JP3913229B2 - Circulating fluid furnace - Google Patents

Circulating fluid furnace Download PDF

Info

Publication number
JP3913229B2
JP3913229B2 JP2004119382A JP2004119382A JP3913229B2 JP 3913229 B2 JP3913229 B2 JP 3913229B2 JP 2004119382 A JP2004119382 A JP 2004119382A JP 2004119382 A JP2004119382 A JP 2004119382A JP 3913229 B2 JP3913229 B2 JP 3913229B2
Authority
JP
Japan
Prior art keywords
riser
fluid medium
height
furnace
seal pot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004119382A
Other languages
Japanese (ja)
Other versions
JP2005300077A (en
Inventor
恒樹 山内
季男 吉田
史郎 笹谷
和宏 黒山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004119382A priority Critical patent/JP3913229B2/en
Publication of JP2005300077A publication Critical patent/JP2005300077A/en
Application granted granted Critical
Publication of JP3913229B2 publication Critical patent/JP3913229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

本発明は、炉本体内に高温の流動媒体を循環させながら被処理物を燃焼させる循環流動炉に関し、特に流動媒体の循環を円滑に行い炉内の温度を適正に維持可能な循環流動炉に関する。   The present invention relates to a circulating fluidized furnace that burns an object to be processed while circulating a high-temperature fluidized medium in the furnace body, and more particularly to a circulating fluidized furnace that can smoothly maintain the temperature in the furnace by smoothly circulating the fluidized medium. .

従来より、産業廃棄物、都市ゴミ、下水汚泥等を燃焼する設備として、循環流動炉が広く用いられている。循環流動炉は被処理物の性状の変動にも安定して燃焼可能で、流動砂等の流動媒体が炉内を循環、流動し、被処理物と接触して燃焼させることにより、局所高温による不具合が発生せず、均一な燃焼処理が可能であるため、例えば下水汚泥等の含水率が高い被処理物に適している。
一般的な循環流動炉の構成を図4に示す。該循環流動炉60は、被処理物を受け入れて燃焼させる縦置円筒状のライザ61と、燃焼排ガスから流動媒体を分離するサイクロン64と、該サイクロン64で捕集した飛灰を落下させるダウンカマー65と、該流動媒体を堆積させて炉内未燃ガスのサイクロン64への吹き抜けを防止するシールポット66と、該シールポット66の飛灰を前記ライザ61に返送する戻し管67とから構成される。
Conventionally, circulating fluidized furnaces have been widely used as facilities for burning industrial waste, municipal waste, sewage sludge, and the like. Circulating fluidized furnaces can be combusted stably even with fluctuations in the properties of the material to be treated, and fluidized media such as fluidized sand circulate and flow in the furnace and burn in contact with the material to be treated. Since no problem occurs and uniform combustion treatment is possible, it is suitable for an object to be treated having a high water content such as sewage sludge.
FIG. 4 shows the configuration of a general circulating fluidized furnace. The circulating flow furnace 60 includes a vertical cylindrical riser 61 that receives and burns an object to be processed, a cyclone 64 that separates a fluid medium from combustion exhaust gas, and a downcomer that drops fly ash collected by the cyclone 64. 65, a seal pot 66 for depositing the fluid medium to prevent the unburned gas in the furnace from being blown into the cyclone 64, and a return pipe 67 for returning fly ash from the seal pot 66 to the riser 61. The

ライザ61内に投入された被処理物は、ライザ下部より導入される一次空気により流動しながら流動媒体と混合されて流動層63を形成し、乾燥、燃焼してガス化する。ガス化した被処理物はフリーボード62にて二次空気の導入により完全燃焼し、サイクロンにて流動媒体と分離され排出される。一方、前記流動媒体はシールポット66を介して前記ライザ61に返送される。
このような循環流動炉は例えば特許文献1(特開2004−3757号公報)、特許文献2(特開2001−235128号公報)等に記載されている。かかる炉構造では飛灰、流動媒体を含む炉内ガスが高速で循環するため、燃焼速度が高く、燃焼効率が良いが、炉内の温度分布を適正に保持し、燃焼効率を高く維持するためには流動媒体の循環を円滑に行なう構造とすることが必要である。
An object to be processed put into the riser 61 is mixed with a fluidized medium while flowing by primary air introduced from the lower part of the riser to form a fluidized bed 63, which is dried, burned and gasified. The gasified object is completely combusted by introducing secondary air in the free board 62, separated from the fluid medium by the cyclone and discharged. On the other hand, the fluid medium is returned to the riser 61 through a seal pot 66.
Such a circulating fluidized furnace is described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2004-3757), Patent Document 2 (Japanese Patent Laid-Open No. 2001-235128), and the like. In such a furnace structure, the in-furnace gas containing fly ash and fluidized medium circulates at a high speed, so the combustion speed is high and the combustion efficiency is good, but the temperature distribution in the furnace is properly maintained and the combustion efficiency is kept high. It is necessary to have a structure that smoothly circulates the fluid medium.

流動媒体の循環を適正に保持する構造の一つとしてシールポットが採用されており、これにより流動媒体のサイクロンへの逆流を防止している。特許文献1のシールポット構造はダウンカマーの下部に一室だけ設けた構造を有し、このシールポットに流動媒体を堆積させて炉内ガスをシールし、適宜シールポット内にガスを吹き込み、溜まった流動媒体を炉内に戻している。
しかし、ライザの流動層下部は圧力変動が大きいため、この圧力変動が直接シールポットの流動化に影響を与えてしまうため、流動媒体の循環を円滑に行なうことは困難であるという問題がある。
特許文献2ではこの問題を解消するため、図4に示すように連通した2の流動室66a、66bからなるシールポット構造を採用し、これらの流動室に夫々独立して流動用空気を吹き込み、炉内ガスの逆流防止、流動媒体の円滑な返送を達成している。
A seal pot is employed as one of the structures for appropriately maintaining the circulation of the fluid medium, thereby preventing the fluid medium from flowing back to the cyclone. The seal pot structure of Patent Document 1 has a structure in which only one chamber is provided below the downcomer. A fluid medium is deposited on the seal pot to seal the gas in the furnace, and the gas is appropriately blown into the seal pot and accumulated. The returned fluid medium is returned to the furnace.
However, since the pressure fluctuation is large in the fluidized bed lower part of the riser, this pressure fluctuation directly affects the fluidization of the seal pot, so that it is difficult to smoothly circulate the fluid medium.
In order to solve this problem in Patent Document 2, a seal pot structure composed of two flow chambers 66a and 66b communicated as shown in FIG. 4 is adopted, and flow air is blown into these flow chambers independently, The backflow of the gas in the furnace is prevented and the fluid medium is returned smoothly.

また、特許文献3(特開2002−98313号公報)には、ライザ内の流動媒体の外乱による燃焼状態の変動を抑制して安定した燃焼状態の維持を可能とする構成として、シールポットからの戻し管が、ライザ底部と最上部の圧力差を基準として、この基準圧力差に対するライザ内部位と最上部との圧力差が20%以内となる高さに設置する構造としている。または、前記戻し管が、ライザ底部から1.2m以上の高さ、好適には二次空気吹き込み口の上部に設置する構造としている。   Further, Patent Document 3 (Japanese Patent Laid-Open No. 2002-98313) discloses a configuration that enables a stable combustion state to be maintained by suppressing fluctuations in the combustion state due to disturbance of the fluid medium in the riser. The return pipe has a structure in which the pressure difference between the riser bottom portion and the uppermost portion with respect to the reference pressure difference is set to a height within 20% with respect to the reference pressure difference. Alternatively, the return pipe is installed at a height of 1.2 m or more from the riser bottom, preferably at the top of the secondary air inlet.

特開2004−3757号公報JP 2004-3757 A 特開2001−235128号公報JP 2001-235128 A 特開2002−98313号公報JP 2002-98313 A

このように、循環流動炉の燃焼状態を安定させ、燃焼効率を高く維持するには流動媒体の循環を円滑に行なう必要がある。シールポットは流動媒体を適正に循環させることを可能とする構造であるが、流動媒体をシールポットからライザへ返送する流動媒体戻し管のライザ接続位置が適正でない場合には不具合を生じる。
特許文献1及び2のように、流動媒体戻し管の高さが低く、流動媒体の流動が小さい濃厚層高さに位置する場合には、濃厚層の圧力変動を受けることとなり、シールポット内にも圧力変動が生じる。その結果、間欠的にシールポット流動空気がサイクロン側へ流れ込みサイクロンの下方から吹き上げるため、サイクロンから流動媒体が飛散し、ライザ内に循環する流動媒体が減少してしまい、適正量の流動媒体循環量を維持することが困難となる。また流動媒体を頻繁に補充しなければならないためランニングコストが増大する。
さらに、粒径の大きい粒子がライザ下部に溜まって流動しなくなった場合、シールポットから返送される流動媒体がライザに入らなくなる惧れがある。
Thus, in order to stabilize the combustion state of the circulating fluidized furnace and maintain high combustion efficiency, it is necessary to smoothly circulate the fluid medium. The seal pot has a structure that allows the fluid medium to circulate properly, but a problem occurs when the riser connection position of the fluid medium return pipe that returns the fluid medium from the seal pot to the riser is not appropriate.
As in Patent Documents 1 and 2, when the height of the fluid medium return pipe is low and the fluid medium is located at a small dense layer height, it will be subject to pressure fluctuations in the dense layer, and will be in the seal pot. Pressure fluctuations occur. As a result, since the seal pot fluid air intermittently flows into the cyclone side and blows up from below the cyclone, the fluid medium scatters from the cyclone, and the fluid medium circulating in the riser decreases, resulting in an appropriate amount of fluid medium circulation. It becomes difficult to maintain. Also, the running cost increases because the fluid medium must be replenished frequently.
Furthermore, when particles having a large particle size accumulate in the lower part of the riser and do not flow, there is a possibility that the fluid medium returned from the seal pot will not enter the riser.

一方、特許文献3では戻し管の高さを1.2m以上と規定しているが、流動媒体戻し管の高さが高すぎる場合には、シールポットからの流動媒体がライザの濃厚層に取り込まれずに再循環するため、ライザ下部温度が昇温されなくなってしまう。特に、処理対象が含水率の高い下水汚泥である場合、ライザ内に投入された下水汚泥は、まずライザ下部にて乾燥した後に燃焼を開始するが、ライザ下部温度が低いと下水汚泥の乾燥がなされず、燃焼効率が悪化してしまう。特に、二次空気導入口より上方に戻し管を位置させると、ライザ内に返送された流動媒体が二次空気に巻かれて噴き上げ易くなり、下方の温度低下が著しくなってしまう。また、一般的に助燃料はライザ下部より供給されるため、ライザ下部温度が下がり過ぎると着火不良を招く惧れがある。   On the other hand, in Patent Document 3, the height of the return pipe is defined as 1.2 m or more. However, when the height of the fluid medium return pipe is too high, the fluid medium from the seal pot is taken into the rich layer of the riser. Therefore, the lower temperature of the riser is not raised. In particular, when the treatment target is sewage sludge with a high moisture content, the sewage sludge thrown into the riser starts to burn after drying at the lower part of the riser. This is not done and the combustion efficiency deteriorates. In particular, when the return pipe is positioned above the secondary air inlet, the fluid medium returned into the riser is easily wound up by the secondary air and blown up, and the temperature drop below becomes significant. Further, since auxiliary fuel is generally supplied from the lower portion of the riser, there is a risk of poor ignition if the riser lower temperature is too low.

さらに、特許文献3に記載の圧力差に基づき戻し管位置を設定する構造は、含水率が高い被処理物の場合、濃厚層の圧力変動が大きいため確実な位置を見極め難い。
従って、本発明は上記従来技術の問題点に鑑み、サイクロンからの流動媒体の飛散を回避し、流動媒体を円滑に循環させ、安定した燃焼処理を行うことができる循環流動炉を提供することを目的とする。
Furthermore, in the structure in which the return pipe position is set based on the pressure difference described in Patent Document 3, in the case of an object to be processed having a high water content, it is difficult to determine a certain position because the pressure fluctuation of the concentrated layer is large.
Therefore, in view of the above-described problems of the prior art, the present invention provides a circulating fluidized furnace capable of avoiding scattering of a fluid medium from a cyclone, smoothly circulating the fluid medium, and performing a stable combustion process. Objective.

そこで、本発明はかかる課題を解決するために、被処理物を流動媒体と混合しながら燃焼させるライザと、該ライザの排ガスからサイクロンにより分離捕集した流動媒体を導入するシールポットと、該シールポットに溜まった流動媒体を前記ライザに返送する戻し管と、を備え、前記シールポットが、流動媒体の流入室と流出室からなる連通する2の空間から形成され、これらの空間の下部から夫々流動化ガスを導入する構成とした循環流動炉において、
前記被処理物の燃焼により発生する灰の粒径が流動媒体の粒径よりも小さくなるような灰が発生する被処理物を選択して、前記流出室の空塔速度が前記流入室の空塔速度より大となるように前記流動化ガスを夫々制御する手段を設けるとともに、前記戻し管と前記ライザの接続高さ位置を、流動媒体の静止層高より高く、かつ前記ライザの二次空気導入口高さより低い位置としたことを特徴とする。
Accordingly, in order to solve the above problems, the present invention provides a riser for burning an object to be processed while mixing with a fluid medium, a seal pot for introducing a fluid medium separated and collected from the exhaust gas of the riser by a cyclone, and the seal A return pipe for returning the fluid medium accumulated in the pot to the riser, and the seal pot is formed from two communicating spaces consisting of an inflow chamber and an outflow chamber for the fluid medium, respectively from the lower part of these spaces. In the circulating fluidized furnace configured to introduce fluidized gas,
An object to be processed in which ash is generated such that the particle size of ash generated by combustion of the object to be processed is smaller than the particle diameter of the fluidized medium is selected, and the superficial velocity of the outflow chamber is set to be empty in the inflow chamber. provided with a means for the fluidizing gas respectively controlled to from the tower velocity becomes larger, the connection height of the return pipe and the riser, high Ri by the stationary layer height of the fluidized medium, and the secondary of the riser The position is lower than the height of the air inlet.

循環流動炉では、ライザ下部から流動用の一次空気を導入して流動媒体を循環させて運転を開始すると、流動媒体の一部はライザ下部に溜まって流動媒体の濃厚な層(濃厚層)を形成する。濃厚層の高さは、一次空気を導入しない静止状態の流動媒体の静止層高の約1倍であることが実証されている。
本発明者らは、被処理物を下水汚泥とし、ライザ高さが24mで、静止状態の流動媒体高さ(静止層高)がライザ底部の散気板(静止層底部)から1mの位置に設けられている循環流動炉を用い、一般的な循環流動炉の空塔速度である4〜7m/sの範囲内で運転して実験を行なった結果、図3のライザ内圧力分布に示すとおり、静止層高の約1倍の位置までは圧力が高く、それより上になると急激に圧力が低下することがわかった。これは、一次空気を導入すると静止砂量の約3割はライザ上部に浮遊、循環しており、残りの約7割はライザ下部で濃厚層を形成するが、一次空気による層膨張により、濃厚層表面が静止層高に近づくためと考えられる。
In a circulating fluidized furnace, when primary fluidizing air is introduced from the lower part of the riser and the fluid medium is circulated to start the operation, a part of the fluid medium accumulates in the lower part of the riser and forms a thick layer (concentrated layer) of the fluid medium. Form. It has been demonstrated that the height of the dense layer is about one time the static bed height of a stationary fluid medium without introduction of primary air.
The present inventors set the object to be treated as sewage sludge, the riser height is 24 m, and the stationary fluid medium height (static bed height) is 1 m from the diffuser plate (static bed bottom) at the bottom of the riser. As shown in the riser pressure distribution in FIG. 3, the experiment was conducted by using the circulating fluidized furnace installed and operating in the range of 4 to 7 m / s which is the superficial velocity of the general circulating fluidized furnace. It was found that the pressure was high up to a position about 1 times the height of the stationary layer, and the pressure dropped sharply above it. When primary air is introduced, about 30% of the amount of static sand floats and circulates in the upper part of the riser, and the remaining 70% forms a thick layer in the lower part of the riser. This is probably because the surface of the layer approaches the height of the stationary layer.

この濃厚層内は圧力変動が大きいため、本発明のように流動媒体の戻し位置の下限を静止層高の1倍、即ち濃厚層とし、これより高い位置に流動媒体を導入する構成とすることでシールポットにかかる背圧が軽減され、シールポットの流動が安定化する。これにより、シールポットの流動用空気がダウンカマー側に流れ難くなり、サイクロンからの流動媒体の排出を抑制できる。また、粒径の大きい流動媒体がライザ下部に堆積して流動不良をおこした場合であっても、シールポットからの流動媒体を確実にライザに戻すことができる。
また、前記流動媒体の戻し位置の上限を二次空気導入口とし、これより低い位置に流動媒体を導入する構成とすることにより、ライザに返送された高温の流動媒体が直ぐに二次空気に巻かれてフリーボードへ飛ばされずに、ライザ下部に高温の流動媒体が落下し、確実に濃厚層に取り込まれるため、ライザ下部の温度を高温に維持できる。これにより、含水率の高い下水汚泥等の被処理物においても、十分に乾燥し、効率良い燃焼が行なわれる。
尚、戻し位置の定義は、戻し管下端位置とする。これは、シールポットにかかる背圧は戻し管下端の最も圧力が高い部分に左右される他、高温の流動砂は戻し管の下端を通ってライザへ供給されるため、本発明の効果を確認するために最も注意すべき部分であるためである。
Since the pressure fluctuation in the dense layer is large, the lower limit of the return position of the fluidized medium is set to one time the stationary layer height, that is, the dense layer as in the present invention, and the fluidized medium is introduced at a higher position. This reduces the back pressure applied to the seal pot and stabilizes the flow of the seal pot. Thereby, it becomes difficult for the air for a flow of a seal pot to flow to the downcomer side, and discharge | emission of the fluid medium from a cyclone can be suppressed. Further, even when a fluid medium having a large particle size accumulates in the lower part of the riser and causes a fluid failure, the fluid medium from the seal pot can be reliably returned to the riser.
In addition, by setting the upper limit of the return position of the fluid medium as the secondary air inlet and introducing the fluid medium at a position lower than this, the hot fluid medium returned to the riser is immediately wound around the secondary air. The high temperature fluid medium falls to the lower portion of the riser and is surely taken into the thick layer without being blown to the free board, so that the temperature of the lower portion of the riser can be maintained at a high temperature. As a result, even an object to be treated such as sewage sludge having a high moisture content is sufficiently dried and efficiently combusted.
The definition of the return position is the lower end position of the return pipe. This is because the back pressure applied to the seal pot depends on the highest pressure part at the lower end of the return pipe, and hot fluidized sand is supplied to the riser through the lower end of the return pipe, confirming the effect of the present invention. This is because it is the most important part to do.

さらに、前記シールポットを、流動媒体の流入室と流出室からなる連通する2の空間から形成され、流出室からオーバーフローさせた流動媒体を戻し管を介してライザに返送する構成とすることにより、ライザ内の圧力を確実に保持することができ、さらにこれらの空間の下部から夫々流動化ガスを導入する構成とし、かつ(流出室の空塔速度)>(流入室の空塔速度)とすることで、炉内ガスのサイクロンへの吹き抜けを確実に防止することができる。
従って本発明によれば、これらの組み合わせによりサイクロンからの流動媒体の飛散を確実に防ぐことができ、ランニングコストの低廉化を可能とする。また、ライザ下部の温度低下を防止し、ライザ下部温度を高く維持でき、含水率が高い汚泥等の被処理物であっても効率良く乾燥、燃焼、ガス化を行なうことができる。
Furthermore, the seal pot is formed from two communicating spaces consisting of an inflow chamber and an outflow chamber for the fluid medium, and is configured to return the fluid medium overflowed from the outflow chamber to the riser via a return pipe. The pressure inside the riser can be reliably maintained, and a fluidized gas is introduced from the lower part of each of these spaces, and (superficial velocity of the outflow chamber)> (superficial velocity of the inflow chamber). Thus, it is possible to reliably prevent the gas in the furnace from being blown into the cyclone.
Therefore, according to the present invention, the combination of these can surely prevent the fluid medium from scattering from the cyclone, and the running cost can be reduced. Moreover, the temperature lowering of the lower part of the riser can be prevented, the temperature of the lower part of the riser can be kept high, and even an object to be treated such as sludge having a high water content can be efficiently dried, burned and gasified.

また、前記戻し管と前記ライザの接続高さ位置を、流動媒体の静止層高の約1倍より高い位置とすることが好適であり、これにより、濃厚層の圧力変動がシールポットへ与える影響を最小限に抑えることができる。さらに、前記静止層高をH0、前記二次空気導入口高さをH1とした時、前記戻し管と前記ライザの接続高さ位置を、(H0+H1)/2より低い位置とすることが好適である。二次空気導入口の近傍は二次空気の導入による乱流が形成されているため、二次空気導入口より下に位置する(H0+H1)/2に上限を設定することにより、ライザに返送された流動媒体を乱流の影響を受けずに確実にライザ下部へ導入することができる。尚、前記静止層高H0及び二次空気導入口高さH1は、濃厚層底部高さを基準とする。 In addition, it is preferable that the connection height position of the return pipe and the riser is a position higher than about 1 times the stationary bed height of the fluidized medium, and thereby the influence of pressure fluctuation of the dense layer on the seal pot. Can be minimized. Further, when the stationary layer height is H 0 and the secondary air inlet height is H 1 , the connection height position of the return pipe and the riser is a position lower than (H 0 + H 1 ) / 2. It is preferable to do. Since a turbulent flow due to the introduction of the secondary air is formed in the vicinity of the secondary air inlet, the riser is set by setting an upper limit to (H 0 + H 1 ) / 2 located below the secondary air inlet. The fluid medium returned to can be reliably introduced into the lower portion of the riser without being affected by turbulence. The static layer height H 0 and the secondary air inlet height H 1 are based on the height of the thick layer bottom.

さらにまた、本発明の前記被処理物は、前記被処理物の燃焼により発生する灰の粒径が流動媒体の粒径よりも小さくなるような灰が発生する被処理物を選択した被処理物であることを特徴とする。このように、灰の粒径が微小であると、発生した灰は流動媒体としては使われず、排ガスに同伴されてサイクロンから排出される。その結果、流動媒体がサイクロンから飛散すると、新規に流動媒体(砂)を補充する必要があり、ランニングコスト増大につながる。よって、灰粒径が小さい被処理物を燃焼する場合は、本発明により、より効果的にランニングコストを抑制できる。
本発明の被処理物としては、例えば下水汚泥、燃料ペレット(RDF)、バイオマス等が挙げられる。
また、前記流出室の空塔速度が約0.2〜0.6m/sとなり、前記流入室の空塔速度が約0.2m/s未満となるように、夫々の前記流動化ガスのガス流速を制御する手段を設けたことを特徴とする。これにより、流動媒体を円滑にライザに返送でき、かつ流動用空気のサイクロン側への流れ込みを防ぎ、サイクロンからの流動媒体の排出を防止することができる。
Furthermore, the object to be processed according to the present invention is an object to be processed in which ash is generated such that the particle size of ash generated by combustion of the object to be processed is smaller than the particle size of the fluidized medium . It is characterized by being. As described above, when the particle size of the ash is very small, the generated ash is not used as a fluid medium and is discharged from the cyclone along with the exhaust gas. As a result, when the fluid medium scatters from the cyclone, it is necessary to newly replenish the fluid medium (sand), leading to an increase in running cost. Therefore, when burning the to-be-processed object with a small ash particle diameter, running cost can be suppressed more effectively by this invention.
Examples of the object to be treated of the present invention include sewage sludge, fuel pellets (RDF), and biomass.
In addition, the gas of each fluidized gas so that the superficial velocity of the outflow chamber is about 0.2 to 0.6 m / s and the superficial velocity of the inflow chamber is less than about 0.2 m / s. A means for controlling the flow rate is provided. Accordingly, the fluid medium can be smoothly returned to the riser, the flowing air can be prevented from flowing into the cyclone side, and the fluid medium can be prevented from being discharged from the cyclone.

以上記載のごとく本発明によれば、サイクロンからの流動媒体の飛散を確実に防ぐことができ、ランニングコストの低廉化を可能とする。また、ライザ下部の温度低下を防止し、ライザ下部温度を高く維持でき、含水率が高い汚泥等の被処理物であっても効率良く乾燥、燃焼、ガス化を行なうことができる。   As described above, according to the present invention, the scattering of the fluid medium from the cyclone can be reliably prevented, and the running cost can be reduced. Moreover, the temperature lowering of the lower part of the riser can be prevented, the temperature of the lower part of the riser can be kept high, and even an object to be treated such as sludge having a high water content can be efficiently dried, burned and gasified.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係る循環流動炉の概略断面図、図2は図1の循環流動炉を具備した汚泥処理システムの全体構成図である。
本実施例では一例として被処理物に下水汚泥を用いているが、これに限定されるものではなく、都市ゴミ、産業廃棄物等にも適用できる。本実施例の処理対象として特に好適なものは、燃焼により流動媒体より小径の飛灰を発生する被処理物で、例えば下水汚泥、燃料ペレット(RDF)、バイオマスが挙げられる。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a schematic sectional view of a circulating fluidized furnace according to an embodiment of the present invention, and FIG. 2 is an overall configuration diagram of a sludge treatment system equipped with the circulating fluidized furnace of FIG.
In this embodiment, sewage sludge is used as an object to be treated as an example, but the present invention is not limited to this, and can be applied to municipal waste, industrial waste, and the like. Particularly suitable as a processing target of this embodiment is an object to be processed that generates fly ash having a smaller diameter than a fluid medium by combustion, and examples thereof include sewage sludge, fuel pellets (RDF), and biomass.

図2を参照して、本実施例に係る循環流動炉を具備した汚泥処理システムにつき説明する。かかる汚泥処理システムは、処理対象とする汚泥50の供給設備と、循環流動炉10からなる焼却設備と、空気予熱器42、ガス冷却塔43、バグフィルタ45、煙突46を備えた熱回収・排ガス処理設備と、から構成される。
前記汚泥供給設備では、石灰石フィーダ41から供給される石灰石粉末を混合した汚泥50を、汚泥投入ポンプ41により所定量ずつ前記焼却設備に供給する。前記石灰石粉末の添加は、重金属類の溶出防止、HCl、SOx、ダイオキシン類等の有害ガス成分の発生抑制を目的とする。
With reference to FIG. 2, the sludge treatment system provided with the circulating fluidized furnace according to the present embodiment will be described. This sludge treatment system is a heat recovery / exhaust gas equipped with a sludge 50 supply facility, an incineration facility comprising a circulating fluidized furnace 10, an air preheater 42, a gas cooling tower 43, a bag filter 45, and a chimney 46. And processing equipment.
In the sludge supply facility, the sludge 50 mixed with the limestone powder supplied from the limestone feeder 41 is supplied to the incineration facility by the sludge charging pump 41 by a predetermined amount. The addition of the limestone powder aims to prevent elution of heavy metals and to suppress the generation of harmful gas components such as HCl, SOx, and dioxins.

前記汚泥供給設備より供給された汚泥は、汚泥投入口21を介して前記循環流動炉10に投入され、該循環流動炉10のライザ11内で一次空気31及び二次空気32を供給されながら燃焼する。燃焼により発生した排ガスは、サイクロン16にて流動媒体を分離された後に熱回収・排ガス処理設備に送給される。
前記熱回収・排ガス処理設備では、空気予熱器42にて高温で排出された前記排ガスと空気52とを熱交換した後、降温された排ガスをさらにガス冷却塔43にて冷却水53の噴霧により冷却し、消石灰フィーダ44にて消石灰を添加してバグフィルタ45に導入し、該バグフィルタ45にて排ガス中の飛灰を分離した後に煙突46から系外へ排出する。前記消石灰の添加は、HCl、SOx等の酸性成分の無害化を図る目的である。
一方、前記空気予熱器42で昇温された空気52は、前記循環流動炉10に導かれ、前記ライザ11の底部から導入する一次空気31、該ライザの11の炉壁から導入する二次空気32、及び前記循環流動炉10のシールポット19の底部から導入する流動用空気33a、33bに利用される。
The sludge supplied from the sludge supply facility is introduced into the circulating fluidized furnace 10 through the sludge inlet 21 and burned while being supplied with the primary air 31 and the secondary air 32 in the riser 11 of the circulating fluidized furnace 10. To do. The exhaust gas generated by the combustion is supplied to the heat recovery / exhaust gas treatment facility after the fluid medium is separated by the cyclone 16.
In the heat recovery / exhaust gas treatment facility, the exhaust gas discharged at a high temperature by the air preheater 42 and the air 52 are subjected to heat exchange, and then the cooled exhaust gas is further sprayed by the cooling water 53 in the gas cooling tower 43. It cools, slaked lime is added with the slaked lime feeder 44, and it introduce | transduces into the bag filter 45, and after separating fly ash in waste gas with this bag filter 45, it discharges | emits out of the system from the chimney 46. The addition of the slaked lime is intended to detoxify acidic components such as HCl and SOx.
On the other hand, the air 52 heated by the air preheater 42 is guided to the circulating fluidized furnace 10, and the primary air 31 introduced from the bottom of the riser 11 and the secondary air introduced from the furnace wall of the riser 11. 32 and flow air 33a and 33b introduced from the bottom of the seal pot 19 of the circulating flow furnace 10.

前記焼却設備は、図1に示される循環流動炉10からなる。該循環流動炉10は、縦置円筒形状を有し、汚泥投入口21より投入された汚泥30を乾燥、燃焼、ガス化するライザ11と、該ライザ11の上部に接続される排ガス通路15と、該排ガス通路15を介して導入された排ガスを遠心分離により固気分離するサイクロン16と、該サイクロン16の下方に位置する流動媒体の通路であるダウンカマー18と、炉内未燃ガスのサイクロン16への吹き抜けを防止するシールポット19と、戻し管20と、を主要構成とする。
前記ライザ11の下方には一次空気導入口22から導入される一次空気31により流動媒体が密に流動する濃厚層12が形成され、該濃厚層12の上方には流動媒体が飛散する希薄層13が形成される。前記濃厚層12には、前記汚泥投入口21より投入された汚泥が落下し、ここで汚泥の乾燥、燃焼が行なわれる。また、前記希薄層13では汚泥が飛散しながら燃焼、ガス化が行なわれ、前記ライザの中間部の二次空気導入口23から導入される二次空気により形成された上昇気流に搬送されて、飛散した流動媒体、飛灰、未燃物が希薄層13の上方のフリーボード14に運ばれる。
The incineration facility comprises a circulating fluidized furnace 10 shown in FIG. The circulating fluidized furnace 10 has a vertical cylindrical shape, and a riser 11 that dries, burns, and gasifies the sludge 30 introduced from the sludge inlet 21, and an exhaust gas passage 15 connected to the upper portion of the riser 11. A cyclone 16 that separates the exhaust gas introduced through the exhaust gas passage 15 into a solid gas by centrifugation, a downcomer 18 that is a passage of a fluid medium located below the cyclone 16, and a cyclone of unburned gas in the furnace The seal pot 19 that prevents the blowout to 16 and the return pipe 20 are the main components.
A concentrated layer 12 in which the fluid medium flows densely by the primary air 31 introduced from the primary air inlet 22 is formed below the riser 11, and the lean layer 13 in which the fluid medium is scattered above the dense layer 12. Is formed. Sludge input from the sludge inlet 21 falls on the thick layer 12, where the sludge is dried and burned. Further, in the lean layer 13, combustion and gasification are performed while the sludge is scattered, and the lean layer 13 is conveyed to an updraft formed by the secondary air introduced from the secondary air inlet 23 in the intermediate portion of the riser, The scattered fluid medium, fly ash, and unburned material are conveyed to the free board 14 above the lean layer 13.

前記フリーボード14では、排ガス中の未燃物が前記二次空気の導入により完全燃焼される。飛灰及び流動媒体を含む排ガスは、排ガス通路15を経てサイクロン16に導入され、該サイクロン16にて排ガス中の流動媒体を捕集し、ダウンカマー18を介してシールポット19に送給する。一方、前記流動媒体が分離された排ガスは、排ガス排出口17より前記熱回収・排ガス処理設備に送られる。
前記シールポット19は連通する2の空間からなり、第1の空間は前記ダウンカマー18の下方に位置し、前記サイクロン16にて捕集された流動媒体が流入する流入室19aで、第2の空間は前記流入室19aと下部で連通し、前記戻し管20を介してライザ11へ流動媒体を流出する流出室19bである。
前記流入室19a、前記流出室19bの底部には夫々流動用空気導入口24a、24bが設けられ、ここから流動用空気33a、33bが導入されてシールポット19に溜まった流動媒体を流動させる。
In the free board 14, unburned substances in the exhaust gas are completely burned by introducing the secondary air. The exhaust gas containing fly ash and fluid medium is introduced into the cyclone 16 through the exhaust gas passage 15, the fluid medium in the exhaust gas is collected by the cyclone 16, and is sent to the seal pot 19 through the downcomer 18. On the other hand, the exhaust gas from which the fluid medium has been separated is sent from the exhaust gas outlet 17 to the heat recovery / exhaust gas treatment facility.
The seal pot 19 is composed of two communicating spaces. The first space is located below the downcomer 18 and is an inflow chamber 19a into which the fluid medium collected by the cyclone 16 flows. The space is an outflow chamber 19b that communicates with the inflow chamber 19a at the lower part and flows out the fluid medium to the riser 11 through the return pipe 20.
Flowing air inlets 24a and 24b are provided at the bottoms of the inflow chamber 19a and the outflow chamber 19b, respectively, from which flow air 33a and 33b are introduced to flow the fluid medium accumulated in the seal pot 19.

前記シールポット19にたまった流動媒体は、前記流入室19aと前記流出室19bのレベル差により前記流出室19bを戻し管20側にオーバーフローし、ライザ11内に返送される。
本実施例では、前流入室19aに導入する流動用空気33aと前記流出室19bに導入する流動用空気33bのガス流速を異ならせ、(流出室の空塔速度)>(流入室の空塔速度)となるように制御する。好適には、前記流出室19bの空塔速度が約0.2〜0.6m/sとなり、前記流入室19aの空塔速度が約0.2m/s未満となるように制御する。これらの空塔速度の制御は、図2に示したコントローラ25により行なうと良い。即ち、空気予熱器42で昇温された空気52を分岐させて、夫々一次空気31、二次空気32、流動用空気33a、33bに導入しているが、前記流動用空気33a、33bの空気導入ライン上に流量制御弁を設け、前記コントローラ25により前記流量制御弁を開閉制御して、前記空塔速度となるように制御する。
かかるシールポット19の構成とすることにより、ライザ11内の圧力を保持することができ、炉内ガスのサイクロンへの吹き抜けを確実に防止することができる。
The fluid medium accumulated in the seal pot 19 overflows the outflow chamber 19b toward the return pipe 20 due to the level difference between the inflow chamber 19a and the outflow chamber 19b, and is returned to the riser 11.
In the present embodiment, the gas flow rates of the flow air 33a introduced into the front inflow chamber 19a and the flow air 33b introduced into the outflow chamber 19b are made different from each other, (the outflow chamber superficial velocity)> (the inflow chamber superficial tower) Speed). Preferably, the superficial velocity of the outflow chamber 19b is about 0.2 to 0.6 m / s, and the superficial velocity of the inflow chamber 19a is controlled to be less than about 0.2 m / s. Control of these superficial velocities is preferably performed by the controller 25 shown in FIG. That is, the air 52 heated by the air preheater 42 is branched and introduced into the primary air 31, the secondary air 32, and the flow air 33a and 33b. The air of the flow air 33a and 33b, respectively. A flow rate control valve is provided on the introduction line, and the controller 25 controls the flow rate control valve to open and close so as to achieve the superficial velocity.
With the configuration of the seal pot 19, the pressure in the riser 11 can be maintained, and the blow-in of the furnace gas to the cyclone can be reliably prevented.

また本実施例では、流動媒体の静止層高Aの高さをH0、前記二次空気導入口高さをH1とした時、前記戻し管20と前記ライザ11の接続高さ位置の下限を、流動媒体の静止層高Aの高さH0とする。
さらに、前記接続高さ位置の上限を、前記ライザ11の二次空気導入口高さ位置Cとし、好適には(H0+H1)/2の高さ位置Dとする。このとき前記静止層高H0及び二次空気導入口高さH1は、濃厚層底部高さを基準とする。
前記静止層高Aとは、炉停止時の一次空気を導入しない静止状態の流動媒体高さである。
前記接続高さ位置の下限である流動媒体の静止層高Aの高さH0は、濃厚層12の高さとほぼ一致し、また(H0+H1)/2の高さ位置Dは、前記希薄層13の高さとほぼ一致することが実証されている。
尚、本実施例において、前記ライザ11内の空塔速度が比較的小さい場合には、前記接続高さ位置の下限を静止層高Aの高さH0の0.7倍の位置B(高さ0.7H0)としても良い。
Further, in this embodiment, when the height of the stationary bed height A of the fluid medium is H 0 and the height of the secondary air inlet is H 1 , the lower limit of the connection height position between the return pipe 20 and the riser 11 Is the height H 0 of the static bed height A of the fluidized medium.
Furthermore, the upper limit of the connection height position is the secondary air inlet height position C of the riser 11, and is preferably a height position D of (H 0 + H 1 ) / 2. At this time, the static layer height H 0 and the secondary air inlet height H 1 are based on the height of the thick layer bottom.
The stationary bed height A is the height of a stationary fluid medium in which primary air is not introduced when the furnace is stopped.
The height H 0 of the stationary layer height A of the fluidized medium, which is the lower limit of the connection height position, substantially coincides with the height of the dense layer 12, and the height position D of (H 0 + H 1 ) / 2 is It has been demonstrated that it substantially matches the height of the dilute layer 13.
In this embodiment, when the superficial velocity in the riser 11 is relatively small, the lower limit of the connection height position is set to a position B (higher than the height H 0 of the stationary layer height A). 0.7H 0 ).

本実施例のごとく、前記接続高さ位置の下限を設定し、濃厚層より高い位置に流動媒体を導入する構成とすることにより、前記シールポット19が前記濃厚層12の圧力変動の影響を殆ど受けず、該シールポット19にかかる背圧が軽減され、シールポット19の流動が安定化する。これによりシールポット19の流動用空気33a、33bがダウンカマー18側に流れ難くなり、サイクロン16からの流動媒体の排出を抑制できる。また、粒径の大きい流動媒体がライザ11下部に堆積して流動不良をおこした場合であっても、シールポット19からの流動媒体を確実にライザ11に戻すことができる。
また、前記接続高さ位置の上限を設定し、前記二次空気導入口23より低い位置に流動媒体を導入する構成とすることにより、ライザ11に返送された高温の流動媒体が直ぐに二次空気32に巻かれてフリーボード14へ飛ばされずに、ライザ11下部に高温の流動媒体が落下し、確実に濃厚層12に取り込まれるため、ライザ11下部の温度を高温に維持できる。これにより、含水率の高い下水汚泥等の被処理物においても、十分に乾燥し、効率良い燃焼を行なうことができる。
As in this embodiment, by setting the lower limit of the connection height position and introducing the fluid medium at a position higher than the dense layer, the seal pot 19 has little effect on the pressure fluctuation of the dense layer 12. The back pressure applied to the seal pot 19 is reduced and the flow of the seal pot 19 is stabilized. This makes it difficult for the flow air 33a and 33b of the seal pot 19 to flow to the downcomer 18 side, and the discharge of the flow medium from the cyclone 16 can be suppressed. Further, even when a fluid medium having a large particle size accumulates in the lower portion of the riser 11 and causes a fluid failure, the fluid medium from the seal pot 19 can be reliably returned to the riser 11.
Further, by setting an upper limit of the connection height position and introducing the fluid medium at a position lower than the secondary air introduction port 23, the high-temperature fluid medium returned to the riser 11 immediately becomes the secondary air. Since the hot fluid medium falls to the lower portion of the riser 11 and is surely taken into the concentrated layer 12 without being wound around the free board 14 and wound on the free board 14, the temperature at the lower portion of the riser 11 can be maintained at a high temperature. Thereby, even to-be-processed objects, such as a sewage sludge with a high moisture content, can fully dry and can perform efficient combustion.

本発明の実施例に係る循環流動炉の概略断面図である。It is a schematic sectional drawing of the circulating fluidized furnace which concerns on the Example of this invention. 図1の循環流動炉を具備した汚泥処理システムの全体構成図である。It is a whole block diagram of the sludge processing system which comprised the circulating fluidized furnace of FIG. ライザ内の圧力分布を示すグラフである。It is a graph which shows the pressure distribution in a riser. 従来の循環流動炉の概略断面図である。It is a schematic sectional drawing of the conventional circulation flow furnace.

符号の説明Explanation of symbols

10 循環流動炉
11 ライザ
12 濃厚層
13 希薄層
14 フリーボード
16 サイクロン
18 ダウンカマー
19 シールポット
19a、19b 流動室
20 戻し管
21 汚泥投入口
24a、24b 流動用空気導入口
25 コントローラ
31 一次空気
32 二次空気
33a、33b 流動用空気
DESCRIPTION OF SYMBOLS 10 Circulating flow furnace 11 Riser 12 Thick layer 13 Dilute layer 14 Free board 16 Cyclone 18 Downcomer 19 Seal pot 19a, 19b Flow chamber 20 Return pipe 21 Sludge inlet 24a, 24b Flowing air inlet 25 Controller 31 Primary air 32 2 Secondary air 33a, 33b Flowing air

Claims (3)

被処理物を流動媒体と混合しながら燃焼させるライザと、該ライザの排ガスからサイクロンにより分離捕集した流動媒体を導入するシールポットと、該シールポットに溜まった流動媒体を前記ライザに返送する戻し管と、を備え、前記シールポットが、流動媒体の流入室と流出室からなる連通する2の空間から形成され、これらの空間の下部から夫々流動化ガスを導入する構成とした循環流動炉において、
前記被処理物の燃焼により発生する灰の粒径が流動媒体の粒径よりも小さくなるような灰が発生する被処理物を選択して、前記流出室の空塔速度が前記流入室の空塔速度より大となるように前記流動化ガスを夫々制御する手段を設けるとともに、前記戻し管と前記ライザの接続高さ位置を、流動媒体の静止層高より高く、かつ前記ライザの二次空気導入口高さより低い位置としたことを特徴とする循環流動炉。
A riser that combusts the object to be treated while being mixed with a fluid medium, a seal pot that introduces a fluid medium separated and collected from the exhaust gas of the riser by a cyclone, and a return that returns the fluid medium accumulated in the seal pot to the riser A circulating fluidizing furnace having a structure in which the seal pot is formed from two communicating spaces composed of an inflow chamber and an outflow chamber for a fluid medium, and a fluidizing gas is introduced from the lower portion of each space. ,
An object to be processed in which ash is generated such that the particle size of ash generated by combustion of the object to be processed is smaller than the particle diameter of the fluidized medium is selected, and the superficial velocity of the outflow chamber is set to be empty in the inflow chamber. Means for controlling the fluidized gas so as to be larger than the tower speed are provided, and the connection height position between the return pipe and the riser is higher than the stationary bed height of the fluidized medium and the secondary air of the riser A circulating fluidized furnace characterized by being positioned lower than the inlet height.
前記静止層高をH0、前記二次空気導入口高さをH1とした時、前記戻し管と前記ライザの接続高さ位置を、(H0+H1)/2より低い位置としたことを特徴とする請求項1記載の循環流動炉。 When the height of the stationary layer is H 0 and the height of the secondary air inlet is H 1 , the connection height position between the return pipe and the riser is lower than (H 0 + H 1 ) / 2. The circulating fluidized furnace according to claim 1. 前記流出室の空塔速度が約0.2〜0.6m/sとなり、かつ前記流入室の空塔速度が約0.2m/s未満となるように、夫々の前記流動化ガスのガス流速を制御する手段を設けたことを特徴とする請求項1記載の循環流動炉。 The gas flow rate of each fluidizing gas so that the superficial velocity of the outflow chamber is about 0.2 to 0.6 m / s and the superficial velocity of the inflow chamber is less than about 0.2 m / s. The circulating fluidized furnace according to claim 1 , further comprising means for controlling the temperature .
JP2004119382A 2004-04-14 2004-04-14 Circulating fluid furnace Expired - Lifetime JP3913229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119382A JP3913229B2 (en) 2004-04-14 2004-04-14 Circulating fluid furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119382A JP3913229B2 (en) 2004-04-14 2004-04-14 Circulating fluid furnace

Publications (2)

Publication Number Publication Date
JP2005300077A JP2005300077A (en) 2005-10-27
JP3913229B2 true JP3913229B2 (en) 2007-05-09

Family

ID=35331819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119382A Expired - Lifetime JP3913229B2 (en) 2004-04-14 2004-04-14 Circulating fluid furnace

Country Status (1)

Country Link
JP (1) JP3913229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927282A (en) * 2018-06-14 2018-12-04 中国恩菲工程技术有限公司 The working method of finely-divided metal mine classification and roughing integrated apparatus
CN109945193A (en) * 2019-03-06 2019-06-28 钟康亮 A kind of waste gas generated by burning garbage circulating purification thermal energy combination unit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100552293C (en) * 2006-10-25 2009-10-21 中国科学院工程热物理研究所 Circulating fluidized bed boiler multiple-point return feeder
CN102240614A (en) * 2011-04-28 2011-11-16 广州迪森热能技术股份有限公司 Biomass flue gas cyclone separator
CN102213415A (en) * 2011-04-28 2011-10-12 广州迪森热能技术股份有限公司 Preparation system of biomass fume
CN105605608A (en) * 2016-02-02 2016-05-25 华北电力科学研究院有限责任公司 Method and device for determining inlet air quantities and automatic control system
CN106016254B (en) * 2016-05-12 2018-05-01 中国神华能源股份有限公司 Recirculating fluidized bed coal slime feeding system and circulating fluidized bed boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927282A (en) * 2018-06-14 2018-12-04 中国恩菲工程技术有限公司 The working method of finely-divided metal mine classification and roughing integrated apparatus
CN109945193A (en) * 2019-03-06 2019-06-28 钟康亮 A kind of waste gas generated by burning garbage circulating purification thermal energy combination unit
CN109945193B (en) * 2019-03-06 2020-02-18 钟康亮 Waste incineration exhaust gas circulation purification heat energy composite set

Also Published As

Publication number Publication date
JP2005300077A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
KR100355505B1 (en) Operating method of fluidized-bed incinerator and the incinerator
RU2300415C2 (en) Method and the device for the heat recovery in the reactor with the fluidized layer
EP2642200B1 (en) Fluidized bed furnace and method for processing waste
CN103339442B (en) Method to enhance operation of circulating mass reactor and reactor to carry out such method
JP3913229B2 (en) Circulating fluid furnace
JP2009019870A (en) Fluidized bed gasification combustion furnace
JP2002098308A (en) Circulated fluidized bed combustion apparatus
JP5898217B2 (en) Fluidized bed furnace and waste treatment method using fluidized bed furnace
JP2005299938A (en) Circulated fluidized furnace
EP0028458B1 (en) Fluidised-bed boilers
JP4230515B2 (en) Reactor with particle / gas separator and reaction method having particle / gas separation step
JP3034865B1 (en) Method and apparatus for recovering heat from a fluidized bed
JP3800099B2 (en) Circulating fluidized bed furnace and circulating fluidized bed boiler
KR101976467B1 (en) A Circilation Fluidized Bed Boiler for Overcome Combustion Failure in a Circulating Fluidized Bed Boiler Using Solid Fuel Containing Nonflammable and Chorine Component
JP6554985B2 (en) Operating method and operating apparatus for pressurized circulating fluidized furnace
JP4102167B2 (en) Gasifier
JP2002098313A (en) Circulating fluidized bed combustion apparatus
JP2005121342A (en) Operation method of circulating fluidized bed furnace
JP2002206717A (en) Fluidized bed type incinerator
JP3981551B2 (en) Reactor with particle / gas separator
JP3030017B2 (en) Fluidized bed incinerator
JP2941785B1 (en) Operating method of fluidized bed incinerator and its incinerator
EP3054214A1 (en) Method for feeding air to a fluidized bed boiler, a fluidized bed boiler and fuel feeding means for a fluidized bed boiler
KR100763775B1 (en) Internal circulating fluidized bed incinerator for refuse derived fuel
JP2901752B2 (en) Fluidized bed combustion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R151 Written notification of patent or utility model registration

Ref document number: 3913229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

EXPY Cancellation because of completion of term