vehicle body is constant.
  • the steering angle ⁇ W of the wheel 12F front wheel
  • the idea of the present embodiment is also applied to a vehicle that tilts the front wheel and steers the rear wheel. Applicable.
  • the examination is performed by comparing the time when the vehicle speed of the vehicle 10 is VL , which is a low speed, and the time VH , which is higher than the low speed VL .
  • the required turning radius must be reduced in order to obtain a centrifugal force that balances the inclination of the vehicle body when the vehicle body turns.
  • the steering angle at this time is assumed to be ⁇ WL .
  • the centrifugal force that balances the vehicle body inclination when the vehicle body turns is larger than the previous turning radius.
  • the steering angle at this time is assumed to be ⁇ WH .
  • the relationship of the steering angle required according to the vehicle speed when the inclination angle ⁇ of the vehicle body is constant is such that the point (V L , ⁇ WL ) and the point (V H , ⁇ WH ) are as shown in FIG. It becomes the curve shown in the figure.
  • connection mechanism that connects the input shaft 43 and the steering shaft 13 with a predetermined fastening force that enables torque transmission from the steering shaft 13 to the input shaft 43 is employed. Yes.
  • problems related to such a coupling mechanism will be described with reference to FIG.
  • a steering torque adjusting mechanism for controlling the torque (steering torque) applied to the steering shaft 13 is provided.
  • (S) in FIG. 14 indicates a direction in which the excessive cutting state of the input member 41a is alleviated by the steering torque generated by such a steering torque adjusting mechanism.
  • Such a steering torque adjusting mechanism is set so as to generate torque in the direction opposite to the direction of torque generated by the coupling mechanism.
  • any configuration may be used as long as the steering torque applied to the steering shaft 13 can be controlled.
  • the role of the steering torque adjustment mechanism can be taken.
  • FIG. 15 is a diagram schematically illustrating a steering torque adjusting mechanism in the vehicle 10 according to another embodiment of the present invention.
  • the vehicle 10 according to the present invention is interposed between the input shaft 43 that transmits the rotation of the input member 41a, the steering shaft 13 that transmits the rotation of the wheel 12F, and the input shaft 43 and the steering shaft 13. And a coupling mechanism including a mechanism 70, a spring 80, and the like.
  • a motor side gear 67 is provided on the rotation shaft of the steering motor 65, and a steering shaft side gear 68 that rotates with the steering shaft 13 is provided on the steering shaft 13.
  • the motor side gear 67 and the steering shaft side gear 68 are screwed together.
  • the steering motor 65 is attached to the vehicle body side so as to be fixed to a part B of the vehicle body of the vehicle 10.
  • the torque of the steering motor 65 is transmitted from the motor side gear 67 to the steering shaft side gear 68 and then to the steering shaft 13.
  • the steering motor 65 can function as a steering torque adjusting mechanism that controls the steering torque applied to the steering shaft 13.
  • the torque for mitigating the excessive cutting state of the input member 41a (that is, the torque generated by the steering torque adjusting mechanism) must be set larger as the vehicle speed of the vehicle 10 increases. Therefore, when the vehicle speed detected by the vehicle speed sensor 122 is not zero, the torque generated by the steering torque adjustment mechanism is set to increase as the vehicle speed detected by the vehicle speed sensor 122 increases.
  • the input shaft 43 is moved from the steering shaft 13 to the input shaft 43. Ideally, it should be completely fastened.
  • the torque generated by the steering torque adjusting mechanism is set to a direction and magnitude that eliminates the rotational phase difference between the input shaft 43 and the steering shaft 13. The state where the input shaft 43 is completely fastened from the steering shaft 13 is realized.
  • the steering torque adjustment mechanism for controlling the steering torque applied to the steering shaft 13 is provided according to the vehicle speed detected by the vehicle speed sensor 122, the operability by the driver is further improved. .
  • the steering torque adjusting mechanism is configured to adjust the steering torque applied to the steering shaft 13 by the steering motor 65 fixed to the vehicle body side.
  • a steering torque adjustment mechanism may be employed to adjust the steering torque.
  • FIG. 16 is a diagram schematically illustrating another steering torque adjusting mechanism.
  • the steering torque adjustment mechanism in the present embodiment is also interposed between the input shaft 43 and the steering shaft 13 and has a coupling mechanism including a damper mechanism 70, a spring 80, and the like.
  • a motor side gear 67 is provided on the rotating shaft of the torque adjusting motor 66, and a steering shaft side gear 68 that rotates with the steering shaft 13 is provided on the steering shaft 13.
  • the motor side gear 67 and the steering shaft side gear 68 are screwed together.
  • the casing of the torque adjustment motor 66 is fixed to the input shaft 43.
  • the torque of the torque adjustment motor 66 is transmitted from the motor side gear 67 to the steering shaft side gear 68 and then to the steering shaft 13.
  • the torque adjustment motor 66 fixed to the input shaft 43 can function as a steering torque adjustment mechanism that controls and adjusts the steering torque applied to the steering shaft 13.
  • the operability of the vehicle 10 can be further improved by the steering torque adjustment mechanism configured as shown in FIG.
  • the torque adjusting motor 66 employed as the steering torque adjusting mechanism can also serve as a connecting mechanism including a damper mechanism 70, a spring 80, and the like. That is, by removing the damper mechanism 70 and the spring 80, which are the coupling mechanisms, from FIG. 16 and reproducing the torque corresponding to the removed coupling mechanism by the torque adjustment motor 66, the same effect as when these are not removed can be obtained. it can.
  • the vehicle according to the present invention has a fastening force that allows the steering angle of the steered wheel to follow the input shaft and the steering shaft in a turning direction due to the inclination of the vehicle body, and the steering shaft. Since a connecting mechanism for connecting with the input shaft with a fastening force that enables torque transmission is provided, according to the vehicle according to the present invention, when the vehicle body is inclined due to road surface inclination or unevenness Even when sudden disturbances such as receiving crosswinds occur, it is possible to reduce the instability of driving and to ensure driving stability, contrary to the driver's intention. This prevents the vehicle from turning.
  • the driver can detect the vehicle body through the tactile sense from the input member.
  • the vehicle is traveling on the slope or unevenness of the road surface and that the vehicle body is receiving a crosswind, so that the driving operation is not delayed.
  • the present invention relates to a miniaturized vehicle that has recently attracted attention from the viewpoint of energy problems.
  • the driving operation is delayed because it is difficult for the driver to perceive the problem that the vehicle turns against the driver's intention in the event of sudden disturbance, and the effects of road surface unevenness and crosswinds.
  • the input shaft and the steering shaft are fastening forces that allow the steering angle of the steered wheels to follow the turning direction due to the inclination of the vehicle body, and are input from the steering shaft.
  • a coupling mechanism that couples the shaft with a fastening force that enables torque transmission.
  • Rotation drive device 51R ... Rotation drive device 65 ... Steering motor 66 ... Torque adjustment motor 67 ... Mo Side gears 68 ... steering shaft side gear 70 ... damper mechanism 73 ... rotary damper 74 ... linear damper 80 ... spring 100 ... vehicle ECU 101 ... Rotary drive unit ECU 102 ... Lean motor ECU 103 ... Steering motor ECU 122 ... Vehicle speed sensor 123 ... Input member operation angle sensor 124 ... Front wheel steering angle sensor 125 ... Lean angle sensor 145 ... Accelerator position sensor 146 ... Brake position sensor 147 ... Shift switch Position sensor 149 ... Camera 150 ... Gyro sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

[Problem] To provide a vehicle in which unstable travel and the like can be mitigated and travel stability can be achieved. [Solution] This vehicle (10) is characterized by having: a vehicle body provided with: three or more vehicle wheels including at least: a steered wheel (12F) and a pair of vehicle wheels (12L, 12R) arranged in the vehicle width direction; an inclining part that inclines the vehicle body; an input member (41a) that is rotationally operated to input a turning direction; an input shaft (43) for transmitting the rotation of the input member (41a); a steering shaft (13) which steers the steered wheel (12F) by rotation and can be rotated regardless of the rotational operation of the input member; and a connection mechanism (a spring (80), etc.) which connects the input shaft (43) and the steering shaft (13) with a fastening force which allows the steering angle of the steered wheel (12F) to follow the turning direction determined by the inclination of the vehicle body, and which enables torque to be transmitted from the steering shaft (13) to the input shaft (43).

Description

車両vehicle
 本発明は、トレールを有する操舵輪を含む3つ以上の車輪が設けられた車体からなる車両に関するものである。 The present invention relates to a vehicle including a vehicle body provided with three or more wheels including a steering wheel having a trail.
 近年、エネルギー資源の枯渇問題に鑑み、車両の省燃費化が強く要求されている。その一方で、車両の低価格化等から、車両の保有者が増大し、1人が1台の車両を保有する傾向にある。そのため、例えば、4人乗りの車両を運転者1人のみが運転することで、エネルギーが無駄に消費されるという問題点があった。車両の小型化による省燃費化としては、車両を1人乗りの三輪車又は四輪車として構成する形態が最も効率的であるといえる。 In recent years, in view of the problem of depletion of energy resources, there is a strong demand for fuel saving of vehicles. On the other hand, the number of vehicle owners is increasing due to the low price of vehicles, and one person tends to own one vehicle. Therefore, for example, there is a problem that energy is wasted when only one driver drives a four-seater vehicle. The most efficient way to save fuel consumption by reducing the size of the vehicle is to configure the vehicle as a one-seater tricycle or four-wheel vehicle.
 しかし、走行状態によっては、車両の安定性が低下してしまうことがある。そこで、車体を横方向に傾斜(リーン)させることによって、旋回時の車両の安定性を向上させる技術が提案されている
 特許文献1(特開2013-71688号公報)には、車両において、車体を傾斜させる構成を有しており、操舵部の入力、車速センサ、横Gセンサに基づいて、車体の傾斜角、操舵輪の実舵角をそれぞれ計算して専用のモータで、傾斜角、実舵角を変える技術が開示されている。
特開2013-71688号公報
However, depending on the running state, the stability of the vehicle may decrease. Therefore, a technique for improving the stability of the vehicle during turning by leaning the vehicle body in the lateral direction has been proposed. Patent Document 1 (Japanese Patent Application Laid-Open No. 2013-71688) discloses a vehicle body The tilt angle of the vehicle body and the actual steering angle of the steered wheel are calculated based on the input of the steering unit, the vehicle speed sensor, and the lateral G sensor, respectively, and the tilt angle and actual A technique for changing the rudder angle is disclosed.
JP 2013-71688 A
 発明者らは、特許文献1記載の車両において、左右の車輪12L及び12Rにキャンバ角を付与するのみで、車輪12Fは回動自在な状態として旋回するモードを有する車両を開発している。 The inventors have developed a vehicle having a mode in which the wheel 12F turns in a state in which the wheel 12F can rotate by merely giving camber angles to the left and right wheels 12L and 12R in the vehicle described in Patent Document 1.
 ところが、このようなモードにおいては、路面の傾斜、凹凸により車体が傾斜した場合や、横風を受ける、などといった突発的な外乱が生じた場合には、ドライバーの意図に反して車両が旋回しまう、といった問題があった。 However, in such a mode, when a sudden disturbance such as a vehicle body tilting due to road surface inclination or unevenness or receiving a side wind occurs, the vehicle turns against the driver's intention. There was a problem.
 また、ハンドルなどの旋回方向の入力部材と車輪12Fとが接続されているわけではないので、車体が路面の傾斜や凹凸を走行していることや、車体が横風を受けていることを、ドライバーは視覚とGとでしか知り得ることができず、運転操作が遅れる、といった問題もあった。 In addition, since the input member in the turning direction such as the steering wheel and the wheel 12F are not connected, it is confirmed that the vehicle body is traveling on a slope or uneven surface of the road, and that the vehicle body is subjected to a crosswind. Can be known only by vision and G, and there is a problem that driving operation is delayed.
 上記問題を解決するために、本発明に係る車両は、操舵輪と、車両幅方向に配置された一対の車輪とを少なくとも含む3つ以上の車輪が設けられた車体と、前記車体を傾斜させる傾斜部と、回動操作することで旋回方向を入力する入力部材と、前記入力部材の回動を伝達する入力軸と、回動することで前記操舵輪を操舵する一方で前記入力部材の回動操作とは無関係に回動可能な操舵軸と、前記入力軸と前記操舵軸とを、前記車体の傾斜よる旋回方向に、前記操舵輪の操舵角が倣うことを許容する締結力であり、かつ、前記操舵軸から前記入力軸に対してトルク伝達を可能とする締結力で連結する連結機構と、を有することを特徴とする。 In order to solve the above problems, a vehicle according to the present invention includes a vehicle body provided with three or more wheels including at least a steering wheel and a pair of wheels arranged in the vehicle width direction, and the vehicle body is inclined. An inclination member, an input member that inputs a turning direction by rotating, an input shaft that transmits the rotation of the input member, and the steering wheel by turning while turning the input member. A fastening force that allows the steering angle of the steered wheel to follow the turning axis of the vehicle body tilting the steering shaft that can be rotated independently of the dynamic operation, the input shaft, and the steering shaft; And a coupling mechanism that couples with a fastening force that enables torque transmission from the steering shaft to the input shaft.
 また、本発明に係る車両は、前記連結機構は、前記入力軸の回動角と、前記操舵軸の回動角との差又は/及び前記入力軸の回動角速度と、前記操舵軸の回動角速度との差に応じて締結力が変わる構成とされることを特徴とする。 In the vehicle according to the present invention, the connection mechanism may be configured such that the difference between the rotation angle of the input shaft and the rotation angle of the steering shaft or / and the rotation angular velocity of the input shaft and the rotation of the steering shaft. The fastening force varies depending on the difference from the dynamic angular velocity.
 また、本発明に係る車両は、前記連結機構は、前記入力軸の回動角と、前記操舵軸の回動角との差が大きくなるに連れて、締結力が大きくなる、又は/及び前記入力軸の回動角速度と、前記操舵軸の回動角速度との差が大きくなるに連れて、締結力が大きくなることを特徴とする。 Further, in the vehicle according to the present invention, the coupling mechanism increases the fastening force as the difference between the rotation angle of the input shaft and the rotation angle of the steering shaft increases. The fastening force increases as the difference between the rotational angular velocity of the input shaft and the rotational angular velocity of the steering shaft increases.
 また、本発明に係る車両は、前記連結機構は、バネ機構であることを特徴とする。 Further, the vehicle according to the present invention is characterized in that the coupling mechanism is a spring mechanism.
 また、本発明に係る車両は、前記連結機構は、ダンパ機構であることを特徴とする。 The vehicle according to the present invention is characterized in that the coupling mechanism is a damper mechanism.
 また、本発明に係る車両は、前記ダンパ機構が、互いの軸への回動トルクの伝達を行う際の回動トルクに上限が設定されることを特徴とする。 Further, the vehicle according to the present invention is characterized in that an upper limit is set for the rotational torque when the damper mechanism transmits the rotational torque to each other's shaft.
 また、本発明に係る車両は、前記ダンパ機構が、粘性を有するMR流体が用いられた可変ダンパであることを特徴とする。 Also, the vehicle according to the present invention is characterized in that the damper mechanism is a variable damper using a viscous MR fluid.
 また、本発明に係る車両は、前記入力軸の回動角度と、前記操舵軸の回動角度との差に応じて、締結力が変わるバネ機構をさらに有することを特徴とする。 In addition, the vehicle according to the present invention further includes a spring mechanism that changes a fastening force according to a difference between a rotation angle of the input shaft and a rotation angle of the steering shaft.
 また、本発明に係る車両は、前記傾斜部は、前記一対の車輪に駆動力差を生じさせることで前記車体を傾斜させることを特徴とする。 Further, the vehicle according to the present invention is characterized in that the inclined portion inclines the vehicle body by causing a difference in driving force between the pair of wheels.
 また、本発明に係る車両は、前記操舵軸に加える操舵トルクを調整する操舵トルク調整機構を、さらに有することを特徴とする。 Further, the vehicle according to the present invention further includes a steering torque adjustment mechanism for adjusting a steering torque applied to the steering shaft.
 また、本発明に係る車両は、車速を検出する車速検出部を有し、前記操舵トルク調整機構は、前記車速検出部で検出される車速に応じて、前記操舵軸に加える操舵トルクを調整することを特徴とする。 The vehicle according to the present invention includes a vehicle speed detection unit that detects a vehicle speed, and the steering torque adjustment mechanism adjusts a steering torque applied to the steering shaft according to a vehicle speed detected by the vehicle speed detection unit. It is characterized by that.
 また、本発明に係る車両は、前記車速検出部で検出される車速が0である場合、前記操舵トルク調整機構が発生するトルクは、前記入力軸と前記操舵軸との回転位相差を無くすような向きと大きさであることを特徴とする。 In the vehicle according to the present invention, when the vehicle speed detected by the vehicle speed detection unit is 0, the torque generated by the steering torque adjustment mechanism eliminates the rotational phase difference between the input shaft and the steering shaft. It is characterized by a wide orientation and size.
 また、本発明に係る車両は、前記車速検出部で検出される車速が0でない場合、前記操舵トルク調整機構が発生するトルクは、車速が速いほど大きくなるように設定されることを特徴とする。 In the vehicle according to the present invention, when the vehicle speed detected by the vehicle speed detection unit is not 0, the torque generated by the steering torque adjusting mechanism is set to increase as the vehicle speed increases. .
 本発明に係る車両は、前記入力軸と前記操舵軸とを、前記車体の傾斜よる旋回方向に、前記操舵輪の操舵角が倣うことを許容する締結力であり、かつ、前記操舵軸から前記入力軸に対してトルク伝達を可能とする締結力で連結する連結機構が設けられているので、このような本発明に係る車両によれば、路面の傾斜、凹凸により車体が傾斜した場合や、横風を受ける、などといった突発的な外乱が生じた場合でも、走行が不安定となったりすることを軽減することができ、走行安定性を確保することが可能となり、ドライバーの意図に反して車両が旋回しまうことがない。 The vehicle according to the present invention has a fastening force that allows the steering angle of the steered wheel to follow the input shaft and the steering shaft in a turning direction due to the inclination of the vehicle body, and from the steering shaft to the steering shaft. Since there is provided a coupling mechanism for coupling with the input shaft with a fastening force that enables torque transmission, according to such a vehicle according to the present invention, when the vehicle body is inclined due to road surface inclination or unevenness, Even if a sudden disturbance such as receiving a crosswind occurs, it is possible to reduce the instability of driving and to ensure driving stability. Will never turn.
 また、本発明に係る車両は、連結機構を介して、入力軸と操舵軸とが接続されているので、このような本発明に係る車両によれば、ドライバーは入力部材からの触覚を通じて、車体が路面の傾斜や凹凸を走行していることや、車体が横風を受けていることを知覚することででき、運転操作が遅れることがない。 Moreover, since the input shaft and the steering shaft are connected via the coupling mechanism in the vehicle according to the present invention, according to such a vehicle according to the present invention, the driver can detect the vehicle body through the tactile sense from the input member. However, it is possible to perceive that the vehicle is traveling on the slope or unevenness of the road surface and that the vehicle body is receiving a crosswind, so that the driving operation is not delayed.
本発明の実施形態に係る車両10の構成を示す右側面図である。It is a right view which shows the structure of the vehicle 10 which concerns on embodiment of this invention. 本発明の実施形態に係る車両10のリーン機構の構成を示す図である。It is a figure which shows the structure of the lean mechanism of the vehicle 10 which concerns on embodiment of this invention. 本発明の実施形態に係る車両10の構成を示す背面図である。It is a rear view which shows the structure of the vehicle 10 which concerns on embodiment of this invention. 本発明の実施形態に係る車両10の模式図である。1 is a schematic diagram of a vehicle 10 according to an embodiment of the present invention. 本発明の実施形態に係る車両10のシステム構成を示すブロック図である。1 is a block diagram showing a system configuration of a vehicle 10 according to an embodiment of the present invention. 本発明の実施形態に係る車両10による走行を概念的に説明する図である。It is a figure which illustrates notionally driving by vehicles 10 concerning an embodiment of the present invention. 本発明の実施形態に係る車両10における連結機構(バネ機構)の例を示す図である。It is a figure which shows the example of the connection mechanism (spring mechanism) in the vehicle 10 which concerns on embodiment of this invention. 軸間の角度差とバネ80の発生するトルクの関係を説明する図である。It is a figure explaining the relationship between the angle difference between shafts, and the torque which the spring 80 generate | occur | produces. 本発明の他の実施形態に係る車両10における連結機構(ダンパ機構70)の一例を示す図である。It is a figure which shows an example of the connection mechanism (damper mechanism 70) in the vehicle 10 which concerns on other embodiment of this invention. 軸間の角速度差とダンパ機構70の発生するトルクの関係を説明する図である。It is a figure explaining the relationship between the angular velocity difference between axes | shafts, and the torque which the damper mechanism generates. 本発明の他の実施形態に係る車両10における連結機構(ダンパ機構70)の例を示す図である。It is a figure which shows the example of the connection mechanism (damper mechanism 70) in the vehicle 10 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る車両10における連結機構の例を示す図である。It is a figure which shows the example of the connection mechanism in the vehicle 10 which concerns on other embodiment of this invention. 車体の傾斜角θ一定の時に車速に応じて必要となる操舵角の関係を示す図である。It is a figure which shows the relationship of the steering angle required according to a vehicle speed when the inclination | tilt angle (theta) of a vehicle body is constant. 本発明の他の実施形態に係る車両10における操舵トルク調整機構の役割を説明する図である。It is a figure explaining the role of the steering torque adjustment mechanism in the vehicle 10 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る車両10における操舵トルク調整機構を模式的に説明する図である。It is a figure which illustrates typically the steering torque adjustment mechanism in the vehicle 10 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る車両10における操舵トルク調整機構を模式的に説明する図である。It is a figure which illustrates typically the steering torque adjustment mechanism in the vehicle 10 which concerns on other embodiment of this invention.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明の実施の形態における車両の構成を示す右側面図、図2は本発明の実施の形態における車両のリーン機構の構成を示す図、図3は本発明の実施の形態における車両の構成を示す背面図である。なお、図3において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。 FIG. 1 is a right side view showing the configuration of the vehicle in the embodiment of the present invention, FIG. 2 is a diagram showing the configuration of the lean mechanism of the vehicle in the embodiment of the present invention, and FIG. 3 is the vehicle in the embodiment of the present invention. It is a rear view which shows the structure. 3A is a diagram showing a state where the vehicle body is standing upright, and FIG. 3B is a diagram showing a state where the vehicle body is inclined.
 図において、10は、本実施の形態における車両であり、本体部20と、ドライバーが搭乗して操舵する操舵部としての搭乗部11と、車体の前方において幅方向の中心に配設された前輪である操舵可能な操舵輪としての車輪12Fと、後輪として後方に配設された駆動輪であって操舵不能な非操舵輪としての左側の車輪12L及び右側の車輪12Rとを有する。 In the figure, reference numeral 10 denotes a vehicle according to the present embodiment, a main body portion 20, a riding portion 11 as a steering portion on which a driver rides and steers, and a front wheel disposed at the center in the width direction in front of the vehicle body. And a left wheel 12L and a right wheel 12R as non-steering wheels that are non-steerable driving wheels disposed rearward as rear wheels.
 車輪12F、車輪12L及び右側の車輪12Rが取り付けられる部分であり、搭乗部11などの車両10の車輪以外の本体部分を車体として定義する。 The wheel 12F, the wheel 12L, and the wheel 12R on the right side are attached, and a main body part other than the wheel of the vehicle 10 such as the riding part 11 is defined as a vehicle body.
 さらに、前記車両10は、車体を左右に傾斜させる、すなわち、リーンさせるためのリーン機構、すなわち、車体傾斜機構として、左右の車輪12L及び12Rを支持するリンク機構30と、該リンク機構30を作動させるアクチュエータである傾斜用アクチュエータ装置としてのリーンモータ25とを有する。 Furthermore, the vehicle 10 operates as a lean mechanism for leaning the vehicle body from side to side, that is, as a lean mechanism, that is, a vehicle body tilt mechanism, supporting the left and right wheels 12L and 12R, and the link mechanism 30. And a lean motor 25 as a tilt actuator device.
 なお、車両10のリーン機構については、「傾斜部」と上位概念的に表現することがある。また、「操舵輪」は、本実施例における車輪12Fに相当し、「車両幅方向に配置された一対の車輪」が左右の車輪12L及び12Rに相当する。 In addition, the lean mechanism of the vehicle 10 may be expressed conceptually as “inclined part”. In addition, the “steering wheel” corresponds to the wheel 12F in the present embodiment, and the “pair of wheels arranged in the vehicle width direction” corresponds to the left and right wheels 12L and 12R.
 なお、前記車両10は、前輪が左右二輪であって後輪が一輪の三輪車であってもよいし、前輪及び後輪が左右二輪の四輪車であってもよいが、本実施の形態においては、図に示されるように、前輪が一輪であって後輪が左右二輪の三輪車である場合について説明する。また、操舵輪が駆動輪として機能してもよいが、本実施の形態においては、操舵輪は駆動輪として機能しないものとして説明する。 The vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle. Further, although the steered wheel may function as a drive wheel, in the present embodiment, the description will be made assuming that the steered wheel does not function as a drive wheel.
 また、本実施形態では、車両10の車体を左右に傾斜させるリーン機構として、リンク機構30と、リーンモータ25とから構成したが、リーン機構としてはこのようなものに限られるものではない。例えば、リーン機構としては、左右の車輪12L及び12Rに駆動力差を生じさせることで、車体を傾斜させる構成を採用することもできる。 In the present embodiment, the lean mechanism that tilts the vehicle body of the vehicle 10 left and right includes the link mechanism 30 and the lean motor 25. However, the lean mechanism is not limited to this. For example, as the lean mechanism, it is possible to adopt a configuration in which the vehicle body is inclined by causing a driving force difference between the left and right wheels 12L and 12R.
 本発明に係る車両10においては、基本的に、旋回時には、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角を変化させるとともに、搭乗部11及び本体部20を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上とドライバーの快適性の確保とを図ることができるようになっている。 In the vehicle 10 according to the present invention, basically, at the time of turning, the angles of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle are changed, and the vehicle body including the riding portion 11 and the main body portion 20 is changed to the turning inner wheel. By tilting to the side, it is possible to improve the turning performance and ensure the driver's comfort.
 すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、図2及び3(a)に示される例においては、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。また、図3(b)に示される例においては、左右の車輪12L及び12Rは路面18に対して右方向に傾斜している、すなわち、キャンバ角が付与されている。 That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction). In the example shown in FIGS. 2 and 3 (a), the left and right wheels 12L and 12R are upright with respect to the road surface 18, that is, the camber angle is 0 degree. In the example shown in FIG. 3B, the left and right wheels 12L and 12R are inclined in the right direction with respect to the road surface 18, that is, a camber angle is given.
 前記リンク機構30は、左側の車輪12L及び該車輪12Lに駆動力を付与する電気モータ等から成る左側の回転駆動装置51Lを支持する左側の縦リンクユニット33Lと、右側の車輪12R及び該車輪12Rに駆動力を付与する電気モータ等から成る右側の回転駆動装置51Rを支持する右側の縦リンクユニット33Rと、左右の縦リンクユニット33L及び33Rの上端同士を連結する上側の横リンクユニット31Uと、左右の縦リンクユニット33L及び33Rの下端同士を連結する下側の横リンクユニット31Dと、本体部20に上端が固定され、上下に延在する中央縦部材21とを有する。 The link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R. A right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R; The lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically.
 また、左右の縦リンクユニット33L及び33Rと上下の横リンクユニット31U及び31Dとは回転可能に連結されている。さらに、上下の横リンクユニット31U及び31Dは、その中央部で中央縦部材21と回転可能に連結されている。なお、左右の車輪12L及び12R、左右の回転駆動装置51L及び51R、左右の縦リンクユニット33L及び33R、並びに、上下の横リンクユニット31U及び31Dを統合的に説明する場合には、車輪12、回転駆動装置51、縦リンクユニット33及び横リンクユニット31として説明する。 The left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof. When the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
 そして、駆動用アクチュエータ装置としての前記回転駆動装置51は、いわゆるインホイールモータであって、固定子としてのボディが縦リンクユニット33に固定され、前記ボディに回転可能に取り付けられた回転子としての回転軸が車輪12の軸に接続され、前記回転軸の回転によって車輪12を回転させる。なお、前記回転駆動装置51は、インホイールモータ以外の種類のモータであってもよい。 The rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable. A rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft. The rotational drive device 51 may be a motor other than an in-wheel motor.
 また、前記リーンモータ25は、電気モータ等を含む回転式の電動アクチュエータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、前記ボディが取付フランジ22を介して本体部20に固定され、前記回転軸がリンク機構30の上側の横リンクユニット31Uに固定されている。 The lean motor 25 is a rotary electric actuator including an electric motor and the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body. The body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 </ b> U on the upper side of the link mechanism 30.
 なお、リーンモータ25の回転軸は、本体部20を傾斜させる傾斜軸として機能し、中央縦部材21と上側の横リンクユニット31Uとの連結部分の回転軸と同軸になっている。そして、リーンモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動し、リンク機構30が作動する、すなわち、屈伸する。これにより、本体部20を傾斜させることができる。なお、リーンモータ25は、その回転軸が本体部20及び中央縦部材21に固定され、そのボディが上側の横リンクユニット31Uに固定されていてもよい。 The rotation axis of the lean motor 25 functions as an inclination axis for inclining the main body 20, and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U. Then, when the lean motor 25 is driven to rotate the rotation shaft with respect to the body, the upper lateral link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. The lean motor 25 may have its rotation shaft fixed to the main body 20 and the central vertical member 21 and its body fixed to the upper horizontal link unit 31U.
 また、リーンモータ25は、リンク機構30によるリーン角の変化を検出するリーン角センサ125を備える。該リーン角センサ125は、リーンモータ25においてボディに対する回転軸の回転角を検出する回転角センサであって、例えば、レゾルバ、エンコーダ等から成る。前述のように、リーンモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動するのであるから、ボディに対する回転軸の回転角を検出することによって、中央縦部材21に対する上側の横リンクユニット31Uの角度の変化、すなわち、リンク角の変化を検出することができる。 Also, the lean motor 25 includes a lean angle sensor 125 that detects a change in the lean angle caused by the link mechanism 30. The lean angle sensor 125 is a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the lean motor 25, and includes, for example, a resolver, an encoder, and the like. As described above, when the lean motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20. Therefore, a change in the angle of the upper horizontal link unit 31U relative to the central vertical member 21, that is, a change in the link angle can be detected by detecting the rotation angle of the rotation shaft with respect to the body.
 なお、リーンモータ25は、回転軸をボディに対して回転不能に固定する図示されないロック機構を備える。該ロック機構は、メカニカルな機構であって、回転軸をボディに対して回転不能に固定している間には電力を消費しないものであることが望ましい。前記ロック機構によって、回転軸をボディに対して所定の角度で回転不能に固定することができる。 The lean motor 25 includes a lock mechanism (not shown) that fixes the rotation shaft to the body so as not to rotate. The lock mechanism is a mechanical mechanism, and preferably does not consume electric power while the rotation shaft is fixed to the body so as not to rotate. The lock mechanism can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
 前記搭乗部11は、本体部20の前端に図示されない連結部を介して連結される。該連結部は、搭乗部11と本体部20とを所定の方向に相対的に変位可能に連結する機能を有していてもよい。 The boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown). The connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
 また、前記搭乗部11は、座席11a、フットレスト11b及び風よけ部11cを備える。前記座席11aは、車両10の走行中にドライバーが着座するための部位である。また、前記フットレスト11bは、ドライバーの足部を支持するための部位であり、座席11aの前方側(図1における右側)下方に配設される。 The boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c. The seat 11a is a part for a driver to sit while the vehicle 10 is traveling. The footrest 11b is a part for supporting the driver's foot, and is disposed below the front side (right side in FIG. 1) of the seat 11a.
 さらに、搭乗部11の後方若しくは下方又は本体部20には、図示されないバッテリ装置が配設されている。該バッテリ装置は、回転駆動装置51及びリーンモータ25のエネルギー供給源である。また、搭乗部11の後方若しくは下方又は本体部20には、図示されない制御装置、インバータ装置、各種センサ等が収納されている。 Furthermore, a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20. The battery device is an energy supply source for the rotation drive device 51 and the lean motor 25. In addition, a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
 そして、座席11aの前方には、操縦装置41が配設されている。該操縦装置41には、ドライバーが操作して操舵方向、操舵角等の操舵指令情報を入力する操舵装置としての入力部材41a、速度メータ等のメータ、インジケータ、スイッチ等の操縦に必要な部材が配設されている。 And, a steering device 41 is disposed in front of the seat 11a. The steering device 41 includes members necessary for steering such as an input member 41a as a steering device that is operated by a driver to input steering command information such as a steering direction and a steering angle, a meter such as a speed meter, an indicator, and a switch. It is arranged.
 ドライバーは、前記入力部材41a及びその他の部材を操作して、車両10の走行状態(例えば、進行方向、走行速度、旋回方向、旋回半径等)を指示する。なお、前記操舵装置として、入力部材41aに代えて他の装置、例えば、ステアリングホイール、ジョグダイヤル、タッチパネル、押しボタン等の装置を使用することもできる。 The driver operates the input member 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.). As the steering device, other devices such as a steering wheel, a jog dial, a touch panel, and a push button can be used instead of the input member 41a.
 なお、車輪12Fは、サスペンション装置(懸架装置)の一部である前輪フォーク17を介して操舵軸13に接続されている。前記サスペンション装置は、例えば、一般的なオートバイ、自転車等において使用されている前輪用のサスペンション装置と同様の装置であり、前記前輪フォーク17は、例えば、スプリングを内蔵したテレスコピックタイプのフォークである。 The wheel 12F is connected to the steering shaft 13 via a front wheel fork 17 which is a part of a suspension device (suspension device). The suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring.
 入力部材41aにはドライバーにより回動操作されることで旋回方向を入力するものである。入力部材41aには入力部材41aの回動を伝達する入力軸43が接続されている。また、入力軸43の回動中心と、操舵軸13の回動中心とは同一となるように設定されている。ダンパ機構70は、入力軸43と操舵軸13と間に設けられる。このダンパ機構70の詳細については後述する。 The turning direction is inputted to the input member 41a by being turned by a driver. An input shaft 43 that transmits the rotation of the input member 41a is connected to the input member 41a. Further, the rotation center of the input shaft 43 and the rotation center of the steering shaft 13 are set to be the same. The damper mechanism 70 is provided between the input shaft 43 and the steering shaft 13. Details of the damper mechanism 70 will be described later.
 本発明に係る車両10においては、入力部材41aの操作に応じて操舵輪としての車輪12Fの操舵角を制御するモードや、車輪12Fの操舵角を入力部材41aの操作とは無関係に回動自在な状態とするモードなど幾つかのモードを有している。ここで、車輪12Fの操舵軸(不図示)と路面の交点Pと操舵輪の接地点Oとの間には、所定のトレールLTがあり、後者のモードにおける旋回時には、回動自在な状態である車輪12Fは、左右の車輪12L及び12Rのキャンバ角に追随する形で、自動的に操舵される。また、本実施形態に係る車両10においては、車輪12Fの操舵軸と路面の交点Pが、前記操舵輪の接地点Oより前方である。 In the vehicle 10 according to the present invention, the mode in which the steering angle of the wheel 12F as the steering wheel is controlled according to the operation of the input member 41a and the steering angle of the wheel 12F can be rotated independently of the operation of the input member 41a. There are several modes, such as a mode to set a state. Here, between the ground point O of the steering shaft of the wheel 12F (not shown) and the intersection point P of the road steering wheel, there is a predetermined trail L T, at the time of turning in the latter mode, rotatable state The wheel 12F is automatically steered so as to follow the camber angles of the left and right wheels 12L and 12R. Further, in the vehicle 10 according to the present embodiment, the intersection P between the steering shaft of the wheel 12F and the road surface is ahead of the ground contact point O of the steering wheel.
 なお、車輪12Fの回動とは、車両10が走行しているときにおける車輪12F自体の回転のことではなく、車輪12Fの操舵軸の回動に基づく車輪12Fの動作のことを言う。 It should be noted that the rotation of the wheel 12F refers to the operation of the wheel 12F based on the rotation of the steering shaft of the wheel 12F, not the rotation of the wheel 12F itself when the vehicle 10 is traveling.
 車輪12Fが回動自在な状態で車両10が走行するモードについて説明する。図4は本発明の実施形態における車両10の模式図であり、左右の車輪12L及び12Rにキャンバ角が付与され、リーン制御によって車両10が旋回している状態を示している。ここで、車両10の重量をm、重力加速度をg、車両10のリーン制御におけるリーン角をθ、また旋回時の車両10の速度をV、旋回半径をRとすると、F1及びF2は下式(1)及び(2)によって表すことができる。 A mode in which the vehicle 10 travels with the wheel 12F being rotatable will be described. FIG. 4 is a schematic diagram of the vehicle 10 according to the embodiment of the present invention, in which camber angles are given to the left and right wheels 12L and 12R, and the vehicle 10 is turning by lean control. Here, if the weight of the vehicle 10 is m, the acceleration of gravity is g, the lean angle in the lean control of the vehicle 10 is θ, the speed of the vehicle 10 during turning is V, and the turning radius is R, F 1 and F 2 are It can be represented by the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
また、幾何学的な関係により、下式(3)、(4)が成立する。 Further, the following expressions (3) and (4) are established due to the geometric relationship.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 車両10が、前記のような条件で旋回している時には下式(5)が成立する。 The following equation (5) is established when the vehicle 10 is turning under the above conditions.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
これに式(1)乃至(4)を代入して整理を行うと、車両旋回半径Rは、下式(6)によって求めることができる。 By substituting the equations (1) to (4) into this, the vehicle turning radius R can be obtained by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
式(6)は、本発明に係る車両10においては、旋回時の車速Vと、車両10のリーン角θとを決めてやることで、車両10の進行方向を決めることができることを示している。 Expression (6) indicates that in the vehicle 10 according to the present invention, the traveling direction of the vehicle 10 can be determined by determining the vehicle speed V during turning and the lean angle θ of the vehicle 10. .
 入力部材41aの入力軸43の回転角、すなわち、ドライバーが入力部材41aを操作して入力した操舵角指令値としての入力部材41aの切り角は、入力操舵角検出手段としての入力部材操作角センサ123によって検出される。該ハンドル操作角センサ123は、例えば、エンコーダ等から成る。 The rotation angle of the input shaft 43 of the input member 41a, that is, the turning angle of the input member 41a as the steering angle command value input by the driver operating the input member 41a is an input member operation angle sensor as input steering angle detection means. 123. The handle operating angle sensor 123 is composed of, for example, an encoder.
 操舵軸13の近傍には、操舵用アクチュエータ装置としての操舵モータ65が配設されており、車輪12Fを操舵輪として入力部材41aの操作に応じて操舵角を制御するモードでは、該操舵モータ65が、前記入力部材操作角センサ123によって検出された入力部材41aの切り角に基づいて、前記操舵軸部材の下端を回転させる。 A steering motor 65 as a steering actuator device is disposed in the vicinity of the steering shaft 13. In the mode in which the steering angle is controlled according to the operation of the input member 41 a using the wheel 12F as a steering wheel, the steering motor 65 is provided. However, based on the cutting angle of the input member 41a detected by the input member operation angle sensor 123, the lower end of the steering shaft member is rotated.
 そして、操舵モータ65が出力し、操舵軸13及び前輪フォーク17を介して車輪12Fに伝達される操舵角は、出力操舵角検出手段としての前輪操舵角センサ124によって検出される。該前輪操舵角センサ124は、例えば、操舵モータ65においてボディに対する回転軸の回転角を検出する回転角センサであって、レゾルバ、エンコーダ等から成る。なお、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との距離、すなわち、ホイールベースはLH である。 The steering angle output from the steering motor 65 and transmitted to the wheel 12F via the steering shaft 13 and the front wheel fork 17 is detected by a front wheel steering angle sensor 124 as output steering angle detection means. The front wheel steering angle sensor 124 is, for example, a rotation angle sensor that detects the rotation angle of the rotation shaft with respect to the body in the steering motor 65, and includes a resolver, an encoder, and the like. The distance between the left and right wheels 12L and 12R axle is the axle and the rear wheel of the wheel 12F is a front wheel, i.e., the wheel base is L H.
 また、車輪12Fの操舵角を入力部材41aの操作とは無関係に回動自在な状態とするモードでは、前記操舵モータ65の制御を停止することで、車輪12Fの操舵角を回動自在とする。なお、車輪12Fの操舵角を回動自在とする方法として、例えば前記操舵モータ65を0トルクに制御しても良いし、前記操舵モータ65と操舵軸13とを、クラッチなどにより、切り離しても良い。 Further, in a mode in which the steering angle of the wheel 12F can be rotated regardless of the operation of the input member 41a, the steering angle of the wheel 12F can be rotated by stopping the control of the steering motor 65. . As a method for making the steering angle of the wheel 12F freely rotatable, for example, the steering motor 65 may be controlled to 0 torque, or the steering motor 65 and the steering shaft 13 may be separated by a clutch or the like. good.
 さらに、車両10は、駆動力発生指令を入力する駆動指令装置としてのアクセル45を操縦装置41の一部として備える。アクセル45はドライバーの踏み込み度合いに応じて、回転駆動装置51に駆動力を発生させる指令としての駆動力発生指令を入力する装置である。また、車両10は、ブレーキ46はドライバーが踏み込むことによって、車両10に制動力を付与するものである。 Furthermore, the vehicle 10 includes an accelerator 45 as a drive command device that inputs a drive force generation command as a part of the control device 41. The accelerator 45 is a device that inputs a driving force generation command as a command for causing the rotational driving device 51 to generate a driving force in accordance with the degree of depression of the driver. In the vehicle 10, the brake 46 is applied to the vehicle 10 when the driver steps on the brake 46.
 また、シフトスイッチ47は、車両10の走行モードをドライバーが選択するためのスイッチであり、本実施形態では、ドライブレンジ、ニュートラルレンジ、リバースレンジ、パーキングレンジの少なくとも4つの走行モードを有している。これらの走行モードは、一般的なオートマチックトランスミッションを備える自動車などと同様のものである。 The shift switch 47 is a switch for the driver to select the travel mode of the vehicle 10, and in the present embodiment, the shift switch 47 has at least four travel modes: a drive range, a neutral range, a reverse range, and a parking range. . These driving modes are the same as those of an automobile equipped with a general automatic transmission.
 また、車輪12Fの車軸を支持する前輪フォーク17の下端には、車両10の走行速度である車速を検出する車速検出手段としての車速センサ122が配設されている。該車速センサ122は、車輪12Fの回転速度に基づいて車速を検出するセンサであり、例えば、エンコーダ等から成る。 Further, a vehicle speed sensor 122 as a vehicle speed detecting means for detecting a vehicle speed that is the traveling speed of the vehicle 10 is disposed at the lower end of the front wheel fork 17 that supports the axle of the wheel 12F. The vehicle speed sensor 122 is a sensor that detects the vehicle speed based on the rotational speed of the wheel 12F, and includes, for example, an encoder.
 次に、本発明に係る車両10のシステムについて説明する。図5は本発明の実施形態における車両10のシステム構成を示すブロック図である。図5において、ECUはElectronic Control Unitの略であり、CPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用の情報処理機構である。 Next, the system of the vehicle 10 according to the present invention will be described. FIG. 5 is a block diagram showing a system configuration of the vehicle 10 in the embodiment of the present invention. In FIG. 5, ECU is an abbreviation for Electronic Control Unit, and is a general-purpose information processing mechanism including a CPU, a ROM that holds a program that operates on the CPU, and a RAM that is a work area of the CPU.
 車両ECU100は、図示されている車両ECU100と接続される各構成と協働・動作する。また、車両ECU100は、本発明の車両10における種々の制御処理は、車両ECU100内のROMなどの記憶手段に記憶保持されるプログラムやデータに基づいて実行されるものである。 Vehicle ECU 100 cooperates and operates with each component connected to vehicle ECU 100 shown in the figure. Further, the vehicle ECU 100 executes various control processes in the vehicle 10 of the present invention based on programs and data stored and held in storage means such as a ROM in the vehicle ECU 100.
 さらに、本発明に係る車両10においては、車両ECU100から出力される指令値に基づいて回転駆動装置51R、回転駆動装置51Lを制御する回転駆動装置ECU101、及び、車両ECU100から出力される指令値に基づいてリーンモータ25の制御を行うリーンモータECU102、及び、車両ECU100から出力される指令値に基づいて操舵モータ65の制御を行う操舵モータECU103を備えている。 Furthermore, in the vehicle 10 according to the present invention, the rotational drive device 51R, the rotational drive device ECU101 that controls the rotational drive device 51L based on the command value output from the vehicle ECU 100, and the command value output from the vehicle ECU 100 are used. A lean motor ECU 102 that controls the lean motor 25 based on the steering motor ECU 103 that controls the steering motor 65 based on a command value output from the vehicle ECU 100 is provided.
 なお、「操舵輪制御部」の語は、上記のような各ECUによる制御動作を上位概念的に表現したものである。 Note that the term “steering wheel control unit” expresses the control operation by each ECU as described above conceptually.
 車速センサ122は車両10の車速を検出するものであり、車速センサ122によって検出した車速データは車両ECU100に入力される。 The vehicle speed sensor 122 detects the vehicle speed of the vehicle 10, and the vehicle speed data detected by the vehicle speed sensor 122 is input to the vehicle ECU 100.
 また、入力部材操作角センサ123は入力部材41aの切り角を検出するものであり、入力部材操作角センサ123によって検出された入力部材41aの操作角データは車両ECU100に入力される。 Further, the input member operation angle sensor 123 detects a cutting angle of the input member 41a, and the operation angle data of the input member 41a detected by the input member operation angle sensor 123 is input to the vehicle ECU 100.
 また、前輪操舵角センサ124は前輪12Fの操舵角を検出するものであり、前輪操舵角センサ124によって検出された車輪12Fの操舵角データは車両ECU100に入力される。 The front wheel steering angle sensor 124 detects the steering angle of the front wheel 12F, and the steering angle data of the wheel 12F detected by the front wheel steering angle sensor 124 is input to the vehicle ECU 100.
 また、リーン角センサ125は、車両10の傾き量を検出するものであり、リーン角センサ125によって検出された車両10の傾き量データは車両ECU100に入力される。 Further, the lean angle sensor 125 detects the amount of inclination of the vehicle 10, and the amount of inclination data of the vehicle 10 detected by the lean angle sensor 125 is input to the vehicle ECU 100.
 また、アクセルポジションセンサ145はドライバーによるアクセル45の踏み込み量を検出するものであり、アクセルポジションセンサ145によって検出されたアクセル45の踏み込み量デーは車両ECU100に入力される。 Accelerator position sensor 145 detects the amount of depression of accelerator 45 by the driver, and the amount of depression of accelerator 45 detected by accelerator position sensor 145 is input to vehicle ECU 100.
 また、ブレーキポジションセンサ146はドライバーによるブレーキ46の踏み込み量を検出するものであり、ブレーキポジションセンサ146によって検出されたブレーキ46の踏み込み量デーは車両ECU100に入力される。 The brake position sensor 146 detects the amount of depression of the brake 46 by the driver, and the amount of depression of the brake 46 detected by the brake position sensor 146 is input to the vehicle ECU 100.
 また、シフトスイッチポジションセンサ147は、シフトスイッチ47がドライブレンジ、ニュートラルレンジ、リバースレンジのどのポジションにあるのかを検出するものであり、シフトスイッチポジションセンサ147によって検出されたポジションは車両ECU100に入力される。 The shift switch position sensor 147 detects whether the shift switch 47 is in the drive range, neutral range, or reverse range. The position detected by the shift switch position sensor 147 is input to the vehicle ECU 100. The
 また、カメラ149は、車両10の前方の動画像データを取得して、取得した動画像データを車両ECU100に送信する。車両ECU100では、カメラ149から送信された動画像データを画像解析することで、車両10に関する予測を行ったり推定を行ったりする。本実施形態では、このような目的のためにカメラ149を用いるようにしているが、レーダーなどを用いるようにしてもよい。 In addition, the camera 149 acquires moving image data in front of the vehicle 10 and transmits the acquired moving image data to the vehicle ECU 100. The vehicle ECU 100 performs prediction or estimation on the vehicle 10 by analyzing the moving image data transmitted from the camera 149. In this embodiment, the camera 149 is used for such a purpose, but a radar or the like may be used.
 ジャイロセンサ150は、少なくとも車両10のロール角、ロールレイト、ヨーレイトを検出して、検出したデータを車両ECU100に送信する。車両ECU100では、受信したロール角、ロールレイト、ヨーレイトの各データを車両10の制御に供する。 The gyro sensor 150 detects at least the roll angle, roll rate, and yaw rate of the vehicle 10, and transmits the detected data to the vehicle ECU 100. The vehicle ECU 100 uses the received roll angle, roll rate, and yaw rate data for control of the vehicle 10.
 以上のように、車両ECU100に入力された各データは、回転駆動装置51R、回転駆動装置51L、リーンモータ25、操舵モータECU103の制御に利用される。 As described above, each data input to the vehicle ECU 100 is used to control the rotation drive device 51R, the rotation drive device 51L, the lean motor 25, and the steering motor ECU 103.
 次に、以上のように構成される車両10による走行モードについて説明する。本発明に係る車両10は、走行安定性を向上させるために、低速時には、操舵輪である車輪12Fを積極的に操舵させるが、高速時には操舵輪の操舵角を回動自在な状態として、車輪12L及び12Rのリーン制御に倣わせるようにする。なお、低速時、高速時の両方において、必要に怖じて車輪12L及び12Rのリーン制御を行うようにする。以下、車両10の低速時の走行モードを第1モード、高速時の走行モードを第2モードと呼ぶ。 Next, the traveling mode by the vehicle 10 configured as described above will be described. In order to improve running stability, the vehicle 10 according to the present invention actively steers the wheel 12F, which is a steered wheel, at low speed, but sets the steering angle of the steered wheel to be rotatable at high speed. Follow the lean control of 12L and 12R. It should be noted that the lean control of the wheels 12L and 12R is performed with fear of necessity both at low speed and at high speed. Hereinafter, the traveling mode at low speed of the vehicle 10 is referred to as a first mode, and the traveling mode at high speed is referred to as a second mode.
 以下、第1モードと第2モードについて説明する。 Hereinafter, the first mode and the second mode will be described.
 図6は本発明の実施形態における車両10による走行を概念的に説明する図である。図6においては、入力部材41aの入力部材41aの切り角を右に60°とし、車速を0km/hから上げていった場合を例に説明する。また、以下、第1モードと第2モードとの切り替えの境界の車速が、15km/hの場合を例にとり説明するが、境界値がこれに限定されるものではない。 FIG. 6 is a diagram conceptually illustrating traveling by the vehicle 10 in the embodiment of the present invention. In FIG. 6, an example will be described in which the input member 41 a of the input member 41 a has a cutting angle of 60 ° to the right and the vehicle speed is increased from 0 km / h. Hereinafter, a case where the vehicle speed at the boundary between the first mode and the second mode is 15 km / h will be described as an example, but the boundary value is not limited to this.
 なお、本実施形態においては、第1モードと第2モードとの切り替えを車速センサ122により検出された車両10の車速に基づいて行っているが、このような切り替えは、車速センサ122により検出された車速以外のパラメータに基づいて行うようにしてもよく、結果として低車速時に第1モード、高速時に第2モードに切り替われば良い。 In the present embodiment, switching between the first mode and the second mode is performed based on the vehicle speed of the vehicle 10 detected by the vehicle speed sensor 122, but such switching is detected by the vehicle speed sensor 122. This may be performed based on parameters other than the vehicle speed, and as a result, the first mode may be switched to a low speed and the second mode may be switched to a high speed.
 また、本実施形態においては、入力部材41aの切り角δHに対する前輪操舵角δW(δW1は車輪12F(前輪)の初期操舵角)及びリーン角θの関係には、下式(7)及び(8)の関係を規定している。 Further, in the present embodiment, the relationship between the front wheel steering angle δ WW 1 is the initial steering angle of the wheel 12F (front wheel)) and the lean angle θ with respect to the turning angle δ H of the input member 41a is expressed by the following equation (7 ) And (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ただし、k1及びk2は定数であり、本実施形態ではk1=60/30、k2=60/40としているが、本発明がこれらに限定されるものではない。k1は、仮想的なリーンギア比であり、k2は仮想的な操舵ギア比のようなものであり、車両10の運転操作がしやすいものであれば任意の数値を選定することができる。 However, k 1 and k 2 are constants. In this embodiment, k 1 = 60/30 and k 2 = 60/40, but the present invention is not limited to these. k 1 is a virtual lean gear ratio, k 2 is a virtual steering gear ratio, and any numerical value can be selected as long as it is easy to drive the vehicle 10.
 また、図6において、点線は車輪12Fの操舵角δWを示しており、実線は車両10におけるリーン角θを示している。 In FIG. 6, the dotted line indicates the steering angle δ W of the wheel 12F, and the solid line indicates the lean angle θ in the vehicle 10.
 入力部材41aの切り角δH=60°で車速を0km/hから上げて行くと、第1モードによる車両10の走行が開始される。0km/hからの立ち上がりにおいては、操舵輪としての車輪12Fは40°の操舵角で操舵され、車輪12Fの操舵角は漸減される。一方、車両10におけるリーン角θは0から漸増されていく。なお、操舵輪12Fの漸減、及び、車両10のリーン角の漸増は、それぞれ1次関数である場合を例に説明しているが、1次関数に限定されるものではない。また、車両10におけるリーン角θが所定速度(例えば3km/h)まで、0のまま推移し、その後漸増してもよい。なお、特許請求の範囲に記載された漸増には、このように、リーン角θが所定速度(例えば3km/h)まで、0のまま推移する本実施形態の内容も含む。 When the vehicle speed is increased from 0 km / h at a cutting angle δ H = 60 ° of the input member 41a, the vehicle 10 starts to travel in the first mode. At the start from 0 km / h, the wheel 12F as the steering wheel is steered at a steering angle of 40 °, and the steering angle of the wheel 12F is gradually reduced. On the other hand, the lean angle θ in the vehicle 10 is gradually increased from zero. Note that the gradual decrease of the steered wheels 12F and the gradual increase of the lean angle of the vehicle 10 are described as examples of linear functions, but are not limited to linear functions. Alternatively, the lean angle θ in the vehicle 10 may remain 0 until a predetermined speed (for example, 3 km / h), and then gradually increase. In addition, the gradual increase described in the claims includes the contents of the present embodiment in which the lean angle θ remains zero until a predetermined speed (for example, 3 km / h).
 境界値である15km/hにおいて第1モードから第2モードへと切り替わるが、切り替わるタイミング以降の第2モードでは、操舵輪である車輪12Fの操舵角を回動自在な状態となり、リーン角θは式(8)により規定される30°となる。以降、さらに車速Vが上がっていっても、高速時の第2モードではリーン角θのみによって車両10の旋回を制御し、車輪12Fについては操舵角を回動自在な状態として、リーン角θに基づく旋回に倣うようにする。 At the boundary value of 15 km / h, the mode is switched from the first mode to the second mode. However, in the second mode after the switching timing, the steering angle of the wheel 12F that is the steering wheel is in a freely rotatable state, and the lean angle θ is The angle is 30 ° defined by the equation (8). Thereafter, even if the vehicle speed V further increases, in the second mode at high speed, the turning of the vehicle 10 is controlled only by the lean angle θ, and the steering angle of the wheel 12F is made to be freely rotatable, so that the lean angle θ is set. Follow the turn based on.
 従来、上記のような第2モードでは、路面の傾斜、凹凸により車体が傾斜した場合や、横風を受ける、などといった突発的な外乱が生じた場合には、ドライバーの意図に反して車両が旋回しまう、といった問題があった。また、車体が路面の傾斜や凹凸を走行していることや、車体が横風を受けていることを、ドライバーは視覚とGとでしか知り得ることができず、運転操作が遅れる、といった問題もあった。 Conventionally, in the second mode as described above, the vehicle turns against the driver's intention in the event of sudden disturbance such as when the vehicle body is tilted due to road surface inclination or unevenness, or when a side wind is received. There was a problem such as. There is also a problem that the driver can know only by vision and G that the vehicle body is traveling on a slope or unevenness on the road surface and that the vehicle body is receiving a crosswind, and the driving operation is delayed. there were.
 上記のような問題を解決するために、本発明に係る車両10においては、入力軸43と操舵軸13との間を、操舵軸13から入力軸43に対してトルク伝達を可能とする所定の締結力で連結する連結機構として、バネ機構を採用した。さらに、前記所定の締結力は、車体の傾斜よる旋回方向に、車輪12Fの操舵角が倣うことを許容する締結力となるように設定されている。 In order to solve the above-described problem, in the vehicle 10 according to the present invention, a predetermined transmission that enables torque transmission from the steering shaft 13 to the input shaft 43 between the input shaft 43 and the steering shaft 13 is performed. A spring mechanism is used as a coupling mechanism for coupling with a fastening force. Further, the predetermined fastening force is set to be a fastening force that allows the steering angle of the wheel 12F to follow the turning direction caused by the inclination of the vehicle body.
 図7は本発明の実施形態に係る車両10における連結機構(バネ機構)の例を示す図である。また、図7(A)は、バネ80を用いる際の軸構造の例を示している。 FIG. 7 is a view showing an example of a coupling mechanism (spring mechanism) in the vehicle 10 according to the embodiment of the present invention. FIG. 7A shows an example of a shaft structure when the spring 80 is used.
 図7(A)に示すように、入力軸43には回動中心に対して放射方向に延出する放射棹44と、この放射棹44から下方に延在する下方棹45とを設ける。また、操舵軸13には回動中心に対して放射方向に延出する放射棹14と、この放射棹14から上方に延在する上方棹15とを設ける。バネ80は、図7(B)に示すように、入力軸43の下方棹45と、操舵軸13の上方棹15との間に取り付けるようにする。 As shown in FIG. 7 (A), the input shaft 43 is provided with a radiation rod 44 extending radially with respect to the center of rotation, and a lower rod 45 extending downward from the radiation rod 44. Further, the steering shaft 13 is provided with a radiation rod 14 that extends in the radial direction with respect to the center of rotation, and an upper rod 15 that extends upward from the radiation rod 14. The spring 80 is attached between the lower rod 45 of the input shaft 43 and the upper rod 15 of the steering shaft 13 as shown in FIG.
 上記のような構成により、バネ80で入力軸43の角度δHと操舵軸13の角度δWとの間の角度差Δδに基づく、下式(9)によるトルクT1を発生させることができる。ただし、kはバネ80のバネ定数である。なお、下式(9)は近似式である。また、図8は軸間の角度差とバネ80の発生するトルクの関係を説明する図である。 With the configuration as described above, the torque T 1 according to the following equation (9) based on the angle difference Δδ between the angle δ H of the input shaft 43 and the angle δ W of the steering shaft 13 can be generated by the spring 80. . Here, k is the spring constant of the spring 80. The following formula (9) is an approximate formula. FIG. 8 is a diagram for explaining the relationship between the angular difference between the shafts and the torque generated by the spring 80.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このように、本発明に係る車両10は、入力軸43と操舵軸13とを、車体の傾斜よる旋回方向に、操舵輪(車輪12F)の操舵角が倣うことを許容する締結力であり、かつ、操舵軸13から入力軸43に対してトルク伝達を可能とする締結力で連結する連結機構が設けられているので、このような本発明に係る車両10によれば、路面の傾斜、凹凸により車体が傾斜した場合や、横風を受ける、などといった突発的な外乱が生じた場合でも、走行が不安定となったりすることを軽減することができ、走行安定性を確保することが可能となり、ドライバーの意図に反して車両が旋回してしまうことがない。 Thus, the vehicle 10 according to the present invention has a fastening force that allows the steering angle of the steering wheel (the wheel 12F) to follow the input shaft 43 and the steering shaft 13 in the turning direction due to the inclination of the vehicle body, In addition, since there is provided a coupling mechanism that couples the steering shaft 13 to the input shaft 43 with a fastening force that enables torque transmission, according to the vehicle 10 according to the present invention, the road surface is inclined and uneven. This makes it possible to reduce running instability and ensure driving stability even when a sudden disturbance such as when the vehicle body is tilted or a side wind is received. The vehicle does not turn against the driver's intention.
 また、本発明に係る車両10は、連結機構を介して、入力軸43と操舵軸13とが接続されているので、このような本発明に係る車両によれば、ドライバーは入力部材からの触覚を通じて、車体が路面の傾斜や凹凸を走行していることや、車体が横風を受けていることを知覚することででき、運転操作が遅れることがない。 Further, in the vehicle 10 according to the present invention, the input shaft 43 and the steering shaft 13 are connected via a coupling mechanism. Therefore, according to such a vehicle according to the present invention, the driver can feel the tactile sense from the input member. Through this, it is possible to perceive that the vehicle body is traveling on a slope or unevenness on the road surface or that the vehicle body is receiving a crosswind, and the driving operation is not delayed.
 次に、本発明の他の実施形態について説明する。本発明に係る車両10においては、入力軸43と操舵軸13との間に、連結機構としてダンパ機構70が設けられている。すなわち、互いに回動中心が同一である入力軸43と操舵軸13とはダンパ機構70を介して接続される構成となっている。図9は本発明の他の実施形態に係る車両10における連結機構(ダンパ機構70)の一例を示す図である。当該図は、入力軸43と操舵軸13とダンパ機構70を抜き出して示した図である。図9に示すダンパ機構70は、回転ダンパ73によって構成されている。 Next, another embodiment of the present invention will be described. In the vehicle 10 according to the present invention, a damper mechanism 70 is provided as a coupling mechanism between the input shaft 43 and the steering shaft 13. That is, the input shaft 43 and the steering shaft 13 having the same rotation center are connected via the damper mechanism 70. FIG. 9 is a view showing an example of a coupling mechanism (damper mechanism 70) in the vehicle 10 according to another embodiment of the present invention. The drawing shows the input shaft 43, the steering shaft 13, and the damper mechanism 70 extracted. A damper mechanism 70 shown in FIG. 9 is configured by a rotary damper 73.
 入力軸43の角速度ω1は下式(10)により、また、操舵軸13の角速度ω2は下式(11)により表すことができる。 The angular velocity ω 1 of the input shaft 43 can be expressed by the following equation (10), and the angular velocity ω 2 of the steering shaft 13 can be expressed by the following equation (11).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 このとき、ダンパ機構70が発生するトルクT2は、入力軸43の角速度ω1と、操舵軸13の角速度ω2との差に所定の定数cを乗じたもので、下式(12)のように表すことができる。 At this time, the torque T 2 generated by the damper mechanism 70 is obtained by multiplying the difference between the angular velocity ω 1 of the input shaft 43 and the angular velocity ω 2 of the steering shaft 13 by a predetermined constant c. Can be expressed as:
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本発明に係る車両10においては、操舵輪(12F)の操舵角が回動自在な状態とされている第2モードであっても、連結機構であるダンパ機構70を介して、操舵軸13から入力軸43に対して、ダンパ機構70が発生するトルクにより、路面の傾斜、凹凸や、横風による車体の傾きに係る情報がドライバーに伝達されることとなる。これにより、ドライバーは、上記のような各外乱に対するカウンター操作を素早く行うことが可能となる。 In the vehicle 10 according to the present invention, even in the second mode in which the steering angle of the steered wheels (12F) is freely rotatable, the steering shaft 13 can be connected via the damper mechanism 70 that is a coupling mechanism. With respect to the input shaft 43, the torque generated by the damper mechanism 70 transmits information related to the inclination of the road surface, unevenness, and the inclination of the vehicle body due to the crosswind to the driver. As a result, the driver can quickly perform the counter operation for each disturbance as described above.
 ところで、式(12)によれば、入力軸43の角速度ω1と、操舵軸13の角速度ω2と間の角速度差Δωが大きければ大きいほど、ダンパ機構70が発生するトルクT1が大きくなってしまうことがわかる。図10は、入力軸43の角速度ω1と、操舵軸13の角速度ω2との角速度差Δωとダンパ機構70の発生するトルクの関係を説明する図である。図10(A)は、式(12)の関係を表したものである。角速度差Δωが大き過ぎると、ダンパ機構70が発生するトルクT1が大き過ぎてしまい、入力軸43を介して入力部材41aに大きなトルクが伝達され、ドライバーにとって負担となる可能性がある。 By the way, according to the equation (12), as the angular velocity difference Δω between the angular velocity ω 1 of the input shaft 43 and the angular velocity ω 2 of the steering shaft 13 is larger, the torque T 1 generated by the damper mechanism 70 is larger. You can see that FIG. 10 is a diagram for explaining the relationship between the angular velocity difference Δω between the angular velocity ω 1 of the input shaft 43 and the angular velocity ω 2 of the steering shaft 13 and the torque generated by the damper mechanism 70. FIG. 10A shows the relationship of Expression (12). If the angular velocity difference Δω is too large, the torque T 1 generated by the damper mechanism 70 is too large, and a large torque is transmitted to the input member 41a via the input shaft 43, which may be a burden on the driver.
 そこで、ダンパ機構70においては、図10(B)に示すように、互いの軸への回動トルクの伝達を行う際の回動トルク(トルク伝達量)に上限が設定されることが好ましい。このようなダンパ機構70としては、発生トルクに制限が設けられているダンパを適宜用いることができる。 Therefore, in the damper mechanism 70, as shown in FIG. 10B, it is preferable that an upper limit is set for the rotational torque (torque transmission amount) when the rotational torque is transmitted to the shafts. As such a damper mechanism 70, a damper having a limit on the generated torque can be appropriately used.
 特に、ダンパ機構70として、MR(Magneto-Rheological:磁気粘性)流体が用いられた可変ダンパを用いることで、より決めの細かいトルク伝達量を行うことができる。例えば、このような可変ダンパを用いた場合、入力軸43の角速度ω1と操舵軸13の角速度ω2と間の角速度差Δωや、入力軸43の角度δHと操舵軸13の角度δWとの間の角度差Δδや、或いは、車両10の車速などの各パラメータに応じて、トルク伝達量を制御することができる。 In particular, by using a variable damper using MR (Magneto-Rheological) fluid as the damper mechanism 70, a more precise torque transmission amount can be performed. For example, when such a variable damper is used, the angular velocity difference Δω between the angular velocity ω 1 of the input shaft 43 and the angular velocity ω 2 of the steering shaft 13, the angle δ H of the input shaft 43, and the angle δ W of the steering shaft 13. The torque transmission amount can be controlled in accordance with each parameter such as the angle difference Δδ between the two and the vehicle speed of the vehicle 10.
 以上の実施形態では、連結機構となるダンパ機構70として、回転ダンパや可変ダンパを用いる例を説明したが、本発明に係る車両10においては、直進運動に対する緩衝を行う直線ダンパ74を用いることもできる。 In the above-described embodiment, an example in which a rotary damper or a variable damper is used as the damper mechanism 70 serving as a coupling mechanism has been described. However, in the vehicle 10 according to the present invention, a linear damper 74 that performs buffering against linear movement may be used. it can.
 図11は本発明の他の実施形態に係る車両10における連結機構(ダンパ機構70)の例を示す図である。図11(A)は、直線ダンパ74を用いる際の軸構造の例を示している。 FIG. 11 is a view showing an example of a coupling mechanism (damper mechanism 70) in the vehicle 10 according to another embodiment of the present invention. FIG. 11A shows an example of a shaft structure when the linear damper 74 is used.
 図11(A)に示すように、入力軸43には回動中心に対して放射方向に延出する放射棹44と、この放射棹44から下方に延在する下方棹45とを設ける。また、操舵軸13には回動中心に対して放射方向に延出する放射棹14と、この放射棹14から上方に延在する上方棹15とを設ける。直線ダンパ74は、図11(B)に示すように、入力軸43の下方棹45と、操舵軸13の上方棹15との間に取り付けるようにする。 As shown in FIG. 11 (A), the input shaft 43 is provided with a radiation rod 44 extending in the radial direction with respect to the rotation center and a lower rod 45 extending downward from the radiation rod 44. Further, the steering shaft 13 is provided with a radiation rod 14 that extends in the radial direction with respect to the center of rotation, and an upper rod 15 that extends upward from the radiation rod 14. The straight damper 74 is attached between the lower rod 45 of the input shaft 43 and the upper rod 15 of the steering shaft 13 as shown in FIG.
 このような実施形態によれば、第1の実施形態と同様の効果を享受することができると共に、汎用されている直線ダンパ74を利用することができ、コストを低減することができる。 According to such an embodiment, the same effect as that of the first embodiment can be enjoyed, and the widely used linear damper 74 can be used, thereby reducing the cost.
 次に、本発明に係る車両10の他の実施形態について説明する。図12は本発明の他の実施形態に係る車両10における連結機構の例を示す図である。入力軸43の下方棹45と、操舵軸13の上方棹15との間には、直線ダンパ74に加え、バネ80が設けられていることを特徴としている。 Next, another embodiment of the vehicle 10 according to the present invention will be described. FIG. 12 is a diagram illustrating an example of a coupling mechanism in the vehicle 10 according to another embodiment of the present invention. In addition to the linear damper 74, a spring 80 is provided between the lower rod 45 of the input shaft 43 and the upper rod 15 of the steering shaft 13.
 図12に示す実施形態では、ダンパ機構70とバネ機構で、トータルのトルクTtotalとして下式(13)が発生する。 In the embodiment shown in FIG. 12, the following equation (13) is generated as the total torque T total by the damper mechanism 70 and the spring mechanism.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 このような実施形態によれば、第1の実施形態と同様の効果を享受することができると共に、ダンパ機構70のトルク特性を適宜変更することが可能となる。 According to such an embodiment, the same effect as that of the first embodiment can be enjoyed, and the torque characteristic of the damper mechanism 70 can be appropriately changed.
 ここで、本発明に係る車両10においては、これまで説明したように、入力軸43と操舵軸13とは、車体の傾斜よる旋回方向に、操舵輪(車輪12F)の操舵角が倣う程度の比較的弱い接続で繋がれている。これにより、適度に操舵輪(車輪12F)の転舵の応答性が遅れて、車両10の転倒防止に資するようになっている。また、操舵輪(車輪12F)の転舵の遅れすぎも防ぐことができるため、操舵輪(車輪12F)が回動自在とされているときの応答性悪化も防ぐことができる。 Here, in the vehicle 10 according to the present invention, as described so far, the input shaft 43 and the steering shaft 13 are such that the steering angle of the steering wheel (wheel 12F) follows the turning direction due to the inclination of the vehicle body. Connected with a relatively weak connection. As a result, the steering response of the steered wheels (wheels 12F) is moderately delayed, contributing to prevention of the vehicle 10 from falling. Moreover, since it is possible to prevent the steering wheel (wheel 12F) from being delayed too much, it is possible to prevent deterioration of responsiveness when the steering wheel (wheel 12F) is rotatable.
 次に、本発明に係る車両10の他の実施形態について説明する。図13は車体の傾斜角θ一定の時に車速に応じて必要となる操舵角の関係を示す図である。なお、本例では、当該操舵角としては車輪12F(前輪)の操舵角δWを想定しているが、本実施形態の考え方は、前輪を傾斜させ、後輪を操舵するような車両にも適用可能である。 Next, another embodiment of the vehicle 10 according to the present invention will be described. FIG. 13 is a diagram showing the relationship of the steering angle required according to the vehicle speed when the inclination angle θ of the vehicle body is constant. In this example, the steering angle δ W of the wheel 12F (front wheel) is assumed as the steering angle. However, the idea of the present embodiment is also applied to a vehicle that tilts the front wheel and steers the rear wheel. Applicable.
 車両10の車体の傾斜角θ一定で傾斜していることを前提として以下説明する。また、一例として、車両10の車速が低速であるVLのときと、この低速VLより高速であるVHのときとを比較することで検討を行う。 The following description is based on the premise that the vehicle 10 is inclined at a constant inclination angle θ. Further, as an example, the examination is performed by comparing the time when the vehicle speed of the vehicle 10 is VL , which is a low speed, and the time VH , which is higher than the low speed VL .
 車両10の車体が傾斜角θ一定で速度を上げていくと、速度の上昇に従って旋回半径が大きくならないと、遠心力との釣り合いが取れない。従って、車両10が転倒しないためには、速度の上昇に従って、操舵角δWは小さくなっていかなければならない。 When the vehicle body of the vehicle 10 increases its speed at a constant inclination angle θ, it cannot be balanced with the centrifugal force unless the turning radius increases as the speed increases. Therefore, in order for the vehicle 10 not to fall down, the steering angle δ W must decrease as the speed increases.
 車両10の車体が傾斜角θ一定で低速VLであるときには、車体の旋回時に車体の傾斜と釣り合う遠心力を得るために、必要となる旋回半径を小さくしなければならない。このときの操舵角をδWLとする。 When the vehicle body of the vehicle 10 is at a constant inclination angle θ and at a low speed VL , the required turning radius must be reduced in order to obtain a centrifugal force that balances the inclination of the vehicle body when the vehicle body turns. The steering angle at this time is assumed to be δ WL .
 一方、車両10の車体が傾斜角θ一定であり、より速度が大きい高速VHであるときには、車体の旋回時に車体の傾斜と釣り合う遠心力は、先の旋回半径より大きくなる。このときの操舵角をδWHとする。ただし、δWH<δWLである。 On the other hand, when the vehicle body of the vehicle 10 has a constant inclination angle θ and a high speed V H at a higher speed, the centrifugal force that balances the vehicle body inclination when the vehicle body turns is larger than the previous turning radius. The steering angle at this time is assumed to be δWH . However, a δ WHWL.
 従って、車体の傾斜角θ一定の時に車速に応じて必要となる操舵角の関係は、図13に示すように、点(VL,δWL)及び点(VH,δWH)がのった図示の曲線となる。 Therefore, the relationship of the steering angle required according to the vehicle speed when the inclination angle θ of the vehicle body is constant is such that the point (V L , δ WL ) and the point (V H , δ WH ) are as shown in FIG. It becomes the curve shown in the figure.
 本発明に係る車両10においては、入力軸43と操舵軸13との間を、操舵軸13から入力軸43に対してトルク伝達を可能とする所定の締結力で連結する連結機構が採用されている。ここで、このような連結機構に係る問題点に図14を参照して説明する。 In the vehicle 10 according to the present invention, a connection mechanism that connects the input shaft 43 and the steering shaft 13 with a predetermined fastening force that enables torque transmission from the steering shaft 13 to the input shaft 43 is employed. Yes. Here, problems related to such a coupling mechanism will be described with reference to FIG.
 図14において、連結機構の締結力によって、操舵軸13から入力軸43との間に生じるトルクとして、低速であるVLを基準として設定されているとする(図14中の(1))。車体の傾斜角θ一定を保ったまま、低速VLから高速VHに車速を徐々に上げていくような場合、ドライバーが、低速VL時のままの入力部材41aの切り角を維持すると、操舵角の切り過ぎの状態が継続してしまう(図14中の(2))。 In FIG. 14, it is assumed that the torque generated between the steering shaft 13 and the input shaft 43 due to the fastening force of the coupling mechanism is set on the basis of the low speed V L ((1) in FIG. 14). When the vehicle speed is gradually increased from the low speed V L to the high speed V H while keeping the vehicle body inclination angle θ constant, if the driver maintains the cutting angle of the input member 41a at the low speed V L , The state where the steering angle is excessively cut continues ((2) in FIG. 14).
 そこで、本実施形態では、操舵軸13に加えるトルク(操舵トルク)を制御する操舵トルク調整機構を設けるようにしている。図14中の(S)は、このような操舵トルク調整機構で発生する操舵トルクによって、入力部材41aの切り過ぎの状態を緩和する方向を示している。 Therefore, in this embodiment, a steering torque adjusting mechanism for controlling the torque (steering torque) applied to the steering shaft 13 is provided. (S) in FIG. 14 indicates a direction in which the excessive cutting state of the input member 41a is alleviated by the steering torque generated by such a steering torque adjusting mechanism.
 このような操舵トルク調整機構は、連結機構が発生するトルクの向きと、反対の向きのトルクを発生するように設定されている。また、操舵トルク調整機構の具体的な構成としては、操舵軸13に加える操舵トルクを制御すことができるものであれば、どのようなものを用いても構わないが、例えば、操舵モータ65に操舵トルク調整機構の役割を担わせることができる。 Such a steering torque adjusting mechanism is set so as to generate torque in the direction opposite to the direction of torque generated by the coupling mechanism. As a specific configuration of the steering torque adjustment mechanism, any configuration may be used as long as the steering torque applied to the steering shaft 13 can be controlled. The role of the steering torque adjustment mechanism can be taken.
 図15は本発明の他の実施形態に係る車両10における操舵トルク調整機構を模式的に説明する図である。 FIG. 15 is a diagram schematically illustrating a steering torque adjusting mechanism in the vehicle 10 according to another embodiment of the present invention.
 本発明に係る車両10は、入力部材41aの回動を伝達する入力軸43と、車輪12Fの回動を伝達する操舵軸13と、入力軸43と操舵軸13との間に介在し、ダンパ機構70、バネ80などからなる連結機構とを有している。 The vehicle 10 according to the present invention is interposed between the input shaft 43 that transmits the rotation of the input member 41a, the steering shaft 13 that transmits the rotation of the wheel 12F, and the input shaft 43 and the steering shaft 13. And a coupling mechanism including a mechanism 70, a spring 80, and the like.
 操舵モータ65の回転軸にはモータ側ギア67が設けられており、また、操舵軸13には、操舵軸13と連れ周りする操舵軸側ギア68が設けられている。モータ側ギア67と操舵軸側ギア68とは螺合している。また、操舵モータ65は、車両10の車体の一部Bに固着される形で車体側に取り付けられるようになっている。 A motor side gear 67 is provided on the rotation shaft of the steering motor 65, and a steering shaft side gear 68 that rotates with the steering shaft 13 is provided on the steering shaft 13. The motor side gear 67 and the steering shaft side gear 68 are screwed together. In addition, the steering motor 65 is attached to the vehicle body side so as to be fixed to a part B of the vehicle body of the vehicle 10.
 このような構成により、操舵モータ65のトルクは、モータ側ギア67から操舵軸側ギア68へ、そして操舵軸13へと伝達される。このように操舵モータ65は、操舵軸13に加える操舵トルクを制御する操舵トルク調整機構として機能することができる。 With this configuration, the torque of the steering motor 65 is transmitted from the motor side gear 67 to the steering shaft side gear 68 and then to the steering shaft 13. Thus, the steering motor 65 can function as a steering torque adjusting mechanism that controls the steering torque applied to the steering shaft 13.
 図14から、入力部材41aの切り過ぎの状態を緩和するためのトルク(すなわち、操舵トルク調整機構で発生させるトルク)は、車両10の車速が大きくなればなるほど、大きく設定しなければならない。そこで、車速センサ122で検出される車速が0でない場合においては、操舵トルク調整機構が発生するトルクは、車速センサ122で検出される車速が速いほど大きくなるように設定される。 From FIG. 14, the torque for mitigating the excessive cutting state of the input member 41a (that is, the torque generated by the steering torque adjusting mechanism) must be set larger as the vehicle speed of the vehicle 10 increases. Therefore, when the vehicle speed detected by the vehicle speed sensor 122 is not zero, the torque generated by the steering torque adjustment mechanism is set to increase as the vehicle speed detected by the vehicle speed sensor 122 increases.
 一方、車速センサ122で検出される車速が0であり、入力部材41aが切られている状況、すなわち、入力部材41aによって据え切りが行われている場合には、操舵軸13から入力軸43が完全に締結されている状態が理想である。 On the other hand, when the vehicle speed detected by the vehicle speed sensor 122 is 0 and the input member 41a is turned off, that is, when the input member 41a is stationary, the input shaft 43 is moved from the steering shaft 13 to the input shaft 43. Ideally, it should be completely fastened.
 そこで、車速センサ122で検出される車速が0である場合、操舵トルク調整機構が発生するトルクは、入力軸43と操舵軸13との回転位相差を無くすような向きと大きさにすることで、操舵軸13から入力軸43が完全に締結されている状態を実現するようにしている。 Therefore, when the vehicle speed detected by the vehicle speed sensor 122 is 0, the torque generated by the steering torque adjusting mechanism is set to a direction and magnitude that eliminates the rotational phase difference between the input shaft 43 and the steering shaft 13. The state where the input shaft 43 is completely fastened from the steering shaft 13 is realized.
 このように、本実施形態では、車速センサ122で検出される車速に応じて、操舵軸13に加える操舵トルクを制御する操舵トルク調整機構が設けられているので、ドライバーによる操作性がより向上する。 Thus, in this embodiment, since the steering torque adjustment mechanism for controlling the steering torque applied to the steering shaft 13 is provided according to the vehicle speed detected by the vehicle speed sensor 122, the operability by the driver is further improved. .
 なお、上記の実施形態では、操舵トルク調整機構としては、車体側に固定されている操舵モータ65によって、操舵軸13に加える操舵トルクの調整を行うように構成されていたが、その他の構成の操舵トルク調整機構を採用し、操舵トルクの調整を行うようにしてもよい。図16は、他の操舵トルク調整機構を模式的に説明する図である。 In the above embodiment, the steering torque adjusting mechanism is configured to adjust the steering torque applied to the steering shaft 13 by the steering motor 65 fixed to the vehicle body side. A steering torque adjustment mechanism may be employed to adjust the steering torque. FIG. 16 is a diagram schematically illustrating another steering torque adjusting mechanism.
 本実施形態における操舵トルク調整機構も、入力軸43と操舵軸13との間に介在し、ダンパ機構70、バネ80などからなる連結機構とを有している。 The steering torque adjustment mechanism in the present embodiment is also interposed between the input shaft 43 and the steering shaft 13 and has a coupling mechanism including a damper mechanism 70, a spring 80, and the like.
 また、トルク調整モータ66の回転軸にはモータ側ギア67が設けられており、また、操舵軸13には、操舵軸13と連れ周りする操舵軸側ギア68が設けられている。モータ側ギア67と操舵軸側ギア68とは螺合している。 Further, a motor side gear 67 is provided on the rotating shaft of the torque adjusting motor 66, and a steering shaft side gear 68 that rotates with the steering shaft 13 is provided on the steering shaft 13. The motor side gear 67 and the steering shaft side gear 68 are screwed together.
 ここで、本実施形態では、トルク調整モータ66の筐体部は、入力軸43に固定されている。 このような構成により、トルク調整モータ66のトルクは、モータ側ギア67から操舵軸側ギア68へ、そして操舵軸13へと伝達される。このように、入力軸43に固定されたトルク調整モータ66は、操舵軸13に加える操舵トルクを制御・調整する操舵トルク調整機構として機能することができる。 Here, in this embodiment, the casing of the torque adjustment motor 66 is fixed to the input shaft 43. With this configuration, the torque of the torque adjustment motor 66 is transmitted from the motor side gear 67 to the steering shaft side gear 68 and then to the steering shaft 13. Thus, the torque adjustment motor 66 fixed to the input shaft 43 can function as a steering torque adjustment mechanism that controls and adjusts the steering torque applied to the steering shaft 13.
 図16のように構成される操舵トルク調整機構によっても、車両10の操作性をより向上させることが可能となる。 The operability of the vehicle 10 can be further improved by the steering torque adjustment mechanism configured as shown in FIG.
 なお、図16の例において、操舵トルク調整機構として採用されたトルク調整モータ66には、ダンパ機構70、バネ80などからなる連結機構の役割を担わせることもできる。すなわち、図16から連結機構であるダンパ機構70、バネ80を取り去り、取り去った連結機構分のトルクをトルク調整モータ66によって再現することで、これらを取り去っていない場合と同様の効果を得ることができる。 In the example of FIG. 16, the torque adjusting motor 66 employed as the steering torque adjusting mechanism can also serve as a connecting mechanism including a damper mechanism 70, a spring 80, and the like. That is, by removing the damper mechanism 70 and the spring 80, which are the coupling mechanisms, from FIG. 16 and reproducing the torque corresponding to the removed coupling mechanism by the torque adjustment motor 66, the same effect as when these are not removed can be obtained. it can.
 以上、本発明に係る車両は、前記入力軸と前記操舵軸とを、前記車体の傾斜よる旋回方向に、前記操舵輪の操舵角が倣うことを許容する締結力であり、かつ、前記操舵軸から前記入力軸に対してトルク伝達を可能とする締結力で連結する連結機構が設けられているので、このような本発明に係る車両によれば、路面の傾斜、凹凸により車体が傾斜した場合や、横風を受ける、などといった突発的な外乱が生じた場合でも、走行が不安定となったりすることを軽減することができ、走行安定性を確保することが可能となり、ドライバーの意図に反して車両が旋回しまうことがない。 As described above, the vehicle according to the present invention has a fastening force that allows the steering angle of the steered wheel to follow the input shaft and the steering shaft in a turning direction due to the inclination of the vehicle body, and the steering shaft. Since a connecting mechanism for connecting with the input shaft with a fastening force that enables torque transmission is provided, according to the vehicle according to the present invention, when the vehicle body is inclined due to road surface inclination or unevenness Even when sudden disturbances such as receiving crosswinds occur, it is possible to reduce the instability of driving and to ensure driving stability, contrary to the driver's intention. This prevents the vehicle from turning.
 また、本発明に係る車両は、連結機構を介して、入力軸と操舵軸とが接続されているので、このような本発明に係る車両によれば、ドライバーは入力部材からの触覚を通じて、車体が路面の傾斜や凹凸を走行していることや、車体が横風を受けていることを知覚することででき、運転操作が遅れることがない。 Moreover, since the input shaft and the steering shaft are connected via the coupling mechanism in the vehicle according to the present invention, according to such a vehicle according to the present invention, the driver can detect the vehicle body through the tactile sense from the input member. However, it is possible to perceive that the vehicle is traveling on the slope or unevenness of the road surface and that the vehicle body is receiving a crosswind, so that the driving operation is not delayed.
産業上の利用性Industrial availability
 本発明は、近年、エネルギー問題などの観点から注目を集めている小型化車両に関するものである。従来、このような車両においては、突発的な外乱が生じた場合にドライバーの意図に反して車両が旋回しまう、といった問題や、路面の凹凸や横風の影響をドライバーが知覚しづらく運転操作が遅れる、といった問題があった。これに対して、本発明に係る車両では、入力軸と操舵軸とを、車体の傾斜よる旋回方向に、操舵輪の操舵角が倣うことを許容する締結力であり、かつ、操舵軸から入力軸に対してトルク伝達を可能とする締結力で連結する連結機構が設けられており、このような本発明に係る車両によれば、路面の傾斜、凹凸により車体が傾斜した場合や、横風を受ける、などといった突発的な外乱が生じた場合でも、走行安定性を確保することが可能となり、産業上の利用性が大きい。 The present invention relates to a miniaturized vehicle that has recently attracted attention from the viewpoint of energy problems. Conventionally, in such a vehicle, the driving operation is delayed because it is difficult for the driver to perceive the problem that the vehicle turns against the driver's intention in the event of sudden disturbance, and the effects of road surface unevenness and crosswinds. There was a problem such as. On the other hand, in the vehicle according to the present invention, the input shaft and the steering shaft are fastening forces that allow the steering angle of the steered wheels to follow the turning direction due to the inclination of the vehicle body, and are input from the steering shaft. There is provided a coupling mechanism that couples the shaft with a fastening force that enables torque transmission. According to such a vehicle according to the present invention, when the vehicle body is inclined due to road surface inclination or unevenness, or when crosswinds are generated. Even in the event of sudden disturbance such as receiving, it becomes possible to ensure running stability, and industrial applicability is great.
10・・・車両
11・・・搭乗部
11a・・・座席
11b・・・フットレスト
11c・・・風よけ部
12F・・・車輪
12R・・・車輪
12L・・・車輪
13・・・操舵軸
14・・・放射棹
15・・・上方棹
17・・・前輪フォーク
18・・・路面
20・・・本体部
21・・・中央縦部材
25・・・リーンモータ
30・・・リンク機構
33L・・・縦リンクユニット
33R・・・縦リンクユニット
31U・・・横リンクユニット
31D・・・横リンクユニット
41・・・操縦装置
41a・・・入力部材
43・・・入力軸
44・・・放射棹
45・・・下方棹
45・・・アクセル
46・・・ブレーキ
47・・・シフトスイッチ
51L・・・回転駆動装置
51R・・・回転駆動装置
65・・・操舵モータ
66・・・トルク調整モータ
67・・・モータ側ギア
68・・・操舵軸側ギア
70・・・ダンパ機構
73・・・回転ダンパ
74・・・直線ダンパ
80・・・バネ
100・・・車両ECU
101・・・回転駆動装置ECU
102・・・リーンモータECU
103・・・操舵モータECU
122・・・車速センサ
123・・・入力部材操作角センサ
124・・・前輪操舵角センサ
125・・・リーン角センサ
145・・・アクセルポジションセンサ
146・・・ブレーキポジションセンサ
147・・・シフトスイッチポジションセンサ
149・・・カメラ
150・・・ジャイロセンサ
DESCRIPTION OF SYMBOLS 10 ... Vehicle 11 ... Riding part 11a ... Seat 11b ... Footrest 11c ... Windshield part 12F ... Wheel 12R ... Wheel 12L ... Wheel 13 ... Steering shaft 14 ... radial rod 15 ... upper rod 17 ... front wheel fork 18 ... road surface 20 ... main body 21 ... center vertical member 25 ... lean motor 30 ... link mechanism 33L ..Vertical link unit 33R ... Vertical link unit 31U ... Horizontal link unit 31D ... Horizontal link unit 41 ... Control device 41a ... Input member 43 ... Input shaft 44 ... Radio rod 45 ... Lower rod 45 ... Accelerator 46 ... Brake 47 ... Shift switch 51L ... Rotation drive device 51R ... Rotation drive device 65 ... Steering motor 66 ... Torque adjustment motor 67 ... Mo Side gears 68 ... steering shaft side gear 70 ... damper mechanism 73 ... rotary damper 74 ... linear damper 80 ... spring 100 ... vehicle ECU
101 ... Rotary drive unit ECU
102 ... Lean motor ECU
103 ... Steering motor ECU
122 ... Vehicle speed sensor 123 ... Input member operation angle sensor 124 ... Front wheel steering angle sensor 125 ... Lean angle sensor 145 ... Accelerator position sensor 146 ... Brake position sensor 147 ... Shift switch Position sensor 149 ... Camera 150 ... Gyro sensor

Claims (13)

  1. 操舵輪と、車両幅方向に配置された一対の車輪とを少なくとも含む3つ以上の車輪が設けられた車体と、
    前記車体を傾斜させる傾斜部と、
    回動操作することで旋回方向を入力する入力部材と、
    前記入力部材の回動を伝達する入力軸と、
    回動することで前記操舵輪を操舵する一方で前記入力部材の回動操作とは無関係に回動可能な操舵軸と、
    前記入力軸と前記操舵軸とを、前記車体の傾斜よる旋回方向に、前記操舵輪の操舵角が倣うことを許容する締結力であり、かつ、前記操舵軸から前記入力軸に対してトルク伝達を可能とする締結力で連結する連結機構と、
    を有することを特徴とする車両。
    A vehicle body provided with three or more wheels including at least a steering wheel and a pair of wheels arranged in the vehicle width direction;
    An inclined portion for inclining the vehicle body;
    An input member that inputs a turning direction by rotating,
    An input shaft for transmitting rotation of the input member;
    A steering shaft that steers the steered wheel by turning while being rotatable independently of the turning operation of the input member;
    This is a fastening force that allows the steering angle of the steered wheel to follow the turning direction of the vehicle body by tilting the input shaft and the steering shaft, and torque is transmitted from the steering shaft to the input shaft. A coupling mechanism that couples with a fastening force that enables
    The vehicle characterized by having.
  2. 前記連結機構は、
    前記入力軸の回動角と、前記操舵軸の回動角との差
    又は/及び
    前記入力軸の回動角速度と、前記操舵軸の回動角速度との差
    に応じて締結力が変わる構成とされることを特徴とする請求項1に記載の車両。
    The coupling mechanism is
    The fastening force varies depending on the difference between the rotation angle of the input shaft and the rotation angle of the steering shaft or / and the difference between the rotation angular velocity of the input shaft and the rotation angular velocity of the steering shaft. The vehicle according to claim 1, wherein:
  3. 前記連結機構は、
    前記入力軸の回動角と、前記操舵軸の回動角との差が大きくなるに連れて、締結力が大きくなる、
    又は/及び
    前記入力軸の回動角速度と、前記操舵軸の回動角速度との差が大きくなるに連れて、締結力が大きくなることを特徴とする請求項2に記載の車両。
    The coupling mechanism is
    The fastening force increases as the difference between the rotation angle of the input shaft and the rotation angle of the steering shaft increases.
    3. The vehicle according to claim 2, wherein the fastening force increases as the difference between the rotational angular velocity of the input shaft and the rotational angular velocity of the steering shaft increases.
  4. 前記連結機構は、バネ機構であることを特徴とする請求項1に記載の車両。 The vehicle according to claim 1, wherein the coupling mechanism is a spring mechanism.
  5. 前記連結機構は、ダンパ機構であることを特徴とする請求項1に記載の車両。 The vehicle according to claim 1, wherein the coupling mechanism is a damper mechanism.
  6. 前記ダンパ機構が、互いの軸への回動トルクの伝達を行う際の回動トルクに上限が設定されることを特徴とする請求項5に記載の車両。 The vehicle according to claim 5, wherein an upper limit is set for the rotational torque when the damper mechanism transmits the rotational torque to the respective shafts.
  7. 前記ダンパ機構が、粘性を有するMR流体が用いられた可変ダンパであることを特徴とする請求項5に記載の車両。 The vehicle according to claim 5, wherein the damper mechanism is a variable damper using a viscous MR fluid.
  8. 前記入力軸の回動角度と、前記操舵軸の回動角度との差に応じて、締結力が変わるバネ機構をさらに有することを特徴とする請求項5に記載の車両。 The vehicle according to claim 5, further comprising a spring mechanism that changes a fastening force according to a difference between a rotation angle of the input shaft and a rotation angle of the steering shaft.
  9. 前記傾斜部は、前記一対の車輪に駆動力差を生じさせることで前記車体を傾斜させることを特徴とする請求項1乃至請求項8のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 8, wherein the inclined portion causes the vehicle body to be inclined by causing a difference in driving force between the pair of wheels.
  10. 前記操舵軸に加える操舵トルクを調整する操舵トルク調整機構を、さらに有することを特徴とする請求項1乃至請求項9のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 9, further comprising a steering torque adjustment mechanism that adjusts a steering torque applied to the steering shaft.
  11. 車速を検出する車速検出部を有し、
    前記操舵トルク調整機構は、前記車速検出部で検出される車速に応じて、前記操舵軸に加える操舵トルクを調整することを特徴とする請求項10に記載の車両。
    It has a vehicle speed detector that detects the vehicle speed,
    The vehicle according to claim 10, wherein the steering torque adjusting mechanism adjusts a steering torque applied to the steering shaft in accordance with a vehicle speed detected by the vehicle speed detection unit.
  12. 前記車速検出部で検出される車速が0である場合、前記操舵トルク調整機構が発生するトルクは、
    前記入力軸と前記操舵軸との回転位相差を無くすような向きと大きさであることを特徴とする請求項11に記載の車両。
    When the vehicle speed detected by the vehicle speed detection unit is 0, the torque generated by the steering torque adjustment mechanism is
    The vehicle according to claim 11, wherein the vehicle has a direction and a size so as to eliminate a rotational phase difference between the input shaft and the steering shaft.
  13. 前記車速検出部で検出される車速が0でない場合、
    前記操舵トルク調整機構が発生するトルクは、車速が速いほど大きくなるように設定されることを特徴とする請求項11に記載の車両。
    When the vehicle speed detected by the vehicle speed detection unit is not 0,
    The vehicle according to claim 11, wherein the torque generated by the steering torque adjusting mechanism is set to increase as the vehicle speed increases.
PCT/JP2018/013328 2017-03-31 2018-03-29 Vehicle WO2018181750A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019510145A JP6898428B2 (en) 2017-03-31 2018-03-29 vehicle
CN201880023112.5A CN110475710A (en) 2017-03-31 2018-03-29 Vehicle
EP18778002.8A EP3604099A4 (en) 2017-03-31 2018-03-29 Vehicle
US16/498,464 US20200231200A1 (en) 2017-03-31 2018-03-29 Vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017071661 2017-03-31
JP2017-071661 2017-03-31
JP2017100276 2017-05-19
JP2017-100276 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018181750A1 true WO2018181750A1 (en) 2018-10-04

Family

ID=63678019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013328 WO2018181750A1 (en) 2017-03-31 2018-03-29 Vehicle

Country Status (5)

Country Link
US (1) US20200231200A1 (en)
EP (1) EP3604099A4 (en)
JP (1) JP6898428B2 (en)
CN (1) CN110475710A (en)
WO (1) WO2018181750A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464601B2 (en) * 2017-02-22 2019-11-05 Toyota Jidosha Kabushiki Kaisha Automatic tilting vehicle
US11305832B2 (en) * 2017-08-10 2022-04-19 Yamaha Hatsudoki Kabushiki Kaisha Leaning vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3116792B1 (en) * 2020-11-30 2022-11-04 Univ Versailles Saint Quentin En Yvelines Aid for moving a load
CN113291373A (en) * 2021-05-26 2021-08-24 东风柳州汽车有限公司 Steering transmission mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026277A (en) * 1999-07-12 2001-01-30 Koyo Seiko Co Ltd Steering device for vehicle
JP2011046273A (en) * 2009-08-27 2011-03-10 Equos Research Co Ltd Vehicle
EP2530002A1 (en) * 2011-06-01 2012-12-05 Sunrise Medical Limited Passenger conveyance device with automatic steering angle limitation and speed reduction
JP2013071688A (en) 2011-09-29 2013-04-22 Equos Research Co Ltd Vehicle
JP2016222024A (en) * 2015-05-27 2016-12-28 株式会社エクォス・リサーチ vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1007045C2 (en) * 1997-09-16 1999-03-25 Brinks Westmaas Bv Tilting vehicle.
US20080238005A1 (en) * 2004-02-06 2008-10-02 Phillip Ronald James Tilting Vehicle
JP4783352B2 (en) * 2007-11-06 2011-09-28 本田技研工業株式会社 Rack and pinion type electric power steering system
EP2767464B1 (en) * 2011-10-06 2019-11-06 Yamaha Hatsudoki Kabushiki Kaisha Electric vehicle
WO2016143471A1 (en) * 2015-03-06 2016-09-15 株式会社エクォス・リサーチ Vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026277A (en) * 1999-07-12 2001-01-30 Koyo Seiko Co Ltd Steering device for vehicle
JP2011046273A (en) * 2009-08-27 2011-03-10 Equos Research Co Ltd Vehicle
EP2530002A1 (en) * 2011-06-01 2012-12-05 Sunrise Medical Limited Passenger conveyance device with automatic steering angle limitation and speed reduction
JP2013071688A (en) 2011-09-29 2013-04-22 Equos Research Co Ltd Vehicle
JP2016222024A (en) * 2015-05-27 2016-12-28 株式会社エクォス・リサーチ vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604099A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464601B2 (en) * 2017-02-22 2019-11-05 Toyota Jidosha Kabushiki Kaisha Automatic tilting vehicle
US11305832B2 (en) * 2017-08-10 2022-04-19 Yamaha Hatsudoki Kabushiki Kaisha Leaning vehicle

Also Published As

Publication number Publication date
US20200231200A1 (en) 2020-07-23
CN110475710A (en) 2019-11-19
JP6898428B2 (en) 2021-07-07
EP3604099A4 (en) 2020-12-23
JPWO2018181750A1 (en) 2020-02-20
EP3604099A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6476235B2 (en) Steering and control system for tricycles
JP6307695B2 (en) vehicle
EP2476605B1 (en) Two-wheel vehicle, attitude stabilizing apparatus, and attitude stabilizing method
EP2123547B1 (en) Inverted pendulum mobile vehicle
WO2018181750A1 (en) Vehicle
US7957867B2 (en) Steering system of vehicle
JP6603953B2 (en) vehicle
JP2011073624A (en) Steering device of motorcycle
WO2022059714A1 (en) Two-wheeled vehicle
JP5458723B2 (en) vehicle
EP3891043B1 (en) Self-balancing tilting vehicle with two electric drive motors
JP2017178188A (en) vehicle
JP3825297B2 (en) Vehicle steering device
JP2011025841A (en) Vehicle
US20230192221A1 (en) A balancing support system for a saddle-ride type motor vehicle
WO2016143471A1 (en) Vehicle
WO2019102997A1 (en) Vehicle
JP6722916B2 (en) vehicle
WO2024048534A1 (en) Leaning vehicle
WO2024048529A1 (en) Leaning vehicle
JPWO2018030407A1 (en) vehicle
WO2024048532A1 (en) Leaning vehicle
WO2023144922A1 (en) Tilting vehicle
JP2010058588A (en) Steering device
JP2017178187A (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018778002

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018778002

Country of ref document: EP

Effective date: 20191031