WO2024048534A1 - Leaning vehicle - Google Patents

Leaning vehicle Download PDF

Info

Publication number
WO2024048534A1
WO2024048534A1 PCT/JP2023/031029 JP2023031029W WO2024048534A1 WO 2024048534 A1 WO2024048534 A1 WO 2024048534A1 JP 2023031029 W JP2023031029 W JP 2023031029W WO 2024048534 A1 WO2024048534 A1 WO 2024048534A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
torque
vehicle
rider
angle
Prior art date
Application number
PCT/JP2023/031029
Other languages
French (fr)
Japanese (ja)
Inventor
大介 神津
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2024048534A1 publication Critical patent/WO2024048534A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices

Definitions

  • the present invention relates to a lean vehicle that leans to the right when turning right and leans to the left when turning left.
  • a lean vehicle In a lean vehicle, the vehicle body tilts when the rider steers the steering wheel.
  • a lean vehicle is, for example, a motorcycle.
  • a lean vehicle whose attitude is controlled by a control device.
  • the roll angle of the vehicle body frame is controlled by setting a target roll angle based on the steering angle, which is the amount of operation by the rider, and controlling the driving force. Thereby, the lean vehicle of Patent Document 1 can be smoothly moved in the direction instructed by the rider.
  • An object of the present invention is to provide a lean vehicle that can increase responsiveness to a rider's intention to change the traveling direction while controlling the posture of the lean vehicle in the roll direction.
  • a lean vehicle has the following configuration. a plurality of wheels including at least one front wheel and at least one rear wheel arranged rearward in the longitudinal direction of the vehicle than the at least one front wheel; A vehicle body frame that rotatably supports at least one front wheel around a steering axis, and tilts to the right of the vehicle with respect to the vertical direction of the vehicle when turning to the right, and tilts to the left of the vehicle with respect to the vertical direction of the vehicle when turning to the left.
  • a lean vehicle comprising: a control device for controlling the vehicle; a rider steering torque detection device for detecting information related to the rider steering torque input to the steering unit; and the at least one front wheel and the at least one rear wheel.
  • a drive torque applying device configured to apply positive and negative drive torques about the axle axis to at least one of the wheels; and a drive torque applying device configured to apply the rider steering torque and the steering actuator to the at least one front wheel.
  • a torque applying device including at least one of a steering torque applying device configured to apply a steering torque around the steering axis that is a composite torque with an actuator steering torque, the control device The device is configured to control at least one of the drive torque and the steering torque applied by the device, and a steering angle that is a rotation angle of the at least one front wheel about the steering axis is detected by the rider steering torque detection device. controlling at least one of the driving torque and the steering torque of the torque applying device so as to achieve a target steering angle set based at least on information related to the rider steering torque, thereby controlling the lean vehicle; Execute attitude control to control the attitude in the roll direction.
  • attitude control is executed by the control device, and the attitude of the lean vehicle in the roll direction is controlled.
  • the control device controls at least one of the drive torque and the steering torque so that the steering angle becomes a target steering angle set based at least on information related to rider steering torque.
  • the target steering angle is set based on the rider steering torque. Since the target steering angle is set based on the rider steering torque, which is the torque while the rider is steering the steering unit, the target roll angle is set based on the steering angle, which is the result after the rider steers the steering unit. Compared to the case where the target steering angle is set, the target steering angle can be set more quickly. Therefore, while controlling the attitude of the lean vehicle in the roll direction, it is possible to increase the responsiveness to the rider's intention to change the traveling direction.
  • a lean vehicle may have the following configuration.
  • the control device controls the rider steering torque.
  • the direction of rotation around the steering axis that changes from the actual steering angle, which is the steering angle when the steering angle is applied, to the target steering angle is opposite to the direction of rotation around the steering axis of the rider steering torque.
  • the target steering angle is set, and the intersection point of the steering axis of the at least one front wheel and the running surface of the at least one front wheel is the same as a grounding point of the at least one front wheel or a grounding point of the at least one front wheel.
  • the control device is located toward the rear of the vehicle from the point, the control device is configured such that the direction of rotation around the steering axis in which the actual steering angle changes from the target steering angle is the same as the direction of rotation of the rider steering torque around the steering axis.
  • the target steering angle is set so as to correspond to the direction.
  • a lean vehicle in which the intersection of the steering axis of at least one front wheel and the running surface of at least one front wheel is the same as the grounding point of at least one front wheel or is located in the vehicle rearward direction from the grounding point of at least one front wheel,
  • a lean vehicle with a trail length of 0 or a negative value moves such that at least one front wheel is steered in the same direction as the direction in which the rider applies rider steering torque.
  • the posture of the lean vehicle in the roll direction is controlled while , it is possible to increase responsiveness to the rider's intention to change the direction of travel.
  • a lean vehicle may have the following configuration.
  • a steering angle related information detection device that detects information related to a steering angle that is a rotation angle of the at least one front wheel about the steering axis; and a wheel speed that is the rotation speed of the at least one wheel about the axle axis.
  • a wheel speed related information detection device that detects related information, and the control device is configured such that the steering angle of the at least one front wheel is in addition to information related to the rider steering torque.
  • Target steering set based on at least one of information related to the actual vehicle speed, which is the vehicle speed when the rider steering torque was applied, and information related to the actual steering angle, which is the steering angle when the rider steering torque was applied. At least one of the driving torque and the steering torque of the torque applying device is controlled so that the torque applying device has an angle.
  • the target steering angle is set based on at least one of the actual vehicle speed and the actual steering angle in addition to the rider steering torque. Even when the amount of change in the steering angle is the same, the attitude of the lean vehicle in the roll direction changes more as the speed increases. Therefore, even if the rider applies the same rider steering torque, the target steering angle can be made smaller if the actual vehicle speed is high. In addition, if the steering unit is being steered a lot and the actual steering angle is large, if the same target steering angle is given as when the steering unit is not being steered a lot and the actual steering angle is small, the mechanical Limits may be reached.
  • the target steering angle can be made small so that it becomes difficult to largely steer the steering unit.
  • a lean vehicle may have the following configuration.
  • a steering angle related information detection device for detecting information related to a steering angle, which is a rotation angle of the at least one front wheel about the steering axis; and a lean angle, which is an inclination angle of the vehicle body frame in the left-right direction of the vehicle with respect to the vertical direction of the vehicle.
  • a lean angle related information detection device that detects information related to the angle; and a wheel speed related information detection device that detects information related to a wheel speed that is a rotational speed of the at least one wheel about the axle axis.
  • the control device controls the target steering, wherein the steering angle of the at least one front wheel is set based on at least information related to the rider steering torque detected by the rider steering torque detection device.
  • information related to the steering angle detected by the steering angle related information detection device and the lean angle related information detection so that a change in the attitude of the lean vehicle in the roll direction is suppressed while the lean vehicle is at an angle.
  • the drive torque and the steering torque of the torque applying device are determined based on information related to the lean angle detected by the device and information related to the rotation speed detected by the wheel rotation related information detection device. Control at least one of them.
  • the control device does not execute the attitude control of the present invention and controls the attitude of the lean vehicle so that changes in the attitude of the lean vehicle in the roll direction are suppressed without considering the rider steering torque
  • the target steering angle is controlled so that it does not comply with the rider's intention to change the direction of travel.
  • the posture of the lean vehicle in the roll direction is controlled so that changes in the posture of the lean vehicle in the roll direction are suppressed.
  • responsiveness to the rider's intention to change the traveling direction can be increased.
  • a lean vehicle may have the following configuration.
  • the attitude control executed by the control device applies the torque so that the steering angle becomes a target steering angle set based at least on information regarding the rider steering torque detected by the rider steering torque detection device.
  • the first attitude control for controlling at least one of the drive torque and the steering torque of the device, and a lean angle that is an inclination angle of the vehicle body frame in the vehicle lateral direction with respect to the vehicle vertical direction, are performed by the rider steering torque detection device.
  • second attitude control for controlling at least one of the driving torque and the steering torque of the torque applying device so as to achieve a target lean angle set based at least on information related to the detected rider steering torque; , including at least
  • the attitude control executed by the control device includes at least the first attitude control and the second attitude control.
  • the control device can switch between the first attitude control and the second attitude control depending on the running state of the lean vehicle. For example, in a low-speed running state where the steering angle is more likely to change than the lean angle of a lean vehicle, the control device may execute the first attitude control so that the steering angle becomes the target steering angle set based on the rider steering torque. Then, the steering angle of the lean vehicle is adjusted to a relatively large value, and the attitude of the lean vehicle in the roll direction is controlled.
  • the control device executes second attitude control to maintain the lean angle at a target lean angle set based on the rider steering torque.
  • the lean angle of the vehicle is adjusted to a relatively large value to control the attitude of the lean vehicle in the roll direction.
  • a lean vehicle may have the following configuration.
  • the torque applying device includes at least the driving torque applying device and the steering torque applying device of the steering torque applying device, and the control device controls the driving torque and the steering torque applied by the torque applying device.
  • the steering angle of the at least one front wheel is configured to control at least the steering torque, and in the attitude control, the steering angle of the at least one front wheel is based on information related to the rider steering torque detected by the rider steering torque detection device.
  • At least the steering torque of the driving torque and the steering torque of the torque applying device is controlled so that the target steering angle is set based on at least the target steering angle.
  • attitude control of the control device it is easier to make the steering angle equal to the target steering angle than when only the drive torque is controlled. Therefore, while controlling the attitude of the lean vehicle in the roll direction, it is possible to increase the responsiveness to the rider's intention to change the traveling direction.
  • a lean vehicle may have the following configuration.
  • the control device is configured to perform the attitude control at least when the vehicle speed is greater than 0 km/h and less than 10 km/h.
  • attitude control is executed at least when the vehicle is traveling at a speed greater than 0 km/h and less than 10 km/h.
  • the steering angle is more likely to change than the lean angle of a lean vehicle compared to a running state where the vehicle speed is greater than 10 km/h.
  • the control device adjusts the steering angle to the target steering angle set based on the rider steering torque.
  • attitude control By performing attitude control, the steering angle of the lean vehicle is adjusted to a relatively large value, and the attitude of the lean vehicle in the roll direction is controlled. This makes it possible to control the attitude of the lean vehicle in the roll direction while increasing responsiveness to the rider's intention to change the direction of travel.
  • a lean vehicle may have the following configuration.
  • the steering unit includes a handle unit that is steered by a rider, and a connection part that connects the handle unit and the at least one front wheel, and the connection part allows the handle unit to rotate around a handle axis.
  • the at least one front wheel rotates around the steering axis when the handle unit rotates around the steering axis
  • the at least one front wheel rotates around the steering axis when the handle unit rotates around the steering axis.
  • the handle unit rotates about the handle axis
  • the rotation angle of any one of the at least one front wheel about the steering axis is the rotation angle of the handle unit about the handle axis.
  • the vehicle includes a connecting portion that connects the handle unit and the at least one front wheel.
  • the rotation angle of at least one front wheel around the steering axis is greater than or equal to the rotation angle around the steering axis of the steering wheel unit, and the rotation angle of the front wheel around the steering axis is greater than the rotation angle around the steering axis of the steering wheel unit.
  • the rotation angle of at least one of the front wheels around the steering axis is greater than or equal to the rotation angle of the steering wheel unit around the steering axis.
  • the control device sets the target steering angle according to the rider steering torque. This makes it possible to control the roll direction posture of the lean vehicle, which tends to change its roll direction posture, while increasing responsiveness to the rider's intention to change the traveling direction.
  • a lean vehicle may have the following configuration.
  • the steering unit includes a handle unit that is steered by a rider, and a connection part that connects the handle unit and the at least one front wheel, and the connection part is configured such that the handle unit is rotated by less than 360° around the handlebar axis.
  • the at least one front wheel rotates about the steering axis when the handle unit rotates about the steering wheel axis;
  • a connecting portion is provided for connecting the handle unit and the at least one front wheel so that the handle unit rotates about the steering axis when the front wheel rotates about the steering axis.
  • lean vehicles with a steering wheel unit that is rotatable in a rotary angular range of less than 360° may be rotated in a rotary angular range of 360° or more.
  • the angle of rotation of the at least one front wheel about the steering axis when the steering wheel unit is rotated through the same angle of rotation about the axis of the steering wheel is greater than that of a vehicle with a steering wheel unit that is possible.
  • the rider is less likely to touch the handle unit compared to a vehicle equipped with a handle unit that can be rotated over a rotation angle range of 360° or more. It is easy to apply force and give rider steering torque.
  • the control device sets the target steering angle according to the rider steering torque. This makes it possible to control the roll direction posture of the lean vehicle, which tends to change its roll direction posture, while increasing responsiveness to the rider's intention to change the traveling direction.
  • the vehicle vertical direction in the present invention and embodiments is a direction perpendicular to the running surface. More specifically, it is a direction perpendicular to the ground contact position of the wheel.
  • the running surface is a road surface on which a lean vehicle runs.
  • the vehicle longitudinal direction in the present invention and the embodiments is a direction fixed to the vehicle body frame, and is a traveling direction of the lean vehicle when the lean vehicle is traveling straight.
  • the lateral direction of the vehicle in the present invention and the embodiments is a direction perpendicular to the longitudinal direction of the vehicle and the vertical direction of the vehicle. When a rider rides on a lean vehicle, the left-right direction of the vehicle is the left-right direction for the rider.
  • the plurality of wheels including at least one front wheel and at least one rear wheel may include one front wheel and one rear wheel, or may include one front wheel and multiple rear wheels. , may include multiple front wheels and one rear wheel.
  • the lean vehicle may be a two-wheeled vehicle or a three-wheeled vehicle.
  • the lean vehicle may be a motorcycle or a motor tricycle.
  • Motorcycles also include scooters and mopeds.
  • the lean vehicle may be a two-wheeled or three-wheeled bicycle.
  • Lean vehicles according to the present invention and embodiments may have positive caster angles. That is, the steering axis may be tilted rearward.
  • the caster angle is the angle formed between the steering axis and the vertical direction of the vehicle, and is positive when the steering axis is tilted rearward.
  • a lean vehicle according to the present invention and embodiments may have a trail length of a positive value.
  • the trail length is the distance between the grounding point of the front wheels and the intersection of the steering axis and the running surface. In other words, the trail length is the distance in the vehicle longitudinal direction between the axle axis of the front wheels and the intersection of the steering axis and the running surface.
  • a state in which the trail length is a positive value is a state in which the grounding point of the front wheels is located further forward of the vehicle than the intersection of the steering axis and the running surface.
  • a lean vehicle according to the present invention and embodiments may have a trail length of zero or a negative value.
  • the lean vehicle according to the present invention and the embodiments may be configured such that the trail length cannot be changed.
  • the lean vehicle according to the present invention and the embodiments may be configured to be able to change the trail length.
  • the trail length may be varied within a range of positive values.
  • the trail length may be changeable from a positive value to a negative value.
  • the lean vehicle according to the present invention and the embodiments may be configured such that the rear wheels cannot be steered.
  • the lean vehicle according to the present invention and embodiments does not need to have a mechanism that can change the lean angle without changing the steering angle of the front wheels.
  • the lean vehicle according to the present invention and embodiments does not need to have a mechanism that changes the center of gravity position of the body frame without changing the steering angle of the front wheels.
  • the lean vehicle according to the present invention and embodiments may have at least one operator (for example, an accelerator operator, a brake operator, a bicycle pedal, etc.) operated by the rider to maintain or change the vehicle speed, It is not necessary to have one.
  • the lean vehicle according to the present invention and embodiments may be configured to be switchable between a mode in which attitude control is not performed and a mode in which attitude control is performed.
  • supporting a plurality of wheels so as to be rotatable around an axle line means supporting a plurality of wheels so that each wheel can rotate around an axle line.
  • supporting at least one front wheel rotatably around the steering axis means supporting a plurality of front wheels rotatably around the steering axis for each front wheel.
  • a wheel front wheel or rear wheel
  • the portion of the outer edge of the front wheel that contacts the running surface in a cross section perpendicular to the circumferential direction of the front wheel may be arcuate.
  • the roll direction of a lean vehicle is a rotation direction about a roll axis of the lean vehicle along the longitudinal direction of the vehicle, in which the body frame of the lean vehicle is rotated with respect to the vertical direction of the vehicle. This is the direction in which the vehicle is inclined in the left-right direction.
  • the lean angle-related information detected by the lean angle-related information detection device includes the lean angle, the lean angular velocity which is the time change rate of the lean angle, and the lean angle velocity which is the time change rate of the lean angular velocity. and at least one of angular acceleration.
  • the lean angle may be a so-called roll angle.
  • the lean angle related information detection device may be, for example, an IMU (Inertial Measurement Unit).
  • the information related to the steering angle detected by the steering angle related information detection device includes the steering angle, the steering angular velocity which is the time rate of change of the steering angle, and the steering angle which is the time rate of change of the steering angular velocity. and at least one of angular acceleration.
  • the steering angle is the rotation angle of at least one front wheel about the steering axis. When a lean vehicle is traveling straight, the steering angle is zero.
  • a lean vehicle may have one front wheel. When the number of front wheels is plural, the lean vehicle may be configured such that the rotation angles of the plurality of front wheels about the steering axis are always the same.
  • the lean vehicle may be configured such that the rotation angles of the plurality of front wheels about the steering axis can be slightly different.
  • the rotation angle of any one front wheel about the steering axis is related to the rotation angle of the remaining front wheels about the steering axis.
  • the steering angle related information detection device may be a sensor that supports the front wheels rotatably about the axle axis and detects a rotation angle of a steering shaft that is rotatably supported by the vehicle body frame about the steering axis.
  • the steering angle related information detection device may include a sensor that detects the rotation angle of the shaft of the electric motor included in the steering torque imparting device.
  • the information related to the wheel speed detected by the wheel speed related information detection device includes the rotational speed of the front wheel around the axle line, the rotational acceleration around the axle line of the front wheel, and the rotational acceleration around the axle line of the front wheel. Amount of rotation (number of rotations or rotation angle), rotation speed of the rear wheels around the axle line, rotational acceleration of the rear wheels around the axle line, amount of rotation of the rear wheels around the axle line, vehicle speed (vehicle longitudinal speed of lean vehicles) ), acceleration of the lean vehicle in the longitudinal direction of the vehicle.
  • wheel speed is the rotation angle of at least one wheel around the axle axis.
  • the rotational speed of one wheel about its axle is related to the rotational speed of the remaining wheels about their axles.
  • the rotation speed around the axle axis is the number of rotations or rotation angle per unit time.
  • the wheel speed related information detection device may be a sensor provided on the wheel.
  • the wheel speed related information detection device may be a device that detects information related to the wheel speed of the lean vehicle using GNSS (Global Navigation Satellite System).
  • the control device may calculate the vehicle speed from the rotational speed of the front wheels around the axle line and the steering angle.
  • the control device may calculate the vehicle speed from the rotation speed of the rear wheels around the axle line.
  • the steering unit includes a handle unit operated by a rider to maintain or change the steering angle.
  • at least a portion of the steering unit is included in the steering torque applying device.
  • a rider steers the steering unit it means rotating the handle unit.
  • Steering the steering unit to the right of the vehicle means rotating the handle unit clockwise in plan view.
  • Steering the steering unit to the left of the vehicle means rotating the handle unit counterclockwise in plan view.
  • the rotational axis of the handle unit may or may not coincide with the steering axis of the front wheels.
  • the steering unit will transmit the torque input to the steering wheel unit around the rotational axis of the steering wheel unit as torque around the steering axis of the front wheels. It is configured to In the present invention, rider steering torque is input to the steering unit as torque about the steering axis of at least one front wheel, when the number of front wheels is plural, the rider steering torque is input to the steering unit as torque about the steering axis of the plurality of front wheels. It is not our intention to deny input at the same time.
  • the steering unit of the present invention and the embodiments is configured such that when there is a plurality of front wheels, the torque around the steering axis of the plurality of front wheels input to the steering unit by the rider's steering of the steering unit is always the same. It's okay.
  • the steering unit of the present invention and the embodiments may slightly differ in the torque around the steering axis of the plurality of front wheels that is input to the steering unit by the rider's steering of the steering unit. It may be configured so that it can be done.
  • the rider steering torque detection device is a device that detects information related to the rider steering torque input to the steering unit when the rider steers the steering unit.
  • the rider steering torque detection device may detect at least rider steering torque as information related to rider steering torque.
  • the steering torque applying device generates an actuator steering torque by a steering actuator, and the torque is a combination of the actuator steering torque generated by the steering actuator and the rider steering torque input to the steering unit. Applying steering torque to at least one front wheel.
  • being configured to apply steering torque around the steering axis to the front wheels means being configured to apply steering torque to a member that rotatably supports the front wheels around the axle axis. It means to be done.
  • the steering torque applying device may be configured to rotatably support the front wheels around the axle axis and apply steering torque to a steering shaft supported by the vehicle body frame so as to be rotatable around the steering axis.
  • the steering torque applying device is configured to apply steering torque to at least one front wheel, when the number of front wheels is plural, the steering torque applying device applies steering torque to the plurality of front wheels simultaneously. Alternatively, the steering torque applying device may apply steering torque to some of the plurality of front wheels simultaneously.
  • the steering actuator is, for example, an electric motor or a hydraulic actuator.
  • an assist motor electric motor
  • the control device controls the steering torque it means controlling the actuator steering torque.
  • the drive torque application device generates drive torque and applies the generated drive torque to at least one of at least one front wheel and at least one rear wheel.
  • the driving torque applying device may be configured to apply driving torque only to at least one front wheel, may be configured to apply driving torque only to at least one rear wheel, and may be configured to apply driving torque only to at least one front wheel. It may be configured to apply drive torque to both of the at least one rear wheel.
  • the drive torque application device is configured to apply drive torque to both at least one front wheel and at least one rear wheel, the drive torque is not necessarily applied to at least one front wheel and at least one rear wheel at the same time. It's okay.
  • driving torque means a driving torque applied to one wheel, or a general term for a plurality of driving torques applied to a plurality of wheels.
  • being configured to apply positive and negative driving torques means being configured to be able to apply positive and negative driving torques to one wheel at different timings. It means to do something.
  • the positive drive torque is a torque that rotates the wheels in the positive direction so that the lean vehicle moves forward. If a negative drive torque is applied while the wheel is rotating in the positive direction, the rotation of the wheel in the positive direction is decelerated.
  • the drive torque applying device may or may not be configured to be able to generate a torque that rotates the wheels in a negative direction as a negative drive torque.
  • the drive torque applying device may include a plurality of devices that each apply torque to one wheel.
  • a composite torque of a plurality of torques simultaneously applied to one wheel corresponds to the driving torque of the present invention.
  • the drive torque applying device may be configured to be able to simultaneously apply positive torque and negative torque to one wheel.
  • the drive torque applying device may include at least one of an engine and an electric motor.
  • the drive torque applying device may include a brake device.
  • the brake device may be a hydraulic brake device, for example.
  • a lean vehicle does not have a brake device included in the drive torque applying device, and may have a brake device not included in the drive torque applying device.
  • the control device does not control the braking device so that the steering angle becomes the target steering angle set based at least on information related to rider steering torque, the braking device controls the driving torque applying device. Does not need to be included.
  • the torque applying device may include both a driving torque applying device and a steering torque applying device, may include only a driving torque applying device, or may include only a steering torque applying device.
  • the torque applying device includes at least a steering torque applying device, and may include both a driving torque applying device and a steering torque applying device, or may include only a steering torque applying device.
  • the case where the torque applying device includes only the steering torque applying device is, for example, the case where the lean vehicle is applied to a two-wheeled or three-wheeled bicycle.
  • the target steering angle is set based on at least the rider steering torque.
  • the target steering angle is set such that the direction of change from the actual steering angle, which is the steering angle when the rider steering torque is applied, is opposite to the direction of the rider steering torque around the steering axis.
  • the target steering angle is set so that the direction of change from the actual steering angle is the same as the direction of the rider steering torque around the steering axis. Further, the target steering angle may be set such that the amount of change in the steering angle, which is the difference between the target steering angle and the actual steering angle, increases as the rider steering torque increases.
  • the target steering angle may be set based on the rider steering torque and the actual vehicle speed that is the vehicle speed when the rider steering torque is applied.
  • the target steering angle may be set based on the rider steering torque and the actual steering angle or the previously set target steering angle. Further, the target steering angle may be set based on the rider steering torque, the actual vehicle speed, and the actual steering angle or the previously set target steering angle. Note that when the lean vehicle has a plurality of front wheels, the target steering angle may be the same or different for the plurality of front wheels.
  • the type of torque controlled by the control device in attitude control may be only the steering torque or only the driving torque, Both driving torque and steering torque may be used.
  • the control device may control the drive torque while the attitude control is being performed. More specifically, for example, the control device may control the drive torque in response to the rider's operation of an accelerator operator or a brake operator.
  • the type of torque controlled in attitude control is not necessarily the same every time attitude control is executed.
  • the control device may determine the type of torque to be controlled in attitude control based on the actual steering angle and actual speed of the lean vehicle. Specifically, when the actual steering angle of the lean vehicle is large, the control device may set the type of torque controlled in attitude control to drive torque. When the actual speed of the lean vehicle is high, the control device may set the type of torque controlled in attitude control to steering torque. Further, the control device may determine the type of torque to be controlled in attitude control based on information input to the control device. The information input to the control device may be information input to the control device through an operation by a user, information indicating the behavior of a lean vehicle, or may include both.
  • the operation by the user may be an operation for the rider to drive the lean vehicle, or may be an operation performed by the user (including the rider) while the lean vehicle is stopped.
  • a lean vehicle may be configured such that a mode that allows a speed change of a lean vehicle and a mode that does not allow a speed change of a lean vehicle are selected and input to the control device.
  • the control device may control either the driving torque or the steering torque in attitude control, and does not allow speed changes of the lean vehicle.
  • the control device may control only the steering torque without controlling the drive torque in attitude control.
  • the control device will control only the steering torque without controlling the drive torque during attitude control. May be controlled.
  • the timing of applying the controlled driving torque and the timing of applying the controlled steering torque may be the same or different. It's okay.
  • the control device executes attitude control to control the attitude of the lean vehicle in the roll direction so that the steering angle becomes the target steering angle.
  • attitude control of the control device for example, a target steering angle is determined based on a combination of information related to detected rider steering torque and a target steering angle.
  • the combination of the information related to the rider steering torque and the target steering angle is, for example, a map in which the input is the rider steering torque and the output is the target steering angle.
  • the control device may be composed of a plurality of devices that communicate by wire or wirelessly, or may be composed of one device.
  • the control device may perform attitude control so that the steering angle becomes the target steering angle, and a change in attitude of the lean vehicle in the roll direction is suppressed.
  • the control device sets the lean angle, the steering angle, and the vehicle speed so that the combination of values indicates a state in which the steering angle becomes the target steering angle and a change in attitude of the lean vehicle in the roll direction is suppressed.
  • attitude control is executed.
  • a combination of values of lean angle, steering angle, and vehicle speed that indicates a state in which changes in the attitude of a lean vehicle in the roll direction are suppressed is a condition in which a lean vehicle is driven so that the steering angle and vehicle speed are maintained at the values of the combination.
  • attitude control in a combination of lean angle, steering angle, and vehicle speed values that suppress changes in attitude of the lean vehicle in the roll direction, at least the value of the target steering angle set based on the rider steering torque is set.
  • At least one of the driving torque and the steering torque of the torque applying device is determined based on information related to the lean angle, information related to the steering angle, and information related to the rotational speed so that the values of the lean angle and vehicle speed become a combination. control.
  • the information related to the lean angle, the information related to the steering angle, and the information related to the rotational speed are, for example, a steering angle, a steering angular velocity, a lean angle, a lean angular velocity, and a vehicle speed.
  • the control device of the present invention may store a combination of lean angle, steering angle, and vehicle speed values that suppresses changes in the attitude of the lean vehicle in the roll direction. In this case, the control device may perform attitude control based on a combination of the stored lean angle, steering angle, and vehicle speed values.
  • the control device may detect lean angles and steering angles detected by a lean angle related information detection device, a steering angle related information detection device, and a wheel speed related information detection device or calculated from values detected by these detection devices. At least one of the driving torque and the steering torque may be controlled based on the difference between the vehicle speed or the wheel speed, and the combination of the lean angle, the steering angle, and the vehicle speed.
  • the control device stores a combination of values of lean angle, steering angle, and vehicle speed
  • calculation is performed based on the combination of values of lean angle, steering angle, and vehicle speed, or based on the combination of values of lean angle, steering angle, and vehicle speed. may be configured to correct the calculated value.
  • control device may store multiple types of combinations of lean angle, steering angle, and vehicle speed values.
  • the combinations of multiple types of lean angles, steering angles, and vehicle speed values may include, for example, multiple combinations of lean angles, steering angles, and vehicle speed values created on the assumption that the lean vehicle has different number of occupants. .
  • the control device of the present invention does not need to store combinations of lean angle, steering angle, and vehicle speed values.
  • attitude control a method for determining whether torque control is being performed based on rider steering torque will be described.
  • this determination method for example, a test is performed multiple times in which a lean vehicle with a positive trail length is driven straight at a constant speed and a rider steers a steering unit. In the test conditions for this determination method, the rider steering torque is changed and the vehicle speed and steering angle (0 degrees) are kept the same.
  • the steering unit determines whether the direction of travel has changed in the opposite direction to the direction in which the rider has steered. This is because the vehicle is steered in the same direction.
  • the lean vehicle control device controls the lean angle related information detection device and the steering angle related information detection device so that the steering angle becomes the target steering angle and changes in the attitude of the lean vehicle in the roll direction are suppressed.
  • the information detected by the wheel speed related information detection device it can be determined, for example, by the following method whether attitude control that controls at least one of the drive torque and the steering torque is being executed.
  • attitude control a method for determining whether torque control is being performed based on information (for example, vehicle speed) detected by a wheel speed related information detection device will be described. In this determination method, for example, a test is performed multiple times in which a lean vehicle with a positive trail length is driven straight at a constant speed and a rider steers a steering unit.
  • the vehicle speed is changed and the rider steering torque and steering angle (0 degrees) are kept the same. Whether at least one of the applied driving torque and steering torque is different from each other at two points in time when the vehicle speed is different after the rider steers the steering unit, and the direction of travel is opposite to the direction in which the rider steered the steering unit. It can be determined whether posture control is being executed by whether the position has changed. Further, in attitude control, a method for determining whether torque control is being performed based on information (for example, steering angle) detected by the steering angle related information detection device will be described.
  • information for example, steering angle
  • this determination method for example, a test is performed multiple times in which a lean vehicle with a positive trail length is turned at a constant speed and a rider steers a steering unit.
  • the steering angle is changed and the rider steering torque, vehicle speed, and lean angle are kept the same.
  • the rider steers the steering unit at least one of the applied driving torque and the steering torque is different at two points in time when the steering angles are different, and the direction of travel is opposite to the direction in which the rider steered the steering unit. It can be determined whether attitude control is being executed based on whether the direction has changed.
  • attitude control a method for determining whether torque control is being performed based on information (for example, lean angle) detected by the lean angle related information detection device.
  • this determination method for example, a test is performed multiple times in which a lean vehicle with a positive trail length is turned at a constant speed and a rider steers a steering unit.
  • the lean angle is changed and the rider steering torque, vehicle speed, and steering angle are kept the same.
  • the rider steers the steering unit at least one of the applied driving torque and the steering torque is different from each other at two points in time when the lean angles are different, and the direction of travel is opposite to the direction in which the rider steered the steering unit. It is possible to determine whether posture control is being executed based on the change in direction.
  • the steering unit is steered in the same direction as the direction in which the rider applies rider steering torque. Therefore, in the above determination method, when using a lean vehicle with a trail length of 0 or a negative value, the determination is made based on whether the balance control is being executed based on whether the traveling direction has changed to the same direction as the direction steered by the rider.
  • rotation is not limited to rotation of 360° or more. Rotation in the present invention and embodiments also includes rotations of less than 360°.
  • controlling based on A does not mean to limit the information used for control to only A.
  • Controlling based on A includes controlling based on A and information other than A.
  • At least one of the plurality of options includes all possible combinations of the plurality of options.
  • At least one (one) of the multiple options may be any one of the multiple options, or may be all of the multiple options.
  • at least one of A, B, and C may be only A, only B, only C, A and B, or A and C. It may be B and C, or it may be A, B, and C.
  • the present invention may have a plurality of this component. Further, the present invention may include only one such component.
  • the terms “mounted,” “connected,” “coupled,” and “supported” are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling, and support, but also indirect attachment, connection, coupling, and support. Furthermore, connected and coupled are not limited to physical or mechanical connections/couplings. They also include direct or indirect electrical connections/coupling.
  • the term “preferable” is non-exclusive.
  • Preferred means “preferred, but not limited to.”
  • the configuration described as “preferable” exhibits at least the above-mentioned effects obtained by the configuration of claim 1.
  • the term “may” is non-exclusive. “You may do so” means “you may do so, but it is not limited to this.” In this specification, the configuration described as “may be performed” produces at least the above-mentioned effects obtained by the configuration of claim 1.
  • the lean vehicle of the present invention it is possible to control the attitude of the lean vehicle in the roll direction while increasing the responsiveness to the rider's intention to change the traveling direction.
  • FIG. 1 is a diagram illustrating the configuration of a lean vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a lean vehicle in which posture control is performed by the control device according to the embodiment of the present invention.
  • FIG. 2(a) shows the case of a lean vehicle with a trail length of a positive value
  • FIG. 2(b) shows the case of a lean vehicle with a trail length of 0 or a negative value
  • FIG. 3 is a diagram illustrating an example of a lean vehicle in which posture control is performed by the control device according to the embodiment of the present invention.
  • FIG. 3(a) shows the case of a lean vehicle with a trail length of a positive value
  • FIG. 4 is a diagram illustrating an example of a lean vehicle in which posture control is performed by the control device according to the embodiment of the present invention.
  • FIG. 4(a) shows the case of a lean vehicle with a positive trail length
  • FIG. 4(b) shows the case of a lean vehicle with a trail length of 0 or a negative value.
  • FIG. 5 is a diagram illustrating an example of a steering wheel unit for a lean vehicle according to a sixth embodiment of the present invention.
  • FIG. 5(a) is a diagram showing the configuration of a lean vehicle viewed from the front
  • FIG. 5(b) is a diagram showing the configuration of the lean vehicle viewed from above.
  • U is the vehicle upward direction of a lean vehicle
  • D is the vehicle downward direction of the lean vehicle
  • L is the vehicle left direction of the lean vehicle
  • R is the vehicle right direction of the lean vehicle
  • F is the vehicle front direction of the lean vehicle
  • Re indicates the rearward direction of the lean vehicle.
  • the lean vehicle 1 of the first embodiment includes a plurality of wheels 2, a body frame 5, a steering unit 13, a rider steering torque detection device 14, a torque application device 10, and a control device 9.
  • the plurality of wheels 2 include at least one front wheel 3 and at least one rear wheel 4. At least one rear wheel 4 is arranged further rearward than at least one front wheel 3 in the longitudinal direction of the vehicle. Note that although the lean vehicle 1 shown in FIG. 1 is a two-wheeled vehicle, the lean vehicle 1 of the first embodiment is not limited to a two-wheeled vehicle.
  • the vehicle body frame 5 rotatably supports a plurality of wheels 2 around an axle axis X1, and supports at least one front wheel 3 rotatably around a steering axis X2.
  • the vehicle body frame 5 tilts to the right of the vehicle with respect to the vertical direction of the vehicle when turning to the right, and tilts to the left of the vehicle with respect to the vertical direction of the vehicle when turning to the left.
  • FIG. 1 schematically represents the steering angle ⁇ , which is the rotation angle of at least one front wheel 3 about the steering axis X2.
  • the steering unit 13 can be steered by a rider.
  • a rider steering torque T which is a torque generated by the rider's steering, is input to the steering unit 13 to rotate at least one front wheel 3 around the steering axis X2.
  • each front wheel 3 has a steering axis X2.
  • the rider steering torque T is input to the steering unit 13 as a torque around the steering axis X2 of each front wheel 3.
  • the steering axis X2 is inclined in the vehicle longitudinal direction with respect to the vehicle vertical direction.
  • a part of the steering unit 13 is schematically expressed in accordance with the schematically expressed steering angle ⁇ . Note that the lean vehicle 1 in FIG.
  • the lean vehicle of the first embodiment of the present invention may have a caster angle CA of a positive value and a trail length TL of 0 or a negative value.
  • the caster angle CA of the lean vehicle is smaller than the caster angle CA of the lean vehicle 1 shown in FIG.
  • the rider steering torque detection device 14 detects information regarding the rider steering torque T input to the steering unit 13.
  • the torque applying device 10 includes at least one of a driving torque applying device 11 and a steering torque applying device 12.
  • the torque applying device 10 includes a driving torque applying device 11 and a steering torque applying device 12 .
  • the torque applying device 10 may be only either the driving torque applying device 11 or the steering torque applying device 12.
  • the drive torque applying device 11 is configured to apply positive and negative drive torques about the axle axis X1 to at least one of the at least one front wheel 3 and the at least one rear wheel 4. Note that the driving torque applying device 11 shown in FIG.
  • the steering torque applying device 12 is configured to apply a steering torque around the steering axis X2 to any one of the front wheels 3.
  • Steering torque applying device 12 includes a steering unit 13 and a steering actuator 15.
  • the steering torque applied by the steering torque applying device 12 is the sum of the rider steering torque T input to the steering unit 13 and the actuator steering torque generated by the steering actuator 15. Note that the driving torque applying device 11 shown in FIG.
  • the steering torque applying device 12 is configured to apply a steering torque around the steering axis X2 to at least one front wheel 3.
  • the number of front wheels 3 is one in FIG. 1, the number of front wheels 3 may be plural.
  • the steering torque applying device 12 is configured to apply a steering torque around the steering axis X2 set for each front wheel 3 to the plurality of front wheels 3.
  • the control device 9 is configured to control at least one of the driving torque and the steering torque applied by the torque applying device 10. That is, the control device 9 may be configured to control both the steering torque and the drive torque. Alternatively, the control device 9 may be configured to control only the steering torque or the drive torque. Specifically, when the lean vehicle 1 has only the drive torque applying device 11, the control device 9 is configured to control only the drive torque. Furthermore, when the lean vehicle 1 has only the steering torque applying device 12, the control device 9 is configured to control only the steering torque. When the lean vehicle 1 has the driving torque applying device 11 and the steering torque applying device 12, the control device 9 controls only the driving torque, only the steering torque, or the driving torque and the steering torque, depending on various conditions. configured to do so.
  • the steering angle ⁇ can be set to the target steering angle ⁇ g set based on the rider steering torque T.
  • the control device 9 controls the drive torque and the steering angle changes when the vehicle speed changes while the lean vehicle 1 is turning
  • the steering angle ⁇ is set as the target steering angle set based on the rider steering torque T. ⁇ g. Specifically, when the lean vehicle 1 accelerates while turning, the body of the lean vehicle 1 rises and the steering angle decreases, and when the lean vehicle 1 decelerates while turning, the body of the lean vehicle 1 falls down. The steering angle increases.
  • the control device 9 is configured to perform attitude control to control at least one of the drive torque and the steering torque so that the steering angle ⁇ becomes a target steering angle ⁇ g set based on the rider steering torque T. .
  • the control device 9 controls the posture of the lean vehicle 1 in the roll direction by setting the target steering angle ⁇ g based on the rider steering torque T, which is the torque while the rider is steering the steering unit 13.
  • the target roll angle is set based on the current steering angle ⁇ which is the result of the rider steering the steering unit 13. Therefore, in the prior art, the attitude of the lean vehicle is controlled without considering how the rider will steer the steering unit 13 from now on.
  • the lean vehicle 1 of this embodiment can more quickly set the target steering angle ⁇ g that reflects the rider's intention to change the traveling direction, compared to the conventional technology. Therefore, responsiveness to the rider's intention to change the traveling direction can be increased.
  • the steering angle ⁇ can be set to the target steering angle ⁇ g, compared to the case where the control device 9 controls only the steering torque or only the driving torque. is easy.
  • the control device 9 controls both the steering torque and the drive torque in attitude control
  • the rider's intention to change the traveling direction is reflected more easily than when the control device 9 controls only the steering torque or only the drive torque.
  • the target steering angle ⁇ g can be set more quickly.
  • responsiveness to the rider's intention to change the traveling direction can be increased.
  • the target steering angle ⁇ g is set based on information regarding the rider steering torque T detected by the rider steering torque detection device 14.
  • the target steering angle ⁇ g is determined, for example, based on a combination of the information related to the rider steering torque detected by the rider steering torque detection device 14 and the target steering angle.
  • the combination of the information related to the rider steering torque and the target steering angle is, for example, a map in which the input is the rider steering torque and the output is the target steering angle, and is stored in the control device 9 in advance.
  • the target steering angle ⁇ g is set such that the direction of change from the steering angle ⁇ when the rider steering torque T is applied is opposite to the direction of the rider steering torque T around the steering axis X2.
  • the intersection point P between the steering axis X2 of the at least one front wheel 3 and the running surface G of the at least one front wheel 3 is the same as the grounding point Q of the at least one front wheel 3 or closer to the grounding point Q of the at least one front wheel 3.
  • the target steering angle ⁇ g changes in the same direction from the actual steering angle as the direction of the rider steering torque T around the steering axis X2. is set to be.
  • the amount of change in the steering angle which is the difference between the target steering angle ⁇ g and the steering angle ⁇ when the rider steering torque T is applied, increases as the magnitude of the rider steering torque T increases.
  • the target steering angle ⁇ g may be set as follows. Further, when the lean vehicle 1 has a plurality of front wheels 3, the target steering angle ⁇ g may be the same or different for the plurality of front wheels 3.
  • the lean vehicle 1 may further include a steering angle related information detection device 7 and a wheel speed related information detection device 8.
  • the steering angle related information detection device 7 detects information related to the steering angle ⁇ , which is the rotation angle of any one front wheel 3 about the steering axis X2.
  • the wheel speed related information detection device 8 detects information related to the wheel speed S, which is the rotational speed of any one wheel 2 around the axle axis X1.
  • the target steering angle ⁇ g may be set based on the rider steering torque T and the vehicle speed V, for example.
  • the target steering angle ⁇ g may be set based on, for example, the rider steering torque T and the actual steering angle ⁇ , which is the current steering angle ⁇ , or the previously set target steering angle ⁇ g.
  • the target steering angle ⁇ g may be set by adding a steering angle change amount calculated based on the rider steering torque T to the actual steering angle ⁇ or the previously set target steering angle ⁇ g.
  • the target steering angle ⁇ g may be set based on, for example, the rider steering torque T, the vehicle speed V, and the actual steering angle ⁇ , which is the current steering angle ⁇ , or the previously set target steering angle ⁇ g.
  • the target steering angle ⁇ g is set by adding the amount of change in the steering angle calculated based on the rider steering torque T and the vehicle speed V to the actual steering angle ⁇ or the previously set target steering angle ⁇ g. Good too.
  • the type of torque controlled in the attitude control of the control device 9 is not necessarily the same every time the attitude control of the control device 9 is executed.
  • the control device 9 may determine the type of torque to be controlled in attitude control based on information input to the control device 9.
  • the information input to the control device 9 may be information indicating the rider's operation, information indicating the behavior of the lean vehicle 1, or may include both.
  • the timing of applying the driving torque and the timing of applying the steering torque may be the same or different. good.
  • FIG. 2 is an explanatory diagram of cases in which the lean vehicle 1 traveling straight is turned to the right and the lean vehicle 1 traveling straight is turned left by the rider's steering of the steering unit 13.
  • FIG. 3 is an explanatory diagram of a case in which the rider steers the steering unit 13 to cause the lean vehicle 1 that is turning to the right to travel straight, and for causing the lean vehicle 1 that is turning to the left to travel straight.
  • FIG. 4 is an explanatory diagram of the case where the turning radius of the lean vehicle 1 turning to the right is made smaller by the rider's steering of the steering unit 13, and the turning radius of the lean vehicle 1 turning left is made smaller. .
  • the direction of travel of the lean vehicle 1 is changed by the rider's steering of the steering unit 13.
  • FIG. 2(a) a case where the lean vehicle 1 has a trail length TL of a positive value will be described.
  • posture control is not executed by the control device 9
  • the rider steers the steering unit 13 to turn the lean vehicle 1 from a straight running state to the right
  • the rider performs reverse steering in which the rider slightly steers the steering unit 13 to the left of the vehicle.
  • the vehicle body frame 5 is tilted to the right of the vehicle.
  • the front wheels 3 and the steering unit 13 are steered to the right of the vehicle by so-called self-steering, and the lean vehicle 1 starts turning to the right.
  • attitude control is not executed by the control device 9
  • the rider turns the lean vehicle 1 from a straight running state to the left by steering the steering unit 13
  • the rider steers the steering unit 13 to the right of the vehicle, which is called reverse steering.
  • the vehicle body frame 5 is tilted to the left of the vehicle.
  • the front wheels 3 and the steering unit 13 are steered to the left of the vehicle by so-called self-steering, and the lean vehicle 1 starts turning left.
  • the lean angle ⁇ changes in a direction different from the rider steering torque T in the left-right direction of the vehicle. tilt.
  • the steering angle ⁇ of the lean vehicle 1 also changes in the direction opposite to the direction in which the rider steering torque T is applied.
  • the traveling direction of the lean vehicle 1 changes to a direction different from the direction of the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG.
  • the target The direction of change in the steering angle ⁇ g from the steering angle ⁇ when the rider steering torque T is applied is opposite to the direction of the rider steering torque T.
  • the control device 9 sets the target steering angle ⁇ g as shown in FIG. 2(a), and adjusts the driving torque and steering torque applied by the torque applying device 10 By controlling at least one of these, the lean vehicle 1 can make a right turn or a left turn from a straight traveling state. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
  • attitude control when the rider steers the steering unit 13 to turn the lean vehicle 1 from a straight running state to the right, the rider performs forward steering to steer the steering unit 13 to the right of the vehicle. , the body frame 5 is tilted to the right of the vehicle. After that, the lean vehicle 1 starts turning to the right.
  • attitude control when attitude control is not executed by the control device 9, when the rider turns the lean vehicle 1 from a straight running state to the left by steering the steering unit 13, the rider steers the steering unit 13 to the left of the vehicle, so-called forward steering.
  • the vehicle body frame 5 is tilted to the left of the vehicle. After that, the lean vehicle 1 starts turning left.
  • the lean angle ⁇ changes in the same direction as the rider steering torque T in the left-right direction of the vehicle, so the lean vehicle 1 tilts. do.
  • the traveling direction of the lean vehicle 1 changes to the same direction as the direction of the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG. 2(b), when the trail length TL of the lean vehicle 1 is 0 or a negative value, and the rider causes the lean vehicle 1 to turn right or left from a straight traveling state.
  • the target steering angle ⁇ g changes in the same direction as the direction of the rider steering torque T from the steering angle ⁇ when the rider steering torque T is applied.
  • the control device 9 sets the target steering angle ⁇ g as shown in FIG. 2(b), and adjusts the driving torque and steering torque applied by the torque applying device 10.
  • the lean vehicle 1 can make a right turn or a left turn from a straight traveling state. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
  • FIG. 3(a) A case in which the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a turning state will be described with reference to FIG. 3.
  • attitude control is not executed by the control device 9
  • the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a right-turning state, the rider steers the steering unit 13 to the right of the vehicle, thereby steering the vehicle body frame. 5 to the left of the vehicle.
  • the front wheels 3 and the steering unit 13 are steered to the left of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the lean vehicle 1 starts traveling straight.
  • attitude control is not executed by the control device 9
  • the rider steers the steering unit 13 to the left of the vehicle
  • the body frame 5 is raised to the right of the vehicle.
  • the front wheels 3 and the steering unit 13 are steered to the right of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the lean vehicle 1 starts traveling straight.
  • the rider applies a rider steering torque T in the same direction as the turning direction among the left and right directions of the vehicle, so that the lean angle ⁇ is applied in a direction different from the rider steering torque T in the right and left directions of the vehicle. Due to the change, the lean vehicle 1 rises. As a result, the traveling direction of the lean vehicle 1 changes to a direction different from the direction of the rider steering torque T in the left-right direction of the vehicle, and the lean vehicle 1 travels straight. Therefore, as shown in FIG.
  • the control device 9 sets the target steering angle ⁇ g as shown in FIG.
  • the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
  • attitude control when attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a left-turning state, the rider steers the steering unit 13 to the right of the vehicle, The body frame 5 is raised to the right of the vehicle. After that, the lean vehicle 1 starts traveling straight.
  • the rider when the lean vehicle 1 is turning, the rider applies a rider steering torque T in the direction opposite to the turning direction among the left and right directions of the vehicle, thereby increasing the lean angle ⁇ in the same direction as the rider steering torque T among the left and right directions of the vehicle. Due to the change, the lean vehicle 1 rises.
  • the traveling direction of the lean vehicle 1 changes to the same direction as the direction of the rider steering torque T in the left-right direction of the vehicle, and the lean vehicle 1 travels straight. Therefore, as shown in FIG. 3(b), when the trail length TL of the lean vehicle 1 is 0 or a negative value, the rider causes the lean vehicle 1 to travel straight from a right or left turn.
  • the direction of change in the target steering angle ⁇ g from the steering angle ⁇ when the rider steering torque T is applied is the same as the direction of the rider steering torque T.
  • the control device 9 sets the target steering angle ⁇ g as shown in FIG.
  • the torque applying device 10 applies the drive.
  • the lean vehicle 1 can travel straight from a right-turning or left-turning state. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
  • FIG. 4 a case will be described in which the turning radius of the lean vehicle 1 that is turning right or left is reduced by the rider's steering of the steering unit 13.
  • attitude control is not executed by the control device 9
  • the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning to the right
  • the rider steers the steering unit 13 to the left of the vehicle.
  • the body frame 5 is tilted to the right of the vehicle.
  • the front wheels 3 and the steering unit 13 are steered to the right of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the turning radius of the lean vehicle 1 becomes smaller. Furthermore, when the balance control is not executed by the control device 9, when the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning left, the rider steers the steering unit 13 to the right of the vehicle. Then, the body frame 5 is tilted to the left of the vehicle. Thereafter, the front wheels 3 and the steering unit 13 are steered to the left of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the turning radius of the lean vehicle 1 becomes smaller.
  • the rider applies a rider steering torque T in a direction different from the turning direction among the left and right directions of the vehicle, thereby increasing the lean angle ⁇ in a direction different from the rider steering torque T among the left and right directions of the vehicle.
  • the lean vehicle 1 leans more.
  • the traveling direction of the lean vehicle 1 changes to a direction different from the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG.
  • the target steering angle ⁇ g is The direction of change from the steering angle ⁇ when the steering torque T is applied is opposite to the direction of the rider steering torque T.
  • the control device 9 sets the target steering angle ⁇ g as shown in FIG.
  • attitude control when the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning to the right, the rider steers the steering unit 13 to the right of the vehicle. , the body frame 5 is tilted to the right of the vehicle. After that, the turning radius of the lean vehicle 1 becomes smaller. Further, when the balance control is not executed by the control device 9, when the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning left, the rider steers the steering unit 13 to the left of the vehicle.
  • the body frame 5 is tilted to the left of the vehicle.
  • the turning radius of the lean vehicle 1 becomes smaller.
  • the rider applies a rider steering torque T in the same direction as the turning direction among the left and right directions of the vehicle, so that the lean angle ⁇ changes in the same direction as the rider steering torque T in the left and right directions of the vehicle. Therefore, the lean vehicle 1 leans more.
  • the traveling direction of the lean vehicle 1 changes in the same direction as the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG.
  • the target steering angle ⁇ g is , the direction of change from the steering angle ⁇ when the rider steering torque T is applied is the same as the direction of the rider steering torque T.
  • the control device 9 sets the target steering angle ⁇ g as shown in FIG. 4(b), and the torque applying device 10 applies the drive.
  • the traveling direction of the lean vehicle 1 can be changed so that the turning radius of the lean vehicle 1 becomes smaller. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
  • the lean vehicle 1 in which the trail length TL shown in the examples of FIGS. 2(a), 3(a), and 4(a) is a positive value basically rotates to the right.
  • the vehicle leans to the right and when turning left, the vehicle leans to the left.
  • the body frame 5 leans to the left of the vehicle when turning to the right, and leans to the right of the vehicle when turning to the left. That is, in most of the entire range of the vehicle speed V, the vehicle lateral direction of the lean angle ⁇ and the vehicle lateral direction of the steering angle ⁇ of the lean vehicle 1 during turning are the same.
  • the vehicle lateral direction of the lean angle ⁇ and the vehicle lateral direction of the steering angle ⁇ of the lean vehicle 1 that is turning are different.
  • 2(a), 3(a), and 4(a) show that the lean vehicle 1 is traveling at a vehicle speed V such that the vehicle lateral direction at the lean angle ⁇ is the same as the vehicle lateral direction at the steering angle ⁇ .
  • the attitude control of the control device 9 of the first embodiment is performed when the lean vehicle 1 is at an extremely low vehicle speed V such that the vehicle lateral direction of the lean angle ⁇ is different from the vehicle lateral direction of the steering angle ⁇ . may be executed when the vehicle is running.
  • the extremely low vehicle speed V at which the left-right direction of the vehicle at the lean angle ⁇ is different from the left-right direction of the vehicle at the steering angle ⁇ varies depending on the lean vehicle 1, but is, for example, greater than 0 km/h and less than about 3 to 5 km/h.
  • the control device 9 performs attitude control in which the target steering angle ⁇ g is set and at least one of the driving torque and the steering torque applied by the torque applying device 10 is controlled.
  • input of at least one of driving torque and rider steering torque from the rider may be accepted, or may not be accepted.
  • the control device 9 performs attitude control and receives input of at least one of the rider's driving torque and rider steering torque
  • the control device 9 applies torque according to the value of at least one of the rider's driving torque and rider steering torque.
  • a value for controlling at least one of the driving torque and the steering torque applied by the device 10 is adjusted.
  • the target steering angle ⁇ g is set immediately after detecting the rider steering torque, and the torque applying device 10 applies the target steering angle ⁇ g.
  • At least one of the driving torque and the steering torque may be controlled.
  • the torque applying device 10 when the rider reversely steers the lean vehicle 1, at least one of the driving torque and the steering torque is applied by the torque applying device 10 so that the steering angle ⁇ of the lean vehicle 1 becomes the target steering angle ⁇ g. It may also be possible to control the
  • a lean vehicle 1 according to a second embodiment of the present invention will be described with reference to FIG. 1.
  • the lean vehicle 1 of the second embodiment has all the features of the lean vehicle 1 of the first embodiment.
  • the lean vehicle 1 further includes a lean angle related information detection device 6, a steering angle related information detection device 7, and a wheel speed related information detection device 8.
  • the lean angle related information detection device 6 detects information related to the lean angle ⁇ , which is the inclination angle of the vehicle body frame 5 in the vehicle lateral direction with respect to the vehicle vertical direction.
  • the steering angle related information detection device 7 detects information related to the steering angle ⁇ , which is the rotation angle of any one front wheel 3 about the steering axis X2.
  • the wheel speed related information detection device 8 detects information related to the wheel speed S, which is the rotational speed of any one wheel 2 around the axle axis X1.
  • the control device 9 performs attitude control so that the steering angle ⁇ becomes the target steering angle ⁇ g, and the change in attitude of the lean vehicle 1 in the roll direction is suppressed.
  • the control device 9 determines a state in which the combination of the values of the lean angle ⁇ , the steering angle ⁇ , and the vehicle speed V is such that the steering angle ⁇ becomes the target steering angle ⁇ g and a change in the attitude of the lean vehicle 1 in the roll direction is suppressed.
  • Attitude control is executed so that the state is a combination of the indicated values.
  • At least the target steering angle ⁇ g set based on the rider steering torque T is adjusted in a combination of lean angle, steering angle, and vehicle speed that suppresses changes in the attitude of the lean vehicle 1 in the roll direction.
  • the drive torque and steering of the torque applying device 10 are adjusted so that the combination of the values of the lean angle and the vehicle speed corresponds to the values.
  • Control at least one of the torques.
  • the control device 9 stores in advance information regarding the combination of the values of the lean angle ⁇ , the steering angle ⁇ , and the vehicle speed V for controlling the lean vehicle 1 so that the change in attitude in the roll direction is suppressed.
  • the control device 9 may execute the attitude control based on the stored information regarding the combination of the values of the lean angle ⁇ , the steering angle ⁇ , and the vehicle speed V. With this configuration, even when the control device 9 executes posture control of the lean vehicle 1, the change in the posture of the lean vehicle 1 in the roll direction is suppressed. It is possible to increase the responsiveness to the rider's intention to change the direction of travel while controlling the posture in the roll direction.
  • a lean vehicle 1 according to a third embodiment of the present invention will be described below.
  • the lean vehicle 1 of the third embodiment has all the features of the lean vehicle 1 of the first or second embodiment.
  • the attitude control executed by the control device 9 of the lean vehicle 1 of the third embodiment includes at least first attitude control and second attitude control.
  • the control device 9 applies torque so that the steering angle ⁇ becomes a target steering angle ⁇ g set based at least on information regarding the rider steering torque T detected by the rider steering torque detection device 14. At least one of the driving torque and steering torque of the device 10 is controlled.
  • the control device 9 controls the lean angle ⁇ so that it becomes the target lean angle ⁇ g set based on at least information related to the rider steering torque T detected by the rider steering torque detection device 14. At least one of the driving torque and steering torque of the torque applying device 10 is controlled.
  • the control device 9 can switch between the first attitude control and the second attitude control depending on the running state of the lean vehicle 1. For example, in a low-speed running state where the steering angle ⁇ is more likely to change than the lean angle ⁇ of the lean vehicle 1, the control device 9 adjusts the steering angle ⁇ so that it becomes the target steering angle ⁇ g set based on the rider steering torque T. By executing the 1 attitude control, the steering angle ⁇ of the lean vehicle 1 is adjusted to a relatively large value, and the attitude of the lean vehicle 1 in the roll direction is controlled.
  • the control device 9 performs the second posture control so that the target lean angle ⁇ g is set based on the rider steering torque T.
  • the lean angle ⁇ of the lean vehicle 1 is adjusted to a relatively large value, and the attitude of the lean vehicle 1 in the roll direction is controlled.
  • the control device 9 executes the first attitude control when the target steering angle ⁇ g is larger than the target lean angle ⁇ g, and executes the second attitude control when the target steering angle ⁇ g is the same as or smaller than the target lean angle ⁇ g.
  • the vehicle speed at which the first attitude control and the second attitude control are switched is, for example, about 10 km/h.
  • the posture of the lean vehicle 1 in the roll direction can be controlled in accordance with the running state of the lean vehicle 1, and the responsiveness to the rider's intention to change the traveling direction can be increased.
  • a lean vehicle 1 according to a fourth embodiment of the present invention will be described below.
  • the lean vehicle 1 of the fourth embodiment has all the features of any of the lean vehicles 1 of the first to third embodiments.
  • the control device 9 of the lean vehicle 1 of the fourth embodiment is configured to control at least the steering torque of the driving torque and the steering torque applied by the torque applying device 10. That is, the control device 9 may be configured to control both the steering torque and the drive torque. Alternatively, the control device 9 may be configured to control only the steering torque. Specifically, when the lean vehicle 1 has only the steering torque applying device 12, the control device 9 is configured to control only the steering torque. When the lean vehicle 1 has the driving torque applying device 11 and the steering torque applying device 12, the control device 9 is configured to control only the steering torque or the driving torque and the steering torque depending on various conditions. be done.
  • the control device 9 executes attitude control to control at least the steering torque of the driving torque and the steering torque so that the steering angle ⁇ becomes a target steering angle ⁇ g set based on the rider steering torque T. configured.
  • attitude control of the control device 9 it is easier to make the steering angle ⁇ equal to the target steering angle ⁇ g than when only the drive torque is controlled. Therefore, while controlling the attitude of the lean vehicle 1 in the roll direction, it is possible to increase the responsiveness to the rider's intention to change the traveling direction.
  • a lean vehicle 1 according to a fifth embodiment of the present invention will be described below.
  • the lean vehicle 1 of the fifth embodiment has all the features of the lean vehicle 1 of any of the first to fourth embodiments.
  • the control device 9 is configured to perform attitude control when the lean vehicle 1 is running at least at a low speed.
  • the low-speed running state of the lean vehicle 1 is a state in which the lean vehicle 1 is running at a vehicle speed greater than 0 km/h and less than or equal to 10 km/h.
  • the attitude of the lean vehicle 1 changes more easily than when the vehicle speed is higher than 10 km/h.
  • responsiveness to the rider's intention to change the traveling direction can be increased.
  • a lean vehicle 1 according to a sixth embodiment of the present invention will be described below with reference to FIGS. 1 and 5.
  • the lean vehicle 1 of the sixth embodiment has all the features of the lean vehicle 1 of any of the first to fifth embodiments.
  • the steering unit 13 of the lean vehicle 1 of the sixth embodiment includes a connecting portion 28 and a handle unit 29.
  • the handle unit 29 is steered by the rider.
  • the handle unit 29 has a bar handle in which a part to be gripped by the rider's right hand and a part to be gripped by the left hand are integrated.
  • the handle may have separate handles in which the part to be gripped by the left hand and the part to be gripped by the left hand are separate members.
  • the connecting portion 28 connects the handle unit 29 and at least one front wheel 3.
  • the connecting portion 28 has a steering shaft 31 connected to the handle unit 29.
  • the steering shaft 31 is supported by the vehicle body frame 5 so as to be rotatable around the steering wheel axis X3 within a rotation angle range of less than 360 degrees.
  • the connecting portion 28 is supported by the vehicle body frame 5 so that the handle unit 29 can rotate around the handle axis X3.
  • the lean vehicle 1 includes one front wheel 3, and the connection portion 28 is such that one front wheel 3 is integrally connected to the vehicle body frame 5. It is configured to be rotatable around the steering axis X2.
  • the handle axis X3 coincides with the steering axis X2.
  • the lean vehicle 1 of the sixth embodiment includes a plurality of front wheels 3, and the connection portion 28 is configured such that each front wheel 3 is integrally connected to a portion of the connection portion 28 and other portions of the connection portion 28.
  • Each front wheel 3 may be configured to be rotatable around the steering axis X2.
  • the handle axis X3 does not coincide with the steering axis X2 of any of the front wheels 3.
  • the steering torque applying device 12 applies a steering torque around the steering axis X2 to the front wheels 3, for example, by applying torque around the steering axis X3 to the steering shaft 32. configured to do so.
  • the connecting portion 28 is configured such that when the handle unit 29 rotates around the steering axis X3, at least one front wheel 3 rotates around the steering axis X2, and when at least one front wheel 3 rotates around the steering axis X2,
  • the handle unit 29 is connected to at least one front wheel 3 so that the handle unit 29 rotates about the handle axis X3.
  • the rotation angle of one of the at least one front wheels 3 about the steering axis X2 is greater than or equal to the rotation angle of the handle unit 29 about the steering axis X3.
  • the rotation of the steering wheel unit 29 around the steering wheel axis X3 is the same or almost the same.
  • the rotation angle of the steering wheel unit 29 around the steering wheel axis X3 is The rotation angle may be between the rotation angles of the two front wheels 3 about the steering axis X2. That is, the connecting portion 28 does not include a speed reduction mechanism that makes the rotation angle of the front wheel 3 about the steering axis X2 smaller than the rotation angle of the handle unit 29 about the steering axis X3.
  • the rotation angle of at least one front wheel 3 about the steering axis X2 is smaller and larger than the rotation angle of the handle unit 29 about the steering axis X3, and the rotation angle range of the handle unit 29 may be less than 360° or more.
  • the rotation angle of any one of the at least one front wheel 3 about the steering axis X2 is greater than or equal to the rotation angle of the handle unit 29 about the steering axis X3, and , the rotation angle range of the handle unit 29 may be 360° or more.
  • the rotation angle of at least one front wheel 3 about the steering axis X2 is smaller than the rotation angle of the handle unit 29 about the steering axis X3, and the rotation angle of the handle unit 29 is The range may be greater than or equal to 360° and less than 360°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Abstract

A control device (9) for a leaning vehicle (1) is configured to control at least one among driving torque and steering torque which are applied by a torque application device (10). The control device (9) controls at least one among the driving torque and the steering torque of the torque application device (10) so that a steering angle which is a rotation angle around a steering axis (X2) of at least one front wheel (3) reaches a target steering angle (δg) which is set on the basis of at least information pertaining to rider steering torque detected by a rider steering torque detection device (14), thereby executing orientation control for controlling the orientation in a roll direction of the leaning vehicle (1).

Description

リーン車両lean vehicle
 この発明は、右旋回時に右方向に傾斜し、左旋回時に左方向に傾斜するリーン車両(leaning vehicle)に関する。 The present invention relates to a lean vehicle that leans to the right when turning right and leans to the left when turning left.
 リーン車両は、ライダーが操舵輪を操舵することで、車体が傾斜する。リーン車両は、例えば自動二輪車である。従来、制御装置により姿勢を制御するリーン車両がある。特許文献1では、ライダーによる操作量である操舵角に基づいて目標ロール角を設定し、駆動力を制御することで、車体フレームのロール角を制御する。これにより、特許文献1のリーン車両は、ライダーの指示する方向にスムーズに進ませることができる。 In a lean vehicle, the vehicle body tilts when the rider steers the steering wheel. A lean vehicle is, for example, a motorcycle. Conventionally, there is a lean vehicle whose attitude is controlled by a control device. In Patent Document 1, the roll angle of the vehicle body frame is controlled by setting a target roll angle based on the steering angle, which is the amount of operation by the rider, and controlling the driving force. Thereby, the lean vehicle of Patent Document 1 can be smoothly moved in the direction instructed by the rider.
特許第5418512号公報Patent No. 5418512
 特許文献1のようなロール方向の姿勢を制御するリーン車両において、ライダーの進行方向変更の意思に対する応答性を高くすることが望まれている。 In a lean vehicle that controls the posture in the roll direction as in Patent Document 1, it is desired to increase responsiveness to the rider's intention to change the traveling direction.
 本発明の目的は、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができるリーン車両を提供することを目的とする。 An object of the present invention is to provide a lean vehicle that can increase responsiveness to a rider's intention to change the traveling direction while controlling the posture of the lean vehicle in the roll direction.
 本発明の一実施形態のリーン車両は、以下の構成を有する。
 少なくとも1つの前輪および前記少なくとも1つの前輪よりも車両前後方向における後方向に配置される少なくとも1つの後輪を含む複数の車輪と、前記複数の車輪を車軸線回りに回転可能に支持し、前記少なくとも1つの前輪を操舵軸線回りに回転可能に支持し、右旋回時に車両上下方向に対して車両右方向に傾斜し、左旋回時に前記車両上下方向に対して車両左方向に傾斜する車体フレームと、ライダーが操舵可能であり、前記ライダーの操舵によるトルクであるライダー操舵トルクが入力されて前記少なくとも1つの前輪を前記操舵軸線回りに回転させるステアリングユニットと、前記リーン車両のロール方向の姿勢を制御する制御装置と、を備えるリーン車両であって、前記ステアリングユニットに入力された前記ライダー操舵トルクに関連する情報を検出するライダー操舵トルク検出装置と、前記少なくとも1つの前輪および前記少なくとも1つの後輪の少なくとも一方に、前記車軸線回りの正および負の駆動トルクを付与するように構成された駆動トルク付与装置、および、前記少なくとも1つの前輪に、前記ライダー操舵トルクと操舵アクチュエータによって生成されたアクチュエータ操舵トルクとの合成トルクである前記操舵軸線回りの操舵トルクを付与するように構成された操舵トルク付与装置の少なくともいずれかを含むトルク付与装置と、を備え、前記制御装置は、前記トルク付与装置が付与する前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御するように構成され、前記少なくとも1つの前輪の前記操舵軸線回りの回転角度である操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御することで、前記リーン車両のロール方向の姿勢を制御する姿勢制御を実行する。
A lean vehicle according to an embodiment of the present invention has the following configuration.
a plurality of wheels including at least one front wheel and at least one rear wheel arranged rearward in the longitudinal direction of the vehicle than the at least one front wheel; A vehicle body frame that rotatably supports at least one front wheel around a steering axis, and tilts to the right of the vehicle with respect to the vertical direction of the vehicle when turning to the right, and tilts to the left of the vehicle with respect to the vertical direction of the vehicle when turning to the left. a steering unit which can be steered by a rider and receives a rider steering torque, which is a torque produced by the rider's steering, to rotate the at least one front wheel about the steering axis; and a steering unit that rotates the at least one front wheel about the steering axis; A lean vehicle comprising: a control device for controlling the vehicle; a rider steering torque detection device for detecting information related to the rider steering torque input to the steering unit; and the at least one front wheel and the at least one rear wheel. a drive torque applying device configured to apply positive and negative drive torques about the axle axis to at least one of the wheels; and a drive torque applying device configured to apply the rider steering torque and the steering actuator to the at least one front wheel. a torque applying device including at least one of a steering torque applying device configured to apply a steering torque around the steering axis that is a composite torque with an actuator steering torque, the control device The device is configured to control at least one of the drive torque and the steering torque applied by the device, and a steering angle that is a rotation angle of the at least one front wheel about the steering axis is detected by the rider steering torque detection device. controlling at least one of the driving torque and the steering torque of the torque applying device so as to achieve a target steering angle set based at least on information related to the rider steering torque, thereby controlling the lean vehicle; Execute attitude control to control the attitude in the roll direction.
 この構成によると、制御装置により姿勢制御が実行されて、リーン車両のロール方向の姿勢が制御される。姿勢制御において、制御装置は、操舵角がライダー操舵トルクに関連する情報に少なくとも基づいて設定された目標操舵角になるように、駆動トルクおよび操舵トルクの少なくともいずれかを制御する。目標操舵角は、ライダー操舵トルクに基づいて設定される。ライダーがステアリングユニットを操舵している最中のトルクであるライダー操舵トルクに基づいて目標操舵角を設定するため、ライダーがステアリングユニットを操舵した後の結果である操舵角に基づいて目標ロール角を設定する場合と比較して、より早く目標操舵角を設定することができる。そのため、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 According to this configuration, attitude control is executed by the control device, and the attitude of the lean vehicle in the roll direction is controlled. In the attitude control, the control device controls at least one of the drive torque and the steering torque so that the steering angle becomes a target steering angle set based at least on information related to rider steering torque. The target steering angle is set based on the rider steering torque. Since the target steering angle is set based on the rider steering torque, which is the torque while the rider is steering the steering unit, the target roll angle is set based on the steering angle, which is the result after the rider steers the steering unit. Compared to the case where the target steering angle is set, the target steering angle can be set more quickly. Therefore, while controlling the attitude of the lean vehicle in the roll direction, it is possible to increase the responsiveness to the rider's intention to change the traveling direction.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記少なくとも1つの前輪の前記操舵軸線と、前記少なくとも1つの前輪の走行面との交点が、前記少なくとも1つの前輪の接地点より車両前方向に位置する場合、前記制御装置は、前記ライダー操舵トルクが付与された時の操舵角である実操舵角から前記目標操舵角まで変化する前記操舵軸線回りの回転方向が、前記ライダー操舵トルクの前記操舵軸線回りの回転方向と逆の方向になるように前記目標操舵角を設定し、前記少なくとも1つの前輪の前記操舵軸線と、前記少なくとも1つの前輪の走行面との交点が、前記少なくとも1つの前輪の接地点と同じまたは前記少なくとも1つの前輪の接地点より車両後方向に位置する場合、前記制御装置は、前記実操舵角から前記目標操舵角まで変化する前記操舵軸線回りの回転方向が、前記ライダー操舵トルクの前記操舵軸線回りの回転方向と同じ方向になるように前記目標操舵角を設定する。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
When the intersection of the steering axis of the at least one front wheel and the running surface of the at least one front wheel is located in the vehicle forward direction from the grounding point of the at least one front wheel, the control device controls the rider steering torque. The direction of rotation around the steering axis that changes from the actual steering angle, which is the steering angle when the steering angle is applied, to the target steering angle is opposite to the direction of rotation around the steering axis of the rider steering torque. The target steering angle is set, and the intersection point of the steering axis of the at least one front wheel and the running surface of the at least one front wheel is the same as a grounding point of the at least one front wheel or a grounding point of the at least one front wheel. When the control device is located toward the rear of the vehicle from the point, the control device is configured such that the direction of rotation around the steering axis in which the actual steering angle changes from the target steering angle is the same as the direction of rotation of the rider steering torque around the steering axis. The target steering angle is set so as to correspond to the direction.
 少なくとも1つの前輪の操舵軸線と、少なくとも1つの前輪の走行面との交点が、少なくとも1つの前輪の接地点より車両前方向に位置するリーン車両、つまりトレール長が正の値のリーン車両は、ライダーがライダー操舵トルクを与えた方向とは逆の方向に少なくとも1つの前輪が操舵されるように動く。また、少なくとも1つの前輪の操舵軸線と、少なくとも1つの前輪の走行面との交点が、少なくとも1つの前輪の接地点と同じまたは少なくとも1つの前輪の接地点より車両後方向に位置するリーン車両、つまりトレール長が0または負の値のリーン車両は、ライダーがライダー操舵トルクを与えた方向と同じ方向に少なくとも1つの前輪が操舵されるように動く。この構成によると、リーン車両が、トレール長が正の値のリーン車両であっても、トレール長が0または負の値のリーン車両であっても、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 A lean vehicle in which the intersection of the steering axis of at least one front wheel and the running surface of at least one front wheel is located in the front direction of the vehicle from the grounding point of at least one front wheel, that is, a lean vehicle with a positive trail length, At least one front wheel moves to be steered in a direction opposite to the direction in which the rider applies rider steering torque. Further, a lean vehicle in which the intersection of the steering axis of at least one front wheel and the running surface of at least one front wheel is the same as the grounding point of at least one front wheel or is located in the vehicle rearward direction from the grounding point of at least one front wheel, In other words, a lean vehicle with a trail length of 0 or a negative value moves such that at least one front wheel is steered in the same direction as the direction in which the rider applies rider steering torque. According to this configuration, whether the lean vehicle is a lean vehicle with a positive trail length or a lean vehicle with a trail length of 0 or a negative value, the posture of the lean vehicle in the roll direction is controlled while , it is possible to increase responsiveness to the rider's intention to change the direction of travel.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記少なくとも1つの前輪の前記操舵軸線回りの回転角度である操舵角に関連する情報を検出する操舵角関連情報検出装置と、前記少なくとも1つの車輪の前記車軸線回りの回転速度である車輪速度に関連する情報を検出する車輪速度関連情報検出装置と、を備え、前記制御装置は、前記少なくとも1つの前輪の前記操舵角が、前記ライダー操舵トルクに関連する情報に加えて、前記ライダー操舵トルクが付与された時の車速である実車速に関連する情報、および、前記ライダー操舵トルクが付与された時の操舵角である実操舵角に関連する情報の少なくともいずれかに基づいて設定された目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御する。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
a steering angle related information detection device that detects information related to a steering angle that is a rotation angle of the at least one front wheel about the steering axis; and a wheel speed that is the rotation speed of the at least one wheel about the axle axis. a wheel speed related information detection device that detects related information, and the control device is configured such that the steering angle of the at least one front wheel is in addition to information related to the rider steering torque. Target steering set based on at least one of information related to the actual vehicle speed, which is the vehicle speed when the rider steering torque was applied, and information related to the actual steering angle, which is the steering angle when the rider steering torque was applied. At least one of the driving torque and the steering torque of the torque applying device is controlled so that the torque applying device has an angle.
 この構成によると、目標操舵角が、ライダー操舵トルクに加えて、実車速および実操舵角の少なくともいずれかに基づいて設定される。操舵角の変化量が同じ場合でも、速度が大きいほどリーン車両のロール方向の姿勢が大きく変化してしまう。そのため、ライダーが同じライダー操舵トルクを与えたとしても、実車速が大きい場合は目標操舵角を小さくすることができる。また、ステアリングユニットを大きく操舵しており実操舵角が大きい場合に、ステアリングユニットを大きく操舵しておらず実操舵角が小さい場合と同じ目標操舵角を与えてしまうと、ステアリングユニットの機械的な制限に達することもある。そのため、ライダーが同じライダー操舵トルクを与えたとしても、実操舵角が大きい場合に、ステアリングユニットを大きく操舵しにくくなるように目標操舵角を小さくすることができる。これにより、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性をより高くすることができる。 According to this configuration, the target steering angle is set based on at least one of the actual vehicle speed and the actual steering angle in addition to the rider steering torque. Even when the amount of change in the steering angle is the same, the attitude of the lean vehicle in the roll direction changes more as the speed increases. Therefore, even if the rider applies the same rider steering torque, the target steering angle can be made smaller if the actual vehicle speed is high. In addition, if the steering unit is being steered a lot and the actual steering angle is large, if the same target steering angle is given as when the steering unit is not being steered a lot and the actual steering angle is small, the mechanical Limits may be reached. Therefore, even if the rider applies the same rider steering torque, when the actual steering angle is large, the target steering angle can be made small so that it becomes difficult to largely steer the steering unit. As a result, it is possible to control the attitude of the lean vehicle in the roll direction while increasing the responsiveness to the rider's intention to change the traveling direction.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記少なくとも1つの前輪の前記操舵軸線回りの回転角度である操舵角に関連する情報を検出する操舵角関連情報検出装置と、前記車体フレームの前記車両上下方向に対する車両左右方向の傾斜角であるリーン角に関連する情報を検出するリーン角関連情報検出装置と、前記少なくとも1つの車輪の前記車軸線回りの回転速度である車輪速度に関連する情報を検出する車輪速度関連情報検出装置と、を備え、前記制御装置は、前記姿勢制御において、前記少なくとも1つの前輪の前記操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された前記目標操舵角になるようにしつつ、前記リーン車両のロール方向の姿勢の変化が抑制されるように、前記操舵角関連情報検出装置によって検出された前記操舵角に関連する情報と、前記リーン角関連情報検出装置によって検出された前記リーン角に関連する情報と、前記車輪回転関連情報検出装置によって検出された前記回転速度に関連する情報とに基づいて、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御する。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
a steering angle related information detection device for detecting information related to a steering angle, which is a rotation angle of the at least one front wheel about the steering axis; and a lean angle, which is an inclination angle of the vehicle body frame in the left-right direction of the vehicle with respect to the vertical direction of the vehicle. A lean angle related information detection device that detects information related to the angle; and a wheel speed related information detection device that detects information related to a wheel speed that is a rotational speed of the at least one wheel about the axle axis. , in the attitude control, the control device controls the target steering, wherein the steering angle of the at least one front wheel is set based on at least information related to the rider steering torque detected by the rider steering torque detection device. information related to the steering angle detected by the steering angle related information detection device and the lean angle related information detection so that a change in the attitude of the lean vehicle in the roll direction is suppressed while the lean vehicle is at an angle. The drive torque and the steering torque of the torque applying device are determined based on information related to the lean angle detected by the device and information related to the rotation speed detected by the wheel rotation related information detection device. Control at least one of them.
 仮に、制御装置が本発明の姿勢制御を実行せず、ライダー操舵トルクを考慮せずに、リーン車両のロール方向の姿勢の変化が抑制されるようにリーン車両の姿勢を制御している場合、ライダーの進行方向変更の意思に沿わない目標操舵角になるように制御される可能性がある。この構成によると、リーン車両のロール方向の姿勢の変化が抑制されるように、制御装置がリーン車両の姿勢制御を実行している場合であっても、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 If the control device does not execute the attitude control of the present invention and controls the attitude of the lean vehicle so that changes in the attitude of the lean vehicle in the roll direction are suppressed without considering the rider steering torque, There is a possibility that the target steering angle is controlled so that it does not comply with the rider's intention to change the direction of travel. According to this configuration, even when the control device is executing posture control of the lean vehicle, the posture of the lean vehicle in the roll direction is controlled so that changes in the posture of the lean vehicle in the roll direction are suppressed. At the same time, responsiveness to the rider's intention to change the traveling direction can be increased.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記制御装置が実行する前記姿勢制御は、前記操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関する情報に少なくとも基づいて設定された目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御する第1姿勢制御と、前記車体フレームの前記車両上下方向に対する車両左右方向の傾斜角であるリーン角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された目標リーン角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御する第2姿勢制御と、を少なくとも含む。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
The attitude control executed by the control device applies the torque so that the steering angle becomes a target steering angle set based at least on information regarding the rider steering torque detected by the rider steering torque detection device. The first attitude control for controlling at least one of the drive torque and the steering torque of the device, and a lean angle that is an inclination angle of the vehicle body frame in the vehicle lateral direction with respect to the vehicle vertical direction, are performed by the rider steering torque detection device. second attitude control for controlling at least one of the driving torque and the steering torque of the torque applying device so as to achieve a target lean angle set based at least on information related to the detected rider steering torque; , including at least
 この構成によると、制御装置が実行する姿勢制御は、少なくとも、第1姿勢制御と第2姿勢制御を含む。そして、制御装置は、リーン車両の走行状態に応じて、第1姿勢制御と第2姿勢制御を切り替えることができる。例えば、リーン車両のリーン角より操舵角が変化しやすい低速走行状態では、制御装置が、操舵角がライダー操舵トルクに基づいて設定された目標操舵角になるように第1姿勢制御を実行することで、リーン車両の操舵角が比較的大きく調整されて、リーン車両のロール方向の姿勢が制御される。一方、リーン車両の操舵角よりリーン角が変化しやすい高速走行状態では、制御装置が、ライダー操舵トルクに基づいて設定された目標リーン角になるように第2姿勢制御を実行することで、リーン車両のリーン角が比較的大きく調整されて、リーン車両のロール方向の姿勢が制御される。これにより、リーン車両の走行状態に応じて、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 According to this configuration, the attitude control executed by the control device includes at least the first attitude control and the second attitude control. The control device can switch between the first attitude control and the second attitude control depending on the running state of the lean vehicle. For example, in a low-speed running state where the steering angle is more likely to change than the lean angle of a lean vehicle, the control device may execute the first attitude control so that the steering angle becomes the target steering angle set based on the rider steering torque. Then, the steering angle of the lean vehicle is adjusted to a relatively large value, and the attitude of the lean vehicle in the roll direction is controlled. On the other hand, in high-speed driving conditions where the lean angle is more likely to change than the steering angle of a lean vehicle, the control device executes second attitude control to maintain the lean angle at a target lean angle set based on the rider steering torque. The lean angle of the vehicle is adjusted to a relatively large value to control the attitude of the lean vehicle in the roll direction. Thereby, it is possible to control the attitude of the lean vehicle in the roll direction according to the running state of the lean vehicle, while increasing the responsiveness to the rider's intention to change the traveling direction.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記トルク付与装置は、前記駆動トルク付与装置、および、前記操舵トルク付与装置のうちの少なくとも前記操舵トルク付与装置を含み、前記制御装置は、前記トルク付与装置が付与する前記駆動トルクおよび前記操舵トルクのうちの少なくとも前記操舵トルクを制御するように構成され、前記姿勢制御において、前記少なくとも1つの前輪の前記操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された前記目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクのうちの少なくとも前記操舵トルクを制御する。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
The torque applying device includes at least the driving torque applying device and the steering torque applying device of the steering torque applying device, and the control device controls the driving torque and the steering torque applied by the torque applying device. wherein the steering angle of the at least one front wheel is configured to control at least the steering torque, and in the attitude control, the steering angle of the at least one front wheel is based on information related to the rider steering torque detected by the rider steering torque detection device. At least the steering torque of the driving torque and the steering torque of the torque applying device is controlled so that the target steering angle is set based on at least the target steering angle.
 この構成によると、制御装置の姿勢制御において、駆動トルクのみを制御する場合に比べて、操舵角が目標操舵角になるようにしやすい。そのため、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 According to this configuration, in attitude control of the control device, it is easier to make the steering angle equal to the target steering angle than when only the drive torque is controlled. Therefore, while controlling the attitude of the lean vehicle in the roll direction, it is possible to increase the responsiveness to the rider's intention to change the traveling direction.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記制御装置は、少なくとも前記車速が0km/hより大きく10km/h以下で走行しているときに、前記姿勢制御を実行するように構成される。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
The control device is configured to perform the attitude control at least when the vehicle speed is greater than 0 km/h and less than 10 km/h.
 この構成によると、少なくとも車速が0km/hより大きく10km/h以下で走行しているときに姿勢制御が実行される。車速が10km/h以下のリーン車両の低速走行状態では、車速が10km/hより大きい走行状態と比較して、リーン車両のリーン角より操舵角が変化しやすい。つまり、リーン車両のリーン角より操舵角が変化しやすい低速走行状態でリーン車両が走行している場合に、制御装置が、操舵角がライダー操舵トルクに基づいて設定された目標操舵角になるように姿勢制御を実行することで、リーン車両の操舵角が比較的大きく調整されて、リーン車両のロール方向の姿勢が制御される。これにより、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 According to this configuration, attitude control is executed at least when the vehicle is traveling at a speed greater than 0 km/h and less than 10 km/h. In a low-speed running state of a lean vehicle where the vehicle speed is 10 km/h or less, the steering angle is more likely to change than the lean angle of a lean vehicle compared to a running state where the vehicle speed is greater than 10 km/h. In other words, when a lean vehicle is running at a low speed where the steering angle is more likely to change than the lean angle of the lean vehicle, the control device adjusts the steering angle to the target steering angle set based on the rider steering torque. By performing attitude control, the steering angle of the lean vehicle is adjusted to a relatively large value, and the attitude of the lean vehicle in the roll direction is controlled. This makes it possible to control the attitude of the lean vehicle in the roll direction while increasing responsiveness to the rider's intention to change the direction of travel.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記ステアリングユニットは、ライダーに操舵されるハンドルユニットと、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を含み、前記接続部は、前記ハンドルユニットがハンドル軸線回りに回転可能となるように前記車体フレームに支持され、前記ハンドルユニットが前記ハンドル軸線回りに回転したときに前記少なくとも1つの前輪が前記操舵軸線回りに回転し、且つ、前記少なくとも1つの前輪が前記操舵軸線回りに回転したときに前記ハンドルユニットが前記ハンドル軸線回りに回転し、且つ、前記少なくとも1つの前輪のうちいずれかの前輪の前記操舵軸線回りの回転角度が、前記ハンドルユニットの前記ハンドル軸線回りの回転角度以上であるように、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を備える。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
The steering unit includes a handle unit that is steered by a rider, and a connection part that connects the handle unit and the at least one front wheel, and the connection part allows the handle unit to rotate around a handle axis. The at least one front wheel rotates around the steering axis when the handle unit rotates around the steering axis, and the at least one front wheel rotates around the steering axis when the handle unit rotates around the steering axis. When rotated, the handle unit rotates about the handle axis, and the rotation angle of any one of the at least one front wheel about the steering axis is the rotation angle of the handle unit about the handle axis. As described above, the vehicle includes a connecting portion that connects the handle unit and the at least one front wheel.
 少なくとも1つの前輪のうちいずれかの前輪の操舵軸線回りの回転角度が、ハンドルユニットのハンドル軸線回りの回転角度以上のリーン車両においては、当該前輪の操舵軸線回りの回転角度がハンドルユニットのハンドル軸線回りの回転角度未満の車両と比較して、ライダーの操舵によって操舵角が大きく変化する。したがって、少なくとも1つの前輪のうちいずれかの前輪の操舵軸線回りの回転角度が、ハンドルユニットのハンドル軸線回りの回転角度以上のリーン車両においては、当該前輪の操舵軸線回りの回転角度がハンドルユニットのハンドル軸線回りの回転角度未満の車両と比較して、ライダーが入力するライダー操舵トルクに対する操舵角の変化が小さくなりやすい。そのため、リーン車両のロール方向の姿勢が変化しやすい。
 この構成によると、上記のようなライダーが入力するライダー操舵トルクに対する操舵角の変化が小さくなりやすいリーン車両において、制御装置がライダー操舵トルクに応じた目標操舵角を設定する。これにより、ロール方向の姿勢が変化しやすいリーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。
In a lean vehicle, the rotation angle of at least one front wheel around the steering axis is greater than or equal to the rotation angle around the steering axis of the steering wheel unit, and the rotation angle of the front wheel around the steering axis is greater than the rotation angle around the steering axis of the steering wheel unit. Compared to a vehicle where the rotation angle is less than the rotation angle, the steering angle changes greatly depending on the rider's steering. Therefore, in a lean vehicle, the rotation angle of at least one of the front wheels around the steering axis is greater than or equal to the rotation angle of the steering wheel unit around the steering axis. Compared to a vehicle where the rotation angle is less than the rotation angle around the steering wheel axis, the change in the steering angle with respect to the rider steering torque input by the rider tends to be small. Therefore, the attitude of the lean vehicle in the roll direction is likely to change.
According to this configuration, in a lean vehicle where the change in steering angle with respect to the rider steering torque input by the rider as described above tends to be small, the control device sets the target steering angle according to the rider steering torque. This makes it possible to control the roll direction posture of the lean vehicle, which tends to change its roll direction posture, while increasing responsiveness to the rider's intention to change the traveling direction.
 本発明の一実施形態のリーン車両は、以下の構成を有してもよい。
 前記ステアリングユニットは、ライダーに操舵されるハンドルユニットと、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を含み、前記接続部は、前記ハンドルユニットがハンドル軸線回りに360°未満の回転角度範囲で回転可能となるよう前記車体フレームに支持され、前記ハンドルユニットが前記ハンドル軸線回りに回転したときに前記少なくとも1つの前輪が前記操舵軸線回りに回転し、且つ、前記少なくとも1つの前輪が前記操舵軸線回りに回転したとき前記ハンドルユニットが前記ハンドル軸線回りに回転するように、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を備える。
A lean vehicle according to an embodiment of the present invention may have the following configuration.
The steering unit includes a handle unit that is steered by a rider, and a connection part that connects the handle unit and the at least one front wheel, and the connection part is configured such that the handle unit is rotated by less than 360° around the handlebar axis. the at least one front wheel rotates about the steering axis when the handle unit rotates about the steering wheel axis; A connecting portion is provided for connecting the handle unit and the at least one front wheel so that the handle unit rotates about the steering axis when the front wheel rotates about the steering axis.
 少なくとも1つの前輪の操舵軸線回りに回転可能な角度の範囲が同じである場合、360°未満の回転角度範囲で回転可能なハンドルユニットを備えたリーン車両では、360°以上の回転角度範囲で回転可能なハンドルユニットを備えた車両と比較して、ハンドルユニットのハンドル軸線回りに同じ回転角度を回転させたときの少なくとも1つの前輪の操舵軸回りの回転角度が大きい。そのため、360°未満の回転角度範囲で回転可能なハンドルユニットを備えたリーン車両では、360°以上の回転角度範囲で回転可能なハンドルユニットを備えた車両と比較して、ライダーがハンドルユニットに対して力を加えやすく、ライダー操舵トルクを与えやすい。
 この構成によると、上記のようにライダーがハンドルユニットに対して力を加えやすく、ライダー操舵トルクを与えやすいリーン車両において、制御装置がライダー操舵トルクに応じた目標操舵角を設定する。これにより、ロール方向の姿勢が変化しやすいリーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。
If at least one front wheel has the same rotatable angular range around the steering axis, lean vehicles with a steering wheel unit that is rotatable in a rotary angular range of less than 360° may be rotated in a rotary angular range of 360° or more. The angle of rotation of the at least one front wheel about the steering axis when the steering wheel unit is rotated through the same angle of rotation about the axis of the steering wheel is greater than that of a vehicle with a steering wheel unit that is possible. Therefore, in a lean vehicle equipped with a handle unit that can be rotated within a rotation angle range of less than 360°, the rider is less likely to touch the handle unit compared to a vehicle equipped with a handle unit that can be rotated over a rotation angle range of 360° or more. It is easy to apply force and give rider steering torque.
According to this configuration, in a lean vehicle where the rider easily applies force to the handle unit and easily applies rider steering torque as described above, the control device sets the target steering angle according to the rider steering torque. This makes it possible to control the roll direction posture of the lean vehicle, which tends to change its roll direction posture, while increasing responsiveness to the rider's intention to change the traveling direction.
 本発明および実施の形態における車両上下方向とは、走行面に垂直な方向である。より詳細には、車輪の接地位置に垂直な方向である。走行面は、リーン車両が走行する路面である。本発明および実施の形態における車両前後方向とは、車体フレームに固定される方向であって、リーン車両が直進している時のリーン車両の進行方向である。本発明および実施の形態における車両左右方向とは、車両前後方向と車両上下方向に直交する方向である。リーン車両にライダーが乗車する場合、車両左右方向は、ライダーにとっての左右方向である。 The vehicle vertical direction in the present invention and embodiments is a direction perpendicular to the running surface. More specifically, it is a direction perpendicular to the ground contact position of the wheel. The running surface is a road surface on which a lean vehicle runs. The vehicle longitudinal direction in the present invention and the embodiments is a direction fixed to the vehicle body frame, and is a traveling direction of the lean vehicle when the lean vehicle is traveling straight. The lateral direction of the vehicle in the present invention and the embodiments is a direction perpendicular to the longitudinal direction of the vehicle and the vertical direction of the vehicle. When a rider rides on a lean vehicle, the left-right direction of the vehicle is the left-right direction for the rider.
 本発明および実施の形態において、少なくとも1つの前輪および少なくとも1つの後輪を含む複数の車輪は、1つの前輪と1つの後輪を含んでもよく、1つの前輪と複数の後輪を含んでもよく、複数の前輪と1つの後輪を含んでもよい。本発明および実施の形態において、リーン車両は、二輪車(two-wheeled vehicle)でもよく、三輪車(three-wheeled vehicle)でもよい。リーン車両は、自動二輪車(motorcycle)または自動三輪車(motor tricycle)でもよい。自動二輪車には、スクータとモペットも含まれる。リーン車両は、二輪または三輪の自転車でもよい。本発明および実施の形態におけるリーン車両は、正の値のキャスター角を有してもよい。つまり、操舵軸線は後傾していてもよい。キャスター角は、操舵軸線と車両上下方向とがなす角度であって、操舵軸線が後傾している場合を正とする。本発明および実施の形態におけるリーン車両は、正の値のトレール長を有してもよい。トレール長とは、前輪の接地点と、操舵軸線と走行面との交点との間の距離である。言い換えると、トレール長は、前輪の車軸線と、操舵軸線と走行面との交点との間の車両前後方向の距離である。トレール長が正の値である状態とは、前輪の接地点が、操舵軸線と走行面との交点よりも車両前方向に位置する状態である。本発明および実施の形態におけるリーン車両は、0または負の値のトレール長を有してもよい。本発明および実施の形態におけるリーン車両は、トレール長を変更不能に構成されていてもよい。本発明および実施の形態におけるリーン車両は、トレール長を変更可能に構成されていてもよい。トレール長が正の値の範囲内で変更されてもよい。トレール長が正の値から負の値まで変更可能であってもよい。 In the present invention and embodiments, the plurality of wheels including at least one front wheel and at least one rear wheel may include one front wheel and one rear wheel, or may include one front wheel and multiple rear wheels. , may include multiple front wheels and one rear wheel. In the present invention and embodiments, the lean vehicle may be a two-wheeled vehicle or a three-wheeled vehicle. The lean vehicle may be a motorcycle or a motor tricycle. Motorcycles also include scooters and mopeds. The lean vehicle may be a two-wheeled or three-wheeled bicycle. Lean vehicles according to the present invention and embodiments may have positive caster angles. That is, the steering axis may be tilted rearward. The caster angle is the angle formed between the steering axis and the vertical direction of the vehicle, and is positive when the steering axis is tilted rearward. A lean vehicle according to the present invention and embodiments may have a trail length of a positive value. The trail length is the distance between the grounding point of the front wheels and the intersection of the steering axis and the running surface. In other words, the trail length is the distance in the vehicle longitudinal direction between the axle axis of the front wheels and the intersection of the steering axis and the running surface. A state in which the trail length is a positive value is a state in which the grounding point of the front wheels is located further forward of the vehicle than the intersection of the steering axis and the running surface. A lean vehicle according to the present invention and embodiments may have a trail length of zero or a negative value. The lean vehicle according to the present invention and the embodiments may be configured such that the trail length cannot be changed. The lean vehicle according to the present invention and the embodiments may be configured to be able to change the trail length. The trail length may be varied within a range of positive values. The trail length may be changeable from a positive value to a negative value.
 本発明および実施の形態におけるリーン車両は、後輪を操舵不能に構成されていてもよい。本発明および実施の形態におけるリーン車両は、前輪の操舵角を変えずにリーン角を変更可能な機構を有さなくてよい。本発明および実施の形態におけるリーン車両は、前輪の操舵角を変えずに車体フレームの重心位置を変える機構を有さなくてよい。
 本発明および実施の形態におけるリーン車両は、ライダーが車速を維持または変更するために操作する少なくとも1つの操作子(例えばアクセル操作子、ブレーキ操作子、自転車のペダルなど)を有してもよく、有さなくてもよい。
 本発明および実施の形態におけるリーン車両は、姿勢制御を行わないモードと、姿勢制御を行うモードに切り換え可能に構成されていてもよい。
The lean vehicle according to the present invention and the embodiments may be configured such that the rear wheels cannot be steered. The lean vehicle according to the present invention and embodiments does not need to have a mechanism that can change the lean angle without changing the steering angle of the front wheels. The lean vehicle according to the present invention and embodiments does not need to have a mechanism that changes the center of gravity position of the body frame without changing the steering angle of the front wheels.
The lean vehicle according to the present invention and embodiments may have at least one operator (for example, an accelerator operator, a brake operator, a bicycle pedal, etc.) operated by the rider to maintain or change the vehicle speed, It is not necessary to have one.
The lean vehicle according to the present invention and embodiments may be configured to be switchable between a mode in which attitude control is not performed and a mode in which attitude control is performed.
 本発明および実施の形態において、複数の車輪を車軸線回りに回転可能に支持するとは、複数の車輪を車輪ごとの車軸線回りに回転可能に支持することを意味する。本発明および実施の形態において、前輪の数が複数の場合、少なくとも1つの前輪を操舵軸線回りに回転可能に支持するとは、複数の前輪を前輪ごとの操舵軸線回りに回転可能に支持することを意味する。本発明および実施の形態において、車輪(前輪または後輪)とは、タイヤと、タイヤを保持するホイール本体とを含む。本発明および実施の形態において、前輪の周方向と直交する断面における前輪の外縁の走行面と接触する部分は円弧状でもよい。本発明および実施の形態のリーン車両は、前輪の周方向と直交する断面における前輪の外縁の走行面と接触する部分が円弧状である場合、ロール方向の姿勢がより変化しやすい。 In the present invention and embodiments, supporting a plurality of wheels so as to be rotatable around an axle line means supporting a plurality of wheels so that each wheel can rotate around an axle line. In the present invention and embodiments, when there is a plurality of front wheels, supporting at least one front wheel rotatably around the steering axis means supporting a plurality of front wheels rotatably around the steering axis for each front wheel. means. In the present invention and embodiments, a wheel (front wheel or rear wheel) includes a tire and a wheel body that holds the tire. In the present invention and embodiments, the portion of the outer edge of the front wheel that contacts the running surface in a cross section perpendicular to the circumferential direction of the front wheel may be arcuate. In the lean vehicle of the present invention and embodiments, when the portion of the outer edge of the front wheel that contacts the running surface in a cross section perpendicular to the circumferential direction of the front wheel is arcuate, the posture in the roll direction is more likely to change.
 本発明および実施の形態において、リーン車両のロール方向とは、車両前後方向に沿ったリーン車両のロール軸を中心軸とした回転方向であって、リーン車両の車体フレームが車両上下方向に対して車両左右方向に傾斜する方向である。 In the present invention and embodiments, the roll direction of a lean vehicle is a rotation direction about a roll axis of the lean vehicle along the longitudinal direction of the vehicle, in which the body frame of the lean vehicle is rotated with respect to the vertical direction of the vehicle. This is the direction in which the vehicle is inclined in the left-right direction.
 本発明および実施の形態において、リーン角関連情報検出装置によって検出されるリーン角に関連する情報は、リーン角、リーン角の時間変化率であるリーン角速度、およびリーン角速度の時間変化率であるリーン角加速度の少なくとも1つを含んでよい。リーン角は、いわゆるロール角でもよい。リーン角関連情報検出装置は、例えばIMU(慣性計測装置:Inertial Measurement Unit)でもよい。 In the present invention and embodiments, the lean angle-related information detected by the lean angle-related information detection device includes the lean angle, the lean angular velocity which is the time change rate of the lean angle, and the lean angle velocity which is the time change rate of the lean angular velocity. and at least one of angular acceleration. The lean angle may be a so-called roll angle. The lean angle related information detection device may be, for example, an IMU (Inertial Measurement Unit).
 本発明および実施の形態において、操舵角関連情報検出装置によって検出される操舵角に関連する情報は、操舵角、操舵角の時間変化率である操舵角速度、および操舵角速度の時間変化率である操舵角加速度の少なくとも1つを含んでよい。本発明において、操舵角とは、少なくとも1つの前輪の操舵軸線回りの回転角度である。リーン車両が直進しているときの操舵角はゼロである。リーン車両が有する前輪の数は1つでもよい。前輪の数が複数の場合、リーン車両は、複数の前輪の操舵軸線回りの回転角度が常に同じになるように構成されてもよい。前輪の数が複数の場合、リーン車両は、複数の前輪の操舵軸線回りの回転角度をわずかに異ならせることができるように構成されてもよい。この場合、いずれか1つの前輪の操舵軸線回りの回転角度は、残りの前輪の操舵軸線回りの回転角度に関連する。操舵角関連情報検出装置は、前輪を車軸線回りに回転可能に支持し、車体フレームに操舵軸線回りに回転可能に支持されるステアリングシャフトの回転角度を検出するセンサでもよい。操舵角関連情報検出装置は、操舵トルク付与装置が有する電動モータの軸の回転角度を検出するセンサを含んでいてもよい。 In the present invention and embodiments, the information related to the steering angle detected by the steering angle related information detection device includes the steering angle, the steering angular velocity which is the time rate of change of the steering angle, and the steering angle which is the time rate of change of the steering angular velocity. and at least one of angular acceleration. In the present invention, the steering angle is the rotation angle of at least one front wheel about the steering axis. When a lean vehicle is traveling straight, the steering angle is zero. A lean vehicle may have one front wheel. When the number of front wheels is plural, the lean vehicle may be configured such that the rotation angles of the plurality of front wheels about the steering axis are always the same. When the number of front wheels is plural, the lean vehicle may be configured such that the rotation angles of the plurality of front wheels about the steering axis can be slightly different. In this case, the rotation angle of any one front wheel about the steering axis is related to the rotation angle of the remaining front wheels about the steering axis. The steering angle related information detection device may be a sensor that supports the front wheels rotatably about the axle axis and detects a rotation angle of a steering shaft that is rotatably supported by the vehicle body frame about the steering axis. The steering angle related information detection device may include a sensor that detects the rotation angle of the shaft of the electric motor included in the steering torque imparting device.
 本発明および実施の形態において、車輪速度関連情報検出装置によって検出される車輪速度に関連する情報は、前輪の車軸線回りの回転速度、前輪の車軸線回りの回転加速度、前輪の車軸線回りの回転量(回転数または回転角度)、後輪の車軸線回りの回転速度、後輪の車軸線回りの回転加速度、後輪の車軸線回りの回転量、車速(リーン車両の車両前後方向の速度)、リーン車両の車両前後方向の加速度の少なくとも1つを含んでよい。本発明において、車輪速度とは、少なくとも1つの車輪の車軸線回りの回転角度である。1つの車輪の車軸線回りの回転速度は、残りの車輪の車軸線回りの回転速度に関連する。車軸線回りの回転速度は、単位時間あたりの回転数または回転角度である。車輪速度関連情報検出装置は、車輪に設けられたセンサでもよい。車輪速度関連情報検出装置は、GNSS(全地球航法衛星システム)を利用してリーン車両の車輪速度に関連する情報を検出する装置でもよい。制御装置は、前輪の車軸線回りの回転速度と操舵角から車速を算出してもよい。制御装置は、後輪の車軸線回りの回転速度から車速を算出してもよい。 In the present invention and embodiments, the information related to the wheel speed detected by the wheel speed related information detection device includes the rotational speed of the front wheel around the axle line, the rotational acceleration around the axle line of the front wheel, and the rotational acceleration around the axle line of the front wheel. Amount of rotation (number of rotations or rotation angle), rotation speed of the rear wheels around the axle line, rotational acceleration of the rear wheels around the axle line, amount of rotation of the rear wheels around the axle line, vehicle speed (vehicle longitudinal speed of lean vehicles) ), acceleration of the lean vehicle in the longitudinal direction of the vehicle. In the present invention, wheel speed is the rotation angle of at least one wheel around the axle axis. The rotational speed of one wheel about its axle is related to the rotational speed of the remaining wheels about their axles. The rotation speed around the axle axis is the number of rotations or rotation angle per unit time. The wheel speed related information detection device may be a sensor provided on the wheel. The wheel speed related information detection device may be a device that detects information related to the wheel speed of the lean vehicle using GNSS (Global Navigation Satellite System). The control device may calculate the vehicle speed from the rotational speed of the front wheels around the axle line and the steering angle. The control device may calculate the vehicle speed from the rotation speed of the rear wheels around the axle line.
 本発明および実施の形態において、ステアリングユニットとは、ライダーが操舵角を維持または変更するために操作するハンドルユニットを含む。本発明および実施の形態において、ステアリングユニットの少なくとも一部は、操舵トルク付与装置に含まれる。本発明および実施の形態において、ライダーがステアリングユニットを操舵するとは、ハンドルユニットを回転させることを意味する。ステアリングユニットを車両右方向に操舵するとは、平面視においてハンドルユニットを時計回りに回転させることを意味する。ステアリングユニットを車両左方向に操舵するとは、平面視においてハンドルユニットを反時計回りに回転させることを意味する。ハンドルユニットの回転軸線は、前輪の操舵軸線と一致してもよく一致しなくてもよい。ハンドルユニットの回転軸線が、前輪の操舵軸線と一致しない場合、ステアリングユニットは、ハンドルユニットに入力されたハンドルユニットの回転軸線回りのトルクは、ステアリングユニット内において前輪の操舵軸線回りのトルクとして伝達されるように構成されている。本発明において、ライダー操舵トルクが少なくとも1つの前輪の操舵軸線回りのトルクとしてステアリングユニットに入力されるとは、前輪の数が複数の場合に、ステアリングユニットに複数の前輪の操舵軸線回りのトルクが同時に入力されることを否定する意図ではない。本発明および実施の形態のステアリングユニットは、前輪の数が複数の場合、ライダーのステアリングユニットの操舵によってステアリングユニットに入力される複数の前輪の操舵軸線回りのトルクが常に同じになるように構成されてもよい。または、本発明および実施の形態のステアリングユニットは、前輪の数が複数の場合、ライダーのステアリングユニットの操舵によってステアリングユニットに入力される複数の前輪の操舵軸線回りのトルクをわずかに異ならせることができるように構成されてもよい。 In the present invention and embodiments, the steering unit includes a handle unit operated by a rider to maintain or change the steering angle. In the present invention and embodiments, at least a portion of the steering unit is included in the steering torque applying device. In the present invention and embodiments, when a rider steers the steering unit, it means rotating the handle unit. Steering the steering unit to the right of the vehicle means rotating the handle unit clockwise in plan view. Steering the steering unit to the left of the vehicle means rotating the handle unit counterclockwise in plan view. The rotational axis of the handle unit may or may not coincide with the steering axis of the front wheels. If the rotational axis of the steering wheel unit does not match the steering axis of the front wheels, the steering unit will transmit the torque input to the steering wheel unit around the rotational axis of the steering wheel unit as torque around the steering axis of the front wheels. It is configured to In the present invention, rider steering torque is input to the steering unit as torque about the steering axis of at least one front wheel, when the number of front wheels is plural, the rider steering torque is input to the steering unit as torque about the steering axis of the plurality of front wheels. It is not our intention to deny input at the same time. The steering unit of the present invention and the embodiments is configured such that when there is a plurality of front wheels, the torque around the steering axis of the plurality of front wheels input to the steering unit by the rider's steering of the steering unit is always the same. It's okay. Alternatively, when there are a plurality of front wheels, the steering unit of the present invention and the embodiments may slightly differ in the torque around the steering axis of the plurality of front wheels that is input to the steering unit by the rider's steering of the steering unit. It may be configured so that it can be done.
 本発明および実施の形態において、ライダー操舵トルク検出装置は、ライダーがステアリングユニットを操舵してステアリングユニットに入力されるライダー操舵トルクに関連する情報を検出する装置である。ライダー操舵トルク検出装置は、ライダー操舵トルクに関連する情報として、少なくともライダー操舵トルクを検出してもよい。 In the present invention and embodiments, the rider steering torque detection device is a device that detects information related to the rider steering torque input to the steering unit when the rider steers the steering unit. The rider steering torque detection device may detect at least rider steering torque as information related to rider steering torque.
 本発明および実施の形態において、操舵トルク付与装置は、操舵アクチュエータによってアクチュエータ操舵トルクを生成し、操舵アクチュエータによって生成されたアクチュエータ操舵トルクとステアリングユニットに入力されたライダー操舵トルクとを合わせたトルクである操舵トルクを少なくとも1つの前輪に付与する。本発明および実施の形態において、前輪に操舵軸線回りの操舵トルクを付与するように構成されるとは、前輪を車軸線回りに回転可能に支持する部材に対して操舵トルクを付与するように構成されることを意味する。例えば、操舵トルク付与装置は、前輪を車軸線回りに回転可能に支持し、車体フレームに操舵軸線回りに回転可能に支持されるステアリングシャフトに操舵トルクを付与するように構成されてもよい。本発明において、操舵トルク付与装置が少なくとも1つの前輪に操舵トルクを付与するように構成されるとは、前輪の数が複数の場合に、操舵トルク付与装置が複数の前輪に同時に操舵トルクを付与してもよいし、操舵トルク付与装置が複数の前輪の一部に同時に操舵トルクを付与してもよい。操舵アクチュエータは、例えば、電動モータまたは油圧式のアクチュエータである。リーン車両が電動パワーステアリング装置を有する場合、電動パワーステアリング装置においてライダーが入力するライダー操舵トルクをアシストするアシストモータ(電動モータ)が、本発明の操舵アクチュエータとして機能してもよい。本発明および実施の形態において、制御装置が操舵トルクを制御するとは、アクチュエータ操舵トルクを制御することを意味する。 In the present invention and embodiments, the steering torque applying device generates an actuator steering torque by a steering actuator, and the torque is a combination of the actuator steering torque generated by the steering actuator and the rider steering torque input to the steering unit. Applying steering torque to at least one front wheel. In the present invention and embodiments, being configured to apply steering torque around the steering axis to the front wheels means being configured to apply steering torque to a member that rotatably supports the front wheels around the axle axis. It means to be done. For example, the steering torque applying device may be configured to rotatably support the front wheels around the axle axis and apply steering torque to a steering shaft supported by the vehicle body frame so as to be rotatable around the steering axis. In the present invention, the steering torque applying device is configured to apply steering torque to at least one front wheel, when the number of front wheels is plural, the steering torque applying device applies steering torque to the plurality of front wheels simultaneously. Alternatively, the steering torque applying device may apply steering torque to some of the plurality of front wheels simultaneously. The steering actuator is, for example, an electric motor or a hydraulic actuator. When the lean vehicle has an electric power steering device, an assist motor (electric motor) that assists rider steering torque input by a rider in the electric power steering device may function as the steering actuator of the present invention. In the present invention and the embodiments, when the control device controls the steering torque, it means controlling the actuator steering torque.
 本発明および実施の形態において、駆動トルク付与装置は、駆動トルクを生成し、生成された駆動トルクを少なくとも1つの前輪および少なくとも1つの後輪の少なくとも一方に付与する。駆動トルク付与装置は、少なくとも1つの前輪にのみ駆動トルクを付与するように構成されてもよく、少なくとも1つの後輪にのみ駆動トルクを付与するように構成されてもよく、少なくとも1つの前輪と少なくとも1つの後輪の両方に駆動トルクを付与するように構成されてもよい。駆動トルク付与装置が少なくとも1つの前輪と少なくとも1つの後輪の両方に駆動トルクを付与するように構成される場合、必ずしも、少なくとも1つの前輪と少なくとも1つの後輪に同時に駆動トルクが付与されなくてもよい。複数の車輪に同時に駆動トルクが付与される場合、少なくとも1つの車輪に付与される駆動トルクの値は、残りの車輪に付与される駆動トルクの値と同じでもよく異なってもよい。本発明において、駆動トルクという用語は、1つの車輪に付与される駆動トルクを意味するか、複数の車輪にそれぞれ付与される複数の駆動トルクの総称を意味する。 In the present invention and embodiments, the drive torque application device generates drive torque and applies the generated drive torque to at least one of at least one front wheel and at least one rear wheel. The driving torque applying device may be configured to apply driving torque only to at least one front wheel, may be configured to apply driving torque only to at least one rear wheel, and may be configured to apply driving torque only to at least one front wheel. It may be configured to apply drive torque to both of the at least one rear wheel. When the drive torque application device is configured to apply drive torque to both at least one front wheel and at least one rear wheel, the drive torque is not necessarily applied to at least one front wheel and at least one rear wheel at the same time. It's okay. When driving torque is applied to a plurality of wheels simultaneously, the value of the driving torque applied to at least one wheel may be the same or different from the value of the driving torque applied to the remaining wheels. In the present invention, the term "driving torque" means a driving torque applied to one wheel, or a general term for a plurality of driving torques applied to a plurality of wheels.
 本発明および実施の形態において、正および負の駆動トルクを付与するように構成されるとは、1つの車輪に対して異なるタイミングで正の駆動トルクと負の駆動トルクを付与できるように構成されることを意味する。正の駆動トルクは、リーン車両が車両前方向に進むように車輪を正方向に回転させるトルクである。車輪が正方向に回転している時に負の駆動トルクが付与されると、車輪の正方向の回転が減速する。本発明および実施の形態において、駆動トルク付与装置は、負の駆動トルクとして、車輪を負方向に回転させるトルクを生成できるように構成されてもよく、構成されなくてもよい。 In the present invention and embodiments, being configured to apply positive and negative driving torques means being configured to be able to apply positive and negative driving torques to one wheel at different timings. It means to do something. The positive drive torque is a torque that rotates the wheels in the positive direction so that the lean vehicle moves forward. If a negative drive torque is applied while the wheel is rotating in the positive direction, the rotation of the wheel in the positive direction is decelerated. In the present invention and embodiments, the drive torque applying device may or may not be configured to be able to generate a torque that rotates the wheels in a negative direction as a negative drive torque.
 本発明および実施の形態において、駆動トルク付与装置は、1つの車輪に対してそれぞれトルクを付与する複数の装置を有してもよい。この場合、1つの車輪に同時に付与される複数のトルクの合成トルクが、本発明の駆動トルクに相当する。また、この場合、駆動トルク付与装置は、1つの車輪に対して正のトルクと負のトルクを同時に付与できるように構成されてもよい。本発明および実施の形態において、駆動トルク付与装置は、エンジンおよび電動モータの少なくとも一方を含んでもよい。駆動トルク付与装置は、ブレーキ装置を含んでもよい。ブレーキ装置は、例えば油圧式のブレーキ装置でもよい。リーン車両は、駆動トルク付与装置に含まれるブレーキ装置を有さず、駆動トルク付与装置に含まれないブレーキ装置を有してもよい。姿勢制御の実行中に、制御装置が、操舵角がライダー操舵トルクに関連する情報に少なくとも基づいて設定された目標操舵角となるようにブレーキ装置を制御しない場合、ブレーキ装置は駆動トルク付与装置に含まれなくてもよい。 In the present invention and embodiments, the drive torque applying device may include a plurality of devices that each apply torque to one wheel. In this case, a composite torque of a plurality of torques simultaneously applied to one wheel corresponds to the driving torque of the present invention. Further, in this case, the drive torque applying device may be configured to be able to simultaneously apply positive torque and negative torque to one wheel. In the present invention and embodiments, the drive torque applying device may include at least one of an engine and an electric motor. The drive torque applying device may include a brake device. The brake device may be a hydraulic brake device, for example. A lean vehicle does not have a brake device included in the drive torque applying device, and may have a brake device not included in the drive torque applying device. During attitude control, if the control device does not control the braking device so that the steering angle becomes the target steering angle set based at least on information related to rider steering torque, the braking device controls the driving torque applying device. Does not need to be included.
 本発明および実施の形態において、トルク付与装置は、駆動トルク付与装置および操舵トルク付与装置の両方を含んでもよく、駆動トルク付与装置のみを含んでもよいし、操舵トルク付与装置のみを含んでもよい。または、トルク付与装置は、少なくとも操舵トルク付与装置を含むものであって、駆動トルク付与装置および操舵トルク付与装置の両方を含んでもよく、操舵トルク付与装置のみを含んでもよい。トルク付与装置が操舵トルク付与装置のみを含む場合とは、例えば、リーン車両が二輪または三輪の自転車に適用される場合である。 In the present invention and embodiments, the torque applying device may include both a driving torque applying device and a steering torque applying device, may include only a driving torque applying device, or may include only a steering torque applying device. Alternatively, the torque applying device includes at least a steering torque applying device, and may include both a driving torque applying device and a steering torque applying device, or may include only a steering torque applying device. The case where the torque applying device includes only the steering torque applying device is, for example, the case where the lean vehicle is applied to a two-wheeled or three-wheeled bicycle.
 本発明および実施の形態において、目標操舵角は、少なくともライダー操舵トルクに基づいて設定される。少なくとも1つの前輪の操舵軸線と、少なくとも1つの前輪の走行面との交点が、少なくとも1つの前輪の接地点より車両前方向に位置する場合、つまりトレール長が正の値の場合、目標操舵角は、ライダー操舵トルクが付与された時の操舵角である実操舵角からの変化の方向が、ライダー操舵トルクの操舵軸線回りの方向と逆になるように設定される。そして、少なくとも1つの前輪の操舵軸線と、少なくとも1つの前輪の走行面との交点が、少なくとも1つの前輪の接地点と同じまたは少なくとも1つの前輪の接地点より車両後方向に位置する場合、つまりトレール長が0または負の値の場合、目標操舵角は、実操舵角からの変化の方向が、ライダー操舵トルクの操舵軸線回りの方向と同じになるように設定される。また、目標操舵角は、目標操舵角と実操舵角との差分である操舵角変化量が、ライダー操舵トルクの大きさが大きいほど大きくなるように設定されてよい。目標操舵角は、ライダー操舵トルク、および、ライダー操舵トルクが付与された時の車速である実車速に基づいて設定されてもよい。目標操舵角は、ライダー操舵トルク、および、実操舵角または前回設定された目標操舵角に基づいて設定されてよい。また、目標操舵角は、ライダー操舵トルク、実車速、および、実操舵角または前回設定された目標操舵角に基づいて設定されてよい。なお、リーン車両が複数の前輪を有する場合、目標操舵角は、複数の前輪で同じであっても、異なっていてもよい。 In the present invention and embodiments, the target steering angle is set based on at least the rider steering torque. When the intersection of the steering axis of at least one front wheel and the running surface of at least one front wheel is located in the vehicle front direction from the grounding point of at least one front wheel, that is, when the trail length is a positive value, the target steering angle is set such that the direction of change from the actual steering angle, which is the steering angle when the rider steering torque is applied, is opposite to the direction of the rider steering torque around the steering axis. If the intersection of the steering axis of the at least one front wheel and the running surface of the at least one front wheel is located at the same point as the grounding point of the at least one front wheel or located further rearward of the vehicle than the grounding point of the at least one front wheel, that is, When the trail length is 0 or a negative value, the target steering angle is set so that the direction of change from the actual steering angle is the same as the direction of the rider steering torque around the steering axis. Further, the target steering angle may be set such that the amount of change in the steering angle, which is the difference between the target steering angle and the actual steering angle, increases as the rider steering torque increases. The target steering angle may be set based on the rider steering torque and the actual vehicle speed that is the vehicle speed when the rider steering torque is applied. The target steering angle may be set based on the rider steering torque and the actual steering angle or the previously set target steering angle. Further, the target steering angle may be set based on the rider steering torque, the actual vehicle speed, and the actual steering angle or the previously set target steering angle. Note that when the lean vehicle has a plurality of front wheels, the target steering angle may be the same or different for the plurality of front wheels.
 本発明において、トルク付与装置が駆動トルク付与装置および操舵トルク付与装置の両方を含む場合、姿勢制御において、制御装置で制御されるトルクの種類は、操舵トルクのみでもよく、駆動トルクのみでもよく、駆動トルクおよび操舵トルクの両方でもよい。姿勢制御において制御されるトルクが操舵トルクのみの場合、制御装置は、姿勢制御の実行中に、駆動トルクを制御してもよい。より具体的には例えば、制御装置は、ライダーによるアクセル操作子またはブレーキ操作子の操作に応じて、駆動トルクを制御してもよい。また、トルク付与装置が駆動トルク付与装置および操舵トルク付与装置の両方を含む場合、姿勢制御において制御されるトルクの種類は、姿勢制御が実行されるたびに同じとは限らない。例えば、制御装置は、リーン車両の実舵角や実速度に基づいて、姿勢制御において制御されるトルクの種類を決定してもよい。具体的には、リーン車両の実舵角が大きい場合に、制御装置は、姿勢制御において制御されるトルクの種類を駆動トルクにしてもよい。リーン車両の実速度が大きい場合に、制御装置は、姿勢制御において制御されるトルクの種類を操舵トルクにしてもよい。また、制御装置は、制御装置に入力された情報に基づいて、姿勢制御において制御されるトルクの種類を決定してもよい。制御装置に入力された情報は、使用者による操作によって制御装置に入力された情報でもよく、リーン車両の挙動を示す情報でもよく、その両方を含んでいてもよい。使用者による操作は、ライダーがリーン車両を運転するための操作でもよく、使用者(ライダーを含む)がリーン車両の停止中に行う操作でもよい。具体的には、例えば、リーン車両の速度変化を許容するモードと、リーン車両の速度変化を許容しないモードとを選択して、制御装置に入力されるように、リーン車両を構成してもよい。そして、制御装置にリーン車両の速度変化を許容するモードが入力されると、制御装置は、姿勢制御において駆動トルクと操舵トルクのどちらかを制御してもよく、リーン車両の速度変化を許容しないモードが入力されると、制御装置は、姿勢制御において駆動トルクを制御せずに操舵トルクだけを制御してもよい。また、例えば、ライダーがブレーキ操作子を操作してリーン車両が減速しているときに、ライダー操舵トルクが入力されると、制御装置は、姿勢制御において駆動トルクを制御せずに操舵トルクだけを制御してもよい。姿勢制御の開始から終了までの間に、駆動トルクおよび操舵トルクの両方が制御される場合、制御された駆動トルクを付与するタイミングと、制御された操舵トルクを付与するタイミングは同じでもよく、異なってもよい。 In the present invention, when the torque applying device includes both a driving torque applying device and a steering torque applying device, the type of torque controlled by the control device in attitude control may be only the steering torque or only the driving torque, Both driving torque and steering torque may be used. When the torque controlled in the attitude control is only the steering torque, the control device may control the drive torque while the attitude control is being performed. More specifically, for example, the control device may control the drive torque in response to the rider's operation of an accelerator operator or a brake operator. Further, when the torque applying device includes both a driving torque applying device and a steering torque applying device, the type of torque controlled in attitude control is not necessarily the same every time attitude control is executed. For example, the control device may determine the type of torque to be controlled in attitude control based on the actual steering angle and actual speed of the lean vehicle. Specifically, when the actual steering angle of the lean vehicle is large, the control device may set the type of torque controlled in attitude control to drive torque. When the actual speed of the lean vehicle is high, the control device may set the type of torque controlled in attitude control to steering torque. Further, the control device may determine the type of torque to be controlled in attitude control based on information input to the control device. The information input to the control device may be information input to the control device through an operation by a user, information indicating the behavior of a lean vehicle, or may include both. The operation by the user may be an operation for the rider to drive the lean vehicle, or may be an operation performed by the user (including the rider) while the lean vehicle is stopped. Specifically, for example, a lean vehicle may be configured such that a mode that allows a speed change of a lean vehicle and a mode that does not allow a speed change of a lean vehicle are selected and input to the control device. . When a mode that allows speed changes of the lean vehicle is input to the control device, the control device may control either the driving torque or the steering torque in attitude control, and does not allow speed changes of the lean vehicle. When the mode is input, the control device may control only the steering torque without controlling the drive torque in attitude control. Also, for example, if rider steering torque is input while the lean vehicle is decelerating by the rider operating the brake operator, the control device will control only the steering torque without controlling the drive torque during attitude control. May be controlled. When both driving torque and steering torque are controlled between the start and end of attitude control, the timing of applying the controlled driving torque and the timing of applying the controlled steering torque may be the same or different. It's okay.
 本発明および実施の形態において、制御装置は、操舵角が目標操舵角になるように、リーン車両のロール方向の姿勢を制御する姿勢制御を実行する。制御装置の姿勢制御では、例えば、検出したライダー操舵トルクに関連する情報と目標操舵角との組み合わせに基づいて、目標操舵角を決定する。ライダー操舵トルクに関連する情報と目標操舵角との組み合わせは、例えば、入力がライダー操舵トルクで出力が目標操舵角であるマップである。なお、制御装置は、有線又は無線で通信する複数の機器で構成されてもよく、1つの機器で構成されてもよい。 In the present invention and embodiments, the control device executes attitude control to control the attitude of the lean vehicle in the roll direction so that the steering angle becomes the target steering angle. In attitude control of the control device, for example, a target steering angle is determined based on a combination of information related to detected rider steering torque and a target steering angle. The combination of the information related to the rider steering torque and the target steering angle is, for example, a map in which the input is the rider steering torque and the output is the target steering angle. Note that the control device may be composed of a plurality of devices that communicate by wire or wirelessly, or may be composed of one device.
 本発明および実施の形態において、制御装置は、操舵角が目標操舵角になるようにしつつ、リーン車両のロール方向の姿勢の変化が抑制されるように、姿勢制御を実行してもよい。制御装置は、リーン角と操舵角と車速の値の組み合わせが、操舵角が目標操舵角になり、且つ、リーン車両のロール方向の姿勢の変化が抑制される状態を示す値の組み合わせになるように、姿勢制御を実行する。リーン車両のロール方向の姿勢の変化が抑制される状態を示すリーン角と操舵角と車速の値の組み合わせとは、仮に操舵角と車速がその組み合わせの値で維持されるようにリーン車両を走行させた場合に、リーン角がその組み合わせの値からあまり変化せず一定の範囲内で維持されるか、その組み合わせの値から変化しないような、リーン角と操舵角と車速の値の組み合わせである。さらに、姿勢制御では、リーン車両のロール方向の姿勢の変化が抑制されるリーン角と操舵角と車速の値の組み合わせにおいて、少なくともライダー操舵トルクに基づいて設定された目標操舵角の値に対応するリーン角と車速の値の組み合わせになるように、リーン角に関連する情報と操舵角に関連する情報と回転速度に関連する情報に基づいて、トルク付与装置の駆動トルクおよび操舵トルクの少なくともいずれかを制御する。リーン角に関連する情報と操舵角に関連する情報と回転速度に関連する情報は、例えば、操舵角、操舵角速度、リーン角、リーン角速度、車速である。
 本発明の制御装置は、リーン車両のロール方向の姿勢の変化が抑制されるような、リーン角と操舵角と車速の値の組み合わせを記憶していてもよい。この場合、制御装置は、記憶されたリーン角と操舵角と車速の値の組み合わせに基づいて姿勢制御を実行していてもよい。例えば、制御装置は、リーン角関連情報検出装置、操舵角関連情報検出装置、および車輪速度関連情報検出装置によって検出されたまたはこれらの検出装置によって検出された値から算出されたリーン角と操舵角と車速または車輪速度と、リーン角と操舵角と車速の値の組み合わせの値との差に基づいて、駆動トルクおよび操舵トルクの少なくともいずれかを制御してもよい。また、制御装置がリーン角と操舵角と車速の値の組み合わせを記憶する場合、リーン角と操舵角と車速の値の組み合わせの値またはリーン角と操舵角と車速の値の組み合わせに基づいて算出された値を補正するように構成されていてもよい。また、制御装置は、複数種類のリーン角と操舵角と車速の値の組み合わせを記憶してもよい。複数種類のリーン角と操舵角と車速の値の組み合わせは、例えば、リーン車両の乗車人数が異なる場合を想定して作成された複数のリーン角と操舵角と車速の値の組み合わせを含んでもよい。本発明の制御装置は、リーン角と操舵角と車速の値の組み合わせを記憶しなくてもよい。
In the present invention and embodiments, the control device may perform attitude control so that the steering angle becomes the target steering angle, and a change in attitude of the lean vehicle in the roll direction is suppressed. The control device sets the lean angle, the steering angle, and the vehicle speed so that the combination of values indicates a state in which the steering angle becomes the target steering angle and a change in attitude of the lean vehicle in the roll direction is suppressed. Then, attitude control is executed. A combination of values of lean angle, steering angle, and vehicle speed that indicates a state in which changes in the attitude of a lean vehicle in the roll direction are suppressed is a condition in which a lean vehicle is driven so that the steering angle and vehicle speed are maintained at the values of the combination. A combination of lean angle, steering angle, and vehicle speed such that when the steering wheel is turned on, the lean angle does not change much from the value of that combination and is maintained within a certain range, or does not change from the value of that combination. . Furthermore, in attitude control, in a combination of lean angle, steering angle, and vehicle speed values that suppress changes in attitude of the lean vehicle in the roll direction, at least the value of the target steering angle set based on the rider steering torque is set. At least one of the driving torque and the steering torque of the torque applying device is determined based on information related to the lean angle, information related to the steering angle, and information related to the rotational speed so that the values of the lean angle and vehicle speed become a combination. control. The information related to the lean angle, the information related to the steering angle, and the information related to the rotational speed are, for example, a steering angle, a steering angular velocity, a lean angle, a lean angular velocity, and a vehicle speed.
The control device of the present invention may store a combination of lean angle, steering angle, and vehicle speed values that suppresses changes in the attitude of the lean vehicle in the roll direction. In this case, the control device may perform attitude control based on a combination of the stored lean angle, steering angle, and vehicle speed values. For example, the control device may detect lean angles and steering angles detected by a lean angle related information detection device, a steering angle related information detection device, and a wheel speed related information detection device or calculated from values detected by these detection devices. At least one of the driving torque and the steering torque may be controlled based on the difference between the vehicle speed or the wheel speed, and the combination of the lean angle, the steering angle, and the vehicle speed. In addition, when the control device stores a combination of values of lean angle, steering angle, and vehicle speed, calculation is performed based on the combination of values of lean angle, steering angle, and vehicle speed, or based on the combination of values of lean angle, steering angle, and vehicle speed. may be configured to correct the calculated value. Further, the control device may store multiple types of combinations of lean angle, steering angle, and vehicle speed values. The combinations of multiple types of lean angles, steering angles, and vehicle speed values may include, for example, multiple combinations of lean angles, steering angles, and vehicle speed values created on the assumption that the lean vehicle has different number of occupants. . The control device of the present invention does not need to store combinations of lean angle, steering angle, and vehicle speed values.
 リーン車両の制御装置が、操舵角が目標操舵角になるように、駆動トルクおよび操舵トルクの少なくともいずれかを制御する姿勢制御が実行されているかどうかは、例えば、以下の方法で判別できる。
 姿勢制御において、ライダー操舵トルクに基づいてトルク制御されているかについての判別方法について説明する。この判定方法では、例えば、トレール長が正のリーン車両を一定速で直進走行させ、ライダーがステアリングユニットを操舵する試験を複数回行う。この判定方法での試験条件では、ライダー操舵トルクを変更して、車速および操舵角(0度)は同じにする。ライダーがステアリングユニットを操舵した後の、ライダー操舵トルクが異なる2つの時点において、付与される駆動トルクおよび操舵トルクの少なくともいずれかが互いに異なるかどうか、且つ、進行方向がライダーの操舵した方向と逆の方向に変化したかで姿勢制御が実行されているかどうかで判別できる。なお、進行方向がライダーの操舵した方向と逆の方向に変化したかを判断するのは、トレール長が正のリーン車両では、ステアリングユニットは、ライダーがライダー操舵トルクを与えた方向とは逆の方向に操舵されるためである。
Whether or not the control device for a lean vehicle is executing attitude control that controls at least one of the drive torque and the steering torque so that the steering angle becomes the target steering angle can be determined, for example, by the following method.
In attitude control, a method for determining whether torque control is being performed based on rider steering torque will be described. In this determination method, for example, a test is performed multiple times in which a lean vehicle with a positive trail length is driven straight at a constant speed and a rider steers a steering unit. In the test conditions for this determination method, the rider steering torque is changed and the vehicle speed and steering angle (0 degrees) are kept the same. Whether or not at least one of the applied driving torque and the steering torque is different from each other at two points in time after the rider steers the steering unit when the rider steering torque is different, and whether the direction of travel is opposite to the direction in which the rider steered the steering unit. It can be determined whether attitude control is being executed by determining whether the attitude has changed in the direction of . In addition, in lean vehicles with a positive trail length, the steering unit determines whether the direction of travel has changed in the opposite direction to the direction in which the rider has steered. This is because the vehicle is steered in the same direction.
 また、リーン車両の制御装置が、操舵角が目標操舵角になるようにしつつ、リーン車両のロール方向の姿勢の変化が抑制されるように、リーン角関連情報検出装置、操舵角関連情報検出装置、および車輪速度関連情報検出装置によって検出された情報に基づいて、駆動トルクおよび操舵トルクの少なくともいずれかを制御する姿勢制御が実行されているかどうかは、例えば、以下の方法で判別できる。
 姿勢制御において、車輪速度関連情報検出装置によって検出された情報(例えば、車速)に基づいてトルク制御されているかについての判別方法について説明する。この判定方法では、例えば、トレール長が正のリーン車両を一定速で直進走行させ、ライダーがステアリングユニットを操舵する試験を複数回行う。この判定方法での試験条件では、車速を変更して、ライダー操舵トルクおよび操舵角(0度)は同じにする。ライダーがステアリングユニットを操舵した後の、車速が異なる2つの時点において、付与される駆動トルクおよび操舵トルクの少なくともいずれかが互いに異なるかどうか、且つ、進行方向がライダーの操舵した方向と逆の方向に変化したかで姿勢制御が実行されているかどうか判断できる。
 また、姿勢制御において、操舵角関連情報検出装置によって検出された情報(例えば、操舵角)に基づいてトルク制御されているかについての判別方法について説明する。この判定方法では、例えば、トレール長が正のリーン車両を一定速で旋回走行させ、ライダーがステアリングユニットを操舵する試験を複数回行う。この判定方法での試験条件では、操舵角を変更して、ライダー操舵トルク、車速およびリーン角は同じにする。ライダーがステアリングユニットを操舵した後の、操舵角が異なる2つの時点において、付与される駆動トルクおよび操舵トルクの少なくともいずれかが互いに異なるかどうか、且つ、進行方向がライダーの操舵した方向と逆の方向に変化したかで姿勢制御が実行されているかどうかで判別できる。
 また、姿勢制御において、リーン角関連情報検出装置によって検出された情報(例えば、リーン角)に基づいてトルク制御されているかについての判別方法について説明する。この判定方法では、例えば、トレール長が正のリーン車両を一定速で旋回走行させ、ライダーがステアリングユニットを操舵する試験を複数回行う。この判定方法での試験条件では、リーン角を変更して、ライダー操舵トルク、車速および操舵角は同じにする。ライダーがステアリングユニットを操舵した後の、リーン角が異なる2つの時点において、付与される駆動トルクおよび操舵トルクの少なくともいずれかが互いに異なるかどうか、且つ、進行方向がライダーの操舵した方向と逆の方向に変化したかで姿勢制御が実行されているかどうか判別できる
In addition, the lean vehicle control device controls the lean angle related information detection device and the steering angle related information detection device so that the steering angle becomes the target steering angle and changes in the attitude of the lean vehicle in the roll direction are suppressed. , and the information detected by the wheel speed related information detection device, it can be determined, for example, by the following method whether attitude control that controls at least one of the drive torque and the steering torque is being executed.
In attitude control, a method for determining whether torque control is being performed based on information (for example, vehicle speed) detected by a wheel speed related information detection device will be described. In this determination method, for example, a test is performed multiple times in which a lean vehicle with a positive trail length is driven straight at a constant speed and a rider steers a steering unit. In the test conditions for this determination method, the vehicle speed is changed and the rider steering torque and steering angle (0 degrees) are kept the same. Whether at least one of the applied driving torque and steering torque is different from each other at two points in time when the vehicle speed is different after the rider steers the steering unit, and the direction of travel is opposite to the direction in which the rider steered the steering unit. It can be determined whether posture control is being executed by whether the position has changed.
Further, in attitude control, a method for determining whether torque control is being performed based on information (for example, steering angle) detected by the steering angle related information detection device will be described. In this determination method, for example, a test is performed multiple times in which a lean vehicle with a positive trail length is turned at a constant speed and a rider steers a steering unit. In the test conditions for this determination method, the steering angle is changed and the rider steering torque, vehicle speed, and lean angle are kept the same. After the rider steers the steering unit, at least one of the applied driving torque and the steering torque is different at two points in time when the steering angles are different, and the direction of travel is opposite to the direction in which the rider steered the steering unit. It can be determined whether attitude control is being executed based on whether the direction has changed.
Furthermore, in attitude control, a method for determining whether torque control is being performed based on information (for example, lean angle) detected by the lean angle related information detection device will be described. In this determination method, for example, a test is performed multiple times in which a lean vehicle with a positive trail length is turned at a constant speed and a rider steers a steering unit. In the test conditions for this determination method, the lean angle is changed and the rider steering torque, vehicle speed, and steering angle are kept the same. After the rider steers the steering unit, at least one of the applied driving torque and the steering torque is different from each other at two points in time when the lean angles are different, and the direction of travel is opposite to the direction in which the rider steered the steering unit. It is possible to determine whether posture control is being executed based on the change in direction.
 なお、トレール長が0または負のリーン車両では、ステアリングユニットは、ライダーがライダー操舵トルクを与えた方向と同じ方向に操舵される。そのため、上記判別方法において、トレール長が0または負のリーン車両を用いる場合は、進行方向がライダーの操舵した方向と同じ方向に変化したかで平衡制御が実行されているかどうかで判別する。 Note that in a lean vehicle where the trail length is 0 or negative, the steering unit is steered in the same direction as the direction in which the rider applies rider steering torque. Therefore, in the above determination method, when using a lean vehicle with a trail length of 0 or a negative value, the determination is made based on whether the balance control is being executed based on whether the traveling direction has changed to the same direction as the direction steered by the rider.
 本発明および実施の形態において、回転は、360°以上の回転に限定されない。本発明および実施の形態における回転は、360°未満の回転も含む。 In the present invention and embodiments, rotation is not limited to rotation of 360° or more. Rotation in the present invention and embodiments also includes rotations of less than 360°.
 本発明および実施の形態において、Aに基づいて制御するとは、制御に使用される情報をAだけに限定する意図ではない。Aに基づいて制御するとは、AとA以外の情報に基づいて制御する場合を含む。 In the present invention and embodiments, controlling based on A does not mean to limit the information used for control to only A. Controlling based on A includes controlling based on A and information other than A.
 本発明および実施の形態における「複数の選択肢のうちの少なくとも1つ(一方)」とは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢のいずれか1つであっても良く、複数の選択肢の全てであっても良い。例えば、AとBとCの少なくとも1つとは、Aのみであっても良く、Bのみであっても良く、Cのみであっても良く、AとBであっても良く、AとCであっても良く、BとCであっても良く、AとBとCであっても良い。 In the present invention and embodiments, "at least one of the plurality of options" includes all possible combinations of the plurality of options. At least one (one) of the multiple options may be any one of the multiple options, or may be all of the multiple options. For example, at least one of A, B, and C may be only A, only B, only C, A and B, or A and C. It may be B and C, or it may be A, B, and C.
 請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合に単数で表示される場合、本発明は、この構成要素を、複数有しても良い。また本発明は、この構成要素を1つだけ有しても良い。 In the claims, if the number of a certain component is not clearly specified and is expressed in the singular when translated into English, the present invention may have a plurality of this component. Further, the present invention may include only one such component.
 本発明および実施の形態において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。 In the present invention and embodiments, the words including, comprising, having and derivatives thereof are intended to encompass additional items in addition to the listed items and their equivalents. It has been used for many years.
 本発明および実施の形態において「取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語」は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。 In the present invention and embodiments, the terms "mounted," "connected," "coupled," and "supported" are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling, and support, but also indirect attachment, connection, coupling, and support. Furthermore, connected and coupled are not limited to physical or mechanical connections/couplings. They also include direct or indirect electrical connections/coupling.
 他に定義されない限り、本明細書および請求範囲で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。 Unless defined otherwise, all terms (including technical and scientific terms) used in this specification and the claims have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be construed to have meanings consistent with the relevant art and their meanings in the context of this disclosure, and should not be interpreted as It cannot be interpreted in any meaningful sense.
 なお、本発明および実施の形態において「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。また、本明細書において、「しても良い」という用語は非排他的なものである。「しても良い」は、「しても良いがこれに限定されるものではない」という意味である。本明細書において、「しても良い」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。 Note that in the present invention and embodiments, the term "preferable" is non-exclusive. "Preferred" means "preferred, but not limited to." In this specification, the configuration described as "preferable" exhibits at least the above-mentioned effects obtained by the configuration of claim 1. Furthermore, in this specification, the term "may" is non-exclusive. "You may do so" means "you may do so, but it is not limited to this." In this specification, the configuration described as "may be performed" produces at least the above-mentioned effects obtained by the configuration of claim 1.
 本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。 Before describing embodiments of the invention in detail, it is to be understood that the invention is not limited to the details of construction and arrangement of components that are described in the following description or illustrated in the drawings. The present invention is also possible in embodiments other than those described below. The present invention is also possible in embodiments in which various changes are made to the embodiments described below.
 本発明のリーン車両によると、リーン車両のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 According to the lean vehicle of the present invention, it is possible to control the attitude of the lean vehicle in the roll direction while increasing the responsiveness to the rider's intention to change the traveling direction.
図1は、本発明の実施形態のリーン車両の構成を説明する図である。FIG. 1 is a diagram illustrating the configuration of a lean vehicle according to an embodiment of the present invention. 図2は、本発明の実施形態の制御装置の姿勢制御が行われるリーン車両の一例を説明する図である。図2(a)は、トレール長が正の値のリーン車両の場合を示し、図2(b)は、トレール長が0または負の値のリーン車両の場合を示す。FIG. 2 is a diagram illustrating an example of a lean vehicle in which posture control is performed by the control device according to the embodiment of the present invention. FIG. 2(a) shows the case of a lean vehicle with a trail length of a positive value, and FIG. 2(b) shows the case of a lean vehicle with a trail length of 0 or a negative value. 図3は、本発明の実施形態の制御装置の姿勢制御が行われるリーン車両の一例を説明する図である。図3(a)は、トレール長が正の値のリーン車両の場合を示し、図3(b)は、トレール長が0または負の値のリーン車両の場合を示す。FIG. 3 is a diagram illustrating an example of a lean vehicle in which posture control is performed by the control device according to the embodiment of the present invention. FIG. 3(a) shows the case of a lean vehicle with a trail length of a positive value, and FIG. 3(b) shows the case of a lean vehicle with a trail length of 0 or a negative value. 図4は、本発明の実施形態の制御装置の姿勢制御が行われるリーン車両の一例を説明する図である。図4(a)は、トレール長が正の値のリーン車両の場合を示し、図4(b)は、トレール長が0または負の値のリーン車両の場合を示す。FIG. 4 is a diagram illustrating an example of a lean vehicle in which posture control is performed by the control device according to the embodiment of the present invention. FIG. 4(a) shows the case of a lean vehicle with a positive trail length, and FIG. 4(b) shows the case of a lean vehicle with a trail length of 0 or a negative value. 図5は、本発明の第6実施形態のリーン車両のハンドルユニットの一例を説明する図である。図5(a)はリーン車両を前から見た構成を示す図であり、図5(b)はリーン車両を上から見た構成を示す図である。FIG. 5 is a diagram illustrating an example of a steering wheel unit for a lean vehicle according to a sixth embodiment of the present invention. FIG. 5(a) is a diagram showing the configuration of a lean vehicle viewed from the front, and FIG. 5(b) is a diagram showing the configuration of the lean vehicle viewed from above.
 <方向の定義>
 図の中において、Uはリーン車両の車両上方向、Dはリーン車両の車両下方向、Lはリーン車両の車両左方向、Rはリーン車両の車両右方向、Fはリーン車両の車両前方向、Reはリーン車両の車両後方向を示す。
<Definition of direction>
In the figure, U is the vehicle upward direction of a lean vehicle, D is the vehicle downward direction of the lean vehicle, L is the vehicle left direction of the lean vehicle, R is the vehicle right direction of the lean vehicle, F is the vehicle front direction of the lean vehicle, Re indicates the rearward direction of the lean vehicle.
 <第1実施形態>
 以下、本発明の第1実施形態について、図1を参照しつつ説明する。第1実施形態のリーン車両1は、複数の車輪2、車体フレーム5、ステアリングユニット13、ライダー操舵トルク検出装置14、トルク付与装置10および制御装置9を有する。複数の車輪2は、少なくとも1つの前輪3と少なくとも1つの後輪4とを含む。少なくとも1つの後輪4は、少なくとも1つの前輪3よりも車両前後方向における後方向に配置される。なお、図1に示すリーン車両1は二輪車であるが、第1実施形態のリーン車両1は二輪車に限らない。車体フレーム5は、複数の車輪2を車軸線X1回りに回転可能に支持し、少なくとも1つの前輪3を操舵軸線X2回りに回転可能に支持する。車体フレーム5は、右旋回時に車両上下方向に対して車両右方向に傾斜し、左旋回時に車両上下方向に対して車両左方向に傾斜する。なお、図1では少なくとも1つの前輪3の操舵軸線X2回りの回転角度である操舵角δを模式的に表現している。ステアリングユニット13は、ライダーが操舵可能である。ステアリングユニット13には、ライダーの操舵によるトルクであるライダー操舵トルクTが入力されて、少なくとも1つの前輪3を操舵軸線X2回りに回転させる。前輪3が複数ある場合は、それぞれの前輪3に操舵軸線X2がある。この場合、ステアリングユニット13には、ライダー操舵トルクTがそれぞれの前輪3の操舵軸線X2回りのトルクとして入力される。操舵軸線X2は、車両上下方向に対して車両前後方向に傾斜している。なお、図1におけるリーン車両1の平面図では、模式的に表現した操舵角δに合わせて、ステアリングユニット13の一部を模式的に表現している。なお、図1のリーン車両1は、正の値のキャスター角CAを有し、正の値のトレール長TLを有するリーン車両の一例を示している。本発明の第1実施形態のリーン車両は、正の値のキャスター角CAを有し、0または負の値のトレール長TLを有していてもよい。リーン車両が0または負の値のトレール長TLを有する場合、リーン車両のキャスター角CAは、図1に示すリーン車両1のキャスター角CAよりも小さいキャスター角になる。
<First embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. 1. The lean vehicle 1 of the first embodiment includes a plurality of wheels 2, a body frame 5, a steering unit 13, a rider steering torque detection device 14, a torque application device 10, and a control device 9. The plurality of wheels 2 include at least one front wheel 3 and at least one rear wheel 4. At least one rear wheel 4 is arranged further rearward than at least one front wheel 3 in the longitudinal direction of the vehicle. Note that although the lean vehicle 1 shown in FIG. 1 is a two-wheeled vehicle, the lean vehicle 1 of the first embodiment is not limited to a two-wheeled vehicle. The vehicle body frame 5 rotatably supports a plurality of wheels 2 around an axle axis X1, and supports at least one front wheel 3 rotatably around a steering axis X2. The vehicle body frame 5 tilts to the right of the vehicle with respect to the vertical direction of the vehicle when turning to the right, and tilts to the left of the vehicle with respect to the vertical direction of the vehicle when turning to the left. Note that FIG. 1 schematically represents the steering angle δ, which is the rotation angle of at least one front wheel 3 about the steering axis X2. The steering unit 13 can be steered by a rider. A rider steering torque T, which is a torque generated by the rider's steering, is input to the steering unit 13 to rotate at least one front wheel 3 around the steering axis X2. When there are multiple front wheels 3, each front wheel 3 has a steering axis X2. In this case, the rider steering torque T is input to the steering unit 13 as a torque around the steering axis X2 of each front wheel 3. The steering axis X2 is inclined in the vehicle longitudinal direction with respect to the vehicle vertical direction. In addition, in the plan view of the lean vehicle 1 in FIG. 1, a part of the steering unit 13 is schematically expressed in accordance with the schematically expressed steering angle δ. Note that the lean vehicle 1 in FIG. 1 is an example of a lean vehicle that has a positive caster angle CA and a positive trail length TL. The lean vehicle of the first embodiment of the present invention may have a caster angle CA of a positive value and a trail length TL of 0 or a negative value. When the lean vehicle has a trail length TL of 0 or a negative value, the caster angle CA of the lean vehicle is smaller than the caster angle CA of the lean vehicle 1 shown in FIG.
 ライダー操舵トルク検出装置14は、ステアリングユニット13に入力されたライダー操舵トルクTに関する情報を検出する。トルク付与装置10は、駆動トルク付与装置11および操舵トルク付与装置12の少なくともいずれかを含む。図1では、トルク付与装置10は、駆動トルク付与装置11および操舵トルク付与装置12を含む。トルク付与装置10は、駆動トルク付与装置11または操舵トルク付与装置12のいずれかのみであってもよい。駆動トルク付与装置11は、少なくとも1つの前輪3および少なくとも1つの後輪4の少なくとも一方に、車軸線X1回りの正および負の駆動トルクを付与するように構成される。なお、図1に示す駆動トルク付与装置11は、少なくとも1つの前輪3および少なくとも1つの後輪4の両方に駆動トルクを付与するように構成されているが、第1実施形態の駆動トルク付与装置11は、少なくとも1つの前輪3にのみ駆動トルクを付与するように構成されていてもよく、少なくとも1つの後輪4にのみ駆動トルクを付与するように構成されていてもよい。操舵トルク付与装置12は、いずれか1つの前輪3に、操舵軸線X2回りの操舵トルクを付与するように構成される。操舵トルク付与装置12は、ステアリングユニット13および操舵アクチュエータ15を含む。操舵トルク付与装置12が付与する操舵トルクは、ステアリングユニット13に入力されたライダー操舵トルクTと操舵アクチュエータ15によって生成されたアクチュエータ操舵トルクとを合わせたトルクである。なお、図1に示す駆動トルク付与装置11は、少なくとも1つの前輪3および少なくとも1つの後輪4の両方に駆動トルクを付与するように構成されているが、第1実施形態の駆動トルク付与装置11は、少なくとも1つの前輪3にのみ駆動トルクを付与するように構成されていてもよく、少なくとも1つの後輪4にのみ駆動トルクを付与するように構成されていてもよい。操舵トルク付与装置12は、少なくとも1つの前輪3に、操舵軸線X2回りの操舵トルクを付与するように構成される。なお、図1では、前輪3の数は1つであるが、前輪3の数は複数でもよい。前輪3の数が複数の場合、操舵トルク付与装置12は、複数の前輪3に、前輪3ごとに設定される操舵軸線X2回りの操舵トルクを付与するように構成される。 The rider steering torque detection device 14 detects information regarding the rider steering torque T input to the steering unit 13. The torque applying device 10 includes at least one of a driving torque applying device 11 and a steering torque applying device 12. In FIG. 1 , the torque applying device 10 includes a driving torque applying device 11 and a steering torque applying device 12 . The torque applying device 10 may be only either the driving torque applying device 11 or the steering torque applying device 12. The drive torque applying device 11 is configured to apply positive and negative drive torques about the axle axis X1 to at least one of the at least one front wheel 3 and the at least one rear wheel 4. Note that the driving torque applying device 11 shown in FIG. 1 is configured to apply driving torque to both at least one front wheel 3 and at least one rear wheel 4, but the driving torque applying device 11 of the first embodiment 11 may be configured to apply driving torque only to at least one front wheel 3, or may be configured to apply driving torque only to at least one rear wheel 4. The steering torque applying device 12 is configured to apply a steering torque around the steering axis X2 to any one of the front wheels 3. Steering torque applying device 12 includes a steering unit 13 and a steering actuator 15. The steering torque applied by the steering torque applying device 12 is the sum of the rider steering torque T input to the steering unit 13 and the actuator steering torque generated by the steering actuator 15. Note that the driving torque applying device 11 shown in FIG. 1 is configured to apply driving torque to both at least one front wheel 3 and at least one rear wheel 4, but the driving torque applying device 11 of the first embodiment 11 may be configured to apply driving torque only to at least one front wheel 3, or may be configured to apply driving torque only to at least one rear wheel 4. The steering torque applying device 12 is configured to apply a steering torque around the steering axis X2 to at least one front wheel 3. In addition, although the number of front wheels 3 is one in FIG. 1, the number of front wheels 3 may be plural. When the number of front wheels 3 is plural, the steering torque applying device 12 is configured to apply a steering torque around the steering axis X2 set for each front wheel 3 to the plurality of front wheels 3.
 制御装置9は、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御するように構成される。つまり、制御装置9は、操舵トルクおよび駆動トルクの両方を制御するように構成されてよい。または、制御装置9は、操舵トルクまたは駆動トルクのみを制御するように構成されてもよい。具体的には、リーン車両1が駆動トルク付与装置11のみを有している場合、制御装置9は、駆動トルクのみを制御するように構成される。また、リーン車両1が操舵トルク付与装置12のみを有している場合、制御装置9は、操舵トルクのみを制御するように構成される。リーン車両1が駆動トルク付与装置11および操舵トルク付与装置12を有している場合、制御装置9は、様々な条件に応じて、駆動トルクのみ、操舵トルクのみ、または駆動トルクおよび操舵トルクを制御するように構成される。ここで、制御装置9が操舵トルクを制御することで、リーン車両1の操舵角が変化するため、操舵角δをライダー操舵トルクTに基づいて設定される目標操舵角δgにすることができる。一方、制御装置9が駆動トルクを制御することで、リーン車両1の旋回中に車速を変化させると操舵角が変化するため、操舵角δをライダー操舵トルクTに基づいて設定される目標操舵角δgにすることができる。具体的には、リーン車両1の旋回中に加速した場合は、リーン車両1の車体が起き上がり、操舵角は小さくなり、リーン車両1の旋回中に減速した場合は、リーン車両1の車体が倒れこみ、操舵角は大きくなる。制御装置9は、操舵角δがライダー操舵トルクTに基づいて設定される目標操舵角δgになるように、駆動トルクおよび操舵トルクの少なくともいずれかを制御する姿勢制御を実行するように構成される。これにより、制御装置9は、ライダーがステアリングユニット13を操舵している最中のトルクであるライダー操舵トルクTに基づいて目標操舵角δgを設定して、リーン車両1のロール方向の姿勢を制御する姿勢制御を行う。一方、特許文献1のような従来技術では、ライダーがステアリングユニット13を操舵した結果である現在の操舵角δに基づいて目標ロール角を設定する。そのため、従来技術では、これからどのようにライダーがステアリングユニット13を操舵するのかが考慮されずにリーン車両の姿勢が制御されている。このように、本実施形態のリーン車両1は、従来技術と比較して、ライダーの進行方向変更の意思を反映した目標操舵角δgをより早く設定することができる。そのため、ライダーの進行方向変更の意思に対する応答性を高くすることができる。また、制御装置9が、姿勢制御において、操舵トルクおよび駆動トルクの両方を制御する場合は、操舵トルクのみまたは駆動トルクのみを制御する場合に比べて、操舵角δを目標操舵角δgにすることが容易である。その場合、制御装置9が、姿勢制御において、操舵トルクおよび駆動トルクの両方を制御する場合は、操舵トルクのみまたは駆動トルクのみを制御する場合に比べて、ライダーの進行方向変更の意思を反映した目標操舵角δgをより早く設定することができる。そして、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 The control device 9 is configured to control at least one of the driving torque and the steering torque applied by the torque applying device 10. That is, the control device 9 may be configured to control both the steering torque and the drive torque. Alternatively, the control device 9 may be configured to control only the steering torque or the drive torque. Specifically, when the lean vehicle 1 has only the drive torque applying device 11, the control device 9 is configured to control only the drive torque. Furthermore, when the lean vehicle 1 has only the steering torque applying device 12, the control device 9 is configured to control only the steering torque. When the lean vehicle 1 has the driving torque applying device 11 and the steering torque applying device 12, the control device 9 controls only the driving torque, only the steering torque, or the driving torque and the steering torque, depending on various conditions. configured to do so. Here, since the steering angle of the lean vehicle 1 changes as the control device 9 controls the steering torque, the steering angle δ can be set to the target steering angle δg set based on the rider steering torque T. On the other hand, since the control device 9 controls the drive torque and the steering angle changes when the vehicle speed changes while the lean vehicle 1 is turning, the steering angle δ is set as the target steering angle set based on the rider steering torque T. δg. Specifically, when the lean vehicle 1 accelerates while turning, the body of the lean vehicle 1 rises and the steering angle decreases, and when the lean vehicle 1 decelerates while turning, the body of the lean vehicle 1 falls down. The steering angle increases. The control device 9 is configured to perform attitude control to control at least one of the drive torque and the steering torque so that the steering angle δ becomes a target steering angle δg set based on the rider steering torque T. . Thereby, the control device 9 controls the posture of the lean vehicle 1 in the roll direction by setting the target steering angle δg based on the rider steering torque T, which is the torque while the rider is steering the steering unit 13. Perform posture control. On the other hand, in the conventional technology such as Patent Document 1, the target roll angle is set based on the current steering angle δ which is the result of the rider steering the steering unit 13. Therefore, in the prior art, the attitude of the lean vehicle is controlled without considering how the rider will steer the steering unit 13 from now on. In this way, the lean vehicle 1 of this embodiment can more quickly set the target steering angle δg that reflects the rider's intention to change the traveling direction, compared to the conventional technology. Therefore, responsiveness to the rider's intention to change the traveling direction can be increased. Furthermore, when the control device 9 controls both the steering torque and the driving torque in attitude control, the steering angle δ can be set to the target steering angle δg, compared to the case where the control device 9 controls only the steering torque or only the driving torque. is easy. In this case, when the control device 9 controls both the steering torque and the drive torque in attitude control, the rider's intention to change the traveling direction is reflected more easily than when the control device 9 controls only the steering torque or only the drive torque. The target steering angle δg can be set more quickly. In addition, responsiveness to the rider's intention to change the traveling direction can be increased.
 制御装置9の姿勢制御では、目標操舵角δgは、ライダー操舵トルク検出装置14で検出されたライダー操舵トルクTに関する情報に基づいて設定される。制御装置9の姿勢制御では、例えば、ライダー操舵トルク検出装置14で検出されたライダー操舵トルクに関連する情報と目標操舵角との組み合わせに基づいて、目標操舵角δgを決定する。ライダー操舵トルクに関連する情報と目標操舵角との組み合わせは、例えば、入力がライダー操舵トルクで出力が目標操舵角であるマップであり、制御装置9にあらかじめ記憶される。また、少なくとも1つの前輪3の操舵軸線X2と、少なくとも1つの前輪3の走行面Gとの交点Pが、少なくとも1つの前輪3の接地点Qより車両前方向に位置する場合、つまりトレール長TLが正の値の場合、目標操舵角δgは、ライダー操舵トルクTが付与された時の操舵角δからの変化の方向が、ライダー操舵トルクTの操舵軸線X2回りの方向と逆になるように設定される。そして、少なくとも1つの前輪3の操舵軸線X2と、少なくとも1つの前輪3の走行面Gとの交点Pが、少なくとも1つの前輪3の接地点Qと同じまたは少なくとも1つの前輪3の接地点Qより車両後方向に位置する場合、つまりトレール長TLが0または負の値の場合、目標操舵角δgは、実操舵角からの変化の方向が、ライダー操舵トルクTの操舵軸線X2回りの方向と同じになるように設定される。制御装置9の姿勢制御では、目標操舵角δgとライダー操舵トルクTが付与された時の操舵角δとの差分である操舵角変化量が、ライダー操舵トルクTの大きさが大きいほど大きくなるように、目標操舵角δgは設定されてもよい。また、リーン車両1が複数の前輪3を有する場合、目標操舵角δgは、複数の前輪3で同じであっても、異なっていてもよい。 In the attitude control of the control device 9, the target steering angle δg is set based on information regarding the rider steering torque T detected by the rider steering torque detection device 14. In the attitude control of the control device 9, the target steering angle δg is determined, for example, based on a combination of the information related to the rider steering torque detected by the rider steering torque detection device 14 and the target steering angle. The combination of the information related to the rider steering torque and the target steering angle is, for example, a map in which the input is the rider steering torque and the output is the target steering angle, and is stored in the control device 9 in advance. Further, when the intersection point P between the steering axis X2 of at least one front wheel 3 and the running surface G of at least one front wheel 3 is located in the vehicle front direction from the grounding point Q of at least one front wheel 3, that is, the trail length TL When is a positive value, the target steering angle δg is set such that the direction of change from the steering angle δ when the rider steering torque T is applied is opposite to the direction of the rider steering torque T around the steering axis X2. Set. The intersection point P between the steering axis X2 of the at least one front wheel 3 and the running surface G of the at least one front wheel 3 is the same as the grounding point Q of the at least one front wheel 3 or closer to the grounding point Q of the at least one front wheel 3. When the vehicle is located in the rear direction, that is, when the trail length TL is 0 or a negative value, the target steering angle δg changes in the same direction from the actual steering angle as the direction of the rider steering torque T around the steering axis X2. is set to be. In the attitude control of the control device 9, the amount of change in the steering angle, which is the difference between the target steering angle δg and the steering angle δ when the rider steering torque T is applied, increases as the magnitude of the rider steering torque T increases. The target steering angle δg may be set as follows. Further, when the lean vehicle 1 has a plurality of front wheels 3, the target steering angle δg may be the same or different for the plurality of front wheels 3.
 また、リーン車両1は、操舵角関連情報検出装置7、車輪速度関連情報検出装置8をさらに備えてもよい。操舵角関連情報検出装置7は、いずれか1つの前輪3の操舵軸線X2回りの回転角度である操舵角δに関連する情報を検出する。車輪速度関連情報検出装置8は、いずれか1つの車輪2の車軸線X1回りの回転速度である車輪速度Sに関連する情報を検出する。そして、制御装置9の姿勢制御では、目標操舵角δgは、例えば、ライダー操舵トルクT、および、車速Vに基づいて設定されてもよい。または、目標操舵角δgは、例えば、ライダー操舵トルクT、および、現在の操舵角δである実操舵角δまたは前回設定された目標操舵角δgに基づいて設定されてもよい。この場合、例えば、目標操舵角δgは、ライダー操舵トルクTに基づいて算出された操舵角変化量を、実操舵角δまたは前回設定された目標操舵角δgに加算して設定されてもよい。または、目標操舵角δgは、例えば、ライダー操舵トルクT、車速V、および、現在の操舵角δである実操舵角δまたは前回設定された目標操舵角δgに基づいて設定されてもよい。この場合、例えば、目標操舵角δgは、ライダー操舵トルクTおよび車速Vに基づいて算出された操舵角変化量を、実操舵角δまたは前回設定された目標操舵角δgに加算して設定されてもよい。 Furthermore, the lean vehicle 1 may further include a steering angle related information detection device 7 and a wheel speed related information detection device 8. The steering angle related information detection device 7 detects information related to the steering angle δ, which is the rotation angle of any one front wheel 3 about the steering axis X2. The wheel speed related information detection device 8 detects information related to the wheel speed S, which is the rotational speed of any one wheel 2 around the axle axis X1. In the attitude control of the control device 9, the target steering angle δg may be set based on the rider steering torque T and the vehicle speed V, for example. Alternatively, the target steering angle δg may be set based on, for example, the rider steering torque T and the actual steering angle δ, which is the current steering angle δ, or the previously set target steering angle δg. In this case, for example, the target steering angle δg may be set by adding a steering angle change amount calculated based on the rider steering torque T to the actual steering angle δ or the previously set target steering angle δg. Alternatively, the target steering angle δg may be set based on, for example, the rider steering torque T, the vehicle speed V, and the actual steering angle δ, which is the current steering angle δ, or the previously set target steering angle δg. In this case, for example, the target steering angle δg is set by adding the amount of change in the steering angle calculated based on the rider steering torque T and the vehicle speed V to the actual steering angle δ or the previously set target steering angle δg. Good too.
 制御装置9の姿勢制御において制御されるトルクの種類は、制御装置9の姿勢制御が実行されるたびに同じとは限らない。例えば、制御装置9は、制御装置9に入力された情報に基づいて、姿勢制御において制御されるトルクの種類を決定してもよい。制御装置9に入力された情報は、ライダーの操作を示す情報でもよく、リーン車両1の挙動を示す情報でもよく、その両方を含んでいてもよい。リーン車両1の平衡制御の開始から終了までの間に、駆動トルクおよび操舵トルクの両方が制御される場合、駆動トルクを付与するタイミングと、操舵トルクを付与するタイミングは同じでもよく、異なってもよい。 The type of torque controlled in the attitude control of the control device 9 is not necessarily the same every time the attitude control of the control device 9 is executed. For example, the control device 9 may determine the type of torque to be controlled in attitude control based on information input to the control device 9. The information input to the control device 9 may be information indicating the rider's operation, information indicating the behavior of the lean vehicle 1, or may include both. When both the driving torque and the steering torque are controlled from the start to the end of the balance control of the lean vehicle 1, the timing of applying the driving torque and the timing of applying the steering torque may be the same or different. good.
 ここで、制御装置9の姿勢制御の具体例について、図2~図4を用いて説明する。図2は、ライダーのステアリングユニット13の操舵によって、直進走行しているリーン車両1を右旋回させる場合、および、直進走行しているリーン車両1を左旋回させる場合の説明図である。図3は、ライダーのステアリングユニット13の操舵によって、右旋回しているリーン車両1を直進走行させる場合、および、左旋回しているリーン車両1を直進走行させる場合の説明図である。図4は、ライダーのステアリングユニット13の操舵によって、右旋回しているリーン車両1の旋回半径を小さくする場合、および、左旋回しているリーン車両1の旋回半径を小さくする場合の説明図である。図2~図4では、ライダーのステアリングユニット13の操舵によってリーン車両1の進行方向が変更される。 Here, a specific example of posture control of the control device 9 will be explained using FIGS. 2 to 4. FIG. 2 is an explanatory diagram of cases in which the lean vehicle 1 traveling straight is turned to the right and the lean vehicle 1 traveling straight is turned left by the rider's steering of the steering unit 13. FIG. 3 is an explanatory diagram of a case in which the rider steers the steering unit 13 to cause the lean vehicle 1 that is turning to the right to travel straight, and for causing the lean vehicle 1 that is turning to the left to travel straight. FIG. 4 is an explanatory diagram of the case where the turning radius of the lean vehicle 1 turning to the right is made smaller by the rider's steering of the steering unit 13, and the turning radius of the lean vehicle 1 turning left is made smaller. . In FIGS. 2 to 4, the direction of travel of the lean vehicle 1 is changed by the rider's steering of the steering unit 13.
 図2を用いて、ライダーのステアリングユニット13の操舵によってリーン車両1を直進走行状態から右旋回または左旋回させる場合について説明する。まず、図2(a)に示すように、リーン車両1が、トレール長TLが正の値であるリーン車両1の場合について説明する。制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を直進走行状態から右旋回させるとき、ライダーはステアリングユニット13を車両左方向にわずかに操舵する逆操舵を行い、車体フレーム5を車両右方向に傾斜させる。その後、いわゆるセルフステアによって、前輪3およびステアリングユニット13が車両右方向に操舵されて、リーン車両1が右旋回を開始する。また、制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を直進走行状態から左旋回させるとき、ライダーはステアリングユニット13を車両右方向に操舵するいわゆる逆操舵を行い、車体フレーム5を車両左方向に傾斜させる。その後、いわゆるセルフステアによって、前輪3およびステアリングユニット13が車両左方向に操舵されて、リーン車両1が左旋回を開始する。つまり、リーン車両1が直進走行状態のときに、ライダーがライダー操舵トルクTを与えることにより、車両左右方向のうちライダー操舵トルクTとは異なる方向にリーン角φが変化するため、リーン車両1が傾斜する。リーン車両1が傾斜することで、リーン車両1の操舵角δもライダー操舵トルクTを与えた方向と逆の方向に変化する。これにより、リーン車両1の進行方向は、車両左右方向のうちライダー操舵トルクTの方向とは異なる方向に変化する。そのため、図2(a)に示すように、リーン車両1のトレール長TLが正の値である場合であって、ライダーがリーン車両1を直進走行状態から右旋回または左旋回させる場合、目標操舵角δgは、ライダー操舵トルクTが付与された時の操舵角δからの変化の方向がライダー操舵トルクTの方向と逆になる。ライダーがライダー操舵トルクTを与えて、いわゆる逆操舵した後に、制御装置9が、図2(a)のように目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御することで、リーン車両1が直進走行状態から右旋回または左旋回することができる。従って、リーン車両1の進行方向をライダーの意思に沿ったものとしつつ、ライダーの進行方向変更の意思に対する応答性を高くするように、リーン車両1の姿勢を制御することができる。 With reference to FIG. 2, a case will be described in which the rider steers the steering unit 13 to cause the lean vehicle 1 to turn right or left from a straight running state. First, as shown in FIG. 2(a), a case where the lean vehicle 1 has a trail length TL of a positive value will be described. When posture control is not executed by the control device 9, when the rider steers the steering unit 13 to turn the lean vehicle 1 from a straight running state to the right, the rider performs reverse steering in which the rider slightly steers the steering unit 13 to the left of the vehicle. The vehicle body frame 5 is tilted to the right of the vehicle. Thereafter, the front wheels 3 and the steering unit 13 are steered to the right of the vehicle by so-called self-steering, and the lean vehicle 1 starts turning to the right. In addition, when attitude control is not executed by the control device 9, when the rider turns the lean vehicle 1 from a straight running state to the left by steering the steering unit 13, the rider steers the steering unit 13 to the right of the vehicle, which is called reverse steering. The vehicle body frame 5 is tilted to the left of the vehicle. Thereafter, the front wheels 3 and the steering unit 13 are steered to the left of the vehicle by so-called self-steering, and the lean vehicle 1 starts turning left. In other words, when the lean vehicle 1 is running straight ahead, when the rider applies the rider steering torque T, the lean angle φ changes in a direction different from the rider steering torque T in the left-right direction of the vehicle. tilt. As the lean vehicle 1 leans, the steering angle δ of the lean vehicle 1 also changes in the direction opposite to the direction in which the rider steering torque T is applied. As a result, the traveling direction of the lean vehicle 1 changes to a direction different from the direction of the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG. 2(a), when the trail length TL of the lean vehicle 1 is a positive value and the rider makes the lean vehicle 1 turn right or left from a straight running state, the target The direction of change in the steering angle δg from the steering angle δ when the rider steering torque T is applied is opposite to the direction of the rider steering torque T. After the rider applies rider steering torque T to perform so-called reverse steering, the control device 9 sets the target steering angle δg as shown in FIG. 2(a), and adjusts the driving torque and steering torque applied by the torque applying device 10 By controlling at least one of these, the lean vehicle 1 can make a right turn or a left turn from a straight traveling state. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
 次に、図2(b)に示すように、リーン車両1が、トレール長TLが0または負の値であるリーン車両1の場合について説明する。制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を直進走行状態から右旋回させるとき、ライダーはステアリングユニット13を車両右方向に操舵する順操舵を行い、車体フレーム5を車両右方向に傾斜させる。その後、リーン車両1が右旋回を開始する。また、制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を直進走行状態から左旋回させるとき、ライダーはステアリングユニット13を車両左方向に操舵するいわゆる順操舵を行い、車体フレーム5を車両左方向に傾斜させる。その後、リーン車両1が左旋回を開始する。つまり、リーン車両1が直進走行状態のときに、ライダーがライダー操舵トルクTを与えることにより、車両左右方向のうちライダー操舵トルクTと同じ方向にリーン角φが変化するため、リーン車両1が傾斜する。これにより、リーン車両1の進行方向は、車両左右方向のうちライダー操舵トルクTの方向と同じ方向に変化する。そのため、図2(b)に示すように、リーン車両1のトレール長TLが0または負の値である場合であって、ライダーがリーン車両1を直進走行状態から右旋回または左旋回させる場合、目標操舵角δgは、ライダー操舵トルクTが付与された時の操舵角δからの変化の方向がライダー操舵トルクTの方向と同じになる。ライダーがライダー操舵トルクTを与えて、いわゆる順操舵した後に、制御装置9が、図2(b)のように目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御することで、リーン車両1が直進走行状態から右旋回または左旋回することができる。従って、リーン車両1の進行方向をライダーの意思に沿ったものとしつつ、ライダーの進行方向変更の意思に対する応答性を高くするように、リーン車両1の姿勢を制御することができる。 Next, as shown in FIG. 2(b), a case where the lean vehicle 1 has a trail length TL of 0 or a negative value will be described. When attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to turn the lean vehicle 1 from a straight running state to the right, the rider performs forward steering to steer the steering unit 13 to the right of the vehicle. , the body frame 5 is tilted to the right of the vehicle. After that, the lean vehicle 1 starts turning to the right. In addition, when attitude control is not executed by the control device 9, when the rider turns the lean vehicle 1 from a straight running state to the left by steering the steering unit 13, the rider steers the steering unit 13 to the left of the vehicle, so-called forward steering. The vehicle body frame 5 is tilted to the left of the vehicle. After that, the lean vehicle 1 starts turning left. In other words, when the lean vehicle 1 is running straight, when the rider applies the rider steering torque T, the lean angle φ changes in the same direction as the rider steering torque T in the left-right direction of the vehicle, so the lean vehicle 1 tilts. do. As a result, the traveling direction of the lean vehicle 1 changes to the same direction as the direction of the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG. 2(b), when the trail length TL of the lean vehicle 1 is 0 or a negative value, and the rider causes the lean vehicle 1 to turn right or left from a straight traveling state. , the target steering angle δg changes in the same direction as the direction of the rider steering torque T from the steering angle δ when the rider steering torque T is applied. After the rider applies the rider steering torque T and performs so-called forward steering, the control device 9 sets the target steering angle δg as shown in FIG. 2(b), and adjusts the driving torque and steering torque applied by the torque applying device 10. By controlling at least one of these, the lean vehicle 1 can make a right turn or a left turn from a straight traveling state. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
 図3を用いて、ライダーのステアリングユニット13の操舵によってリーン車両1を旋回状態から直進走行させる場合について説明する。まず、図3(a)に示すように、リーン車両1が、トレール長TLが正の値であるリーン車両1の場合について説明する。制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を右旋回状態から直進走行させるとき、ライダーはステアリングユニット13を車両右方向に操舵して、車体フレーム5を車両左方向に起き上がらせる。その後、セルフステアまたはライダーのステアリングユニット13の操舵によって、前輪3およびステアリングユニット13が車両左方向に操舵されて、リーン車両1が直進走行を開始する。また、制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を左旋回する状態から直進走行させるとき、ライダーはステアリングユニット13を車両左方向に操舵して、車体フレーム5を車両右方向に起き上がらせる。その後、セルフステアまたはライダーのステアリングユニット13の操舵によって、前輪3およびステアリングユニット13が車両右方向に操舵されて、リーン車両1が直進走行を開始する。つまり、リーン車両1が旋回中に、ライダーが車両左右方向のうち旋回方向と同じ方向のライダー操舵トルクTを与えることにより、車両左右方向のうちライダー操舵トルクTとは異なる方向にリーン角φが変化するため、リーン車両1が起き上がる。これにより、リーン車両1の進行方向は、車両左右方向のうちライダー操舵トルクTの方向と異なる方向に変化して、リーン車両1は直進走行する。そのため、図3(a)に示すように、リーン車両1のトレール長TLが正の値である場合であって、ライダーがリーン車両1を右旋回または左旋回する状態から直進走行させる場合、目標操舵角δgは、ライダー操舵トルクTが付与された時の操舵角δからの変化の方向がライダー操舵トルクTの方向と逆になる。ライダーがライダー操舵トルクTを与えて、旋回方向と同じ方向に操舵した後に、制御装置9が、図3(a)のように目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御することで、リーン車両1が右旋回または左旋回する状態から直進走行することができる。従って、リーン車両1の進行方向をライダーの意思に沿ったものとしつつ、ライダーの進行方向変更の意思に対する応答性を高くするように、リーン車両1の姿勢を制御することができる。 A case in which the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a turning state will be described with reference to FIG. 3. First, as shown in FIG. 3(a), a case where the lean vehicle 1 has a trail length TL of a positive value will be described. When attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a right-turning state, the rider steers the steering unit 13 to the right of the vehicle, thereby steering the vehicle body frame. 5 to the left of the vehicle. Thereafter, the front wheels 3 and the steering unit 13 are steered to the left of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the lean vehicle 1 starts traveling straight. Further, when attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a left-turning state, the rider steers the steering unit 13 to the left of the vehicle, The body frame 5 is raised to the right of the vehicle. Thereafter, the front wheels 3 and the steering unit 13 are steered to the right of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the lean vehicle 1 starts traveling straight. In other words, when the lean vehicle 1 is turning, the rider applies a rider steering torque T in the same direction as the turning direction among the left and right directions of the vehicle, so that the lean angle φ is applied in a direction different from the rider steering torque T in the right and left directions of the vehicle. Due to the change, the lean vehicle 1 rises. As a result, the traveling direction of the lean vehicle 1 changes to a direction different from the direction of the rider steering torque T in the left-right direction of the vehicle, and the lean vehicle 1 travels straight. Therefore, as shown in FIG. 3(a), when the trail length TL of the lean vehicle 1 is a positive value and the rider causes the lean vehicle 1 to travel straight from turning to the right or turning to the left, The direction of change in the target steering angle δg from the steering angle δ when the rider steering torque T is applied is opposite to the direction of the rider steering torque T. After the rider applies the rider steering torque T and steers in the same direction as the turning direction, the control device 9 sets the target steering angle δg as shown in FIG. By controlling at least one of the torque and the steering torque, the lean vehicle 1 can travel straight from a right-turning or left-turning state. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
 次に、図3(b)に示すように、リーン車両1が、トレール長TLが0または負の値であるリーン車両1の場合について説明する。制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を右旋回状態から直進走行させるとき、ライダーはステアリングユニット13を車両左方向に操舵して、車体フレーム5を車両左方向に起き上がらせる。その後、リーン車両1が直進走行を開始する。また、制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によってリーン車両1を左旋回する状態から直進走行させるとき、ライダーはステアリングユニット13を車両右方向に操舵して、車体フレーム5を車両右方向に起き上がらせる。その後、リーン車両1が直進走行を開始する。つまり、リーン車両1が旋回中に、ライダーが車両左右方向のうち旋回方向と逆の方向のライダー操舵トルクTを与えることにより、車両左右方向のうちライダー操舵トルクTと同じ方向にリーン角φが変化するため、リーン車両1が起き上がる。これにより、リーン車両1の進行方向は、車両左右方向のうちライダー操舵トルクTの方向と同じ方向に変化して、リーン車両1は直進走行する。そのため、図3(b)に示すように、リーン車両1のトレール長TLが0または負の値である場合であって、ライダーがリーン車両1を右旋回または左旋回する状態から直進走行させる場合、目標操舵角δgは、ライダー操舵トルクTが付与された時の操舵角δからの変化の方向がライダー操舵トルクTの方向と同じになる。ライダーがライダー操舵トルクTを与えて、旋回方向と同じ方向に操舵した後に、制御装置9が、図3(b)のように目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御することで、リーン車両1が右旋回または左旋回する状態から直進走行することができる。従って、リーン車両1の進行方向をライダーの意思に沿ったものとしつつ、ライダーの進行方向変更の意思に対する応答性を高くするように、リーン車両1の姿勢を制御することができる。 Next, as shown in FIG. 3(b), a case where the lean vehicle 1 has a trail length TL of 0 or a negative value will be described. When attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a right-turning state, the rider steers the steering unit 13 to the left of the vehicle, thereby steering the vehicle body frame. 5 to the left of the vehicle. After that, the lean vehicle 1 starts traveling straight. In addition, when attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to cause the lean vehicle 1 to travel straight from a left-turning state, the rider steers the steering unit 13 to the right of the vehicle, The body frame 5 is raised to the right of the vehicle. After that, the lean vehicle 1 starts traveling straight. In other words, when the lean vehicle 1 is turning, the rider applies a rider steering torque T in the direction opposite to the turning direction among the left and right directions of the vehicle, thereby increasing the lean angle φ in the same direction as the rider steering torque T among the left and right directions of the vehicle. Due to the change, the lean vehicle 1 rises. As a result, the traveling direction of the lean vehicle 1 changes to the same direction as the direction of the rider steering torque T in the left-right direction of the vehicle, and the lean vehicle 1 travels straight. Therefore, as shown in FIG. 3(b), when the trail length TL of the lean vehicle 1 is 0 or a negative value, the rider causes the lean vehicle 1 to travel straight from a right or left turn. In this case, the direction of change in the target steering angle δg from the steering angle δ when the rider steering torque T is applied is the same as the direction of the rider steering torque T. After the rider applies rider steering torque T and steers in the same direction as the turning direction, the control device 9 sets the target steering angle δg as shown in FIG. 3(b), and the torque applying device 10 applies the drive. By controlling at least one of the torque and the steering torque, the lean vehicle 1 can travel straight from a right-turning or left-turning state. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
 図4を用いて、ライダーのステアリングユニット13の操舵によって、右旋回または左旋回しているリーン車両1の旋回半径を小さくする場合について説明する。まず、図4(a)に示すように、リーン車両1が、トレール長TLが正の値であるリーン車両1の場合について説明する。制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によって、右旋回しているリーン車両1の旋回半径を小さくするとき、ライダーはステアリングユニット13を車両左方向に操舵して、車体フレーム5を車両右方向に傾斜させる。その後、セルフステアまたはライダーのステアリングユニット13の操舵によって、前輪3およびステアリングユニット13が車両右方向に操舵されて、リーン車両1の旋回半径が小さくなる。また、制御装置9により平衡制御が実行されない場合において、ライダーのステアリングユニット13の操舵によって、左旋回しているリーン車両1の旋回半径を小さくするとき、ライダーはステアリングユニット13を車両右方向に操舵して、車体フレーム5を車両左方向に傾斜させる。その後、セルフステアまたはライダーのステアリングユニット13の操舵によって、前輪3およびステアリングユニット13が車両左方向に操舵されて、リーン車両1の旋回半径が小さくなる。つまり、リーン車両1が旋回中に、ライダーが車両左右方向のうち旋回方向と異なる方向のライダー操舵トルクTを与えることにより、車両左右方向のうちライダー操舵トルクTとは異なる方向にリーン角φが変化するため、リーン車両1がより傾斜する。これにより、リーン車両1の進行方向は、車両左右方向のうちライダー操舵トルクTと異なる方向に変化する。そのため、図4(a)に示すように、リーン車両1のトレール長TLが正の値である場合であって、ライダーがリーン車両1の旋回半径を小さくする場合、目標操舵角δgは、ライダー操舵トルクTが付与された時の操舵角δからの変化の方向がライダー操舵トルクTの方向と逆になる。ライダーがライダー操舵トルクTを与えて、旋回方向と異なる方向に操舵した後に、制御装置9が、図4(a)のように目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御することで、リーン車両1の旋回半径が小さくなるようにリーン車両1の進行方向を変更できる。従って、リーン車両1の進行方向をライダーの意思に沿ったものとしつつ、ライダーの進行方向変更の意思に対する応答性を高くするように、リーン車両1の姿勢を制御することができる。 With reference to FIG. 4, a case will be described in which the turning radius of the lean vehicle 1 that is turning right or left is reduced by the rider's steering of the steering unit 13. First, as shown in FIG. 4(a), a case where the lean vehicle 1 has a trail length TL of a positive value will be described. When attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning to the right, the rider steers the steering unit 13 to the left of the vehicle. , the body frame 5 is tilted to the right of the vehicle. Thereafter, the front wheels 3 and the steering unit 13 are steered to the right of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the turning radius of the lean vehicle 1 becomes smaller. Furthermore, when the balance control is not executed by the control device 9, when the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning left, the rider steers the steering unit 13 to the right of the vehicle. Then, the body frame 5 is tilted to the left of the vehicle. Thereafter, the front wheels 3 and the steering unit 13 are steered to the left of the vehicle by self-steering or by the rider's steering of the steering unit 13, and the turning radius of the lean vehicle 1 becomes smaller. In other words, when the lean vehicle 1 is turning, the rider applies a rider steering torque T in a direction different from the turning direction among the left and right directions of the vehicle, thereby increasing the lean angle φ in a direction different from the rider steering torque T among the left and right directions of the vehicle. As a result, the lean vehicle 1 leans more. As a result, the traveling direction of the lean vehicle 1 changes to a direction different from the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG. 4(a), when the trail length TL of the lean vehicle 1 is a positive value and the rider reduces the turning radius of the lean vehicle 1, the target steering angle δg is The direction of change from the steering angle δ when the steering torque T is applied is opposite to the direction of the rider steering torque T. After the rider applies the rider steering torque T and steers in a direction different from the turning direction, the control device 9 sets the target steering angle δg as shown in FIG. By controlling at least one of the torque and the steering torque, the traveling direction of the lean vehicle 1 can be changed so that the turning radius of the lean vehicle 1 becomes smaller. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
 次に、図4(b)に示すように、リーン車両1が、トレール長TLが0または負の値であるリーン車両1の場合について説明する。制御装置9により姿勢制御が実行されない場合において、ライダーのステアリングユニット13の操舵によって、右旋回しているリーン車両1の旋回半径を小さくするとき、ライダーはステアリングユニット13を車両右方向に操舵して、車体フレーム5を車両右方向に傾斜させる。その後、リーン車両1の旋回半径が小さくなる。また、制御装置9により平衡制御が実行されない場合において、ライダーのステアリングユニット13の操舵によって、左旋回しているリーン車両1の旋回半径を小さくするとき、ライダーはステアリングユニット13を車両左方向に操舵して、車体フレーム5を車両左方向に傾斜させる。その後、リーン車両1の旋回半径が小さくなる。つまり、リーン車両1が旋回中に、ライダーが車両左右方向のうち旋回方向と同じ方向のライダー操舵トルクTを与えることにより、車両左右方向のうちライダー操舵トルクTと同じ方向にリーン角φが変化するため、リーン車両1がより傾斜する。これにより、リーン車両1の進行方向は、車両左右方向のうちライダー操舵トルクTと同じ方向に変化する。そのため、図4(b)に示すように、リーン車両1のトレール長TLが0または負の値である場合であって、ライダーがリーン車両1の旋回半径を小さくする場合、目標操舵角δgは、ライダー操舵トルクTが付与された時の操舵角δからの変化の方向がライダー操舵トルクTの方向と同じになる。ライダーがライダー操舵トルクTを与えて、旋回方向と異なる方向に操舵した後に、制御装置9が、図4(b)のように目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御することで、リーン車両1の旋回半径が小さくなるようにリーン車両1の進行方向を変更できる。従って、リーン車両1の進行方向をライダーの意思に沿ったものとしつつ、ライダーの進行方向変更の意思に対する応答性を高くするように、リーン車両1の姿勢を制御することができる。 Next, as shown in FIG. 4(b), a case where the lean vehicle 1 has a trail length TL of 0 or a negative value will be described. When attitude control is not executed by the control device 9, when the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning to the right, the rider steers the steering unit 13 to the right of the vehicle. , the body frame 5 is tilted to the right of the vehicle. After that, the turning radius of the lean vehicle 1 becomes smaller. Further, when the balance control is not executed by the control device 9, when the rider steers the steering unit 13 to reduce the turning radius of the lean vehicle 1 turning left, the rider steers the steering unit 13 to the left of the vehicle. Then, the body frame 5 is tilted to the left of the vehicle. After that, the turning radius of the lean vehicle 1 becomes smaller. In other words, when the lean vehicle 1 is turning, the rider applies a rider steering torque T in the same direction as the turning direction among the left and right directions of the vehicle, so that the lean angle φ changes in the same direction as the rider steering torque T in the left and right directions of the vehicle. Therefore, the lean vehicle 1 leans more. As a result, the traveling direction of the lean vehicle 1 changes in the same direction as the rider steering torque T in the left-right direction of the vehicle. Therefore, as shown in FIG. 4(b), when the trail length TL of the lean vehicle 1 is 0 or a negative value and the rider decreases the turning radius of the lean vehicle 1, the target steering angle δg is , the direction of change from the steering angle δ when the rider steering torque T is applied is the same as the direction of the rider steering torque T. After the rider applies the rider steering torque T to steer in a direction different from the turning direction, the control device 9 sets the target steering angle δg as shown in FIG. 4(b), and the torque applying device 10 applies the drive. By controlling at least one of the torque and the steering torque, the traveling direction of the lean vehicle 1 can be changed so that the turning radius of the lean vehicle 1 becomes smaller. Therefore, the attitude of the lean vehicle 1 can be controlled so as to make the traveling direction of the lean vehicle 1 comply with the rider's intention and to increase responsiveness to the rider's intention to change the traveling direction.
 図2(a)、図3(a)および図4(a)の例に示すトレール長TLが正の値であるリーン車両1は、上述した通り、車体フレーム5は、基本的に、右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜する。一方、極低速でリーン車両1が旋回するときは、車体フレーム5は、右旋回時に車両左方向に傾斜し、左旋回時に車両右方向に傾斜する。つまり、車速Vの全領域の大部分において、旋回中のリーン車両1のリーン角φの車両左右方向と操舵角δの車両左右方向は同じある。一方、車速が極低速の領域において、旋回中のリーン車両1のリーン角φの車両左右方向と操舵角δの車両左右方向は異なる。図2(a)、図3(a)および図4(a)は、リーン角φの車両左右方向と操舵角δの車両左右方向が同じであるような車速Vでリーン車両1が走行回する場合の例であるが、第1実施形態の制御装置9の姿勢制御は、リーン角φの車両左右方向と操舵角δの車両左右方向が異なるような車速が極低速の車速Vでリーン車両1が走行する場合に実行されてもよい。リーン角φの車両左右方向と操舵角δの車両左右方向が異なるような極低速の車速Vは、リーン車両1によって異なるが、例えば0km/hより大きく3~5km/h程度以下である。 As described above, the lean vehicle 1 in which the trail length TL shown in the examples of FIGS. 2(a), 3(a), and 4(a) is a positive value basically rotates to the right. When turning, the vehicle leans to the right, and when turning left, the vehicle leans to the left. On the other hand, when the lean vehicle 1 turns at an extremely low speed, the body frame 5 leans to the left of the vehicle when turning to the right, and leans to the right of the vehicle when turning to the left. That is, in most of the entire range of the vehicle speed V, the vehicle lateral direction of the lean angle φ and the vehicle lateral direction of the steering angle δ of the lean vehicle 1 during turning are the same. On the other hand, in a region where the vehicle speed is extremely low, the vehicle lateral direction of the lean angle φ and the vehicle lateral direction of the steering angle δ of the lean vehicle 1 that is turning are different. 2(a), 3(a), and 4(a) show that the lean vehicle 1 is traveling at a vehicle speed V such that the vehicle lateral direction at the lean angle φ is the same as the vehicle lateral direction at the steering angle δ. As an example, the attitude control of the control device 9 of the first embodiment is performed when the lean vehicle 1 is at an extremely low vehicle speed V such that the vehicle lateral direction of the lean angle φ is different from the vehicle lateral direction of the steering angle δ. may be executed when the vehicle is running. The extremely low vehicle speed V at which the left-right direction of the vehicle at the lean angle φ is different from the left-right direction of the vehicle at the steering angle δ varies depending on the lean vehicle 1, but is, for example, greater than 0 km/h and less than about 3 to 5 km/h.
 なお、本発明の第1実施形態のリーン車両1において、制御装置9が、目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御する姿勢制御を行う際に、ライダーによる駆動トルクおよびライダー操舵トルクの少なくともいずれかの入力を受け付けるようにしてもよいし、受け付けないようにしてもよい。制御装置9が姿勢制御を行う際に、ライダーによる駆動トルクおよびライダー操舵トルクの少なくともいずれかの入力を受け付ける場合は、ライダーによる駆動トルクおよびライダー操舵トルクの少なくともいずれかの値に応じて、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御する値を調整する。また、本発明の第1実施形態のリーン車両1において、制御装置9が姿勢制御を行う際に、ライダー操舵トルクを検出した直後に、目標操舵角δgを設定して、トルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御するようにしてもよい。例えば、ライダーがリーン車両1に対して逆操舵を行っているときに、リーン車両1の操舵角δが目標操舵角δgになるようにトルク付与装置10が付与する駆動トルクおよび操舵トルクの少なくともいずれかを制御するようにしてもよい。 In the lean vehicle 1 according to the first embodiment of the present invention, the control device 9 performs attitude control in which the target steering angle δg is set and at least one of the driving torque and the steering torque applied by the torque applying device 10 is controlled. When performing this, input of at least one of driving torque and rider steering torque from the rider may be accepted, or may not be accepted. When the control device 9 performs attitude control and receives input of at least one of the rider's driving torque and rider steering torque, the control device 9 applies torque according to the value of at least one of the rider's driving torque and rider steering torque. A value for controlling at least one of the driving torque and the steering torque applied by the device 10 is adjusted. Further, in the lean vehicle 1 according to the first embodiment of the present invention, when the control device 9 performs attitude control, the target steering angle δg is set immediately after detecting the rider steering torque, and the torque applying device 10 applies the target steering angle δg. At least one of the driving torque and the steering torque may be controlled. For example, when the rider reversely steers the lean vehicle 1, at least one of the driving torque and the steering torque is applied by the torque applying device 10 so that the steering angle δ of the lean vehicle 1 becomes the target steering angle δg. It may also be possible to control the
 <第2実施形態>
 以下、本発明の第2実施形態のリーン車両1について、図1を参照しつつ説明する。第2実施形態のリーン車両1は、第1実施形態のリーン車両1の特徴を全て有する。
<Second embodiment>
Hereinafter, a lean vehicle 1 according to a second embodiment of the present invention will be described with reference to FIG. 1. The lean vehicle 1 of the second embodiment has all the features of the lean vehicle 1 of the first embodiment.
 図1に示すように、リーン車両1は、リーン角関連情報検出装置6、操舵角関連情報検出装置7、車輪速度関連情報検出装置8をさらに備える。リーン角関連情報検出装置6は、車体フレーム5の車両上下方向に対する車両左右方向の傾斜角であるリーン角φに関連する情報を検出する。操舵角関連情報検出装置7は、いずれか1つの前輪3の操舵軸線X2回りの回転角度である操舵角δに関連する情報を検出する。車輪速度関連情報検出装置8は、いずれか1つの車輪2の車軸線X1回りの回転速度である車輪速度Sに関連する情報を検出する。 As shown in FIG. 1, the lean vehicle 1 further includes a lean angle related information detection device 6, a steering angle related information detection device 7, and a wheel speed related information detection device 8. The lean angle related information detection device 6 detects information related to the lean angle φ, which is the inclination angle of the vehicle body frame 5 in the vehicle lateral direction with respect to the vehicle vertical direction. The steering angle related information detection device 7 detects information related to the steering angle δ, which is the rotation angle of any one front wheel 3 about the steering axis X2. The wheel speed related information detection device 8 detects information related to the wheel speed S, which is the rotational speed of any one wheel 2 around the axle axis X1.
 制御装置9は、操舵角δが目標操舵角δgになるようにしつつ、リーン車両1のロール方向の姿勢の変化が抑制されるように、姿勢制御を実施する。制御装置9は、リーン角φと操舵角δと車速Vの値の組み合わせが、操舵角δが目標操舵角δgになり、且つ、リーン車両1のロール方向の姿勢の変化が抑制される状態を示す値の組み合わせである状態となるように、姿勢制御を実行する。さらに、この姿勢制御では、リーン車両1のロール方向の姿勢の変化が抑制されるリーン角と操舵角と車速の値の組み合わせにおいて、少なくともライダー操舵トルクTに基づいて設定された目標操舵角δgの値に対応するリーン角と車速の値の組み合わせになるように、リーン角に関連する情報と操舵角に関連する情報と回転速度に関連する情報に基づいて、トルク付与装置10の駆動トルクおよび操舵トルクの少なくともいずれかを制御する。制御装置9は、リーン車両1のロール方向の姿勢の変化が抑制される状態となるように制御するための、リーン角φと操舵角δと車速Vの値の組み合わせに関する情報をあらかじめ記憶していてよい。この場合、制御装置9は、記憶されたリーン角φと操舵角δと車速Vの値の組み合わせに関する情報に基づいて、姿勢制御を実行してよい。このように構成されることで、リーン車両1のロール方向の姿勢の変化が抑制されるように、制御装置9がリーン車両1の姿勢制御を実行している場合であっても、リーン車両1のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 The control device 9 performs attitude control so that the steering angle δ becomes the target steering angle δg, and the change in attitude of the lean vehicle 1 in the roll direction is suppressed. The control device 9 determines a state in which the combination of the values of the lean angle φ, the steering angle δ, and the vehicle speed V is such that the steering angle δ becomes the target steering angle δg and a change in the attitude of the lean vehicle 1 in the roll direction is suppressed. Attitude control is executed so that the state is a combination of the indicated values. Furthermore, in this attitude control, at least the target steering angle δg set based on the rider steering torque T is adjusted in a combination of lean angle, steering angle, and vehicle speed that suppresses changes in the attitude of the lean vehicle 1 in the roll direction. Based on the information related to the lean angle, the information related to the steering angle, and the information related to the rotational speed, the drive torque and steering of the torque applying device 10 are adjusted so that the combination of the values of the lean angle and the vehicle speed corresponds to the values. Control at least one of the torques. The control device 9 stores in advance information regarding the combination of the values of the lean angle φ, the steering angle δ, and the vehicle speed V for controlling the lean vehicle 1 so that the change in attitude in the roll direction is suppressed. It's fine. In this case, the control device 9 may execute the attitude control based on the stored information regarding the combination of the values of the lean angle φ, the steering angle δ, and the vehicle speed V. With this configuration, even when the control device 9 executes posture control of the lean vehicle 1, the change in the posture of the lean vehicle 1 in the roll direction is suppressed. It is possible to increase the responsiveness to the rider's intention to change the direction of travel while controlling the posture in the roll direction.
<第3実施形態>
 以下、本発明の第3実施形態のリーン車両1について説明する。第3実施形態のリーン車両1は、第1または第2実施形態のリーン車両1の特徴を全て有する。
<Third embodiment>
A lean vehicle 1 according to a third embodiment of the present invention will be described below. The lean vehicle 1 of the third embodiment has all the features of the lean vehicle 1 of the first or second embodiment.
 第3実施形態のリーン車両1の制御装置9が実行する姿勢制御は、少なくとも、第1姿勢制御と、第2姿勢制御とを含む。第1姿勢制御では、制御装置9は、操舵角δが、ライダー操舵トルク検出装置14で検出されたライダー操舵トルクTに関する情報に少なくとも基づいて設定された目標操舵角δgになるように、トルク付与装置10の駆動トルクおよび操舵トルクの少なくともいずれかを制御する。第2姿勢制御では、制御装置9は、リーン角φが、ライダー操舵トルク検出装置14で検出されたライダー操舵トルクTに関連する情報に少なくとも基づいて設定された目標リーン角φgになるように、トルク付与装置10の駆動トルクおよび操舵トルクの少なくともいずれかを制御する。これにより、制御装置9は、リーン車両1の走行状態に応じて、第1姿勢制御と第2姿勢制御を切り替えることができる。例えば、リーン車両1のリーン角φより操舵角δが変化しやすい低速走行状態では、制御装置9が、操舵角δがライダー操舵トルクTに基づいて設定された目標操舵角δgになるように第1姿勢制御を実行することで、リーン車両1の操舵角δが比較的大きく調整されて、リーン車両1のロール方向の姿勢が制御される。一方、リーン車両1の操舵角δよりリーン角φが変化しやすい高速走行状態では、制御装置9が、ライダー操舵トルクTに基づいて設定された目標リーン角φgになるように第2姿勢制御を実行することで、リーン車両1のリーン角φが比較的大きく調整されて、リーン車両1のロール方向の姿勢が制御される。また、制御装置9が、目標操舵角δgが目標リーン角φgよりも大きいときに、第1姿勢制御を実行し、目標操舵角δgが目標リーン角φgと同じか小さいときに、第2姿勢制御を実行するにしてもよい。なお、この場合において、第1姿勢制御と第2姿勢制御とが切り替えられる車速は、例えば、10km/h程度である。これにより、リーン車両1の走行状態に応じて、リーン車両1のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 The attitude control executed by the control device 9 of the lean vehicle 1 of the third embodiment includes at least first attitude control and second attitude control. In the first attitude control, the control device 9 applies torque so that the steering angle δ becomes a target steering angle δg set based at least on information regarding the rider steering torque T detected by the rider steering torque detection device 14. At least one of the driving torque and steering torque of the device 10 is controlled. In the second attitude control, the control device 9 controls the lean angle φ so that it becomes the target lean angle φg set based on at least information related to the rider steering torque T detected by the rider steering torque detection device 14. At least one of the driving torque and steering torque of the torque applying device 10 is controlled. Thereby, the control device 9 can switch between the first attitude control and the second attitude control depending on the running state of the lean vehicle 1. For example, in a low-speed running state where the steering angle δ is more likely to change than the lean angle φ of the lean vehicle 1, the control device 9 adjusts the steering angle δ so that it becomes the target steering angle δg set based on the rider steering torque T. By executing the 1 attitude control, the steering angle δ of the lean vehicle 1 is adjusted to a relatively large value, and the attitude of the lean vehicle 1 in the roll direction is controlled. On the other hand, in a high-speed running state where the lean angle φ is more likely to change than the steering angle δ of the lean vehicle 1, the control device 9 performs the second posture control so that the target lean angle φg is set based on the rider steering torque T. By executing this, the lean angle φ of the lean vehicle 1 is adjusted to a relatively large value, and the attitude of the lean vehicle 1 in the roll direction is controlled. Further, the control device 9 executes the first attitude control when the target steering angle δg is larger than the target lean angle φg, and executes the second attitude control when the target steering angle δg is the same as or smaller than the target lean angle φg. You may also execute In this case, the vehicle speed at which the first attitude control and the second attitude control are switched is, for example, about 10 km/h. Thereby, the posture of the lean vehicle 1 in the roll direction can be controlled in accordance with the running state of the lean vehicle 1, and the responsiveness to the rider's intention to change the traveling direction can be increased.
<第4実施形態>
 以下、本発明の第4実施形態のリーン車両1について説明する。第4実施形態のリーン車両1は、第1~第3実施形態のリーン車両1のいずれかの特徴を全て有する。
<Fourth embodiment>
A lean vehicle 1 according to a fourth embodiment of the present invention will be described below. The lean vehicle 1 of the fourth embodiment has all the features of any of the lean vehicles 1 of the first to third embodiments.
 第4実施形態のリーン車両1の制御装置9は、トルク付与装置10が付与する駆動トルクおよび操舵トルクのうちの、少なくとも操舵トルクを制御するように構成される。つまり、制御装置9は、操舵トルクおよび駆動トルクの両方を制御するように構成されてよい。または、制御装置9は、操舵トルクのみを制御するように構成されてもよい。具体的には、リーン車両1が操舵トルク付与装置12のみを有している場合、制御装置9は、操舵トルクのみを制御するように構成される。リーン車両1が駆動トルク付与装置11および操舵トルク付与装置12を有している場合、制御装置9は、様々な条件に応じて、操舵トルクのみ、または駆動トルクおよび操舵トルクを制御するように構成される。制御装置9は、操舵角δがライダー操舵トルクTに基づいて設定される目標操舵角δgになるように、駆動トルクおよび操舵トルクのうちの、少なくとも操舵トルクを制御する姿勢制御を実行するように構成される。これにより、制御装置9の姿勢制御において、駆動トルクのみを制御する場合に比べて、操舵角δが目標操舵角δgになるようにしやすい。そのため、リーン車両1のロール方向の姿勢を制御しつつ、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 The control device 9 of the lean vehicle 1 of the fourth embodiment is configured to control at least the steering torque of the driving torque and the steering torque applied by the torque applying device 10. That is, the control device 9 may be configured to control both the steering torque and the drive torque. Alternatively, the control device 9 may be configured to control only the steering torque. Specifically, when the lean vehicle 1 has only the steering torque applying device 12, the control device 9 is configured to control only the steering torque. When the lean vehicle 1 has the driving torque applying device 11 and the steering torque applying device 12, the control device 9 is configured to control only the steering torque or the driving torque and the steering torque depending on various conditions. be done. The control device 9 executes attitude control to control at least the steering torque of the driving torque and the steering torque so that the steering angle δ becomes a target steering angle δg set based on the rider steering torque T. configured. Thereby, in the attitude control of the control device 9, it is easier to make the steering angle δ equal to the target steering angle δg than when only the drive torque is controlled. Therefore, while controlling the attitude of the lean vehicle 1 in the roll direction, it is possible to increase the responsiveness to the rider's intention to change the traveling direction.
<第5実施形態>
 以下、本発明の第5実施形態のリーン車両1について説明する。第5実施形態のリーン車両1は、第1~第4実施形態のいずれかのリーン車両1の特徴を全て有する。
<Fifth embodiment>
A lean vehicle 1 according to a fifth embodiment of the present invention will be described below. The lean vehicle 1 of the fifth embodiment has all the features of the lean vehicle 1 of any of the first to fourth embodiments.
 制御装置9は、リーン車両1の少なくとも低速走行状態で、姿勢制御を実行するように構成される。リーン車両1の低速走行状態は、リーン車両1が0km/hより大きく10km/h以下の車速で走行している状態である。車速が10km/h以下のリーン車両1の低速走行状態では、車速が10km/hより大きい走行状態と比較して、リーン車両1の姿勢が変化しやすい。つまり、リーン車両1の姿勢が変化しやすい低速走行状態でリーン車両1が走行している場合に、ライダーの進行方向変更の意思に対する応答性を高くすることができる。 The control device 9 is configured to perform attitude control when the lean vehicle 1 is running at least at a low speed. The low-speed running state of the lean vehicle 1 is a state in which the lean vehicle 1 is running at a vehicle speed greater than 0 km/h and less than or equal to 10 km/h. When the lean vehicle 1 is running at a low speed of 10 km/h or less, the attitude of the lean vehicle 1 changes more easily than when the vehicle speed is higher than 10 km/h. In other words, when the lean vehicle 1 is running at a low speed where the posture of the lean vehicle 1 is likely to change, responsiveness to the rider's intention to change the traveling direction can be increased.
<第6実施形態>
 以下、本発明の第6実施形態のリーン車両1について、図1および図5を参照しつつ説明する。第6実施形態のリーン車両1は、第1~第5実施形態のいずれかのリーン車両1の特徴を全て有する。
<Sixth embodiment>
A lean vehicle 1 according to a sixth embodiment of the present invention will be described below with reference to FIGS. 1 and 5. The lean vehicle 1 of the sixth embodiment has all the features of the lean vehicle 1 of any of the first to fifth embodiments.
 第6実施形態のリーン車両1のステアリングユニット13は、接続部28とハンドルユニット29とを含む。ハンドルユニット29は、ライダーに操舵される。図1および図5の例では、ハンドルユニット29は、ライダーの右手で握られる部分と左手で握られる部分とが一体となったバーハンドルを有するものであるが、ハンドルユニット29は、ライダーの右手で握られる部分と左手で握られる部分とが別々の部材であるセパレートハンドルを有するものであってもよい。 The steering unit 13 of the lean vehicle 1 of the sixth embodiment includes a connecting portion 28 and a handle unit 29. The handle unit 29 is steered by the rider. In the examples shown in FIGS. 1 and 5, the handle unit 29 has a bar handle in which a part to be gripped by the rider's right hand and a part to be gripped by the left hand are integrated. The handle may have separate handles in which the part to be gripped by the left hand and the part to be gripped by the left hand are separate members.
 接続部28は、ハンドルユニット29と少なくとも1つの前輪3とを接続する。接続部28は、ハンドルユニット29に連結されるステアリングシャフト31を有する。ステアリングシャフト31は、車体フレーム5に、ハンドル軸線X3回りに360°未満の回角度範囲で回転可能に支持されている。これにより、接続部28は、ハンドルユニット29がハンドル軸線X3回りに回転可能となるように車体フレーム5に支持される。ここで、図1および図5の例は、リーン車両1が前輪3を1つ備えており、接続部28は、1つの前輪3が接続部28と一体的に、車体フレーム5に対して、操舵軸線X2回りに回転可能に構成されている。それにより、ハンドル軸線X3が操舵軸線X2と一致している。但し、第6実施形態のリーン車両1が複数の前輪3を備えており、接続部28は、各前輪3が接続部28の一部分と一体的に、接続部28の他の部分に対して、前輪3ごとの操舵軸線X2回りに回転可能に構成されていてもよい。この場合、ハンドル軸線X3がいずれの前輪3の操舵軸線X2とも一致しない。また、図5では図示を省略しているが、操舵トルク付与装置12は、例えば、ステアリングシャフト32にハンドル軸線X3回りのトルクを付与することによって、前輪3に操舵軸線X2回りの操舵トルクを付与するように構成される。  The connecting portion 28 connects the handle unit 29 and at least one front wheel 3. The connecting portion 28 has a steering shaft 31 connected to the handle unit 29. The steering shaft 31 is supported by the vehicle body frame 5 so as to be rotatable around the steering wheel axis X3 within a rotation angle range of less than 360 degrees. Thereby, the connecting portion 28 is supported by the vehicle body frame 5 so that the handle unit 29 can rotate around the handle axis X3. Here, in the example of FIGS. 1 and 5, the lean vehicle 1 includes one front wheel 3, and the connection portion 28 is such that one front wheel 3 is integrally connected to the vehicle body frame 5. It is configured to be rotatable around the steering axis X2. Thereby, the handle axis X3 coincides with the steering axis X2. However, the lean vehicle 1 of the sixth embodiment includes a plurality of front wheels 3, and the connection portion 28 is configured such that each front wheel 3 is integrally connected to a portion of the connection portion 28 and other portions of the connection portion 28. Each front wheel 3 may be configured to be rotatable around the steering axis X2. In this case, the handle axis X3 does not coincide with the steering axis X2 of any of the front wheels 3. Although not shown in FIG. 5, the steering torque applying device 12 applies a steering torque around the steering axis X2 to the front wheels 3, for example, by applying torque around the steering axis X3 to the steering shaft 32. configured to do so.​
 そして、接続部28は、ハンドルユニット29がハンドル軸線X3回りに回転したときに少なくとも1つの前輪3が操舵軸線X2回りに回転し、且つ、少なくとも1つの前輪3が操舵軸線X2回りに回転したときにハンドルユニット29がハンドル軸線X3回りに回転するように、ハンドルユニット29と少なくとも1つの前輪3とを接続するように構成されている。少なくとも1つの前輪3のうちいずれかの前輪3の操舵軸線X2回りの回転角度は、ハンドルユニット29のハンドル軸線X3回りの回転角度以上である。図1および図5の例のように、リーン車両1が1つの前輪3を備えており、ハンドル軸線X3が操舵軸線X2と一致している場合には、ハンドルユニット29のハンドル軸線X3回りの回転角度と、1つの前輪3の操舵軸線X2回りの回転角度とは同じまたはほぼ同じである。第2実施形態のリーン車両1が2つの前輪3を備えており、ハンドル軸線X3がいずれの前輪3の操舵軸線X2とも一致しない場合には、ハンドルユニット29のハンドル軸線X3回りの回転角度は、2つの前輪3の操舵軸線X2回りの回転角度の間の回転角度でもよい。すなわち、接続部28は、前輪3の操舵軸線X2回りの回転角度を、ハンドルユニット29のハンドル軸線X3回りの回転角度よりも小さくする減速機構を含んでいない。 The connecting portion 28 is configured such that when the handle unit 29 rotates around the steering axis X3, at least one front wheel 3 rotates around the steering axis X2, and when at least one front wheel 3 rotates around the steering axis X2, The handle unit 29 is connected to at least one front wheel 3 so that the handle unit 29 rotates about the handle axis X3. The rotation angle of one of the at least one front wheels 3 about the steering axis X2 is greater than or equal to the rotation angle of the handle unit 29 about the steering axis X3. As in the example of FIGS. 1 and 5, when the lean vehicle 1 has one front wheel 3 and the steering wheel axis X3 coincides with the steering axis X2, the rotation of the steering wheel unit 29 around the steering wheel axis X3 The angle and the rotation angle of one front wheel 3 about the steering axis X2 are the same or almost the same. When the lean vehicle 1 of the second embodiment includes two front wheels 3 and the steering wheel axis X3 does not coincide with the steering axis X2 of any of the front wheels 3, the rotation angle of the steering wheel unit 29 around the steering wheel axis X3 is The rotation angle may be between the rotation angles of the two front wheels 3 about the steering axis X2. That is, the connecting portion 28 does not include a speed reduction mechanism that makes the rotation angle of the front wheel 3 about the steering axis X2 smaller than the rotation angle of the handle unit 29 about the steering axis X3.
 <第6実施形態の変更例> 
 第6実施形態のリーン車両1において、少なくとも1つの前輪3の操舵軸線X2回りの回転角度が、ハンドルユニット29のハンドル軸線X3回りの回転角度よりも小さく大きく、且つ、ハンドルユニット29の回転角度範囲が360°未満以上であってもよい。
 あるいは、第6実施形態のリーン車両1において、少なくとも1つの前輪3のうちいずれかの前輪3の操舵軸線X2回りの回転角度が、ハンドルユニット29のハンドル軸線X3回りの回転角度以上であり、且つ、ハンドルユニット29の回転角度範囲が360°以上であってもよい。
 あるいは、第6実施形態のリーン車両1において、少なくとも1つの前輪3の操舵軸線X2回りの回転角度が、ハンドルユニット29のハンドル軸線X3回りの回転角度よりも小さく、且つ、ハンドルユニット29の回転角度範囲が360°以上未満であってもよい。
<Example of modification of the sixth embodiment>
In the lean vehicle 1 of the sixth embodiment, the rotation angle of at least one front wheel 3 about the steering axis X2 is smaller and larger than the rotation angle of the handle unit 29 about the steering axis X3, and the rotation angle range of the handle unit 29 may be less than 360° or more.
Alternatively, in the lean vehicle 1 of the sixth embodiment, the rotation angle of any one of the at least one front wheel 3 about the steering axis X2 is greater than or equal to the rotation angle of the handle unit 29 about the steering axis X3, and , the rotation angle range of the handle unit 29 may be 360° or more.
Alternatively, in the lean vehicle 1 of the sixth embodiment, the rotation angle of at least one front wheel 3 about the steering axis X2 is smaller than the rotation angle of the handle unit 29 about the steering axis X3, and the rotation angle of the handle unit 29 is The range may be greater than or equal to 360° and less than 360°.
1:リーン車両、2:車輪、3:少なくとも1つの前輪、4:少なくとも1つの後輪、5:車体フレーム、6:リーン角関連情報検出装置、7:操舵角関連情報検出装置、8:車輪速度関連情報検出装置、9:制御装置、10:トルク付与装置、11:駆動トルク付与装置、12:操舵トルク付与装置、13:ステアリングユニット、14:ライダー操舵トルク検出装置、15:操舵アクチュエータ、28:接続部、29:ハンドルユニット、X2:操舵軸線、X3:ハンドル軸線 1: lean vehicle, 2: wheels, 3: at least one front wheel, 4: at least one rear wheel, 5: body frame, 6: lean angle related information detection device, 7: steering angle related information detection device, 8: wheels Speed-related information detection device, 9: Control device, 10: Torque application device, 11: Drive torque application device, 12: Steering torque application device, 13: Steering unit, 14: Rider steering torque detection device, 15: Steering actuator, 28 : Connection part, 29: Handle unit, X2: Steering axis, X3: Handle axis

Claims (9)

  1.  少なくとも1つの前輪および前記少なくとも1つの前輪よりも車両前後方向における後方向に配置される少なくとも1つの後輪を含む複数の車輪と、
     前記複数の車輪を車軸線回りに回転可能に支持し、前記少なくとも1つの前輪を操舵軸線回りに回転可能に支持し、右旋回時に車両上下方向に対して車両右方向に傾斜し、左旋回時に前記車両上下方向に対して車両左方向に傾斜する車体フレームと、
     ライダーが操舵可能であり、前記ライダーの操舵によるトルクであるライダー操舵トルクが入力されて前記少なくとも1つの前輪を前記操舵軸線回りに回転させるステアリングユニットと、
     前記リーン車両のロール方向の姿勢を制御する制御装置と、
     を備えるリーン車両であって、
     前記ステアリングユニットに入力された前記ライダー操舵トルクに関連する情報を検出するライダー操舵トルク検出装置と、
     前記少なくとも1つの前輪および前記少なくとも1つの後輪の少なくとも一方に、前記車軸線回りの正および負の駆動トルクを付与するように構成された駆動トルク付与装置、および、前記少なくとも1つの前輪に、前記ライダー操舵トルクと操舵アクチュエータによって生成されたアクチュエータ操舵トルクとの合わせたトルクである前記操舵軸線回りの操舵トルクを付与するように構成された操舵トルク付与装置の少なくともいずれかを含むトルク付与装置と、
    を備え、
     前記制御装置は、
     前記トルク付与装置が付与する前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御するように構成され、
     前記少なくとも1つの前輪の前記操舵軸線回りの回転角度である操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御することで、前記リーン車両のロール方向の姿勢を制御する姿勢制御を実行することを特徴とするリーン車両。
    a plurality of wheels including at least one front wheel and at least one rear wheel disposed further rearward in the longitudinal direction of the vehicle than the at least one front wheel;
    The plurality of wheels are rotatably supported around an axle axis, the at least one front wheel is rotatably supported around a steering axis, and the vehicle is tilted to the right with respect to the vertical direction of the vehicle when turning to the right, and when turning to the left. a vehicle body frame that tilts to the left of the vehicle with respect to the vertical direction of the vehicle;
    a steering unit that can be steered by a rider, receives rider steering torque that is torque generated by the rider's steering, and rotates the at least one front wheel about the steering axis;
    a control device that controls a posture of the lean vehicle in a roll direction;
    A lean vehicle comprising:
    a rider steering torque detection device that detects information related to the rider steering torque input to the steering unit;
    a drive torque applying device configured to apply positive and negative drive torques about the axle line to at least one of the at least one front wheel and the at least one rear wheel, and to the at least one front wheel; a torque applying device including at least one of a steering torque applying device configured to apply a steering torque around the steering axis that is a combined torque of the rider steering torque and the actuator steering torque generated by the steering actuator; ,
    Equipped with
    The control device includes:
    configured to control at least one of the driving torque and the steering torque applied by the torque applying device,
    A steering angle that is a rotation angle of the at least one front wheel about the steering axis is a target steering angle set based at least on information related to the rider steering torque detected by the rider steering torque detection device. The lean vehicle is characterized in that attitude control is executed to control the attitude of the lean vehicle in a roll direction by controlling at least one of the driving torque and the steering torque of the torque applying device.
  2.  前記少なくとも1つの前輪の前記操舵軸線と、前記少なくとも1つの前輪の走行面との交点が、前記少なくとも1つの前輪の接地点より車両前方向に位置する場合、前記制御装置は、前記ライダー操舵トルクが付与された時の操舵角である実操舵角から前記目標操舵角まで変化する前記操舵軸線回りの回転方向が、前記ライダー操舵トルクの前記操舵軸線回りの回転方向と逆の方向になるように前記目標操舵角を設定し、
     前記少なくとも1つの前輪の前記操舵軸線と、前記少なくとも1つの前輪の走行面との交点が、前記少なくとも1つの前輪の接地点と同じまたは前記少なくとも1つの前輪の接地点より車両後方向に位置する場合、前記制御装置は、前記実操舵角から前記目標操舵角まで変化する前記操舵軸線回りの回転方向が、前記ライダー操舵トルクの前記操舵軸線回りの回転方向と同じ方向になるように前記目標操舵角を設定することを特徴とする請求項1に記載するリーン車両。
    When the intersection of the steering axis of the at least one front wheel and the running surface of the at least one front wheel is located in the vehicle forward direction from the grounding point of the at least one front wheel, the control device controls the rider steering torque. The direction of rotation around the steering axis that changes from the actual steering angle, which is the steering angle when the steering angle is applied, to the target steering angle is opposite to the direction of rotation around the steering axis of the rider steering torque. setting the target steering angle;
    The intersection of the steering axis of the at least one front wheel and the running surface of the at least one front wheel is located at the same point as the grounding point of the at least one front wheel or located in a vehicle rearward direction from the grounding point of the at least one front wheel. In this case, the control device controls the target steering so that the direction of rotation around the steering axis in which the actual steering angle changes from the actual steering angle to the target steering angle is the same as the direction of rotation around the steering axis of the rider steering torque. The lean vehicle according to claim 1, characterized in that a corner is set.
  3.  前記少なくとも1つの前輪の前記操舵軸線回りの回転角度である操舵角に関連する情報を検出する操舵角関連情報検出装置と、
     前記少なくとも1つの車輪の前記車軸線回りの回転速度である車輪速度に関連する情報を検出する車輪速度関連情報検出装置と、
    を備え、
     前記制御装置は、
     前記少なくとも1つの前輪の前記操舵角が、前記ライダー操舵トルクに関連する情報に加えて、前記ライダー操舵トルクが付与された時の車速である実車速に関連する情報、および、前記ライダー操舵トルクが付与された時の操舵角である実操舵角に関連する情報の少なくともいずれかに基づいて設定された目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御することを特徴とする請求項1または2に記載のリーン車両。
    a steering angle related information detection device that detects information related to a steering angle that is a rotation angle of the at least one front wheel about the steering axis;
    a wheel speed related information detection device that detects information related to a wheel speed that is a rotational speed of the at least one wheel around the axle axis;
    Equipped with
    The control device includes:
    The steering angle of the at least one front wheel includes, in addition to information related to the rider steering torque, information related to an actual vehicle speed that is a vehicle speed when the rider steering torque was applied, and information related to the rider steering torque. At least one of the driving torque and the steering torque of the torque applying device so that the target steering angle is set based on at least one of information related to the actual steering angle, which is the steering angle at the time of application. The lean vehicle according to claim 1 or 2, wherein the lean vehicle controls:
  4.  前記少なくとも1つの前輪の前記操舵軸線回りの回転角度である操舵角に関連する情報を検出する操舵角関連情報検出装置と、
     前記車体フレームの前記車両上下方向に対する車両左右方向の傾斜角であるリーン角に関連する情報を検出するリーン角関連情報検出装置と、
     前記少なくとも1つの車輪の前記車軸線回りの回転速度である車輪速度に関連する情報を検出する車輪速度関連情報検出装置と、
    を備え、
     前記制御装置は、
     前記姿勢制御において、前記少なくとも1つの前輪の前記操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された前記目標操舵角になるようにしつつ、前記リーン車両のロール方向の姿勢の変化が抑制されるように、前記操舵角関連情報検出装置によって検出された前記操舵角に関連する情報と、前記リーン角関連情報検出装置によって検出された前記リーン角に関連する情報と、前記車輪回転関連情報検出装置によって検出された前記回転速度に関連する情報とに基づいて、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御することを特徴とする請求項1~3のいずれか一項に記載のリーン車両。
    a steering angle related information detection device that detects information related to a steering angle that is a rotation angle of the at least one front wheel about the steering axis;
    a lean angle related information detection device that detects information related to a lean angle, which is an inclination angle of the vehicle body frame in a vehicle lateral direction with respect to the vehicle vertical direction;
    a wheel speed related information detection device that detects information related to a wheel speed that is a rotational speed of the at least one wheel around the axle axis;
    Equipped with
    The control device includes:
    In the attitude control, the steering angle of the at least one front wheel is set to the target steering angle set based at least on information related to the rider steering torque detected by the rider steering torque detection device. , the information related to the steering angle detected by the steering angle related information detection device and the information detected by the lean angle related information detection device are configured to suppress changes in the attitude of the lean vehicle in the roll direction. At least one of the driving torque and the steering torque of the torque applying device is controlled based on information related to the lean angle and information related to the rotation speed detected by the wheel rotation related information detection device. The lean vehicle according to any one of claims 1 to 3, characterized in that:
  5.  前記制御装置が実行する前記姿勢制御は、
     前記操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関する情報に少なくとも基づいて設定された目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御する第1姿勢制御と、
     前記車体フレームの前記車両上下方向に対する車両左右方向の傾斜角であるリーン角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された目標リーン角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクの少なくともいずれかを制御する第2姿勢制御と、
     を少なくとも含むことを特徴とする請求項1~4のいずれか一項に記載のリーン車両。
    The attitude control executed by the control device includes:
    at least the drive torque and the steering torque of the torque applying device so that the steering angle becomes a target steering angle set based at least on information regarding the rider steering torque detected by the rider steering torque detection device. a first attitude control that controls either;
    The lean angle, which is the inclination angle of the vehicle body frame in the vehicle lateral direction with respect to the vehicle vertical direction, is a target lean angle set based on at least information related to the rider steering torque detected by the rider steering torque detection device. a second attitude control for controlling at least one of the driving torque and the steering torque of the torque applying device;
    The lean vehicle according to any one of claims 1 to 4, characterized in that the lean vehicle comprises at least the following.
  6.  前記トルク付与装置は、
     前記駆動トルク付与装置、および、前記操舵トルク付与装置のうちの少なくとも前記操舵トルク付与装置を含み、
     前記制御装置は、
     前記トルク付与装置が付与する前記駆動トルクおよび前記操舵トルクのうちの少なくとも前記操舵トルクを制御するように構成され、
     前記姿勢制御において、前記少なくとも1つの前輪の前記操舵角が、前記ライダー操舵トルク検出装置で検出された前記ライダー操舵トルクに関連する情報に少なくとも基づいて設定された前記目標操舵角になるように、前記トルク付与装置の前記駆動トルクおよび前記操舵トルクのうちの少なくとも前記操舵トルクを制御することを特徴とする請求項1~5のいずれか一項に記載のリーン車両。
    The torque applying device is
    including at least the steering torque applying device of the driving torque applying device and the steering torque applying device,
    The control device includes:
    configured to control at least the steering torque of the driving torque and the steering torque applied by the torque applying device,
    In the attitude control, the steering angle of the at least one front wheel is set to the target steering angle set based at least on information related to the rider steering torque detected by the rider steering torque detection device; The lean vehicle according to any one of claims 1 to 5, wherein at least the steering torque of the driving torque and the steering torque of the torque applying device is controlled.
  7.  前記制御装置は、
     少なくとも前記車速が0km/hより大きく10km/h以下で走行しているときに、前記姿勢制御を実行するように構成されることを特徴とする請求項1~6のいずれか一項に記載のリーン車両。
    The control device includes:
    7. The attitude control is configured to be executed at least when the vehicle speed is greater than 0 km/h and less than or equal to 10 km/h. lean vehicle.
  8.  前記ステアリングユニットは、ライダーに操舵されるハンドルユニットと、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を含み、
     前記接続部は、前記ハンドルユニットがハンドル軸線回りに回転可能となるように前記車体フレームに支持され、前記ハンドルユニットが前記ハンドル軸線回りに回転したときに前記少なくとも1つの前輪が前記操舵軸線回りに回転し、且つ、前記少なくとも1つの前輪が前記操舵軸線回りに回転したときに前記ハンドルユニットが前記ハンドル軸線回りに回転し、且つ、前記少なくとも1つの前輪のうちいずれかの前輪の前記操舵軸線回りの回転角度が、前記ハンドルユニットの前記ハンドル軸線回りの回転角度以上であるように、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を備えていることを特徴とする請求項1~7のいずれか一項に記載のリーン車両。
    The steering unit includes a handle unit that is steered by a rider, and a connection part that connects the handle unit and the at least one front wheel,
    The connecting portion is supported by the vehicle body frame so that the handle unit can rotate around the steering axis, and when the handle unit rotates around the steering axis, the at least one front wheel rotates around the steering axis. and the handle unit rotates around the steering axis when the at least one front wheel rotates around the steering axis, and the steering wheel unit rotates around the steering axis of any one of the at least one front wheel. A connecting portion that connects the handle unit and the at least one front wheel such that a rotation angle of the handle unit about the handle axis is greater than or equal to a rotation angle of the handle unit around the handle axis. The lean vehicle according to any one of items 1 to 7.
  9.  前記ステアリングユニットは、ライダーに操舵されるハンドルユニットと、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を含み、
     前記接続部は、前記ハンドルユニットがハンドル軸線回りに360°未満の回転角度範囲で回転可能となるよう前記車体フレームに支持され、前記ハンドルユニットが前記ハンドル軸線回りに回転したときに前記少なくとも1つの前輪が前記操舵軸線回りに回転し、且つ、前記少なくとも1つの前輪が前記操舵軸線回りに回転したとき前記ハンドルユニットが前記ハンドル軸線回りに回転するように、前記ハンドルユニットと前記少なくとも1つの前輪とを接続する接続部と、を備えていることを特徴とする請求項1~7のいずれか一項に記載のリーン車両。
    The steering unit includes a handle unit that is steered by a rider, and a connection part that connects the handle unit and the at least one front wheel,
    The connection portion is supported by the vehicle body frame so that the handle unit is rotatable around the handle axis in a rotation angle range of less than 360°, and when the handle unit is rotated around the handle axis, the at least one The handle unit and the at least one front wheel are arranged such that the front wheel rotates about the steering axis, and when the at least one front wheel rotates about the steering axis, the handle unit rotates about the handle axis. The lean vehicle according to any one of claims 1 to 7, further comprising: a connecting portion for connecting the lean vehicle.
PCT/JP2023/031029 2022-08-29 2023-08-28 Leaning vehicle WO2024048534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136128 2022-08-29
JP2022136128 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048534A1 true WO2024048534A1 (en) 2024-03-07

Family

ID=90099934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031029 WO2024048534A1 (en) 2022-08-29 2023-08-28 Leaning vehicle

Country Status (1)

Country Link
WO (1) WO2024048534A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128985A (en) * 2012-12-27 2014-07-10 Honda Motor Co Ltd Moving body
JP2017206170A (en) * 2016-05-19 2017-11-24 ヤマハ発動機株式会社 Rotation assist device, saddle-riding type vehicle, and rotation assist method
JP2021054328A (en) * 2019-09-30 2021-04-08 本田技研工業株式会社 Steering assist device for saddle-riding type vehicle
WO2022059714A1 (en) * 2020-09-17 2022-03-24 ヤマハ発動機株式会社 Two-wheeled vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128985A (en) * 2012-12-27 2014-07-10 Honda Motor Co Ltd Moving body
JP2017206170A (en) * 2016-05-19 2017-11-24 ヤマハ発動機株式会社 Rotation assist device, saddle-riding type vehicle, and rotation assist method
JP2021054328A (en) * 2019-09-30 2021-04-08 本田技研工業株式会社 Steering assist device for saddle-riding type vehicle
WO2022059714A1 (en) * 2020-09-17 2022-03-24 ヤマハ発動機株式会社 Two-wheeled vehicle

Similar Documents

Publication Publication Date Title
JP6476235B2 (en) Steering and control system for tricycles
JP6307695B2 (en) vehicle
JP5405969B2 (en) Motorcycle steering device
US11235834B2 (en) Leaning vehicle
JP6603953B2 (en) vehicle
JP6833667B2 (en) vehicle
WO2022059714A1 (en) Two-wheeled vehicle
JP6898428B2 (en) vehicle
JP6277404B2 (en) Automobile
JP2014069676A (en) Vehicle
JP2019137115A (en) Electric power assist vehicle
WO2020138395A1 (en) Inclining vehicle equipped with steerable front wheel
WO2024048534A1 (en) Leaning vehicle
JP2017178188A (en) vehicle
JP6573239B2 (en) Motorcycle
JP6833666B2 (en) vehicle
WO2024048529A1 (en) Leaning vehicle
JP6748211B2 (en) vehicle
WO2024048532A1 (en) Leaning vehicle
JP6737963B2 (en) Motorcycle
TW202417311A (en) Tilt the vehicle
JP6722916B2 (en) vehicle
WO2016143471A1 (en) Vehicle
WO2024048533A1 (en) Leaning vehicle
WO2023144922A1 (en) Tilting vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860296

Country of ref document: EP

Kind code of ref document: A1