WO2018181366A1 - Boiler system - Google Patents

Boiler system Download PDF

Info

Publication number
WO2018181366A1
WO2018181366A1 PCT/JP2018/012522 JP2018012522W WO2018181366A1 WO 2018181366 A1 WO2018181366 A1 WO 2018181366A1 JP 2018012522 W JP2018012522 W JP 2018012522W WO 2018181366 A1 WO2018181366 A1 WO 2018181366A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
compound
gas
secondary combustion
boiler system
Prior art date
Application number
PCT/JP2018/012522
Other languages
French (fr)
Japanese (ja)
Inventor
竜徳 柴田
阿川 隆一
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to KR1020197019321A priority Critical patent/KR102454609B1/en
Priority to JP2019509916A priority patent/JP7065829B2/en
Priority to MYPI2019005326A priority patent/MY196720A/en
Publication of WO2018181366A1 publication Critical patent/WO2018181366A1/en
Priority to PH12019502105A priority patent/PH12019502105A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/13001Preventing or reducing corrosion in chimneys

Definitions

  • the present invention relates to a boiler system.
  • a boiler system is a boiler system including a furnace that burns fuel, and an exhaust gas passage in which exhaust gas generated in the furnace passes and a tubular member is disposed inside the furnace system.
  • a spraying part for spraying a compound containing Mg is provided in the furnace.
  • the furnace is provided with a spraying section for spraying a compound containing Mg in the furnace.
  • the supply of the compound is not performed in the exhaust gas passage where adhesion of the molten salt to the tubular member occurs but in the furnace upstream of the exhaust gas passage. Therefore, it is possible to convert the molten salt into a compound that hardly adheres to the tubular member before the molten salt adheres to the tubular member.
  • the compound supplied to a furnace contains Mg.
  • the low melting point molten salt adhering to the tubular member of the exhaust gas passage exists as a gas in the combustion gas in the high temperature furnace.
  • the compound containing Mg when the compound containing Mg is sprayed on the furnace by the spraying section, the compound is supplied in a state substantially close to gas in the furnace. Thereby, the chemical reaction between the compound and the molten salt proceeds as well as a reaction between gases.
  • positioned at the exhaust gas flow path of the downstream of a furnace can be suppressed.
  • the furnace is provided with a fuel supply unit that supplies fuel into the furnace, and a gas outlet that discharges combustion gas generated in the furnace, and the spray unit includes a fuel supply unit and a gas outlet.
  • the compound may be sprayed in the area between. In the region upstream of the fuel supply section, since it is a stage before fuel combustion occurs, no molten salt that causes deposits on the tubular member has yet occurred. The temperature of the combustion gas is lowered downstream from the gas outlet. Therefore, the spraying part can favorably advance the chemical reaction between the compound and the molten salt by spraying the compound in the region between the fuel supply part and the gas outlet.
  • a spray part sprays a compound by supplying a compound in a furnace with the pressurized air (pressurized gas) blown toward the inside of a furnace, and spread
  • the position may be controlled.
  • the compound can be sprayed into the furnace in a sufficiently diffused state.
  • the diffusion position of the compound can be easily controlled by adjusting the blown amount of the compressed air.
  • the furnace is provided with a secondary combustion air supply section for supplying secondary combustion air (secondary combustion gas) into the furnace, and the spray section uses the secondary combustion air as the pressure air. Good.
  • secondary combustion air secondary combustion gas
  • various substances contained in the combustion gas are well mixed. Therefore, by spraying the compound together with the secondary combustion air, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
  • the furnace is provided with a secondary combustion air supply part for supplying secondary combustion air (secondary combustion gas) into the furnace, and the spray part is in comparison with the fuel supply part and the gas outlet.
  • secondary combustion air secondary combustion gas
  • various substances contained in the combustion gas are well mixed. Therefore, by providing the spray part near the secondary combustion air supply part, the compound and the molten salt can be reacted in a well-mixed state. Thereby, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
  • the boiler system 100 is an external circulation type (circulating fluidized bed type) circulating fluidized bed boiler.
  • the boiler system 100 includes a fluidized bed furnace 3 having a vertically long cylindrical shape.
  • a fuel supply port 3a for supplying fuel is provided in the middle part of the furnace 3, and a gas outlet 3b for discharging combustion gas is provided in the upper part.
  • the fuel supplied from the fuel charging device 5 to the furnace 3 is supplied into the furnace 3 through the fuel supply port 3a.
  • the fuel may include biomass such as construction waste wood, such as waste tires, waste plastics, and RPF.
  • a cyclone 7 that functions as a solid-gas separator is connected to the gas outlet 3 b of the furnace 3.
  • the discharge port 7a of the cyclone 7 is connected to a downstream gas processing system via a gas line.
  • a return line 9 called a downcomer extends downward from the bottom outlet of the cyclone 7, and the lower end of the return line 9 is connected to the intermediate side surface of the furnace 3.
  • the solid material containing the fuel supplied from the fuel supply port 3a flows by the combustion / flowing air introduced from the lower air supply line 3c, and the fuel flows while the fuel flows, for example, about 800 to 900.
  • Burn at °C. A combustion gas generated in the furnace 3 is introduced into the cyclone 7 with accompanying solid particles.
  • the cyclone 7 separates solid particles and gas by a centrifugal separation action, returns the solid particles separated via the return line 9 to the furnace 3, and removes the combustion gas from which the solid particles have been removed from the discharge port 7 a to the gas line. To the subsequent gas processing system.
  • in-furnace bed material a solid material called “in-furnace bed material” is generated and collected at the bottom, and the bed material is sintered and melted and solidified by the concentration of impurities (low melting point materials, etc.) in the in-furnace bed material, or It is necessary to suppress malfunctions caused by incombustible impurities. For this reason, in the furnace 3, the in-furnace bed material is discharged
  • the gas treatment system is connected to the gas heat exchange device (exhaust gas passage) 13 connected to the discharge port 7a of the cyclone 7 through a gas line, and connected to the discharge port 13a of the gas heat exchange device 13 through the gas line.
  • the dust collector 15 is provided.
  • the gas heat exchanger 13 is provided with a boiler tube 13b that superheats steam so as to cross the exhaust gas flow path. When the high-temperature exhaust gas sent from the cyclone 7 comes into contact with the boiler tube 13b, the heat of the exhaust gas is recovered into the steam in the tube, and the superheated high-temperature steam is used for power generation through the boiler tube (tubular member) 13b. Sent to the turbine.
  • the dust collector 15 removes fine particles such as fly ash that are still accompanying the combustible gas.
  • a bag filter or an electric dust collector is adopted as the dust collector 15.
  • the clean gas discharged from the discharge port 15 a of the dust collector 15 is discharged from the chimney 19 to the outside via the gas line and the ventilator 17.
  • Solid particles generated in the furnace 3 circulate in the circulation system 21 including the furnace 3, the cyclone 7, and the return line 9.
  • the fluid of solid particles is referred to as a heat transfer medium.
  • a heat exchange chamber 20 is formed between the return line 9 and the bottom of the furnace 3.
  • a heat transfer medium is stored in the heat exchange chamber 20.
  • a heat exchanger 22 can be provided in the heat exchange chamber 20.
  • the furnace 3 is provided with a spray unit 30 for spraying a compound containing Mg in the furnace 3.
  • a compound containing Mg for example, MgO ⁇ SiO 2 , CaO ⁇ MgO ⁇ 2SiO 2 , or a mixture thereof is employed.
  • the fuel contains salts such as Na, K and Cl, and heavy metals such as lead and zinc.
  • the combustion gas generated in the furnace 3 includes a low melting point molten salt such as KCl (melting point: 776 ° C.) or NaCl (melting point: 800 ° C.). Therefore, a molten salt such as KCl affects the progress of both ash adhesion and corrosion on the boiler tube 13b. Therefore, the spray unit 30 sprays a compound containing Mg, and reacts with the compound and a molten salt such as KCl, thereby converting it into a gas such as HCl gas and a high melting point ash. Thereby, ash adhesion to the boiler tube 13b can be suppressed.
  • KCl melting point: 776 ° C.
  • NaCl melting point: 800 ° C.
  • the particle size of the compound is not particularly limited, but may be, for example, 15 ⁇ m or less.
  • spraying is not simply supplying the compound by dropping it into the internal space of the furnace 3, but supplying the compound with sufficient diffusibility.
  • Molten salt such as KCl in the combustion gas is in a gas state. Therefore, the compound can be supplied into the furnace 3 in a state where the compound can be regarded as a gas by being sprayed and supplied by the spray unit 30. Thereby, the reaction between the molten salt in the combustion gas and the compound can be brought into a state close to the reaction between the gases.
  • the advantage of approaching the reaction between gases will be described.
  • the compound particles are poured into a molten salt in a liquid state (the particles are supplied in a dense state, not in a state where the particles are widely diffused like spray).
  • the liquid is a state in which particles (atoms) constituting the substance are bonded together to form a dense aggregate. Therefore, in the reaction between the liquids, the aggregate in which the particles are bonded is brought into contact with another aggregate, and the reaction proceeds at the contacted portion. In the case of such a reaction mode, the particles existing inside away from the aggregate interface do not contact each other, so that the reaction does not proceed.
  • the reaction between the liquid and the solid since the solid is in a state in which particles are densely formed into a lump, explanation of the same meaning is valid.
  • the gas is in a state where the particles (atoms) constituting the substance are moving in the space in a state of being separated from each other. Therefore, in the reaction between gases, compared with the reaction between liquids or the reaction between liquids and solids, the particles are more likely to contact (collision) in the entire space, so that the reaction is likely to proceed. Therefore, the reactivity of the molten salt and the compound can be improved by supplying the compound in a state that can be regarded as a gas by spraying the molten salt in a gas state.
  • the spray unit 30 when the spray unit 30 is provided on the side wall of the furnace 3, a part of the sprayed compound reaches at least the central axis CL of the furnace 3. A part of the compound reaches the central axis CL at a position higher than the height position of the fuel supply port 3a. Further, since the sprayed compound is sufficiently diffused in the furnace 3, the density in the space of the furnace 3 is lower than when the compound is simply dropped and supplied.
  • the spray unit 30 may not be provided on the side wall of the furnace 3, and the spray unit 30 may be provided on the ceiling of the furnace 3, and the spray unit 30 may spray the compound downward. In this case, the sprayed compound is supplied so as to spread sufficiently in the horizontal direction.
  • the sprayed compound spreads over a wider range than half the width of the furnace 3 in the horizontal direction (indicated by the dimension “R” in FIG. 2).
  • the compound spreads over a range wider than half the width dimension (dimension R) at a position above the height position of the fuel supply port 3a.
  • the spray unit 30 sprays the compound in a region between the fuel supply port 3a and the gas outlet 3b which are fuel supply units. Note that the position where the compound is sprayed may be in the above-described region regardless of the position where the spray unit 30 is attached.
  • the spray unit 30 may spray the compound by supplying the compound into the furnace 3 together with the pressurized air (pressurized gas) blown into the furnace 3. That is, a pressure-feed air supply unit (pressure-feed gas supply unit) 31 for blowing pressure-feed air into the furnace 3 is provided, and the compound supply unit 32 supplies the compound to a flow path through which the pressure-feed air passes. Thereby, since the force of pumping air acts on the compound, it is sufficiently diffused in the furnace 3. Moreover, the spraying part 30 can control the diffusion position of the compound by adjusting the amount of blown-in air.
  • the spray unit 30 when the spray unit 30 wants to spread the compound diffusion position to a position farther from the side wall of the furnace 3, the spray unit 30 sends a control signal to the pumped air supply unit 31 to increase the amount of blowing of the pumped air supply unit 31. Or the spraying part 30 raises the blowing amount of pressurized air by raising the opening degree of the valve (not shown) of the line of pressurized air.
  • the furnace 3 is provided with a secondary combustion air supply part (secondary combustion gas supply part) 34 for supplying secondary combustion air into the furnace 3.
  • the spray unit 30 is provided at a position closer to the secondary combustion air supply unit 34 than the fuel supply port 3a and the gas outlet 3b which are fuel supply units. That is, when the spray unit 30 is provided between the secondary combustion air supply unit 34 and the gas outlet 3b, the spray unit 30 is provided near the secondary combustion air supply unit 34. When the spray unit 30 is provided between the secondary combustion air supply unit 34 and the fuel supply port 3a, the spray unit 30 is provided near the secondary combustion air supply unit 34. Thus, the spray unit 30 is provided in the vicinity of the secondary combustion air supply unit 34. The combustion gas is sufficiently diffused in the furnace 3 where the secondary combustion air is supplied.
  • the spray unit 30 in the vicinity of the secondary combustion air supply unit 34, the compound can be sprayed toward the location where the combustion gas is diffused. Therefore, the molten salt such as KCl in the combustion gas and the compound The reactivity with can be improved.
  • the spray unit 30 may use secondary combustion air as the pressurized air.
  • the compound supply unit 32 may supply the compound to the flow path of the secondary combustion air supply unit 34.
  • the spraying unit 30 sprays the compound and simultaneously supplies secondary combustion air.
  • the flow path of secondary combustion air may be branched, and the compound supply part 32 may supply a compound to the branched flow path.
  • a test apparatus simulating a gas heat exchanger (exhaust gas passage) 13 was used.
  • the test apparatus has a location where the sample ash is reacted and a location where a probe for adhering deposits is arranged downstream of the location.
  • the temperature of the reaction part for reacting the sample ash was set at 750 ° C., and the temperature at the position where the probe was placed was set at 480 ° C.
  • a bio-only firing pilot test fly ash to which a KCl reagent was added to which a predetermined additive was added (or not added) was prepared.
  • the sample ash was supplied by air to the reaction part of the test apparatus. After heating with the test apparatus was continued for 10 hours, the deposits adhering to the probe were observed.
  • FIG. 4 shows the result of measuring the average attached ash weight of the probe deposit
  • FIG. 5 shows the result of measuring the average estimated ash height of the probe deposit.
  • the low melting point molten salt generated in the furnace 3 reaches the downstream gas heat exchange device (exhaust gas passage) 13 together with the combustion ash while being contained in the combustion gas and exhaust gas.
  • a boiler tube (tubular member) 13b provided in the gas heat exchanger 13 functions as a superheater that generates high-temperature and high-pressure steam to be used for power generation. Since the surface temperature of the boiler tube 13b is lower than the surrounding exhaust gas temperature, a molten salt such as KCl existing as a gas in the exhaust gas is condensed as a liquid on the surface of the boiler tube 13b and is deposited together with the combustion ash. Further, this causes a problem that the boiler tube 13b is corroded.
  • the furnace 3 is provided with a spray unit 30 for spraying a compound containing Mg in the furnace 3.
  • the supply of the compound is not performed in the gas heat exchanger 13 in which the molten salt adheres to the boiler tube 13b, but is performed in the furnace 3 on the upstream side of the gas heat exchanger 13. Is called. Therefore, the molten salt can be converted into a compound (a high melting point compound) that hardly adheres to the boiler tube 13b at a stage before the molten salt adheres to the boiler tube 13b.
  • the compound supplied to the furnace 3 contains Mg.
  • the melting point of the compound containing Mg is closer to the temperature in the furnace 3 than other additives (for example, a compound containing Al). Therefore, by spraying such a Mg-containing compound into the furnace 3, the chemical reaction between the molten salt in the reaction gas and the compound proceeds well in the furnace 3. Moreover, the low melting point molten salt adhering to the boiler tube 13 b of the gas heat exchanger 13 exists as a gas in the combustion gas in the furnace 3. On the other hand, when a compound containing Mg is sprayed on the furnace 3 by the spraying unit 30, the compound is supplied to the furnace 3 in a state substantially close to a gas. Thereby, the chemical reaction between the compound and the molten salt proceeds as well as a reaction between gases.
  • other additives for example, a compound containing Al
  • the furnace 3 is provided with a fuel supply port 3 a that supplies fuel into the furnace 3 and a gas outlet 3 b that discharges combustion gas generated in the furnace 3.
  • the compound may be sprayed in a region between the supply port 3a and the gas outlet 3b.
  • the fuel supply port 3a which is the fuel supply unit
  • the spraying part 30 can advance the chemical reaction between the compound and the molten salt satisfactorily by spraying the compound in the region between the fuel supply port 3a and the gas outlet 3b.
  • the spraying unit 30 sprays the compound by supplying the compound into the furnace 3 together with the pressurized air that is blown into the furnace 3, and the diffusion of the compound by adjusting the blowing amount of the pumped air.
  • the position may be controlled. As described above, by using the compressed air, the compound can be sprayed into the furnace 3 in a sufficiently diffused state. Moreover, the diffusion position of the compound can be easily controlled by adjusting the blown amount of the compressed air.
  • the furnace 3 is provided with a secondary combustion air supply unit 36 that supplies secondary combustion air into the furnace 3, and the spray unit 30 may use the secondary combustion air as the pressurized air. .
  • the spray unit 30 may use the secondary combustion air as the pressurized air.
  • various substances contained in the combustion gas are well mixed. Therefore, by spraying the compound together with the secondary combustion air, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
  • the furnace 3 is provided with a secondary combustion air supply unit 36 that supplies secondary combustion air into the furnace 3, and the spray unit 30 includes a fuel supply port 3 a that is a fuel supply unit and a gas outlet. It may be provided at a position closer to the secondary combustion air supply unit 34 than 3b.
  • the spray unit 30 near the secondary combustion air supply unit 36, the compound and the molten salt can be reacted in a well-mixed state. Thereby, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
  • a method for preventing corrosion of a boiler system is a method for preventing corrosion of a boiler system comprising: a furnace for burning fuel; and an exhaust gas passage through which exhaust gas generated in the furnace passes and in which a tubular member is disposed.
  • the present invention is not limited to the embodiment described above.
  • the overall configuration of the boiler system according to the above-described embodiment is merely an example, and may be appropriately changed within the scope of the present invention. Further, the configuration of the furnace is not limited to the above-described embodiment, and the shape and the like may be changed as appropriate.
  • the compound is sprayed using the pressurized air, but instead of this, a method of supplying the fuel and the compound to the furnace at the same time from the fuel input device in a state where the fuel and the compound are mixed in advance may be adopted. Good.

Abstract

A boiler system equipped with a furnace for burning fuel, and an exhaust gas passage through which exhaust gas generated in the furnace passes, and in the interior of which a pipe-shaped member is arranged. The furnace is provided with a spraying unit for spraying a chemical compound containing Mg into the furnace.

Description

ボイラシステムBoiler system
 本発明は、ボイラシステムに関する。 The present invention relates to a boiler system.
 従来のボイラシステムとして、燃料を燃焼する火炉と、この火炉の下流側に設けられ、火炉で発生した排ガスを通過させる排ガス通路と、を備えたものが知られている。排ガス通路内には管状部材が配置されており、管状部材は、排ガス通路内を通過する排ガスの熱によって管状部材内の蒸気等の流体を過熱している。ここで、近年、火炉の燃料として、建設廃材系木質等のバイオマス、例えば廃タイヤや廃プラスチックやRPF等の廃棄物が採用されることがある。このようなバイオマス燃料、廃棄物燃料を燃焼することによって生じるダストが管状部材に付着し、当該管状部材が腐食されるという問題が生じる。このような問題に対して、特許文献1では、火炉よりも下流側の燃焼ガスの流路内にて、燃焼ガスに対して添加剤を添加することで、管状部材の腐食を抑制している。 As a conventional boiler system, one having a furnace for burning fuel and an exhaust gas passage provided on the downstream side of the furnace and allowing exhaust gas generated in the furnace to pass through is known. A tubular member is disposed in the exhaust gas passage, and the tubular member superheats a fluid such as steam in the tubular member by the heat of the exhaust gas passing through the exhaust gas passage. In recent years, biomass, such as construction waste wood, such as waste tires, waste plastics, and RPF, is sometimes used as the fuel for the furnace. There arises a problem that dust generated by burning such biomass fuel and waste fuel adheres to the tubular member and the tubular member is corroded. With respect to such a problem, in Patent Document 1, corrosion of the tubular member is suppressed by adding an additive to the combustion gas in the combustion gas flow path downstream of the furnace. .
特許第4028801号公報Japanese Patent No. 4028801
 しかしながら、上述のボイラシステムでは、火炉からの排ガスが流れることによる、管状部材の表面に付着する付着物の量の低減効果が十分ではなかった。従って、管状部材に付着する付着物の量を更に低減することが求められていた。 However, in the above boiler system, the effect of reducing the amount of deposits adhering to the surface of the tubular member due to the flow of exhaust gas from the furnace is not sufficient. Therefore, it has been desired to further reduce the amount of deposits attached to the tubular member.
 以上より、火炉の下流側の排ガス流路に配置される管状部材への付着物の付着を抑制することができるボイラシステムを提供することを目的とする。 From the above, it is an object to provide a boiler system that can suppress the adhesion of deposits to a tubular member disposed in an exhaust gas flow path on the downstream side of a furnace.
 本発明の一形態に係るボイラシステムは、燃料を燃焼させる火炉と、火炉で発生した排ガスが通過し、内部に管状部材が配置される排ガス通路と、を備えるボイラシステムであって、火炉には、当該火炉内にMgを含有する化合物を噴霧する噴霧部が設けられている。 A boiler system according to an aspect of the present invention is a boiler system including a furnace that burns fuel, and an exhaust gas passage in which exhaust gas generated in the furnace passes and a tubular member is disposed inside the furnace system. A spraying part for spraying a compound containing Mg is provided in the furnace.
 本発明の一形態に係るボイラシステムにおいて、火炉には、当該火炉内にMgを含有する化合物を噴霧する噴霧部が設けられている。このような構成によれば、化合物の供給が、溶融塩の管状部材への付着が起きる排ガス通路で行われるのではなく、当該排ガス通路の上流側の火炉で行われる。従って、管状部材への溶融塩の付着が生じる前段階にて、溶融塩を管状部材への付着が生じにくい化合物へ変換しておくことができる。また、火炉に供給される化合物はMgを含有するものである。また、排ガス通路の管状部材へ付着する低融点の溶融塩は、高温の火炉内の燃焼ガス中では気体として存在している。これに対し、Mgを含有する化合物が噴霧部によって火炉に噴霧される場合、当該化合物は火炉内に対して実質的に気体に近い状態にて供給される。これにより、化合物と溶融塩との化学反応は、気体同士での反応のように良好に進む。以上により、火炉の下流側の排ガス流路に配置される管状部材への付着物の付着を抑制することができる。 In the boiler system according to one embodiment of the present invention, the furnace is provided with a spraying section for spraying a compound containing Mg in the furnace. According to such a configuration, the supply of the compound is not performed in the exhaust gas passage where adhesion of the molten salt to the tubular member occurs but in the furnace upstream of the exhaust gas passage. Therefore, it is possible to convert the molten salt into a compound that hardly adheres to the tubular member before the molten salt adheres to the tubular member. Moreover, the compound supplied to a furnace contains Mg. Further, the low melting point molten salt adhering to the tubular member of the exhaust gas passage exists as a gas in the combustion gas in the high temperature furnace. On the other hand, when the compound containing Mg is sprayed on the furnace by the spraying section, the compound is supplied in a state substantially close to gas in the furnace. Thereby, the chemical reaction between the compound and the molten salt proceeds as well as a reaction between gases. By the above, adhesion of the deposit | attachment to the tubular member arrange | positioned at the exhaust gas flow path of the downstream of a furnace can be suppressed.
 一形態において、火炉には、当該火炉内に燃料を供給する燃料供給部と、火炉で発生した燃焼ガスを排出するガス出口と、が設けられ、噴霧部は、燃料供給部とガス出口との間の領域に化合物を噴霧してよい。燃料供給部よりも上流側の領域では、燃料の燃焼が起きる前段階であるため、管状部材の付着物の原因となる溶融塩がまだ生じていない。ガス出口より下流側では、燃焼ガスの温度が低下している。従って、噴霧部は、燃料供給部とガス出口との間の領域に化合物を噴霧することで、化合物と溶融塩との化学反応を良好に進ませることができる。 In one embodiment, the furnace is provided with a fuel supply unit that supplies fuel into the furnace, and a gas outlet that discharges combustion gas generated in the furnace, and the spray unit includes a fuel supply unit and a gas outlet. The compound may be sprayed in the area between. In the region upstream of the fuel supply section, since it is a stage before fuel combustion occurs, no molten salt that causes deposits on the tubular member has yet occurred. The temperature of the combustion gas is lowered downstream from the gas outlet. Therefore, the spraying part can favorably advance the chemical reaction between the compound and the molten salt by spraying the compound in the region between the fuel supply part and the gas outlet.
 一形態において、噴霧部は、火炉内に向かって吹き込まれる圧送空気(圧送ガス)と共に化合物を火炉内に供給することにより、化合物を噴霧し、圧送空気の吹き込み量を調整することにより化合物の拡散位置を制御してよい。このように、圧送空気を用いることによって、化合物を十分に拡散させた状態にて火炉内へ噴霧することができる。また、圧送空気の吹き込み量を調整することで、容易に化合物の拡散位置を制御することができる。 In one form, a spray part sprays a compound by supplying a compound in a furnace with the pressurized air (pressurized gas) blown toward the inside of a furnace, and spread | diffuses a compound by adjusting the blowing amount of pressurized air. The position may be controlled. Thus, by using compressed air, the compound can be sprayed into the furnace in a sufficiently diffused state. Moreover, the diffusion position of the compound can be easily controlled by adjusting the blown amount of the compressed air.
 一形態において、火炉には、当該火炉内に二次燃焼空気(二次燃焼ガス)を供給する二次燃焼空気供給部が設けられ、噴霧部は、圧送空気として、二次燃焼空気を用いてよい。火炉内において二次燃焼空気が供給される箇所では、燃焼ガス中に含まれる各種物質が良く混ざり合った状態にある。従って、二次燃焼空気と共に化合物を噴霧することにより、燃焼ガス中の溶融塩と化合物との化学反応を良好に進ませることができる。 In one form, the furnace is provided with a secondary combustion air supply section for supplying secondary combustion air (secondary combustion gas) into the furnace, and the spray section uses the secondary combustion air as the pressure air. Good. At the place where the secondary combustion air is supplied in the furnace, various substances contained in the combustion gas are well mixed. Therefore, by spraying the compound together with the secondary combustion air, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
 一形態において、火炉には、当該火炉内に二次燃焼空気(二次燃焼ガス)を供給する二次燃焼空気供給部が設けられ、噴霧部は、燃料供給部及び前記ガス出口に比して前記二次燃焼空気供給部に近い位置に設けられてよい。火炉内において二次燃焼空気が供給される箇所では、燃焼ガス中に含まれる各種物質が良く混ざり合った状態にある。従って、二次燃焼空気供給部に近い位置に噴霧部を設けることで、化合物と溶融塩とを良く混ざり合った状態にて反応させることができる。これにより、燃焼ガス中の溶融塩と化合物との化学反応を良好に進ませることができる。 In one form, the furnace is provided with a secondary combustion air supply part for supplying secondary combustion air (secondary combustion gas) into the furnace, and the spray part is in comparison with the fuel supply part and the gas outlet. You may provide in the position near the said secondary combustion air supply part. At the place where the secondary combustion air is supplied in the furnace, various substances contained in the combustion gas are well mixed. Therefore, by providing the spray part near the secondary combustion air supply part, the compound and the molten salt can be reacted in a well-mixed state. Thereby, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
 本発明によれば、火炉の下流側の排ガス流路に配置される管状部材への付着物の付着を抑制することができるボイラシステムを提供することができる。 According to the present invention, it is possible to provide a boiler system that can suppress adhesion of deposits to a tubular member disposed in an exhaust gas flow path downstream of a furnace.
本発明の実施形態に係るボイラシステムの概略構成図である。It is a schematic structure figure of a boiler system concerning an embodiment of the present invention. 図1に示す火炉の概略構成図である。It is a schematic block diagram of the furnace shown in FIG. 変形例に係る火炉の概略構成図である。It is a schematic block diagram of the furnace which concerns on a modification. 各添加剤を用いて試験を行った後のプローブの付着物の平均付着灰重量を示すグラフである。It is a graph which shows the average adhesion ash weight of the deposit | attachment of the probe after conducting a test using each additive. 各添加剤を用いて試験を行った後のプローブの付着物の平均推定付着灰高さを測定した結果を示すグラフである。It is a graph which shows the result of having measured the average estimated adhesion ash height of the deposit | attachment of the probe after testing using each additive. 各添加剤を用いて試験を行った後のプローブの外観を示す写真である。It is a photograph which shows the external appearance of the probe after testing using each additive.
 本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings. However, the following embodiments are merely examples for explaining the present invention and are not intended to limit the present invention to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 図1を参照して、本実施形態に係るボイラシステム100の構成について説明する。ボイラシステム100は、外部循環型(Circulating Fluidized Bed型)の循環流動層ボイラである。このボイラシステム100は、縦長の筒形状をなす流動層型の火炉3を備えている。火炉3の中間部には、燃料を供給する燃料供給口3aと、上部には燃焼ガスを排出するガス出口3bと、が設けられている。燃料投入装置5からこの火炉3に供給される燃料は、燃料供給口3aを介して火炉3の内部に供給される。燃料には、建設廃材系木質等のバイオマス、例えば廃タイヤや廃プラスチックやRPF等の廃棄物が含まれる場合がある。 The configuration of the boiler system 100 according to the present embodiment will be described with reference to FIG. The boiler system 100 is an external circulation type (circulating fluidized bed type) circulating fluidized bed boiler. The boiler system 100 includes a fluidized bed furnace 3 having a vertically long cylindrical shape. A fuel supply port 3a for supplying fuel is provided in the middle part of the furnace 3, and a gas outlet 3b for discharging combustion gas is provided in the upper part. The fuel supplied from the fuel charging device 5 to the furnace 3 is supplied into the furnace 3 through the fuel supply port 3a. The fuel may include biomass such as construction waste wood, such as waste tires, waste plastics, and RPF.
 火炉3のガス出口3bには固気分離装置として機能するサイクロン7が接続されている。サイクロン7の排出口7aはガスラインを介して後段のガス処理系に接続されている。また、サイクロン7の底部出口からはダウンカマーと称されるリターンライン9が下方に延びており、リターンライン9の下端は火炉3の中間部側面に接続されている。 A cyclone 7 that functions as a solid-gas separator is connected to the gas outlet 3 b of the furnace 3. The discharge port 7a of the cyclone 7 is connected to a downstream gas processing system via a gas line. A return line 9 called a downcomer extends downward from the bottom outlet of the cyclone 7, and the lower end of the return line 9 is connected to the intermediate side surface of the furnace 3.
 火炉3内では、下部の給気ライン3cから導入される燃焼・流動用の空気により、燃料供給口3aから供給された燃料を含む固形物が流動し、燃料は流動しながら例えば約800~900℃で燃焼する。サイクロン7には、火炉3で発生した燃焼ガスが固体粒子を同伴しながら導入される。サイクロン7は、遠心分離作用により固体粒子と気体とを分離し、リターンライン9を介して分離された固体粒子を火炉3に戻すと共に、固体粒子が除かれた燃焼ガスを排出口7aからガスラインを通じて後段のガス処理系に送出する。 In the furnace 3, the solid material containing the fuel supplied from the fuel supply port 3a flows by the combustion / flowing air introduced from the lower air supply line 3c, and the fuel flows while the fuel flows, for example, about 800 to 900. Burn at ℃. A combustion gas generated in the furnace 3 is introduced into the cyclone 7 with accompanying solid particles. The cyclone 7 separates solid particles and gas by a centrifugal separation action, returns the solid particles separated via the return line 9 to the furnace 3, and removes the combustion gas from which the solid particles have been removed from the discharge port 7 a to the gas line. To the subsequent gas processing system.
 この火炉3では「炉内ベット材」と呼ばれる固形物が発生し底部に溜まるが、この炉内ベット材で不純物(低融点物質等)が濃縮されて起こるベット材の焼結及び溶融固化、或いは不燃夾雑物による動作不良を抑制することが必要である。このため、火炉3では、底部の排出口3dから炉内ベット材が定期的または連続的に外部に排出されている。排出されたベット材は、循環ライン(図示せず)上で金属や粗大粒径などの不適物を取り除いた後、再び火炉3に供給される。 In this furnace 3, a solid material called “in-furnace bed material” is generated and collected at the bottom, and the bed material is sintered and melted and solidified by the concentration of impurities (low melting point materials, etc.) in the in-furnace bed material, or It is necessary to suppress malfunctions caused by incombustible impurities. For this reason, in the furnace 3, the in-furnace bed material is discharged | emitted regularly or continuously outside from the discharge port 3d of the bottom part. The discharged bed material is supplied to the furnace 3 again after removing unsuitable materials such as metal and coarse particle diameter on a circulation line (not shown).
 上記のガス処理系は、サイクロン7の排出口7aにガスラインを介して接続されたガス熱交換装置(排ガス通路)13と、このガス熱交換装置13の排出口13aにガスラインを介して接続された集塵機15とを備えている。ガス熱交換装置13には、排ガスの流路を横切るように蒸気を過熱するボイラチューブ13bが設けられている。サイクロン7から送られた高温の排ガスがこのボイラチューブ13bに接触することで、排ガスの熱がチューブ内の蒸気に回収され、過熱された高温の蒸気がボイラチューブ(管状部材)13bを通じて発電用のタービンに送られる。集塵機15は、この可燃性ガスに未だ同伴している飛灰等の微粒子を除去する。集塵機15として、例えばバグフィルタや電気集塵機などが採用される。集塵機15の排出口15aから排出された清浄なガスはガスライン及び通風機17を経由して煙突19から外部に排出される。 The gas treatment system is connected to the gas heat exchange device (exhaust gas passage) 13 connected to the discharge port 7a of the cyclone 7 through a gas line, and connected to the discharge port 13a of the gas heat exchange device 13 through the gas line. The dust collector 15 is provided. The gas heat exchanger 13 is provided with a boiler tube 13b that superheats steam so as to cross the exhaust gas flow path. When the high-temperature exhaust gas sent from the cyclone 7 comes into contact with the boiler tube 13b, the heat of the exhaust gas is recovered into the steam in the tube, and the superheated high-temperature steam is used for power generation through the boiler tube (tubular member) 13b. Sent to the turbine. The dust collector 15 removes fine particles such as fly ash that are still accompanying the combustible gas. As the dust collector 15, for example, a bag filter or an electric dust collector is adopted. The clean gas discharged from the discharge port 15 a of the dust collector 15 is discharged from the chimney 19 to the outside via the gas line and the ventilator 17.
 火炉3で発生した固体粒子は、火炉3、サイクロン7、及びリターンライン9で構成される循環系21内を循環する。なお、以降の説明においては、固体粒子の流動物を伝熱媒体と称する。循環系21のうち、リターンライン9と火炉3の底部との間には熱交換チャンバ20が形成される。熱交換チャンバ20内には伝熱媒体が貯められる。また、熱交換チャンバ20内には、熱交換器22を設けることができる。 Solid particles generated in the furnace 3 circulate in the circulation system 21 including the furnace 3, the cyclone 7, and the return line 9. In the following description, the fluid of solid particles is referred to as a heat transfer medium. In the circulation system 21, a heat exchange chamber 20 is formed between the return line 9 and the bottom of the furnace 3. A heat transfer medium is stored in the heat exchange chamber 20. A heat exchanger 22 can be provided in the heat exchange chamber 20.
 次に、図2を参照して、火炉の概略構成について説明する。火炉3には、当該火炉3内にMgを含有する化合物を噴霧する噴霧部30が設けられている。Mgを含有する化合物として、例えばMgO・SiO、CaO・MgO・2SiO等、又はこれらの混合物が採用される。 Next, a schematic configuration of the furnace will be described with reference to FIG. The furnace 3 is provided with a spray unit 30 for spraying a compound containing Mg in the furnace 3. As the compound containing Mg, for example, MgO · SiO 2 , CaO · MgO · 2SiO 2 , or a mixture thereof is employed.
 ここで、燃料には、例えばNa、K、Cl等の塩類や、例えば鉛、亜鉛等の重金属が含まれている。従って、火炉3内で発生する燃焼ガスの中には、例えば、KCl(融点776℃)、NaCl(融点800℃)等の低融点の溶融塩が含まれる。従って、KCl等の溶融塩がボイラチューブ13bへの灰付着及び腐食両方の進行に影響を与える。従って、噴霧部30がMgを含有する化合物を噴霧し、当該化合物とKCl等の溶融塩と反応させることで、HClガス等のガス及び高融点の灰に変換させる。これにより、ボイラチューブ13bへの灰付着を抑制できる。 Here, the fuel contains salts such as Na, K and Cl, and heavy metals such as lead and zinc. Accordingly, the combustion gas generated in the furnace 3 includes a low melting point molten salt such as KCl (melting point: 776 ° C.) or NaCl (melting point: 800 ° C.). Therefore, a molten salt such as KCl affects the progress of both ash adhesion and corrosion on the boiler tube 13b. Therefore, the spray unit 30 sprays a compound containing Mg, and reacts with the compound and a molten salt such as KCl, thereby converting it into a gas such as HCl gas and a high melting point ash. Thereby, ash adhesion to the boiler tube 13b can be suppressed.
 化合物の粒径は特に限定されないが、例えば15μm以下であってよい。粒径を15μm以下とすると、化合物の粒子が小さいことにより、化合物と燃焼ガス中のKCl等との反応性を向上することができる。一方、粒径を15μmより大きくすると、化合物の取り扱い性が向上する。また、火炉3に対する化合物の添加量は、燃料および化合物中に含まれるMgとClのモル比が2~3(「モル比Mg/Cl=2~3」)となるようにしてよい。 The particle size of the compound is not particularly limited, but may be, for example, 15 μm or less. When the particle diameter is 15 μm or less, the reactivity between the compound and KCl or the like in the combustion gas can be improved because the compound particles are small. On the other hand, when the particle size is larger than 15 μm, the handleability of the compound is improved. The amount of the compound added to the furnace 3 may be such that the molar ratio of Mg and Cl contained in the fuel and the compound is 2 to 3 (“molar ratio Mg / Cl = 2 to 3”).
 ここで、噴霧とは、単に火炉3の内部空間に対して化合物を落下させて供給することではなく、十分な拡散性を持たせて化合物を供給することである。燃焼ガス中のKCl等の溶融塩はガスの状態にある。従って、化合物を噴霧部30で噴霧して供給することで、化合物をガスと見なすことができる状態にて火炉3内に供給することができる。これにより、燃焼ガス中の溶融塩と化合物との反応を、ガス同士の反応に近い状態とすることができる。ここで、ガス同士の反応に近づける事の利点について説明する。比較のために、例えば、液体の状態にある溶融塩に対して化合物の粒子を流し込む(噴霧のように粒子を広く拡散させた状態で供給するのではなく、粒子が密集した状態で供給する)ことによる反応について考える。この場合は、液体と固体同士の反応(または、液体と液体同士の反応)に近い状態となる。液体は、物質を構成する粒子(原子)が互いに結合されて密集した集合物となった状態である。従って、液体同士の反応においては、粒子が結合した集合物に対して、他の集合物接触し、当該接触した部分で反応が進む態様となる。このような反応態様の場合、集合物の界面から離れた内部に存在する粒子同士は、互いに接触しないため反応が進まない。液体と固体同士の反応についても、固体が粒子が密集して塊となった状態のものであるため、同趣旨の説明が成り立つ。これに対し、ガスは、物質を構成する粒子(原子)が互いに離間した状態で空間内を運動している状態にある。従って、ガス同士の反応においては、液体同士の反応、又は液体と固体同士の反応に比して、空間全体の中で粒子同士が接触(衝突)し易くなるため、反応が進みやすくなる。従って、ガスの状態にある溶融塩に対し、噴霧することでガスと見なすことができる状態の化合物を供給することで、溶融塩と化合物との反応性を向上することができる。 Here, spraying is not simply supplying the compound by dropping it into the internal space of the furnace 3, but supplying the compound with sufficient diffusibility. Molten salt such as KCl in the combustion gas is in a gas state. Therefore, the compound can be supplied into the furnace 3 in a state where the compound can be regarded as a gas by being sprayed and supplied by the spray unit 30. Thereby, the reaction between the molten salt in the combustion gas and the compound can be brought into a state close to the reaction between the gases. Here, the advantage of approaching the reaction between gases will be described. For comparison, for example, the compound particles are poured into a molten salt in a liquid state (the particles are supplied in a dense state, not in a state where the particles are widely diffused like spray). Think about the reaction. In this case, it becomes a state close to the reaction between the liquid and the solid (or the reaction between the liquid and the liquid). The liquid is a state in which particles (atoms) constituting the substance are bonded together to form a dense aggregate. Therefore, in the reaction between the liquids, the aggregate in which the particles are bonded is brought into contact with another aggregate, and the reaction proceeds at the contacted portion. In the case of such a reaction mode, the particles existing inside away from the aggregate interface do not contact each other, so that the reaction does not proceed. Regarding the reaction between the liquid and the solid, since the solid is in a state in which particles are densely formed into a lump, explanation of the same meaning is valid. On the other hand, the gas is in a state where the particles (atoms) constituting the substance are moving in the space in a state of being separated from each other. Therefore, in the reaction between gases, compared with the reaction between liquids or the reaction between liquids and solids, the particles are more likely to contact (collision) in the entire space, so that the reaction is likely to proceed. Therefore, the reactivity of the molten salt and the compound can be improved by supplying the compound in a state that can be regarded as a gas by spraying the molten salt in a gas state.
 図2のように、火炉3の側壁に噴霧部30が設けられる場合、噴霧した化合物は、一部が少なくとも火炉3の中心軸線CLまで到達する。化合物の一部は、燃料供給口3aの高さ位置よりも上方の位置で、中心軸線CLまで到達する。また、噴霧した化合物は、火炉3内で十分に拡散するため、単に化合物を落下させて供給する場合に比して、火炉3の空間内での密度が低い。なお、噴霧部30は火炉3の側壁に設けられていなくともよく、噴霧部30が火炉3の天井に設けられ、噴霧部30が下方へ向けて化合物を噴霧してもよい。この場合、噴霧された化合物は水平方向に十分に広がるように供給される。例えば、噴霧した化合物は、火炉3の水平方向における幅寸法の半分の広さ(図2において「R」という寸法で示している)よりも広い範囲に広がる。化合物は、燃料供給口3aの高さ位置よりも上方の位置で、幅寸法の半分の広さ(寸法R)よりも広い範囲に広がる。 As shown in FIG. 2, when the spray unit 30 is provided on the side wall of the furnace 3, a part of the sprayed compound reaches at least the central axis CL of the furnace 3. A part of the compound reaches the central axis CL at a position higher than the height position of the fuel supply port 3a. Further, since the sprayed compound is sufficiently diffused in the furnace 3, the density in the space of the furnace 3 is lower than when the compound is simply dropped and supplied. The spray unit 30 may not be provided on the side wall of the furnace 3, and the spray unit 30 may be provided on the ceiling of the furnace 3, and the spray unit 30 may spray the compound downward. In this case, the sprayed compound is supplied so as to spread sufficiently in the horizontal direction. For example, the sprayed compound spreads over a wider range than half the width of the furnace 3 in the horizontal direction (indicated by the dimension “R” in FIG. 2). The compound spreads over a range wider than half the width dimension (dimension R) at a position above the height position of the fuel supply port 3a.
 噴霧部30は、燃料供給部である燃料供給口3aとガス出口3bとの間の領域に化合物を噴霧する。なお、噴霧部30が取り付けられる位置に関わらず、化合物が噴霧される位置が上述の領域であればよい。 The spray unit 30 sprays the compound in a region between the fuel supply port 3a and the gas outlet 3b which are fuel supply units. Note that the position where the compound is sprayed may be in the above-described region regardless of the position where the spray unit 30 is attached.
 噴霧部30は、火炉3内に向かって吹き込まれる圧送空気(圧送ガス)と共に化合物を火炉3内に供給することにより、化合物を噴霧してよい。すなわち、火炉3に対して圧送空気を吹き込むための圧送空気供給部(圧送ガス供給部)31が設けられ、その圧送空気が通過する流路に対して、化合物供給部32が化合物を供給する。これにより、化合物に圧送空気の力が作用するため、火炉3内で十分に拡散される。また、噴霧部30は、圧送空気の吹き込み量を調整することにより化合物の拡散位置を制御することができる。例えば、噴霧部30は、化合物の拡散位置を火炉3の側壁から更に遠い位置に広げたい場合は、圧送空気供給部31に制御信号を送ることで、圧送空気供給部31の吹き込み量を上げる。あるいは、噴霧部30は、圧送空気のラインの弁(不図示)の開度を上げることで、圧送空気の吹き込み量を上げる。 The spray unit 30 may spray the compound by supplying the compound into the furnace 3 together with the pressurized air (pressurized gas) blown into the furnace 3. That is, a pressure-feed air supply unit (pressure-feed gas supply unit) 31 for blowing pressure-feed air into the furnace 3 is provided, and the compound supply unit 32 supplies the compound to a flow path through which the pressure-feed air passes. Thereby, since the force of pumping air acts on the compound, it is sufficiently diffused in the furnace 3. Moreover, the spraying part 30 can control the diffusion position of the compound by adjusting the amount of blown-in air. For example, when the spray unit 30 wants to spread the compound diffusion position to a position farther from the side wall of the furnace 3, the spray unit 30 sends a control signal to the pumped air supply unit 31 to increase the amount of blowing of the pumped air supply unit 31. Or the spraying part 30 raises the blowing amount of pressurized air by raising the opening degree of the valve (not shown) of the line of pressurized air.
 また、火炉3には、当該火炉3内に二次燃焼空気を供給する二次燃焼空気供給部(二次燃焼ガス供給部)34が設けられる。噴霧部30は、燃料供給部である燃料供給口3a及びガス出口3bに比して二次燃焼空気供給部34に近い位置に設けられる。すなわち、噴霧部30が、二次燃焼空気供給部34とガス出口3bとの間に設けられている場合は、二次燃焼空気供給部34寄りの位置に設けられる。噴霧部30が、二次燃焼空気供給部34と燃料供給口3aとの間に設けられている場合は、二次燃焼空気供給部34寄りの位置に設けられる。これにより、噴霧部30は、二次燃焼空気供給部34の近傍に設けられる。火炉3内において二次燃焼空気が供給される箇所では燃焼ガスが十分に拡散された状態にある。従って、噴霧部30を二次燃焼空気供給部34の近傍に設けることで、燃焼ガスが拡散される箇所へ向けて化合物を噴霧することができるため、燃焼ガス中のKCl等の溶融塩と化合物との反応性を向上することができる。なお、二次燃焼空気供給部34の「近傍」とは、二次燃焼空気供給部34を基点として「距離=R/2(Rは、火炉3の水平方向の幅寸法の半分の寸法である)」の範囲内の領域と見なしてよい。 Further, the furnace 3 is provided with a secondary combustion air supply part (secondary combustion gas supply part) 34 for supplying secondary combustion air into the furnace 3. The spray unit 30 is provided at a position closer to the secondary combustion air supply unit 34 than the fuel supply port 3a and the gas outlet 3b which are fuel supply units. That is, when the spray unit 30 is provided between the secondary combustion air supply unit 34 and the gas outlet 3b, the spray unit 30 is provided near the secondary combustion air supply unit 34. When the spray unit 30 is provided between the secondary combustion air supply unit 34 and the fuel supply port 3a, the spray unit 30 is provided near the secondary combustion air supply unit 34. Thus, the spray unit 30 is provided in the vicinity of the secondary combustion air supply unit 34. The combustion gas is sufficiently diffused in the furnace 3 where the secondary combustion air is supplied. Therefore, by providing the spray unit 30 in the vicinity of the secondary combustion air supply unit 34, the compound can be sprayed toward the location where the combustion gas is diffused. Therefore, the molten salt such as KCl in the combustion gas and the compound The reactivity with can be improved. Note that “near the secondary combustion air supply unit 34” means “distance = R / 2 (R is a half of the horizontal width of the furnace 3) with the secondary combustion air supply unit 34 as a base point. ) ”.
 あるいは、噴霧部30は、圧送空気として、二次燃焼空気を用いてよい。具体的には、図3に示すように、二次燃焼空気供給部34の流路に対して化合物供給部32が化合物を供給してよい。これによって、噴霧部30からは、化合物が噴霧されると同時に、二次燃焼空気も供給される。あるいは、二次燃焼空気の流路を分岐させて、分岐した流路に化合物供給部32が化合物を供給してよい。 Alternatively, the spray unit 30 may use secondary combustion air as the pressurized air. Specifically, as shown in FIG. 3, the compound supply unit 32 may supply the compound to the flow path of the secondary combustion air supply unit 34. As a result, the spraying unit 30 sprays the compound and simultaneously supplies secondary combustion air. Or the flow path of secondary combustion air may be branched, and the compound supply part 32 may supply a compound to the branched flow path.
 ここで、図4~図6を参照して、火炉3に添加する化合物としてMgを含有する化合物を採用した場合の効果を確認する試験について説明する。 Here, with reference to FIG. 4 to FIG. 6, a test for confirming the effect when a compound containing Mg is adopted as the compound added to the furnace 3 will be described.
 当該試験では、ガス熱交換装置(排ガス通路)13を模した試験装置を用いた。試験装置は、供試料灰を反応させる箇所と、当該箇所よりも下流側で付着物を付着させるためのプローブを配置した箇所と、を有する。供試料灰を反応させる反応部の温度は750℃に設定され、プローブを配置した箇所の温度は480℃に設定された。供試料灰として、KCl試薬を加えたバイオ専焼パイロット試験飛灰に対して、所定の添加剤を添加した(あるいは無添加)ものを準備した。具体的に、添加剤を添加しない供試料灰による試験(No1)と、(NHSOを添加した供試料灰であって、「モル比:S/Cl=1」である試験(No2)、及び「モル比:S/Cl=4」である試験(No3)と、Al含有化合物を添加した供試料灰であって、「モル比:Al/Cl=0.6」である試験(No4)、及び「モル比:Al/Cl=2.4」である試験(No5)と、Mg含有化合物を添加した供試料灰であって、「モル比:Mg/Cl=1.2」である試験(No6)、及び「モル比:Mg/Cl=2.5」である試験(No7)と、を行った。各試験においては、供試料灰を試験装置の反応部に空送で供給した。試験装置での加熱を10時間継続した後、プローブに付着した付着物を観察した。 In the test, a test apparatus simulating a gas heat exchanger (exhaust gas passage) 13 was used. The test apparatus has a location where the sample ash is reacted and a location where a probe for adhering deposits is arranged downstream of the location. The temperature of the reaction part for reacting the sample ash was set at 750 ° C., and the temperature at the position where the probe was placed was set at 480 ° C. As the sample ash, a bio-only firing pilot test fly ash to which a KCl reagent was added to which a predetermined additive was added (or not added) was prepared. Specifically, a test with sample ash without addition of additive (No 1) and a test sample ash with (NH 4 ) 2 SO 4 added and having a “molar ratio: S / Cl = 1” ( No2), and test (No3) in which “molar ratio: S / Cl = 4” and test sample ash to which an Al-containing compound was added, wherein “molar ratio: Al / Cl = 0.6” (No4) and test ash (Molar ratio: Al / Cl = 2.4) and sample ash to which an Mg-containing compound was added, wherein the molar ratio: Mg / Cl = 1.2 And a test (No7) in which “molar ratio: Mg / Cl = 2.5” was performed. In each test, the sample ash was supplied by air to the reaction part of the test apparatus. After heating with the test apparatus was continued for 10 hours, the deposits adhering to the probe were observed.
 上述の試験によって得られたプローブの様子を図6に示す。添加剤を添加したものは、添加量が多いものの外観を示す。図6(a),(b)に示すように、無添加のものと(NHSOを添加したものは、多くの付着物が付着していることが確認された。一方、図6(c),(d)に示すように、Al含有化合物を添加したものとMg含有化合物を添加したものは、プローブへの付着物の付着が抑制されていることが確認された。また、図4はプローブの付着物の平均付着灰重量、図5はプローブの付着物の平均推定付着灰高さを測定した結果を示す。なお、図4及び図5では、添加剤を添加しない供試料灰による試験(No1)の結果に係る値を「1.0」とし、No2~7は、当該No1に対する比を示している。図4及び図5に示すように、Al含有化合物を添加したものに比して、Mg含有化合物を添加したものは平均付着灰重量及び平均推定付着灰高さのいずれにおいても小さい値を示しており、付着物の抑制効果が確認された。また、いずれの添加剤においても、添加剤を増やすことで付着物の抑制効果が大きくなることを確認できた。なお、測定後、プローブに付着した後の付着物をブラシで擦ると、(NHSOを添加したものに比して、Al含有化合物を添加したものとMg含有化合物を添加したものは、容易に付着物を剥離させることができた。このことより、管状部材に付着物が付着しても、Mgを含有する化合物を添加した場合は、容易に付着物を除去できることが理解される。 The state of the probe obtained by the above test is shown in FIG. What added the additive shows the external appearance of a thing with much addition amount. As shown in FIGS. 6 (a) and 6 (b), it was confirmed that a lot of deposits were attached to the non-added one and the one added with (NH 4 ) 2 SO 4 . On the other hand, as shown in FIGS. 6 (c) and 6 (d), it was confirmed that the addition of the Al-containing compound and the addition of the Mg-containing compound suppressed the adhesion of the deposit to the probe. . FIG. 4 shows the result of measuring the average attached ash weight of the probe deposit, and FIG. 5 shows the result of measuring the average estimated ash height of the probe deposit. 4 and 5, the value related to the result of the test (No1) using the sample ash without the additive is “1.0”, and No2 to No.7 indicate the ratios to No1. As shown in FIG.4 and FIG.5, compared with what added Al containing compound, what added Mg containing compound showed a small value in both average adhesion ash weight and average estimated adhesion ash height. As a result, the effect of suppressing deposits was confirmed. Moreover, in any additive, it was confirmed that the effect of suppressing deposits was increased by increasing the additive. In addition, after the measurement, when the adhering material after adhering to the probe is rubbed with a brush, compared with the one added with (NH 4 ) 2 SO 4 , the one containing the Al-containing compound and the one containing the Mg-containing compound added Was able to easily peel off the deposits. From this, it is understood that, even if deposits adhere to the tubular member, the deposits can be easily removed when a compound containing Mg is added.
 次に、本実施形態に係るボイラシステム100の作用・効果について説明する。 Next, operations and effects of the boiler system 100 according to the present embodiment will be described.
 まず、比較例に係るボイラシステムとして、本実施形態のような噴霧部30を有さないボイラシステムについて説明する。火炉3で発生した低融点の溶融塩は、燃焼ガス及び排ガスに含まれた状態で、燃焼灰と共に後段のガス熱交換装置(排ガス通路)13へ至る。当該ガス熱交換装置13内に設けられるボイラチューブ(管状部材)13bは、発電に利用すべく高温・高圧の蒸気を生成する過熱器として機能する。ボイラチューブ13bの表面温度は周囲の排ガス温度よりも低いため、排ガス中に気体として存在しているKCl等の溶融塩がボイラチューブ13bの表面上に液体として凝縮し、燃焼灰と共に堆積する。また、これに伴ってボイラチューブ13bが腐食するという問題を生じる。 First, the boiler system which does not have the spray part 30 like this embodiment as a boiler system which concerns on a comparative example is demonstrated. The low melting point molten salt generated in the furnace 3 reaches the downstream gas heat exchange device (exhaust gas passage) 13 together with the combustion ash while being contained in the combustion gas and exhaust gas. A boiler tube (tubular member) 13b provided in the gas heat exchanger 13 functions as a superheater that generates high-temperature and high-pressure steam to be used for power generation. Since the surface temperature of the boiler tube 13b is lower than the surrounding exhaust gas temperature, a molten salt such as KCl existing as a gas in the exhaust gas is condensed as a liquid on the surface of the boiler tube 13b and is deposited together with the combustion ash. Further, this causes a problem that the boiler tube 13b is corroded.
 これに対し、本実施形態に係るボイラシステム100において、火炉3には、当該火炉3内にMgを含有する化合物を噴霧する噴霧部30が設けられている。このような構成によれば、化合物の供給が、溶融塩のボイラチューブ13bへの付着が起きるガス熱交換装置13で行われるのではなく、当該ガス熱交換装置13の上流側の火炉3で行われる。従って、ボイラチューブ13bへの溶融塩の付着が生じる前段階にて、溶融塩をボイラチューブ13bへの付着が生じにくい化合物(高融点の化合物)へ変換しておくことができる。また、火炉3に供給される化合物はMgを含有するものである。Mgを含有する化合物の融点は、他の添加剤(例えばAlを含有する化合物など)に比して、火炉3内の温度に近い。従って、このようなMgを含有する化合物を火炉3内に噴霧することで、火炉3内にて反応ガス中の溶融塩と化合物の化学反応が良好に進む。また、ガス熱交換装置13のボイラチューブ13bへ付着する低融点の溶融塩は、火炉3内の燃焼ガス中では気体として存在している。これに対し、Mgを含有する化合物が噴霧部30によって火炉3に噴霧される場合、当該化合物は火炉3内に対して実質的に気体に近い状態にて供給される。これにより、化合物と溶融塩との化学反応は、気体同士での反応のように良好に進む。以上により、火炉3の下流側のガス熱交換装置13に配置されるボイラチューブ13bへの付着物の付着を抑制することができる。また、ボイラチューブ13bに付着物が付着したとしても、容易に剥離させることができる。 In contrast, in the boiler system 100 according to the present embodiment, the furnace 3 is provided with a spray unit 30 for spraying a compound containing Mg in the furnace 3. According to such a configuration, the supply of the compound is not performed in the gas heat exchanger 13 in which the molten salt adheres to the boiler tube 13b, but is performed in the furnace 3 on the upstream side of the gas heat exchanger 13. Is called. Therefore, the molten salt can be converted into a compound (a high melting point compound) that hardly adheres to the boiler tube 13b at a stage before the molten salt adheres to the boiler tube 13b. Moreover, the compound supplied to the furnace 3 contains Mg. The melting point of the compound containing Mg is closer to the temperature in the furnace 3 than other additives (for example, a compound containing Al). Therefore, by spraying such a Mg-containing compound into the furnace 3, the chemical reaction between the molten salt in the reaction gas and the compound proceeds well in the furnace 3. Moreover, the low melting point molten salt adhering to the boiler tube 13 b of the gas heat exchanger 13 exists as a gas in the combustion gas in the furnace 3. On the other hand, when a compound containing Mg is sprayed on the furnace 3 by the spraying unit 30, the compound is supplied to the furnace 3 in a state substantially close to a gas. Thereby, the chemical reaction between the compound and the molten salt proceeds as well as a reaction between gases. By the above, adhesion of the deposit | attachment to the boiler tube 13b arrange | positioned at the gas heat exchange apparatus 13 of the downstream of the furnace 3 can be suppressed. Moreover, even if a deposit | attachment adheres to the boiler tube 13b, it can be made to peel easily.
 ボイラシステム100において、火炉3には、当該火炉3内に燃料を供給する燃料供給口3aと、火炉3で発生した燃焼ガスを排出するガス出口3bと、が設けられ、噴霧部30は、燃料供給口3aとガス出口3bとの間の領域に化合物を噴霧してよい。燃料供給部である燃料供給口3aよりも上流側の領域では、燃料の燃焼が起きる前段階であるため、ボイラチューブ13bの付着物の原因となる溶融塩がまだ生じていない。ガス出口3bより下流側では、燃焼ガスの温度が低下している。従って、噴霧部30は、燃料供給口3aとガス出口3bとの間の領域に化合物を噴霧することで、化合物と溶融塩との化学反応を良好に進ませることができる。 In the boiler system 100, the furnace 3 is provided with a fuel supply port 3 a that supplies fuel into the furnace 3 and a gas outlet 3 b that discharges combustion gas generated in the furnace 3. The compound may be sprayed in a region between the supply port 3a and the gas outlet 3b. In the region upstream of the fuel supply port 3a, which is the fuel supply unit, is a pre-stage where fuel combustion occurs, and thus no molten salt causing deposits on the boiler tube 13b has yet occurred. On the downstream side of the gas outlet 3b, the temperature of the combustion gas is lowered. Therefore, the spraying part 30 can advance the chemical reaction between the compound and the molten salt satisfactorily by spraying the compound in the region between the fuel supply port 3a and the gas outlet 3b.
 ボイラシステム100において、噴霧部30は、火炉3内に向かって吹き込まれる圧送空気と共に化合物を火炉3内に供給することにより、化合物を噴霧し、圧送空気の吹き込み量を調整することにより化合物の拡散位置を制御してよい。このように、圧送空気を用いることによって、化合物を十分に拡散させた状態にて火炉3内へ噴霧することができる。また、圧送空気の吹き込み量を調整することで、容易に化合物の拡散位置を制御することができる。 In the boiler system 100, the spraying unit 30 sprays the compound by supplying the compound into the furnace 3 together with the pressurized air that is blown into the furnace 3, and the diffusion of the compound by adjusting the blowing amount of the pumped air. The position may be controlled. As described above, by using the compressed air, the compound can be sprayed into the furnace 3 in a sufficiently diffused state. Moreover, the diffusion position of the compound can be easily controlled by adjusting the blown amount of the compressed air.
 ボイラシステム100において、火炉3には、当該火炉3内に二次燃焼空気を供給する二次燃焼空気供給部36が設けられ、噴霧部30は、圧送空気として、二次燃焼空気を用いてよい。火炉3内において二次燃焼空気が供給される箇所では、燃焼ガス中に含まれる各種物質が良く混ざり合った状態にある。従って、二次燃焼空気と共に化合物を噴霧することにより、燃焼ガス中の溶融塩と化合物との化学反応を良好に進ませることができる。 In the boiler system 100, the furnace 3 is provided with a secondary combustion air supply unit 36 that supplies secondary combustion air into the furnace 3, and the spray unit 30 may use the secondary combustion air as the pressurized air. . In the furnace 3 where the secondary combustion air is supplied, various substances contained in the combustion gas are well mixed. Therefore, by spraying the compound together with the secondary combustion air, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
 ボイラシステム100において、火炉3には、当該火炉3内に二次燃焼空気を供給する二次燃焼空気供給部36が設けられ、噴霧部30は、燃料供給部である燃料供給口3a及びガス出口3bに比して二次燃焼空気供給部34に近い位置に設けられてよい。火炉3内において二次燃焼空気が供給される箇所では、燃焼ガス中に含まれる各種物質が良く混ざり合った状態にある。従って、二次燃焼空気供給部36に近い位置に噴霧部30を設けることで、化合物と溶融塩とを良く混ざり合った状態にて反応させることができる。これにより、燃焼ガス中の溶融塩と化合物との化学反応を良好に進ませることができる。 In the boiler system 100, the furnace 3 is provided with a secondary combustion air supply unit 36 that supplies secondary combustion air into the furnace 3, and the spray unit 30 includes a fuel supply port 3 a that is a fuel supply unit and a gas outlet. It may be provided at a position closer to the secondary combustion air supply unit 34 than 3b. In the furnace 3 where the secondary combustion air is supplied, various substances contained in the combustion gas are well mixed. Therefore, by providing the spray unit 30 near the secondary combustion air supply unit 36, the compound and the molten salt can be reacted in a well-mixed state. Thereby, the chemical reaction between the molten salt in the combustion gas and the compound can be favorably advanced.
 ボイラシステムの腐食防止方法は、燃料を燃焼させる火炉と、火炉で発生した排ガスが通過し、内部に管状部材が配置される排ガス通路と、を備えるボイラシステムの腐食防止方法であって、火炉内にて、Mgを含有する化合物を噴霧するボイラシステムの腐食防止方法である。 A method for preventing corrosion of a boiler system is a method for preventing corrosion of a boiler system comprising: a furnace for burning fuel; and an exhaust gas passage through which exhaust gas generated in the furnace passes and in which a tubular member is disposed. The method for preventing corrosion of a boiler system in which a compound containing Mg is sprayed.
 本発明は、上述の実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 上述の実施形態に係るボイラシステムの全体構成は一例に過ぎず、本発明の趣旨の範囲内で適宜変更してもよい。また、火炉の構成も上述の実施形態に限定されず、形状などを適宜変更してもよい。 The overall configuration of the boiler system according to the above-described embodiment is merely an example, and may be appropriately changed within the scope of the present invention. Further, the configuration of the furnace is not limited to the above-described embodiment, and the shape and the like may be changed as appropriate.
 上述の実施形態に係るボイラシステムでは、圧送空気を用いて化合物を噴霧したが、これに代えて燃料と化合物を予め混合させた状態で燃料投入装置より同時に火炉へ供給する方法を採用してもよい。 In the boiler system according to the above-described embodiment, the compound is sprayed using the pressurized air, but instead of this, a method of supplying the fuel and the compound to the furnace at the same time from the fuel input device in a state where the fuel and the compound are mixed in advance may be adopted. Good.
 3…火炉、3a…燃料供給口(燃料供給部)、3b…ガス出口、13…ガス熱交換装置(排ガス通路)、13b…ボイラチューブ(管状部材)、30…噴霧部、34…二次燃焼空気供給部、100…ボイラシステム。 DESCRIPTION OF SYMBOLS 3 ... Furnace, 3a ... Fuel supply port (fuel supply part), 3b ... Gas outlet, 13 ... Gas heat exchange apparatus (exhaust gas passage), 13b ... Boiler tube (tubular member), 30 ... Spraying part, 34 ... Secondary combustion Air supply unit, 100 ... boiler system.

Claims (5)

  1.  燃料を燃焼させる火炉と、
     前記火炉で発生した排ガスが通過し、内部に管状部材が配置される排ガス通路と、を備えるボイラシステムであって、
     前記火炉には、当該火炉内にMgを含有する化合物を噴霧する噴霧部が設けられている、ボイラシステム。
    A furnace that burns fuel;
    An exhaust gas passage through which exhaust gas generated in the furnace passes and a tubular member is arranged inside, a boiler system comprising:
    The boiler system is provided with a spray section for spraying a compound containing Mg in the furnace.
  2.  前記火炉には、当該火炉内に前記燃料を供給する燃料供給部と、前記火炉で発生した燃焼ガスを排出するガス出口と、が設けられ、
     前記噴霧部は、前記燃料供給部と前記ガス出口との間の領域に前記化合物を噴霧する、請求項1に記載のボイラシステム。
    The furnace is provided with a fuel supply unit for supplying the fuel into the furnace, and a gas outlet for discharging combustion gas generated in the furnace,
    The boiler system according to claim 1, wherein the spraying unit sprays the compound in a region between the fuel supply unit and the gas outlet.
  3.  前記噴霧部は、
      前記火炉内に向かって吹き込まれる圧送ガスと共に前記化合物を前記火炉内に供給することにより、前記化合物を噴霧し、
      前記圧送ガスの吹き込み量を調整することにより前記化合物の拡散位置を制御する、請求項1又は2に記載のボイラシステム。
    The spray section is
    The compound is sprayed by supplying the compound into the furnace together with a pressurized gas blown into the furnace,
    The boiler system according to claim 1 or 2, wherein a diffusion position of the compound is controlled by adjusting a blowing amount of the pressurized gas.
  4.  前記火炉には、当該火炉内に二次燃焼ガスを供給する二次燃焼ガス供給部が設けられ、
     前記噴霧部は、前記圧送ガスとして、前記二次燃焼ガスを用いる、請求項3に記載のボイラシステム。
    The furnace is provided with a secondary combustion gas supply unit for supplying secondary combustion gas into the furnace,
    The boiler system according to claim 3, wherein the spraying unit uses the secondary combustion gas as the pressurized gas.
  5.  前記火炉には、当該火炉内に二次燃焼ガスを供給する二次燃焼ガス供給部が設けられ、
     前記噴霧部は、前記燃料供給部及び前記ガス出口に比して前記二次燃焼ガス供給部に近い位置に設けられる、請求項2に記載のボイラシステム。
    The furnace is provided with a secondary combustion gas supply unit for supplying secondary combustion gas into the furnace,
    The boiler system according to claim 2, wherein the spray unit is provided at a position closer to the secondary combustion gas supply unit than the fuel supply unit and the gas outlet.
PCT/JP2018/012522 2017-03-29 2018-03-27 Boiler system WO2018181366A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197019321A KR102454609B1 (en) 2017-03-29 2018-03-27 boiler system
JP2019509916A JP7065829B2 (en) 2017-03-29 2018-03-27 Boiler system
MYPI2019005326A MY196720A (en) 2017-03-29 2018-03-27 Boiler system
PH12019502105A PH12019502105A1 (en) 2017-03-29 2019-09-13 Boiler system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066094 2017-03-29
JP2017066094 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018181366A1 true WO2018181366A1 (en) 2018-10-04

Family

ID=63676066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012522 WO2018181366A1 (en) 2017-03-29 2018-03-27 Boiler system

Country Status (5)

Country Link
JP (1) JP7065829B2 (en)
KR (1) KR102454609B1 (en)
MY (1) MY196720A (en)
PH (1) PH12019502105A1 (en)
WO (1) WO2018181366A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475472A (en) * 1981-08-01 1984-10-09 Steag Aktiengesellschaft Method and apparatus for operating a vortex bed furnace
JPH04143503A (en) * 1990-10-05 1992-05-18 Babcock Hitachi Kk Boiler and method of its operation
JP2000249288A (en) * 1999-03-02 2000-09-12 Babcock Hitachi Kk Heating tube corrosion preventing method for oil burning boiler
JP2002052311A (en) * 2000-08-10 2002-02-19 Mineral Seimitsu Kagaku Kk Additive for combustion exhaust gas, method for producing the same, and method for generating electricity by using the additive
JP2003074820A (en) * 2001-09-05 2003-03-12 Kawasaki Heavy Ind Ltd Method for recovering heat from chlorine containing combustible substance
JP2004347145A (en) * 2003-05-20 2004-12-09 Ishikawajima Harima Heavy Ind Co Ltd Aluminum deposition preventing method for rpf fired circulation fluidized bed boiler
JP2009046342A (en) * 2007-08-17 2009-03-05 Kurita Water Ind Ltd Exhaust gas component adhesion inhibitor and exhaust gas component adhesion-inhibiting method
JP2011202835A (en) * 2010-03-25 2011-10-13 Kurita Water Ind Ltd Adhesion preventing agent and adhesion preventing method for clinker
US20110303133A1 (en) * 2009-04-21 2011-12-15 Industrial Accessories Company Pollution abatement process for fossil fuel-fired boilers
JP2015117843A (en) * 2013-12-16 2015-06-25 三菱日立パワーシステムズ株式会社 Heavy oil burning method, heavy oil burning boiler, and control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520927C2 (en) 2001-01-26 2003-09-16 Vattenfall Ab Method of operation of a heat-producing plant for combustion of chlorine-containing fuels
JP2003074816A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Waste incineration system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475472A (en) * 1981-08-01 1984-10-09 Steag Aktiengesellschaft Method and apparatus for operating a vortex bed furnace
JPH04143503A (en) * 1990-10-05 1992-05-18 Babcock Hitachi Kk Boiler and method of its operation
JP2000249288A (en) * 1999-03-02 2000-09-12 Babcock Hitachi Kk Heating tube corrosion preventing method for oil burning boiler
JP2002052311A (en) * 2000-08-10 2002-02-19 Mineral Seimitsu Kagaku Kk Additive for combustion exhaust gas, method for producing the same, and method for generating electricity by using the additive
JP2003074820A (en) * 2001-09-05 2003-03-12 Kawasaki Heavy Ind Ltd Method for recovering heat from chlorine containing combustible substance
JP2004347145A (en) * 2003-05-20 2004-12-09 Ishikawajima Harima Heavy Ind Co Ltd Aluminum deposition preventing method for rpf fired circulation fluidized bed boiler
JP2009046342A (en) * 2007-08-17 2009-03-05 Kurita Water Ind Ltd Exhaust gas component adhesion inhibitor and exhaust gas component adhesion-inhibiting method
US20110303133A1 (en) * 2009-04-21 2011-12-15 Industrial Accessories Company Pollution abatement process for fossil fuel-fired boilers
JP2011202835A (en) * 2010-03-25 2011-10-13 Kurita Water Ind Ltd Adhesion preventing agent and adhesion preventing method for clinker
JP2015117843A (en) * 2013-12-16 2015-06-25 三菱日立パワーシステムズ株式会社 Heavy oil burning method, heavy oil burning boiler, and control device

Also Published As

Publication number Publication date
MY196720A (en) 2023-05-02
PH12019502105A1 (en) 2020-06-15
KR102454609B1 (en) 2022-10-13
KR20190129825A (en) 2019-11-20
JP7065829B2 (en) 2022-05-12
JPWO2018181366A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP2020139121A (en) Additive agent for suppressing clinker adhesion and method for suppressing clinker adhesion
CN104531221B (en) A kind of gasification furnace structure that can simultaneously process fine coal and water-coal-slurry
WO2018181366A1 (en) Boiler system
CN105229377B (en) The anticorrosive method of the corrosion inhibitor of boiler, boiler and boiler
JP4448053B2 (en) Boiler corrosion prevention apparatus and corrosion prevention method
JP2014234976A (en) Fluid medium collector for circulating fluidized bed boiler
JP2015004466A (en) Circulating fluidized-bed boiler
JP2004347145A (en) Aluminum deposition preventing method for rpf fired circulation fluidized bed boiler
KR102231686B1 (en) Combustion additive composition for preventing fouling and corrosion of biomass and waste incineration boilers using coal ash and sulfuric acid
JP3913229B2 (en) Circulating fluid furnace
EA014014B1 (en) A method and boiler for combustion of granulated biofuel
CN110520208A (en) The method for reducing the corrosion of the heat exchanger of the incinerator including heat exchanger
JP7251978B2 (en) Fluidized bed furnace
JP2009198096A (en) Circulating fluidized bed combustion furnace
JP4157519B2 (en) Circulating fluidized bed boiler equipment
CN208365523U (en) A kind of water-coal-slurry burning device of circulating fluidized bed
JP6982391B2 (en) How to form a film
JP2641826B2 (en) Combustion method of liquid fuel in circulating fluidized bed
WO2019167243A1 (en) Coating and formation method therefor
CN204356292U (en) A kind of gasification furnace structure that simultaneously can process fine coal and coal water slurry
JP7311044B2 (en) Gasification gas production equipment
JP6300666B2 (en) Pyrolysis gas combustion method and combustion apparatus
WO2020213587A1 (en) Boiler and fouling inhibition method
JP2009063288A (en) Dust removing method for pressurized fluidized bed boiler
JPS5840407A (en) High temperature corrosion preventive process for coal boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509916

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197019321

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777184

Country of ref document: EP

Kind code of ref document: A1