WO2018180245A1 - 出力装置、制御方法、プログラム及び記憶媒体 - Google Patents
出力装置、制御方法、プログラム及び記憶媒体 Download PDFInfo
- Publication number
- WO2018180245A1 WO2018180245A1 PCT/JP2018/008340 JP2018008340W WO2018180245A1 WO 2018180245 A1 WO2018180245 A1 WO 2018180245A1 JP 2018008340 W JP2018008340 W JP 2018008340W WO 2018180245 A1 WO2018180245 A1 WO 2018180245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feature
- accuracy
- vehicle
- information
- moving body
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/09623—Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
- G01C21/1652—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with ranging devices, e.g. LIDAR or RADAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3602—Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
Definitions
- the present invention relates to a technique for controlling a vehicle.
- Patent Document 1 discloses a driving support system that guides a traveling vehicle to a position where the feature is easily detected when the feature is recognized using a radar or a camera.
- the features that exist around the road are not always installed in the same direction. Therefore, when the features around the road are used for position estimation, the position accuracy is affected due to the difference in the direction of the surface of the feature detected by the radar or the like.
- the present invention has been made to solve the above-described problems, and has as its main object to provide an output device suitable for calculating the position with high accuracy.
- the invention according to claim 1 is an output device, the first acquisition unit for acquiring the positional accuracy in the first direction and the second direction with respect to the traveling direction of the moving body, and the map information, A second acquisition unit that acquires direction information indicating the direction of each of the features, and the detection accuracy of the target feature that faces the direction in which the position accuracy is low among the first direction and the second direction is increased. And an output unit for outputting control information for controlling the moving body.
- the invention according to claim 10 is a control method executed by the output device, the first acquisition step of acquiring the position accuracy in the first direction and the second direction with respect to the traveling direction of the moving body, and the map information.
- the invention according to claim 11 is a program executed by a computer, and is provided to map information, a first acquisition unit that acquires the position accuracy of the first direction and the second direction with respect to the traveling direction of the moving body, respectively.
- a second acquisition unit that acquires direction information indicating the direction of the feature for each feature, and detection accuracy of a target feature that faces the direction with the lower position accuracy among the first direction and the second direction.
- the computer is caused to function as an output unit that outputs control information for controlling the moving body so as to be higher.
- FIG. 1 It is a schematic block diagram of a driving assistance system. It is a block diagram which shows the functional structure of a vehicle equipment. It is an example of the data structure of the feature information contained in map DB. It is the figure which represented the state variable vector by the two-dimensional orthogonal coordinate. It is a figure which shows the schematic relationship between a prediction step and a measurement update step. It is a flowchart which shows the vehicle control based on a position estimation precision.
- A shows an overhead view of a vehicle that is executing a scan by a rider.
- (B) and (C) are enlarged views of the feature clearly showing the irradiation point of the laser beam.
- An overhead view of a vehicle when a feature exists on the left front side and the right front side of the road on a three-lane road on one side is shown.
- the bird's-eye view of the vehicle when the position estimation accuracy in the lateral direction is lower than the traveling direction of the vehicle is shown.
- An overhead view of a vehicle when features having substantially the same normal direction exist on the left front side and the right front side of the road is shown.
- An overhead view of a vehicle when there are features having different normal directions on the left front side and the right front side of the road is shown. It is a flowchart which shows a target feature determination process.
- the output device is provided to the map information and the first acquisition unit that acquires the position accuracy in the first direction and the second direction with respect to the traveling direction of the moving body, and is provided for each feature.
- a second acquisition unit that acquires direction information indicating the direction of each of the features, and the detection accuracy of the target feature that faces the direction in which the position accuracy is low among the first direction and the second direction is increased.
- an output unit for outputting control information for controlling the moving body.
- the output device controls the moving body so that the detection accuracy of the feature facing in the direction where the positional accuracy is low becomes high. Thereby, the output device can preferably improve the position accuracy in the direction where the position accuracy is low.
- the output device when the angle between the direction in which the positional accuracy is low and the direction of the feature is equal to or less than a predetermined angle, the feature is oriented in the direction in which the positional accuracy is low. Is determined.
- the predetermined angle is preferably set to at least 45 degrees or less. According to this aspect, the output device can control the moving body so as to favorably improve the position accuracy in the direction where the position accuracy is low.
- the map information includes information related to the size of the feature for each feature, and the output unit does not have a feature that faces in a direction where the position accuracy is low.
- the target feature whose detection accuracy should be increased is determined based on the information on the size.
- the output device can control the moving body so as to favorably improve the position accuracy in the direction where the position accuracy is low even when there is no feature facing in the direction where the position accuracy is low.
- the output device includes a third acquisition unit that acquires an output of a detection device that detects a feature around the moving body, an output of the detection device with respect to the target feature, A position estimation unit configured to estimate the position of the moving object based on the position information of the target feature included in the map information.
- the output device can perform position estimation based on a feature facing in a direction with low position accuracy, and can suitably improve the position accuracy in the direction with low position accuracy.
- the output unit moves the moving body to a lane closest to the target feature, or moves the moving body to a side closer to the target feature in a traveling lane.
- the output device can appropriately bring the moving body close to the feature facing in the direction where the positional accuracy is low, and can improve the detection accuracy of the feature.
- the output unit selects the target feature from features existing along the route of the moving body. According to this aspect, the output device can improve the position accuracy in the direction where the position accuracy is low without substantially changing the route to the destination.
- the output unit includes a feature having a smallest angle between a direction having a low position accuracy and a direction of the feature among features existing within a predetermined distance from the moving body. Is selected as the target feature. According to this aspect, the output device can control the moving body so as to favorably improve the position accuracy in the direction where the position accuracy is low.
- the output unit includes an angle formed by a direction having a low positional accuracy and a direction of the feature among features existing within a predetermined distance from the movable body, and the movable body.
- the target feature is selected on the basis of the appropriateness of the feature as a detection target of the detection device that detects the feature around the target.
- the output device can perform highly accurate position estimation while preferably improving the position accuracy in the direction where the position accuracy is low.
- the output unit selects a feature having the highest degree of appropriateness among features having an angle formed by a direction having a low position accuracy and a direction of the feature that is a predetermined angle or less. Select as the target feature. According to this aspect, the output device can perform highly accurate position estimation while preferably improving the position accuracy in the direction where the position accuracy is low.
- a control method executed by the output device the control method executed by the output device, and the positions in the first direction and the second direction with respect to the traveling direction of the moving body
- a first acquisition step of acquiring accuracy a second acquisition step of acquiring direction information given to the map information and indicating the direction of the feature for each feature, and the first direction and the second direction.
- the output device can preferably improve the position accuracy in the direction where the position accuracy is low.
- a program executed by a computer a first acquisition unit that acquires the positional accuracy in the first direction and the second direction with respect to the traveling direction of the moving body, and map information
- a second acquisition unit that acquires direction information indicating the direction of the feature for each feature, and a target feature that faces in a direction with low position accuracy among the first direction and the second direction.
- the computer is caused to function as an output unit that outputs control information for controlling the moving body so that the detection accuracy of the moving object increases.
- the output device can preferably improve the position accuracy in the direction where the position accuracy is low.
- the program is stored in a storage medium.
- FIG. 1 is a schematic configuration diagram of a driving support system according to the present embodiment.
- the driving support system shown in FIG. 1 is mounted on a vehicle and has an in-vehicle device 1 that performs control related to driving support of the vehicle, a lidar (Lidar: Light Detection and Ranging, or Laser Illuminated Detection And Ranging) 2, and a gyro sensor 3. And a vehicle speed sensor 4 and a GPS receiver 5.
- a lidar Light Detection and Ranging, or Laser Illuminated Detection And Ranging
- the in-vehicle device 1 is electrically connected to the rider 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5, and based on these outputs, the position of the vehicle on which the in-vehicle device 1 is mounted ("own vehicle position"). Also called.) And the vehicle equipment 1 performs automatic driving
- the in-vehicle device 1 stores a map database (DB: DataBase) 10 that stores road data and feature information that is information about a feature that is a landmark provided near the road.
- DB DataBase
- the above-mentioned landmark features are, for example, features such as kilometer posts, 100m posts, delineators, traffic infrastructure facilities (eg signs, direction signs, signals), utility poles, street lamps, etc. that are periodically arranged alongside the road.
- the feature information is information in which at least an index assigned to each feature, position information of the feature, and information on the direction of the feature are associated with each other.
- the vehicle equipment 1 estimates the own vehicle position by making it collate with the output of the lidar 2 etc. based on this feature information.
- the lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information.
- the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit.
- the scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal.
- the accuracy of the lidar distance measurement value is higher as the distance to the object is shorter, and the accuracy is lower as the distance is longer.
- the rider 2 is installed facing the traveling direction of the vehicle so as to scan at least the front of the vehicle.
- the rider 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5 each supply output data to the in-vehicle device 1.
- the in-vehicle device 1 is an example of the “output device” in the present invention
- the lidar 2 is an example of the “detection device” in the present invention.
- FIG. 2 is a block diagram showing a functional configuration of the in-vehicle device 2.
- the in-vehicle device 2 mainly includes an interface 11, a storage unit 12, an input unit 14, a control unit 15, and an information output unit 16. Each of these elements is connected to each other via a bus line.
- the interface 11 acquires output data from sensors such as the lidar 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5, and supplies the output data to the control unit 15.
- the interface 11 supplies a signal related to the traveling control of the vehicle generated by the control unit 15 to an electronic control unit (ECU: Electronic Control Unit) of the vehicle.
- ECU Electronic Control Unit
- the signal transmitted from the control unit 15 to the electronic control device of the vehicle via the interface 11 is an example of “control information” in the present invention.
- the storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process.
- storage part 12 memorize
- FIG. 3 shows an example of the data structure of the feature information.
- the feature information is information in which information related to the feature is associated with each feature, and here, the feature ID corresponding to the feature index, the position information, and the shape information And appropriateness information.
- the position information indicates the absolute position of the feature represented by latitude and longitude (and altitude).
- the shape information is information relating to the shape of the feature, and includes normal information indicating the direction of the feature (that is, a normal direction relative to the front) and size information indicating the size of the feature.
- the appropriateness information indicates the ease of detection by the lidar 2, in other words, the appropriateness as a measurement target by the lidar 2.
- the map DB 10 may be updated regularly.
- the control unit 15 receives partial map information related to the area to which the vehicle position belongs from a server device that manages the map information via a communication unit (not shown), and reflects it in the map DB 10.
- the appropriateness information is information that is set in advance as information indicating the appropriateness of each feature as a measurement target by the lidar 2 and stored as a part of the feature information.
- the appropriateness information is typically information obtained by digitizing the appropriateness, and is represented by a numerical value within a range of 0 to 1.0, for example. For the feature with the highest appropriateness, the appropriateness information is set to 1.0, and the feature information with a smaller numerical value is set for a feature with a relatively low appropriateness.
- Example of setting appropriateness information For example, if the feature is a clean road sign and can be easily detected by the lidar 2, the appropriateness information is set to 1.0. If the feature is slightly dirty and the reflectivity of the lidar 2 with respect to the laser beam is reduced, it is somewhat difficult to detect. Appropriateness level information is set to 0.8. For features that exist around trees, some of the leaves may be hidden in the leaves from spring to autumn, so appropriateness information is set to 0.8 in winter and appropriateness information in other seasons. Is set to 0.5. For features on which snow adheres during snowfall, the suitability information is set to 0.1 during snowfall, and the suitability information is set to 0.8 in other weather conditions. For features and electronic bulletin boards to which no retroreflective material is applied, the lidar 2 may be difficult to detect, so the appropriateness information is set to 0.2 to 0.1.
- the input unit 14 is a button operated by the user, a touch panel, a remote controller, a voice input device, and the like, and receives an input for specifying a destination for route search, an input for specifying on / off of automatic driving, and the like.
- the information output unit 16 is, for example, a display or a speaker that outputs based on the control of the control unit 15.
- the control unit 15 includes a CPU that executes a program and controls the entire vehicle-mounted device 1.
- the control unit 15 includes a host vehicle position estimation unit 17 and an automatic driving control unit 18.
- the control unit 15 is an example of a “first acquisition unit”, “second acquisition unit”, “third acquisition unit”, “position estimation unit”, “output unit”, and “computer” that executes a program in the present invention. It is.
- the own vehicle position estimation unit 17 is based on the distance and angle measurement values by the lidar 2 for the feature and the position information of the feature extracted from the map DB 10, and the gyro sensor 3, the vehicle speed sensor 4, and / or the GPS receiver.
- the vehicle position estimated from the output data of 5 is corrected.
- the vehicle position estimation unit 17 estimates a vehicle position from output data from the gyro sensor 3 and the vehicle speed sensor 4 based on a state estimation method based on Bayesian estimation,
- the measurement update step for correcting the estimated value of the vehicle position calculated in the prediction step is executed alternately.
- the automatic driving control unit 18 refers to the map DB 10 and transmits a signal necessary for automatic driving control to the vehicle based on the set route and the own vehicle position estimated by the own vehicle position estimating unit 17. Based on the set route, the automatic operation control unit 18 sets a target track, and the vehicle position estimated by the host vehicle position estimation unit 17 is set so as to be within a predetermined width from the target track. Then, a guide signal is transmitted to control the position of the vehicle. Further, in this embodiment, the automatic driving control unit 18 determines the position estimation accuracy in the traveling direction of the host vehicle position estimation unit 17 and the position estimation accuracy in a direction perpendicular to the traveling direction (also referred to as “side surface direction”). Monitor.
- the automatic operation control unit 18 increases the detection accuracy of the feature lidar 2 suitable for increasing the position estimation accuracy in the direction where the position estimation accuracy is low (also referred to as “low position accuracy direction Dtag”). Correct the target trajectory of the vehicle.
- the traveling direction and the side surface direction of the vehicle are examples of the “first direction” and the “second direction” in the present invention.
- the own vehicle position estimation unit 17 sequentially repeats the prediction step and the measurement update step to estimate the own vehicle position.
- Various filters developed to perform Bayesian estimation can be used as the state estimation filter used in these steps, and examples thereof include an extended Kalman filter, an unscented Kalman filter, and a particle filter.
- various methods have been proposed for position estimation based on Bayesian estimation. In the following, vehicle position estimation using an extended Kalman filter will be briefly described as an example.
- FIG. 4 is a diagram showing the state variable vector x in two-dimensional orthogonal coordinates.
- the vehicle position on a plane defined on the two-dimensional orthogonal coordinates of xy is represented by coordinates “(x, y)” and the direction “ ⁇ ” of the vehicle.
- the azimuth ⁇ is defined as an angle formed by the traveling direction of the vehicle and the x axis.
- the coordinates (x, y) indicate an absolute position corresponding to a combination of latitude and longitude, for example.
- FIG. 5 is a diagram illustrating a schematic relationship between the prediction step and the measurement update step.
- calculation and update of the estimated value of the state variable vector X are sequentially performed by repeating the prediction step and the measurement update step.
- the state variable vector at the reference time (ie, current time) “t” to be calculated is expressed as “X ⁇ t ” or “X ⁇ t ”.
- state variable vector X t (x t , y t , ⁇ t ) T ”.
- the provisional estimated value estimated in the prediction step has “ - given the "updated in the measurement update step, subjecting the" ⁇ "and more accurate estimates on a character representing the value.
- the vehicle position estimation unit 17 calculates the covariance matrix “ ⁇ ⁇ t ” corresponding to the error distribution of the prior estimated value X ⁇ t at the time t ⁇ 1 calculated in the immediately preceding measurement update step. Is calculated from the covariance matrix of “ ⁇ ⁇ t ⁇ 1 ”.
- the host vehicle position estimation unit 17 associates the position vector of the feature registered in the map DB 10 with the scan data of the rider 2. Then, the vehicle position estimating section 17, when could this correspondence, and the measured value by the rider 2 features that could correspond with "Z t", pre-estimated value X - registered in t and map DB10
- the measurement estimated value “Z ⁇ t ” of the feature obtained by modeling the measurement processing by the lidar 2 using the position vector of the feature is obtained.
- the measurement value Z t is a two-dimensional vector representing the distance and scan angle of the feature measured by the lidar 2 at time t.
- the vehicle position estimation unit 17 multiplies the difference between the measured value Z t and the measured estimated value Z ⁇ t by a Kalman gain “K t ”, and pre-estimates this.
- K t a Kalman gain
- X ⁇ t an updated state variable vector (also referred to as “posterior estimated value”) X ⁇ t is calculated.
- X ⁇ t X - t + K t (Z t -Z ⁇ t) (1)
- the vehicle position estimating section 17 similarly to the prediction step, the covariance matrix sigma ⁇ t which corresponds to the error distribution of a posteriori estimate X ⁇ t pre-covariance matrix sigma - obtained from t.
- the parameters such as the Kalman gain K t, can be calculated for example in analogy to known self-position technique using an extended Kalman filter.
- the own vehicle position estimation unit 17 can select any one selected ground when the position vector registered in the map DB 10 and the scan data of the lidar 2 can be associated with a plurality of features.
- a measurement update step may be performed based on a measurement value of an object (for example, a target feature Ltag described later), or a measurement update step may be performed a plurality of times based on measurement values of all the features that can be associated. .
- the own vehicle position estimation part 17 considers that the measurement error of the rider 2 becomes large as the feature is far from the rider 2, and the rider 2 and the feature The longer the distance is, the smaller the weight related to the feature is.
- the automatic operation control unit 18 determines the low position accuracy direction Dtag and corrects the target trajectory of the vehicle in order to increase the position estimation accuracy in the low position accuracy direction Dtag.
- FIG. 6 is a flowchart showing vehicle control based on position estimation accuracy executed by the automatic driving control unit 18 in this embodiment.
- the automatic operation control unit 18 when detecting the low position accuracy direction Dtag, is a feature suitable for increasing the position estimation accuracy in the low position accuracy direction Dtag (also referred to as “target feature Ltag”). .) Is determined, and the vehicle is controlled so as to approach the target feature Ltag. Note that when the flowchart of FIG. 6 is executed, it is assumed that the automatic operation control unit 18 has set the target trajectory of the vehicle along the route to the set destination.
- the automatic driving control unit 18 specifies a range of error in position estimation in the traveling direction and the side direction of the vehicle (step S101). For example, the automatic operation control unit 18 converts the error covariance matrix obtained in the position estimation calculation process based on the extended Kalman filter by a rotation matrix using the direction ⁇ of the own vehicle, so that the traveling direction of the vehicle And a range of error in position estimation in the side direction is specified.
- the automatic operation control unit 18 determines whether or not the low position accuracy direction Dtag exists (step S102). For example, the automatic operation control unit 18 reduces the direction in which the error range is longer than the predetermined threshold when either of the error range of the position estimation in the traveling direction or the side direction specified in step S101 is longer than the predetermined threshold. It is regarded as the position accuracy direction Dtag. Instead of performing the determination in step S102, the automatic driving control unit 18 compares the range of error in position estimation in the traveling direction of the vehicle with the range of error in position estimation in the side direction of the vehicle, and determines the error range. May be regarded as the low position accuracy direction Dtag. In this case, after specifying the low position accuracy direction Dtag, the automatic operation control unit 18 executes the processes after step S103.
- step S102 when the automatic operation control unit 18 determines that the low position accuracy direction Dtag exists (step S102; Yes), it refers to the map DB 10 and follows a route suitable for increasing the position estimation accuracy of the low position accuracy direction Dtag.
- the target feature determination process for determining the feature as the target feature Ltag is executed (step S103).
- FIG. 12 is a flowchart showing the destination feature determination process executed in step S103 of FIG. 6 in the present embodiment.
- the automatic operation control unit 18 refers to the map DB 10, and among the features within a predetermined distance along the route, the feature whose low-position accuracy direction Dtag and the normal direction are within a predetermined angle difference, That is, among the features whose normal direction is approximated to the low position accuracy direction Dtag, a feature having a high degree of appropriateness as a measurement target by the lidar 2 and having a small angle difference between the low position accuracy direction Dtag and the normal direction is selected as a target feature. It is determined as a product Ltag.
- the predetermined angle difference described above is set to, for example, less than 45 degrees.
- a feature whose angle difference between the low position accuracy direction Dtag and the normal direction is less than 45 degrees is equal to the low position accuracy direction Dtag and the normal line. It is considered as a feature whose direction is close.
- step S103 a supplementary explanation will be given of step S103.
- the direction of the surface of the lidar 2 irradiated with the laser beam that is, the normal direction
- the laser beam of the lidar 2 are closer to parallel
- the position estimation accuracy in that direction can be improved. Therefore, the smaller the angle difference between the low-position accuracy direction Dtag and the normal direction of the feature, the better the estimation accuracy in the low-position accuracy direction Dtag by position estimation using the feature.
- the automatic operation control unit 18 is a feature registered in the map DB 10 and is a feature that can be measured by the rider 2 from a traveling route.
- a feature whose low-position accuracy direction Dtag and normal direction are within a predetermined angle difference is regarded as an approximation of the low-position accuracy direction Dtag and normal direction, and it is determined whether there are a plurality of such features (step S301). ).
- the automatic operation control unit 18 determines that there are a plurality of features whose normal direction is within the predetermined angle difference from the low position accuracy direction Dtag (step S301; Yes), among the plurality of features, the lidar 2
- the feature having the highest appropriateness is extracted as the measurement target by (step S302).
- the automatic operation control unit 18 refers to the appropriateness information of the feature determined in step S301 that the normal direction is within a predetermined angle difference, and extracts the feature having the highest appropriateness indicated by the appropriateness information. .
- step S303 determines whether only one feature having the highest appropriateness exists. That is, in step S302, it is determined whether or not a plurality of features having the same appropriateness as the feature having the highest appropriateness has been extracted. And when the automatic driving
- step S301 When the automatic operation control unit 18 determines in step S301 that there are not a plurality of features whose normal direction is within a predetermined angle difference from the low position accuracy direction Dtag (step S301; No), the automatic operation control unit 18 uses the low position accuracy direction Dtag and the method. It is determined whether there is only one feature whose line direction is within a predetermined angle difference (step S306). When it is determined that there is no feature whose normal direction is within the predetermined angle difference between the low position accuracy direction Dtag and the normal direction (step S306; No), the automatic operation control unit 18 is within a predetermined distance along the traveling route. The size information of existing features is extracted from the map DB 10 and referenced, and a feature having a large size is determined as the target feature Ltag. On the other hand, when it is determined that there is only one feature whose normal direction is within the predetermined angle difference from the low position accuracy direction Dtag (step S306; Yes), the one feature is determined as the target feature Ltag, Proceed to step S104.
- the automatic operation control unit 18 has a low position accuracy direction Dtag and a normal direction within a predetermined angle difference, and among the features having the highest appropriateness, the low position accuracy direction Dtag and the normal line.
- the feature having the highest appropriateness among these features may be determined as the target feature Ltag. Good.
- the angle difference between the low position accuracy direction Dtag and the normal direction and the appropriateness of each feature are scored according to predetermined criteria, respectively, and the low position accuracy direction Dtag is determined based on the angle difference score and the appropriateness score.
- the target feature Ltag may be determined by comprehensively determining features suitable for improving the position estimation accuracy.
- the appropriateness information is not registered in the feature information of the map DB 10
- the feature that minimizes the angle difference between the low position accuracy direction Dtag and the normal direction may be determined as the target feature Ltag. .
- the automatic operation control unit 18 approximates the low position accuracy direction Dtag and the normal direction among the features registered in the map DB 10 and measurable by the rider 2 from the traveling route.
- the feature to be determined is determined as the target feature Ltag.
- the automatic operation control unit 18 specifies the normal direction of each feature based on the normal information of each feature registered in the feature information of the map DB 10. Then, the automatic operation control unit 18, for example, among the features existing within a predetermined distance along the route, the feature whose normal direction is closest to the low position accuracy direction Dtag, or the low position accuracy direction Dtag and the normal line.
- a feature whose direction angle difference is within a predetermined range and has a high degree of appropriateness as a measurement target by the lidar 2 is determined as the target feature Ltag.
- the automatic operation control unit 18 refers to the size information of the feature information to determine the target feature Ltag. .
- a specific setting example of the target feature Ltag will be described in the section “(3) Specific example ”.
- the automatic operation control unit 18 corrects the target trajectory of the vehicle so as to approach the target feature Ltag determined in step S103 (step S104). Specifically, the automatic operation control unit 18 corrects the target track so as to change the lane to the lane closest to the target feature Ltag, or sets the travel position on the side close to the target feature Ltag on the traveling lane. Correct the target trajectory so that it is biased in the lane. In this way, the automatic operation control unit 18 can appropriately increase the detection accuracy of the target feature Ltag by the rider 2 and increase the position estimation accuracy in the low position accuracy direction Dtag by bringing the vehicle closer to the target feature Ltag. it can. In addition, even when position estimation is performed based on a plurality of features by weighting according to the distance between each feature and the vehicle, the weight on the target feature Ltag is relatively set by bringing the vehicle close to the target feature Ltag. It is possible to raise to
- step S102 when the automatic driving control unit 18 determines that the low position accuracy direction Dtag does not exist (step S102; No), it determines that there is no need to correct the target trajectory of the vehicle, and performs the processing of the flowchart. finish.
- FIG. 7A shows an overhead view of a vehicle that is executing a scan by the lidar 2.
- FIG. 7 (A) features 51 and 52 having different normal directions exist within the measurement range of the lidar 2.
- FIG. 7B is an enlarged view of the feature 51 in which the laser beam irradiation points “P1” to “P5” of the lidar 2 are clearly shown.
- FIG. 7C is an enlarged view of the feature 52 in which the laser beam irradiation points “P6” to “P9” of the lidar 2 are clearly shown.
- the coordinates of the center of gravity in the lateral direction and the traveling direction of the vehicle calculated from the position coordinates of each irradiation point are indicated by broken lines.
- 7A to 7C exemplify a case where the lidar 2 emits laser light along a predetermined scanning surface for convenience of explanation, but along a plurality of scanning surfaces having different heights. Laser light may be emitted.
- the normal direction of the feature 51 is substantially coincident with the side surface direction of the vehicle. Therefore, the irradiation points P1 to P5 are arranged along the traveling direction of the vehicle, and the variation in the traveling direction is large and the variation in the side surface direction is small.
- the automatic operation control unit 18 uses the vehicle indicated by the point cloud data of the target feature as a reference 2. Calculate the barycentric coordinates of the dimensional coordinates. Therefore, in the position estimation using the feature 51, it is predicted that the position accuracy in the side surface direction with small variations in the irradiation points P1 to P5 is increased. Therefore, the automatic operation control unit 18 sets the feature 51 as the target feature Ltag when the side surface direction is the low position accuracy direction Dtag.
- the normal direction of the feature 52 substantially coincides with the traveling direction of the vehicle. Therefore, the irradiation points P6 to P9 are arranged along the side surface direction of the vehicle, and the variation in the side surface direction is large and the variation in the traveling direction is small. Therefore, in the position estimation using the feature 52, it is predicted that the position accuracy in the traveling direction in which the variation of the irradiation points P6 to P9 is small will be high. Therefore, the automatic operation control unit 18 sets the feature 52 as the target feature Ltag when the traveling direction is the low position accuracy direction Dtag.
- the automatic operation control unit 18 determines the feature along the route whose normal direction is approximate to the low position accuracy direction Dtag as the target feature Ltag in step S103 of FIG.
- FIG. 8 shows a vehicle in which a feature 53 facing frontward with respect to the vehicle is present in front of the left side of the road on a three-lane road on one side and a feature 54 lying laterally with respect to the vehicle is present in front of the right side of the road.
- An overhead view of is shown. 8 to 11, a solid arrow “L1” indicates a target trajectory before execution of the flowchart of FIG. 6, and a broken arrow “L2” indicates a target trajectory after execution of the flowchart of FIG.
- a broken line ellipse “EE” indicates an error ellipse corresponding to the error range of position estimation.
- the range of the error in the traveling direction of the vehicle indicated by the broken line ellipse EE is longer than the side surface direction of the vehicle and longer than a predetermined threshold value.
- the automatic operation control unit 18 regards the traveling direction of the vehicle as the low position accuracy direction Dtag in step S102 of the flowchart of FIG. Then, in step S103, the automatic operation control unit 18 refers to the map DB 10, and among the features existing within a predetermined distance along the traveling route, the traveling direction which is the low position accuracy direction Dtag and the normal direction are approximated.
- the feature 53 to be set is set as the target feature Ltag.
- step S104 the automatic driving control unit 18 changes the target track so as to change the lane from the central lane of the traveling road to the left lane close to the feature 53.
- the vehicle-mounted device 1 detects the feature 53 with high accuracy by the rider 2, and in the low position accuracy direction Dtag.
- the estimation accuracy of a certain traveling direction can be preferably improved.
- FIG. 9 shows an overhead view of the vehicle when the position estimation accuracy in the lateral direction is lower than the traveling direction of the vehicle when traveling on the same road as in the example of FIG.
- the automatic operation control unit 18 regards the side surface direction of the vehicle as the low position accuracy direction Dtag in step S102 of the flowchart of FIG. Then, in step S103, the automatic operation control unit 18 refers to the map DB 10, and among features existing within a predetermined distance along the traveling route, the side direction which is the low position accuracy direction Dtag and the normal direction are approximated.
- the feature 54 to be set is set as the target feature Ltag.
- the automatic driving control unit 18 changes the target track so as to change the lane from the central lane of the traveling road to the right lane close to the feature 54.
- the vehicle-mounted device 1 detects the feature 54 with high accuracy by the rider 2, and in the low position accuracy direction Dtag.
- the estimation accuracy of a certain side surface direction can be preferably improved.
- FIG. 10 shows an overhead view of the vehicle when there is no feature whose normal direction is close to the low position accuracy direction Dtag along the road.
- the normal direction of the features 55 and 56 existing within a predetermined distance along the traveling route is substantially perpendicular to the low position accuracy direction Dtag.
- the automatic operation control unit 18 regards the side surface direction of the vehicle as the low position accuracy direction Dtag in step S102 of the flowchart of FIG.
- the automatic operation control unit 18 refers to the map DB 10, and among the features existing within a predetermined distance along the traveling route, the feature whose normal direction approximates the low position accuracy direction Dtag is found. Judge that it does not exist.
- the automatic operation control unit 18 extracts and refers to the size information of the features 55 and 56 existing within a predetermined distance along the traveling route from the map DB 10 and refers to the feature 55 having a large size as the target feature Ltag. (See step S307).
- the automatic driving control unit 18 changes the target track so as to change the lane from the central lane of the traveling road to the left lane close to the feature 55 as indicated by a broken line L2.
- the automatic operation control unit 18 selects a feature having a large size (that is, the number of laser beam irradiation points of the lidar 2 increases) when there is no feature whose normal direction approximates to the low position accuracy direction Dtag. Select as the target feature Ltag.
- the automatic operation control unit 18 selects a feature from which more point cloud data can be obtained as the target feature Ltag, and improves the estimation accuracy of the low position accuracy direction Dtag as much as possible. Can do.
- FIG. 11 shows a bird's-eye view of the vehicle when there are features with different normal directions on the left front and right front of the road.
- the feature 57 is inclined by an angle “ ⁇ 1” with respect to the side surface direction of the vehicle
- the feature 58 is inclined by “ ⁇ 2” that is larger than the angle ⁇ 1 with respect to the side surface direction of the vehicle.
- the automatic driving control unit 18 specifies the traveling direction of the vehicle as the low position accuracy direction Dtag in step S102, and in step S103, both the features 57 and 58 are in the low position accuracy direction Dtag. It is determined that the traveling direction and the normal direction are approximate. In this case, the automatic driving control unit 18 refers to the appropriateness information corresponding to the features 57 and 58 from the map DB 10, and when these appropriateness information shows the same value, or there is no corresponding appropriateness information. In this case, the feature 57 along the route that is in the normal direction closest to the low position accuracy direction Dtag is set as the target feature Ltag (see step S304).
- step S104 the automatic driving control unit 18 changes the target track so as to change the lane from the central lane of the traveling road to the left lane close to the feature 55 as indicated by a broken line L2.
- the automatic operation control unit 18 refers to the appropriateness information corresponding to the features 57 and 58 from the map DB 10, and the value indicated by the appropriateness information of the feature 58 is greater than the value indicated by the low accuracy information of the feature 57.
- the feature 58 is set as the target feature Ltag (see steps S302 and S305).
- the automatic operation control unit 18 when there are a plurality of features whose normal direction approximates to the low position accuracy direction Dtag, the automatic operation control unit 18 has the lowest position accuracy direction Dtag and the normal direction most.
- the feature to be approximated or the feature having the highest appropriateness information value is set as the target feature Ltag. Thereby, the position estimation accuracy in the low position accuracy direction Dtag can be preferably improved.
- the automatic operation control unit 18 of the in-vehicle device 1 acquires the positional accuracy in the vehicle traveling direction and the vehicle side direction, respectively. Moreover, the automatic driving
- a server device (not shown) may have the map DB 10 instead of the configuration in which the map DB 10 is stored in the storage unit 12.
- the in-vehicle device 1 acquires necessary feature information by communicating with the server device by a communication unit (not shown).
- the low position accuracy direction Dtag is not limited to the case where the low position accuracy direction Dtag is set to either the traveling direction of the vehicle or the side surface direction of the vehicle.
- the automatic operation control unit 18 may determine, as the low position accuracy direction Dtag, a direction having a large error range among two predetermined directions.
- the automatic operation control unit 18 determines the direction with the largest error range as the low position accuracy direction when the direction with the largest error range in all directions is neither the traveling direction nor the side surface direction. It may be determined as Dtag.
- the configuration of the driving support system shown in FIG. 1 is an example, and the configuration of the driving support system to which the present invention is applicable is not limited to the configuration shown in FIG.
- the electronic control device of the vehicle instead of having the in-vehicle device 1, the electronic control device of the vehicle may execute processing of the own vehicle position estimating unit 17 and the automatic driving control unit 18 of the in-vehicle device 1.
- map DB10 is memorize
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
車載機1の自動運転制御部18は、車両の進行方向及び車両の側面方向の位置精度を夫々取得する。また、自動運転制御部18は、地図DB10を参照することで、地物毎の当該地物の向きを夫々示す法線情報を取得する。そして、自動運転制御部18は、車両の進行方向及び側面方向のうち、位置精度が低い方向を向く目標地物の検出精度が高くなるように車両を制御するための制御情報を車両の電子制御装置に出力する。
Description
本発明は、車両を制御する技術に関する。
従来から、車両の進行先に設置される地物をレーダやカメラを用いて検出し、その検出結果に基づいて自車位置を校正する技術が知られている。また、特許文献1には、レーダやカメラを用いて地物を認識する際、走行中の車両を、地物が検知しやすくなる位置に誘導する運転支援システムが開示されている。
道路周辺に存在する地物は、同一方向を向いて設置されているとは限らない。よって、位置推定に道路周辺の地物を用いる場合、レーダなどによって検出される地物の面の向きが異なることに起因して、位置精度に影響が生じることになる。
本発明は、上記のような課題を解決するためになされたものであり、位置を高精度に算出するのに好適な出力装置を提供することを主な目的とする。
請求項1に記載の発明は、出力装置であって、移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得部と、地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得部と、前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力部と、を備える。
請求項10に記載の発明は、出力装置が実行する制御方法であって、移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得工程と、地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得工程と、前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力工程と、を有する。
請求項11に記載の発明は、コンピュータが実行するプログラムであって、移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得部と、地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得部と、前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力部として前記コンピュータを機能させる。
本発明の好適な実施形態によれば、出力装置は、移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得部と、地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得部と、前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力部と、を備える。
地物の検出結果に基づき位置推定を行う場合、地物が向いている方向の位置精度が高くなる傾向がある。よって、この態様では、出力装置は、位置精度が低い方向を向く地物の検出精度が高くなるように移動体を制御する。これにより、出力装置は、位置精度が低い方向での位置精度を好適に向上させることができる。
上記出力装置の一態様では、前記出力部は、前記位置精度が低い方向と地物の向きとのなす角度が所定角度以下の場合に、当該地物は前記位置精度が低い方向を向いていると判定する。上記所定角度は、少なくとも45度以下に設定されることが好ましい。この態様により、出力装置は、位置精度が低い方向での位置精度を好適に向上させるように移動体を制御することができる。
上記出力装置の他の一態様では、前記地図情報には、地物毎の当該地物の大きさに関する情報が含まれ、前記出力部は、前記位置精度が低い方向を向く地物が存在しない場合、前記大きさに関する情報に基づき検出精度を高くすべき前記目標地物を決定する。この態様により、出力装置は、位置精度が低い方向を向く地物が存在しない場合であっても、位置精度が低い方向での位置精度を好適に向上させるように移動体を制御することができる。
上記出力装置の他の一態様では、出力装置は、前記移動体の周辺の地物を検出する検出装置の出力を取得する第3取得部と、前記目標地物に対する前記検出装置の出力と、前記地図情報に含まれる前記目標地物の位置情報とに基づき、前記移動体の位置推定を行う位置推定部と、をさらに備える。この態様により、出力装置は、位置精度が低い方向を向く地物を基準とした位置推定を行い、位置精度が低い方向での位置精度を好適に向上させることができる。
上記出力装置の他の一態様では、前記出力部は、前記目標地物に最も近い車線へ前記移動体を移動させる、又は、走行中の車線内において前記目標地物に近い側へ前記移動体を移動させるための制御情報を出力する。この態様により、出力装置は、移動体を位置精度が低い方向を向く地物に好適に近づけて当該地物の検出精度を高めることができる。
上記出力装置の他の一態様では、前記出力部は、前記移動体の経路沿いに存在する地物から、前記目標地物を選択する。この態様により、出力装置は、目的地への経路を実質的に変更することなく、位置精度が低い方向における位置精度を高めることができる。
上記出力装置の他の一態様では、前記出力部は、前記移動体から所定距離以内に存在する地物のうち、前記位置精度が低い方向と地物の向きとのなす角度が最も小さい地物を、前記目標地物として選択する。この態様により、出力装置は、位置精度が低い方向での位置精度を好適に向上させるように移動体を制御することができる。
上記出力装置の他の一態様では、前記出力部は、前記移動体から所定距離以内に存在する地物のうち、前記位置精度が低い方向と地物の向きとのなす角度、及び前記移動体の周辺の地物を検出する検出装置の検出対象としての地物の適正度に基づいて、前記目標地物を選択する。この態様により、出力装置は、位置精度が低い方向での位置精度を好適に向上させつつ高精度な位置推定を行うことができる。
上記出力装置の他の一態様では、前記出力部は、前記位置精度が低い方向と地物の向きとのなす角度が所定角度以下の地物のうち、前記適正度が最も高い地物を、前記目標地物として選択する。この態様により、出力装置は、位置精度が低い方向での位置精度を好適に向上させつつ高精度な位置推定を行うことができる。
本発明の他の好適な実施形態によれば、出力装置が実行する制御方法であって、出力装置が実行する制御方法であって、移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得工程と、地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得工程と、前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力工程と、を有する。出力装置は、この制御方法を実行することで、位置精度が低い方向での位置精度を好適に向上させることができる。
本発明の他の好適な実施形態によれば、コンピュータが実行するプログラムであって、移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得部と、地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得部と、前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力部として前記コンピュータを機能させる。出力装置は、このプログラムを実行することで、位置精度が低い方向での位置精度を好適に向上させることができる。好適には、上記プログラムは、記憶媒体に記憶される。
以下、図面を参照して本発明の好適な各実施例について説明する。
[概略構成]
[概略構成]
図1は、本実施例に係る運転支援システムの概略構成図である。図1に示す運転支援システムは、車両に搭載され、車両の運転支援に関する制御を行う車載機1と、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)2と、ジャイロセンサ3と、車速センサ4と、GPS受信機5とを有する。
車載機1は、ライダ2、ジャイロセンサ3、車速センサ4、及びGPS受信機5と電気的に接続し、これらの出力に基づき、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定を行う。そして、車載機1は、自車位置の推定結果に基づき、設定された目的地への経路に沿って走行するように、車両の自動運転制御などを行う。車載機1は、道路データ及び道路付近に設けられた目印となる地物に関する情報である地物情報を記憶した地図データベース(DB:DataBase)10を記憶する。上述の目印となる地物は、例えば、道路脇に周期的に並んでいるキロポスト、100mポスト、デリニエータ、交通インフラ設備(例えば標識、方面看板、信号)、電柱、街灯などの地物であり、地物情報は、各地物に割り当てられたインデックスと、地物の位置情報と、地物の向きの情報とが少なくとも関連付けられた情報である。そして、車載機1は、この地物情報に基づき、ライダ2等の出力と照合させて自車位置の推定を行う。
ライダ2は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。この場合、ライダ2は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。一般的に、対象物までの距離が近いほどライダの距離測定値の精度は高く、距離が遠いほど精度は低い。本実施例では、ライダ2は、少なくとも車両の前方をスキャンするように車両の進行方向を向いて設置されているものとする。ライダ2、ジャイロセンサ3、車速センサ4、GPS受信機5は、それぞれ、出力データを車載機1へ供給する。なお、車載機1は、本発明における「出力装置」の一例であり、ライダ2は、本発明における「検出装置」の一例である。
図2は、車載機2の機能的構成を示すブロック図である。車載機2は、主に、インターフェース11と、記憶部12と、入力部14と、制御部15と、情報出力部16と、を有する。これらの各要素は、バスラインを介して相互に接続されている。
インターフェース11は、ライダ2、ジャイロセンサ3、車速センサ4、及びGPS受信機5などのセンサから出力データを取得し、制御部15へ供給する。また、インターフェース11は、制御部15が生成した車両の走行制御に関する信号を車両の電子制御装置(ECU:Electronic Control Unit)へ供給する。制御部15からインターフェース11を介して車両の電子制御装置へ送信される信号は、本発明における「制御情報」の一例である。
記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行するのに必要な情報を記憶する。本実施例では、記憶部12は、地物情報を含む地図DB10を記憶する。図3は、地物情報のデータ構造の一例を示す。図3に示すように、地物情報は、地物ごとに当該地物に関する情報が関連付けられた情報であり、ここでは、地物のインデックスに相当する地物IDと、位置情報と、形状情報と、適正度情報を含んでいる。位置情報は、緯度及び経度(及び標高)等により表わされた地物の絶対的な位置を示す。形状情報は、地物の形状に関する情報であり、地物の向き(即ち正面に対する法線方向)を示す法線情報と、地物のサイズを示すサイズ情報とを含む。適正度情報は、ライダ2による検出のし易さ、換言すると、ライダ2による測定対象としての適正度を示す。なお、地図DB10は、定期的に更新されてもよい。この場合、例えば、制御部15は、図示しない通信部を介し、地図情報を管理するサーバ装置から、自車位置が属するエリアに関する部分地図情報を受信し、地図DB10に反映させる。
ここで、適正度情報は、ライダ2による測定対象としての地物ごとの適正度を示す情報として予め設定され地物情報の一部として記憶された情報である。適正度情報は、典型的には適正度を数値化した情報であって、例えば、0~1.0の範囲内の数値で示される。適正度が最も高い地物については適正度情報を1.0とし、相対的に適正度が低い地物ほど、小さい数値の適正度情報が設定される。
適正度情報の設定例を例示する。例えば、地物がきれいな道路標識であり,ライダ2により検出し易い場合は、適正度情報を1.0に設定する。地物が若干汚れており、ライダ2のレーザ光に対する反射率が低下してやや検出しにくい場合は.適正度情報を0.8に設定する。樹木の周辺に存在する地物については、春から秋にかけて樹木の葉に一部が隠される場合があるため、冬には適正度情報を0.8に設定し、他の季節には適正度情報を0.5に設定する。降雪の際に雪の付着が発生する地物については、降雪時には適正度情報を0.1に設定し、その他の天候では適正度情報を0.8に設定する。再帰性反射材が塗布されていない地物や電光掲示板については、ライダ2により検出しにくい場合が考えられるため、適正度情報を0.2~0.1に設定する。
入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等であり、経路探索のための目的地を指定する入力、自動運転のオン及びオフを指定する入力などを受け付ける。情報出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。
制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。本実施例では、制御部15は、自車位置推定部17と、自動運転制御部18とを有する。制御部15は、本発明における「第1取得部」、「第2取得部」、「第3取得部」、「位置推定部」、「出力部」、及びプログラムを実行する「コンピュータ」の一例である。
自車位置推定部17は、地物に対するライダ2による距離及び角度の計測値と、地図DB10から抽出した地物の位置情報とに基づき、ジャイロセンサ3、車速センサ4、及び/又はGPS受信機5の出力データから推定した自車位置を補正する。本実施例では、一例として、自車位置推定部17は、ベイズ推定に基づく状態推定手法に基づき、ジャイロセンサ3、車速センサ4等の出力データから自車位置を推定する予測ステップと、直前の予測ステップで算出した自車位置の推定値を補正する計測更新ステップとを交互に実行する。
自動運転制御部18は、地図DB10を参照し、設定された経路と、自車位置推定部17が推定した自車位置とに基づき、自動運転制御に必要な信号を車両に送信する。自動運転制御部18は、設定された経路に基づき、目標軌道を設定し、自車位置推定部17が推定した自車位置が目標軌道から所定幅以内のずれ幅となるように、車両に対してガイド信号を送信して車両の位置を制御する。また、本実施例では、自動運転制御部18は、自車位置推定部17の進行方向における位置推定精度と、進行方向に垂直な方向(「側面方向」とも呼ぶ。)における位置推定精度をそれぞれ監視する。そして、自動運転制御部18は、位置推定精度が低い方向(「低位置精度方向Dtag」とも呼ぶ。)の位置推定精度を高めるのに好適な地物のライダ2による検出精度を高めるように、車両の目標軌道を修正する。車両の進行方向及び側面方向は、本発明における「第1方向」及び「第2方向」の一例である。
ここで、自車位置推定部17による自車位置の推定処理について補足説明する。自車位置推定部17は、予測ステップと計測更新ステップを逐次的に繰返して自車位置推定を行う。これらのステップで用いる状態推定フィルタは、ベイズ推定を行うように開発された様々のフィルタが利用可能であり、例えば、拡張カルマンフィルタ、アンセンテッドカルマンフィルタ、パーティクルフィルタなどが該当する。このように、ベイズ推定に基づく位置推定は、種々の方法が提案されている。以下では、一例として拡張カルマンフィルタを用いた自車位置推定について簡略的に説明する。
図4は、状態変数ベクトルxを2次元直交座標で表した図である。図4に示すように、xyの2次元直交座標上で定義された平面での自車位置は、座標「(x、y)」、自車の方位「θ」により表される。ここでは、方位θは、車の進行方向とx軸とのなす角として定義されている。座標(x、y)は、例えば緯度及び経度の組合せに相当する絶対位置を示す。
図5は、予測ステップと計測更新ステップとの概略的な関係を示す図である。図5に示すように、予測ステップと計測更新ステップとを繰り返すことで、状態変数ベクトルXの推定値の算出及び更新を逐次的に実行する。ここでは、計算対象となる基準時刻(即ち現在時刻)「t」の状態変数ベクトルを、「X-
t」または「X^
t」と表記している。(「状態変数ベクトルXt=(xt、yt、θt)T」と表記する。)なお、予測ステップで推定された暫定的な推定値には当該推定値を表す文字の上に「-」を付し、計測更新ステップで更新された,より精度の高い推定値には当該値を表す文字の上に「^」を付す。
予測ステップでは、自車位置推定部17は、直前の計測更新ステップで算出された時刻t-1の状態変数ベクトルX^
t-1に対し、車両の移動速度「v」と角速度「ω」(これらをまとめて「制御値ut=(vt、ωt)T」と表記する。)を作用させることで、時刻tの自車位置の推定値(「事前推定値」とも呼ぶ。)X-
tを算出する。また、これと同時に、自車位置推定部17は、事前推定値X-
tの誤差分布に相当する共分散行列「Σ-
t」を、直前の計測更新ステップで算出された時刻t-1での共分散行列「Σ^
t-1」から算出する。
また、計測更新ステップでは、自車位置推定部17は、地図DB10に登録された地物の位置ベクトルとライダ2のスキャンデータとの対応付けを行う。そして、自車位置推定部17は、この対応付けができた場合に、対応付けができた地物のライダ2による計測値「Zt」と、事前推定値X-
t及び地図DB10に登録された地物の位置ベクトルを用いてライダ2による計測処理をモデル化して求めた地物の計測推定値「Z^
t」とをそれぞれ取得する。計測値Ztは、時刻tにライダ2が計測した地物の距離及びスキャン角度を表す2次元ベクトルである。そして、自車位置推定部17は、以下の式(1)に示すように、計測値Ztと計測推定値Z^
tとの差分にカルマンゲイン「Kt」を乗算し、これを事前推定値X-
tに加えることで、更新された状態変数ベクトル(「事後推定値」とも呼ぶ。)X^
tを算出する。
X^ t=X- t+Kt(Zt-Z^ t) 式(1)
X^ t=X- t+Kt(Zt-Z^ t) 式(1)
また、計測更新ステップでは、自車位置推定部17は、予測ステップと同様、事後推定値X^
tの誤差分布に相当する共分散行列Σ^
tを事前共分散行列Σ-
tから求める。カルマンゲインKt等のパラメータについては、例えば拡張カルマンフィルタを用いた公知の自己位置技術と同様に算出することが可能である。
なお、自車位置推定部17は、複数の地物に対し、地図DB10に登録された地物の位置ベクトルとライダ2のスキャンデータとの対応付けができた場合、選定した任意の一個の地物(例えば後述する目標地物Ltag)の計測値等に基づき計測更新ステップを行ってもよく、対応付けができた全ての地物の計測値等に基づき計測更新ステップを複数回行ってもよい。なお、複数の地物の計測値等を用いる場合には、自車位置推定部17は、ライダ2から遠い地物ほどライダ2の計測誤差が大きくなることを勘案し、ライダ2と地物との距離が長いほど、当該地物に関する重み付けを小さくする。
また、自動運転制御部18は、後述するように、低位置精度方向Dtagを決定し、低位置精度方向Dtagにおける位置推定精度を上げるため、車両の目標軌道を修正する。
[位置推定精度に基づく車両制御]
(1)処理フロー
図6は、本実施例において自動運転制御部18が実行する位置推定精度に基づく車両制御を示すフローチャートである。図6のフローチャートでは、自動運転制御部18は、低位置精度方向Dtagを検出した場合に、低位置精度方向Dtagの位置推定精度を高めるのに好適な地物(「目標地物Ltag」とも呼ぶ。)を決定し、目標地物Ltagに近づくように車両を制御する。なお、図6のフローチャートの実行時には、自動運転制御部18は、設定された目的地への経路に沿った車両の目標軌道を設定しているものとする。
(1)処理フロー
図6は、本実施例において自動運転制御部18が実行する位置推定精度に基づく車両制御を示すフローチャートである。図6のフローチャートでは、自動運転制御部18は、低位置精度方向Dtagを検出した場合に、低位置精度方向Dtagの位置推定精度を高めるのに好適な地物(「目標地物Ltag」とも呼ぶ。)を決定し、目標地物Ltagに近づくように車両を制御する。なお、図6のフローチャートの実行時には、自動運転制御部18は、設定された目的地への経路に沿った車両の目標軌道を設定しているものとする。
まず、自動運転制御部18は、車両の進行方向及び側面方向における位置推定の誤差の範囲を特定する(ステップS101)。例えば、自動運転制御部18は、拡張カルマンフィルタに基づく位置推定の算出過程で得られる誤差の共分散行列に対して自車の方位θを用いた回転行列による変換を行うことで、車両の進行方向及び側面方向における位置推定の誤差の範囲をそれぞれ特定する。
次に、自動運転制御部18は、低位置精度方向Dtagが存在するか否か判定する(ステップS102)。例えば、自動運転制御部18は、ステップS101で特定した進行方向または側面方向における位置推定の誤差の範囲のいずれかが所定の閾値より長い場合に、誤差の範囲が所定の閾値より長い方向を低位置精度方向Dtagとみなす。なお、自動運転制御部18は、ステップS102の判定を行う代わりに、車両の進行方向における位置推定の誤差の範囲と、車両の側面方向における位置推定の誤差の範囲とを比較し、誤差の範囲が長い方向を低位置精度方向Dtagとみなしてもよい。この場合、自動運転制御部18は、低位置精度方向Dtagの特定後、ステップS103以降の処理を実行する。
そして、自動運転制御部18は、低位置精度方向Dtagが存在すると判断した場合(ステップS102;Yes)、地図DB10を参照し、低位置精度方向Dtagの位置推定精度を高めるのに好適な経路沿いの地物を、目標地物Ltagとして決定する目的地物決定処理を実行する(ステップS103)。
ここで、ステップS103の目的地物決定処理について、図12を参照して説明する。図12は、本実施例において図6のステップS103にて実行される目的地物決定処理を示すフローチャートである。図12のフローチャートでは、自動運転制御部18は、地図DB10を参照し、経路沿いの所定距離内の地物のうち、低位置精度方向Dtagと法線方向が所定角度差以内である地物、すなわち低位置精度方向Dtagと法線方向が近似する地物のうちから、ライダ2による測定対象として適正度が高く、低位置精度方向Dtagと法線方向の角度差が小さい地物を、目標地物Ltagとして決定する。なお、上述の所定角度差は、例えば、45度未満に設定され、この場合、低位置精度方向Dtagと法線方向の角度差が45度未満の地物が、低位置精度方向Dtagと法線方向が近似する地物とみなされる。
ここで、ステップS103について補足説明する。後述するように、ライダ2のレーザ光が照射される面の向き(即ち法線方向)とライダ2のレーザ光とが平行に近いほど、その方向の位置推定精度を高めることが可能である。従って、低位置精度方向Dtagと地物の法線方向との角度差が小さいほど、当該地物を用いた位置推定による低位置精度方向Dtagでの推定精度が向上する。
まず、ステップS103の目的地物決定処理が開始された場合に、自動運転制御部18は、地図DB10に登録されている地物であって走行する経路からライダ2により計測可能な地物のうち、低位置精度方向Dtagと法線方向が所定角度差内である地物を低位置精度方向Dtagと法線方向が近似するとみなし、このような地物が複数存在するかを判定する(ステップS301)。そして、自動運転制御部18は、低位置精度方向Dtagと法線方向が所定角度差内である地物が複数存在すると判断した場合(ステップS301;Yes)、複数の地物のうち、ライダ2による測定対象として適正度が最も高い地物を抽出する(ステップS302)。例えば、自動運転制御部18は、ステップS301で法線方向が所定角度差内であると判定した地物の適正度情報を参照し、適正度情報が示す適正度が最も高い地物を抽出する。
次に、自動運転制御部18は、適正度の最も高い地物が一つだけ存在するかを判定する(ステップS303)。すなわちステップS302において、適正度の最も高い地物として、同じ適正度の複数の地物が抽出されなかったかを判定する。そして、自動運転制御部18は、適正度の最も高い地物が一つだけ存在すると判定した場合(ステップS303;Yes)、ステップS302において抽出した一つの地物を目標地物Ltagとして決定し、ステップS104に進む。一方、適正度の最も高い地物が一つだけ存在すると判定されなかった場合(ステップS303;No)、ステップS304において抽出した複数の地物のうち、低位置精度方向Dtagと法線方向が最も近似する地物を目標地物Ltagとして決定し、ステップS104に進む。
自動運転制御部18は、ステップS301で低位置精度方向Dtagと法線方向が所定角度差内である地物が複数存在しないと判断した場合(ステップS301;No)、低位置精度方向Dtagと法線方向が所定角度差内である地物が一つだけ存在するかを判定する(ステップS306)。低位置精度方向Dtagと法線方向が所定角度差内である地物が一つも存在しないと判定した場合(ステップS306;No)、自動運転制御部18は、進行する経路沿いにおいて所定距離以内に存在する地物のサイズ情報を地図DB10から抽出して参照し、サイズが大きい地物を目標地物Ltagとして決定する。一方、低位置精度方向Dtagと法線方向が所定角度差内である地物が一つだけ存在すると判定した場合(ステップS306;Yes)、当該一つの地物を目標地物Ltagとして決定し、ステップS104に進む。
なお、本実施例では、自動運転制御部18は、低位置精度方向Dtagと法線方向が所定角度差以内であり、且つ適正度が最も高い地物のうち、低位置精度方向Dtagと法線方向が最も近似する地物を目標地物Ltagとして決定する例について説明したが、目標地物Ltagの決定方法はこれに限定されない。例えば、低位置精度方向Dtagと法線方向の角度差が極めて小さい地物が複数存在する場合には、これらの地物のうち適正度が最も大きい地物を目標地物Ltagとして決定してもよい。あるいは、低位置精度方向Dtagと法線方向の角度差と、各地物の適正度をそれぞれ所定の基準でスコア化し、角度差のスコアと適正度のスコアとに基づいて、低位置精度方向Dtagの位置推定精度を高めるのに好適な地物を総合的に判定して、目標地物Ltagを決定してもよい。また、地図DB10の地物情報に適正度情報が登録されていない場合は、低位置精度方向Dtagと法線方向との角度差が最小となる地物を目標地物Ltagとして決定してもよい。
以上を勘案し、自動運転制御部18は、地図DB10に登録されている地物であって走行する経路からライダ2により計測可能な地物のうち、低位置精度方向Dtagと法線方向が近似する地物を、目標地物Ltagとして決定する。この場合、自動運転制御部18は、各地物の法線方向を、地図DB10の地物情報に登録されている各地物の法線情報に基づき特定する。そして、自動運転制御部18は、例えば、経路沿いに所定距離以内に存在する地物のうち、低位置精度方向Dtagと法線方向が最も近似する地物、または低位置精度方向Dtagと法線方向の角度差が所定範囲内の地物であってライダ2による測定対象としての適正度が高い地物を、目標地物Ltagとして決定する。また、自動運転制御部18は、低位置精度方向Dtagと法線方向が近似する経路沿いの地物が存在しない場合には、地物情報のサイズ情報を参照して目標地物Ltagを決定する。目標地物Ltagの具体的な設定例については、「(3)具体例」のセクションで説明する。
そして、自動運転制御部18は、ステップS103で決定した目標地物Ltagに近づくように車両の目標軌道を修正する(ステップS104)。具体的には、自動運転制御部18は、目標地物Ltagに最も近い車線に車線変更するように目標軌道を修正したり、走行中の車線上において目標地物Ltagに近い側に走行位置を車線内で偏らせるように目標軌道を修正したりする。このように、自動運転制御部18は、車両を目標地物Ltagに近付けることで、ライダ2による目標地物Ltagの検出精度を好適に高め、低位置精度方向Dtagの位置推定精度を高めることができる。また、各地物と車両との距離に応じた重み付けにより複数の地物に基づき位置推定を行う場合であっても、目標地物Ltagに車両を近付けることで、目標地物Ltagに関する重み付けを相対的に上げることが可能である。
一方、ステップS102において、自動運転制御部18は、低位置精度方向Dtagが存在しないと判断した場合(ステップS102;No)、車両の目標軌道を修正する必要がないと判断し、フローチャートの処理を終了する。
(2)地物の法線方向と位置推定精度との関係
次に、地物の法線方向と位置推定精度との関係について説明する。以下に説明するように、ライダ2のレーザ光が照射される地物の面の法線方向とライダ2のレーザ光とが平行に近いほど、その方向の位置推定精度を高めることが可能である。
次に、地物の法線方向と位置推定精度との関係について説明する。以下に説明するように、ライダ2のレーザ光が照射される地物の面の法線方向とライダ2のレーザ光とが平行に近いほど、その方向の位置推定精度を高めることが可能である。
図7(A)は、ライダ2によるスキャンを実行中の車両の俯瞰図を示す。図7(A)では、ライダ2の計測範囲内に法線方向が異なる地物51、52が存在している。図7(B)は、ライダ2のレーザ光の照射点「P1」~「P5」を明示した地物51の拡大図である。また、図7(C)は、ライダ2のレーザ光の照射点「P6」~「P9」を明示した地物52の拡大図である。図7(B)、(C)では、それぞれ、各照射点の位置座標から算出した車両の側面方向及び進行方向の重心座標が破線により示されている。なお、図7(A)~(C)では、説明便宜上、ライダ2が所定の走査面に沿ってレーザ光を出射した場合を例示しているが、高さの異なる複数の走査面に沿ってレーザ光を出射してもよい。
図7(A)及び図7(B)に示すように、地物51の法線方向は、車両の側面方向と略一致している。従って、照射点P1~P5は、車両の進行方向に沿って並んでおり、進行方向におけるばらつきが大きく、側面方向のばらつきが小さい。一方、位置推定処理においてライダ2による地物の計測位置(図5における計測値z)を決定する場合、自動運転制御部18は、対象の地物の点群データが示す車両を基準とした2次元座標の重心座標を算出する。従って、地物51を用いた位置推定では、照射点P1~P5のばらつきが小さい側面方向の位置精度が高くなることが予測される。よって、自動運転制御部18は、側面方向が低位置精度方向Dtagである場合に、地物51を目標地物Ltagに設定する。
一方、図7(A)及び図7(C)に示すように、地物52の法線方向は、車両の進行方向と略一致している。従って、照射点P6~P9は、車両の側面方向に沿って並んでおり、側面方向におけるばらつきが大きく、進行方向のばらつきが小さい。従って、地物52を用いた位置推定では、照射点P6~P9のばらつきが小さい進行方向の位置精度が高くなることが予測される。よって、自動運転制御部18は、進行方向が低位置精度方向Dtagである場合に、地物52を目標地物Ltagに設定する。
このように、ライダ2のレーザ光が照射される地物の面の法線方向とライダ2のレーザ光とが平行に近いほど、その方向の位置推定精度を高めることが可能である。よって、自動運転制御部18は、図6のステップS103において、低位置精度方向Dtagと法線方向が近似する経路沿いの地物を目標地物Ltagとして決定する。
(3)具体例
次に、図6のフローチャートの処理に基づく具体例について、図8~図11を参照して説明する。
次に、図6のフローチャートの処理に基づく具体例について、図8~図11を参照して説明する。
図8は、片側3車線道路において道路の左側前方に車両に対して正面向きとなる地物53が存在し、道路の右側前方に車両に対して横向きとなる地物54が存在するときの車両の俯瞰図を示す。図8~図11において、実線矢印「L1」は、図6のフローチャート実行前の目標軌道を示し、破線矢印「L2」は、図6のフローチャート実行後の目標軌道を示す。また、破線楕円「EE」は、位置推定の誤差の範囲に相当する誤差楕円を示す。
図8の例では、破線楕円EEにより示される車両の進行方向の誤差の範囲は、車両の側面方向よりも長くなっており、かつ、所定の閾値より長くなっている。この場合、自動運転制御部18は、図6のフローチャートのステップS102において、車両の進行方向を低位置精度方向Dtagとみなす。そして、自動運転制御部18は、ステップS103において、地図DB10を参照し、進行する経路沿いの所定距離以内に存在する地物のうち、低位置精度方向Dtagである進行方向と法線方向が近似する地物53を目標地物Ltagに設定する。そして、自動運転制御部18は、ステップS104において、走行道路の中央車線から地物53に近い左車線に車線変更するように目標軌道を変更する。これにより、車両は、地物53に最も近い左車線を走行して地物53を通過するため、車載機1は、地物53をライダ2により高精度に検出し、低位置精度方向Dtagである進行方向の推定精度を好適に向上させることができる。
図9は、図8の例と同一道路を走行中の場合において、車両の進行方向よりも側面方向の位置推定精度が低いときの車両の俯瞰図を示す。
この場合、自動運転制御部18は、図6のフローチャートのステップS102において、車両の側面方向を低位置精度方向Dtagとみなす。そして、自動運転制御部18は、ステップS103において、地図DB10を参照し、進行する経路沿いの所定距離以内に存在する地物のうち、低位置精度方向Dtagである側面方向と法線方向が近似する地物54を目標地物Ltagに設定する。そして、自動運転制御部18は、ステップS104において、走行道路の中央車線から地物54に近い右車線に車線変更するように目標軌道を変更する。これにより、車両は、地物54に最も近い右車線を走行して地物54を通過するため、車載機1は、地物54をライダ2により高精度に検出し、低位置精度方向Dtagである側面方向の推定精度を好適に向上させることができる。
図10は、道路沿いに法線方向が低位置精度方向Dtagと近似する地物が存在しない場合の車両の俯瞰図を示す。図10の例では、進行する経路沿いの所定距離以内に存在する地物55、56は、いずれも法線方向が低位置精度方向Dtagと略垂直になっている。
図10の例では、自動運転制御部18は、図6のフローチャートのステップS102において、車両の側面方向を低位置精度方向Dtagとみなす。また、自動運転制御部18は、ステップS103において、地図DB10を参照し、進行する経路沿いの所定距離以内に存在する地物のうち、法線方向が低位置精度方向Dtagと近似する地物が存在しないと判断する。この場合、自動運転制御部18は、進行する経路沿いにおいて所定距離以内に存在する地物55、56のサイズ情報を地図DB10から抽出して参照し、サイズが大きい地物55を目標地物Ltagとして設定する(ステップS307参照)。そして、自動運転制御部18は、ステップS104において、破線L2に示されるように、走行道路の中央車線から地物55に近い左車線に車線変更するように目標軌道を変更する。
このように、自動運転制御部18は、法線方向が低位置精度方向Dtagと近似する地物が存在しない場合、サイズが大きい(即ちライダ2のレーザ光の照射点が多くなる)地物を目標地物Ltagとして選定する。一般に、ライダ2による地物の計測位置(計測値z)を決定する場合、地物に対する点群データの数が多いほど、重心位置を算出する際のサンプル数が増えるため、対象の地物の計測位置を高精度に設定することが可能である。従って、図10の例では、自動運転制御部18は、より多くの点群データが得られる地物を目標地物Ltagとして選定し、低位置精度方向Dtagの推定精度を可能な限り向上させることができる。
図11は、道路の左側前方と右側前方にそれぞれ法線方向が異なる地物が存在するときの車両の俯瞰図を示す。この例では、地物57は、車両の側面方向に対して角度「α1」だけ傾いており、地物58は、車両の側面方向に対して角度α1より大きい「α2」だけ傾いている。
図11の例では、自動運転制御部18は、ステップS102において、車両の進行方向を低位置精度方向Dtagとして特定し、ステップS103において、地物57、58のいずれも低位置精度方向Dtagである進行方向と法線方向が近似すると判定する。この場合、自動運転制御部18は、地図DB10から地物57、58に対応する適正度情報を参照し、これらの適正度情報が同一値を示す場合、又は、対応する適正度情報が存在しない場合、低位置精度方向Dtagと最も近い法線方向となる経路沿いの地物57を、目標地物Ltagとして設定する(ステップS304参照)。そして、自動運転制御部18は、ステップS104において、破線L2に示されるように、走行道路の中央車線から地物55に近い左車線に車線変更するように目標軌道を変更する。一方、自動運転制御部18は、地図DB10から地物57、58に対応する適正度情報を参照し、地物58の適正度情報が示す値が地物57の低精度情報が示す値より大きい場合、地物58を目標地物Ltagとして設定する(ステップS302、S305参照)。
このように、図11の例では、自動運転制御部18は、低位置精度方向Dtagと法線方向が近似する地物が複数存在する場合には、低位置精度方向Dtagと法線方向が最も近似する地物あるいは適正度情報の値が最も高い地物を目標地物Ltagとして設定する。これにより、低位置精度方向Dtagの位置推定精度を好適に向上させることができる。
以上説明したように、本実施例に係る車載機1の自動運転制御部18は、車両の進行方向及び車両の側面方向の位置精度を夫々取得する。また、自動運転制御部18は、地図DB10を参照することで、地物毎の当該地物の向きを夫々示す法線情報を取得する。そして、自動運転制御部18は、車両の進行方向及び側面方向のうち、位置精度が低い方向を向く地物の検出精度が高くなるように車両を制御するための制御情報を車両の電子制御装置に出力する。これにより、車載機1は、位置精度が低い方向での位置精度を好適に向上させることができる。
[変形例]
以下、実施例に好適な変形例について説明する。以下の変形例は、組み合わせて実施例に適用してもよい。
以下、実施例に好適な変形例について説明する。以下の変形例は、組み合わせて実施例に適用してもよい。
(変形例1)
車載機1は、地図DB10を記憶部12に記憶する構成に代えて、図示しないサーバ装置が地図DB10を有してもよい。この場合、車載機1は、図示しない通信部でサーバ装置と通信することにより、必要な地物情報を取得する。
車載機1は、地図DB10を記憶部12に記憶する構成に代えて、図示しないサーバ装置が地図DB10を有してもよい。この場合、車載機1は、図示しない通信部でサーバ装置と通信することにより、必要な地物情報を取得する。
(変形例2)
低位置精度方向Dtagは、車両の進行方向又は車両の側面方向のいずれかに設定される場合に限定されない。これに代えて、自動運転制御部18は、例えば、予め定めた2つの方向のうち、誤差の範囲が大きい方向を低位置精度方向Dtagと定めてもよい。他の例では、自動運転制御部18は、全方位の中で最も誤差の範囲が大きい方向が進行方向又は側面方向のいずれでもない場合には、最も誤差の範囲が大きい方向を低位置精度方向Dtagと定めてもよい。
低位置精度方向Dtagは、車両の進行方向又は車両の側面方向のいずれかに設定される場合に限定されない。これに代えて、自動運転制御部18は、例えば、予め定めた2つの方向のうち、誤差の範囲が大きい方向を低位置精度方向Dtagと定めてもよい。他の例では、自動運転制御部18は、全方位の中で最も誤差の範囲が大きい方向が進行方向又は側面方向のいずれでもない場合には、最も誤差の範囲が大きい方向を低位置精度方向Dtagと定めてもよい。
(変形例3)
図1に示す運転支援システムの構成は一例であり、本発明が適用可能な運転支援システムの構成は図1に示す構成に限定されない。例えば、運転支援システムは、車載機1を有する代わりに、車両の電子制御装置が車載機1の自車位置推定部17及び自動運転制御部18等の処理を実行してもよい。この場合、地図DB10は、例えば車両内の記憶部に記憶され、車両の電子制御装置は、地図DB10の更新情報を図示しないサーバ装置から受信してもよい。
図1に示す運転支援システムの構成は一例であり、本発明が適用可能な運転支援システムの構成は図1に示す構成に限定されない。例えば、運転支援システムは、車載機1を有する代わりに、車両の電子制御装置が車載機1の自車位置推定部17及び自動運転制御部18等の処理を実行してもよい。この場合、地図DB10は、例えば車両内の記憶部に記憶され、車両の電子制御装置は、地図DB10の更新情報を図示しないサーバ装置から受信してもよい。
1 車載機
2 ライダ
3 ジャイロセンサ
4 車速センサ
5 GPS受信機
10 地図DB
2 ライダ
3 ジャイロセンサ
4 車速センサ
5 GPS受信機
10 地図DB
Claims (12)
- 移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得部と、
地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得部と、
前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力部と、
を備える出力装置。 - 前記出力部は、前記位置精度が低い方向と地物の向きとのなす角度が所定角度以下の場合に、当該地物は前記位置精度が低い方向を向いていると判定する請求項1に記載の出力装置。
- 前記地図情報には、地物毎の当該地物の大きさに関する情報が含まれ、
前記出力部は、前記位置精度が低い方向を向く地物が存在しない場合、前記大きさに関する情報に基づき検出精度を高くすべき前記目標地物を決定する請求項1または2に記載の出力装置。 - 前記移動体の周辺の地物を検出する検出装置の出力を取得する第3取得部と、
前記目標地物に対する前記検出装置の出力と、前記地図情報に含まれる前記目標地物の位置情報とに基づき、前記移動体の位置推定を行う位置推定部と、
をさらに備える請求項1~3のいずれか一項に記載の出力装置。 - 前記出力部は、前記目標地物に最も近い車線へ前記移動体を移動させる、又は、走行中の車線内において前記目標地物に近い側へ前記移動体を移動させるための制御情報を出力する請求項1~4のいずれか一項に記載の出力装置。
- 前記出力部は、前記移動体の経路沿いに存在する地物から、前記目標地物を選択する請求項1~5のいずれか一項に記載の出力装置。
- 前記出力部は、前記移動体から所定距離以内に存在する地物のうち、前記位置精度が低い方向と地物の向きとのなす角度が最も小さい地物を、前記目標地物として選択する請求項1~6のいずれか一項に記載の出力装置。
- 前記出力部は、前記移動体から所定距離以内に存在する地物のうち、前記位置精度が低い方向と地物の向きとのなす角度、及び前記移動体の周辺の地物を検出する検出装置の検出対象としての地物の適正度に基づいて、前記目標地物を選択する請求項1~6のいずれか一項に記載の出力装置。
- 前記出力部は、前記位置精度が低い方向と地物の向きとのなす角度が所定角度以下の地物のうち、前記適正度が最も高い地物を、前記目標地物として選択する請求項8に記載の出力装置。
- 出力装置が実行する制御方法であって、
移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得工程と、
地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得工程と、
前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力工程と、
を有する制御方法。 - コンピュータが実行するプログラムであって、
移動体の進行方向に対する第1方向及び第2方向の位置精度を夫々取得する第1取得部と、
地図情報に付与され、地物毎の当該地物の向きを夫々示す向き情報を取得する第2取得部と、
前記第1方向及び前記第2方向のうち、前記位置精度が低い方向を向く目標地物の検出精度が高くなるように前記移動体を制御するための制御情報を出力する出力部
として前記コンピュータを機能させるプログラム。 - 請求項11に記載のプログラムを記憶した記憶媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18775296.9A EP3605500B1 (en) | 2017-03-28 | 2018-03-05 | Output device, control method, program, and storage medium |
JP2019509086A JPWO2018180245A1 (ja) | 2017-03-28 | 2018-03-05 | 出力装置、制御方法、プログラム及び記憶媒体 |
US16/497,747 US11420632B2 (en) | 2017-03-28 | 2018-03-05 | Output device, control method, program and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-062427 | 2017-03-28 | ||
JP2017062427 | 2017-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018180245A1 true WO2018180245A1 (ja) | 2018-10-04 |
Family
ID=63676979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008340 WO2018180245A1 (ja) | 2017-03-28 | 2018-03-05 | 出力装置、制御方法、プログラム及び記憶媒体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11420632B2 (ja) |
EP (1) | EP3605500B1 (ja) |
JP (4) | JPWO2018180245A1 (ja) |
WO (1) | WO2018180245A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7020348B2 (ja) * | 2018-08-30 | 2022-02-16 | トヨタ自動車株式会社 | 自車位置推定装置 |
US10852746B2 (en) | 2018-12-12 | 2020-12-01 | Waymo Llc | Detecting general road weather conditions |
US12118883B2 (en) * | 2020-04-15 | 2024-10-15 | Gm Cruise Holdings Llc | Utilization of reflectivity to determine changes to traffic infrastructure elements |
JP2022047381A (ja) * | 2020-09-11 | 2022-03-24 | 株式会社東芝 | 移動体、制御装置、監視装置、制御方法、及びプログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014048205A (ja) | 2012-08-31 | 2014-03-17 | Toyota Motor Corp | 運転支援システムおよび運転支援方法 |
JP2014169922A (ja) * | 2013-03-04 | 2014-09-18 | Denso Corp | 物標認識装置 |
WO2015098915A1 (ja) * | 2013-12-24 | 2015-07-02 | 株式会社デンソー | 逆走判定装置 |
JP2016038757A (ja) * | 2014-08-08 | 2016-03-22 | 日産自動車株式会社 | 信号機認識装置及び信号機認識方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5714940B2 (ja) * | 2011-03-04 | 2015-05-07 | 国立大学法人 熊本大学 | 移動体位置測定装置 |
US9367065B2 (en) * | 2013-01-25 | 2016-06-14 | Google Inc. | Modifying behavior of autonomous vehicles based on sensor blind spots and limitations |
US9719801B1 (en) * | 2013-07-23 | 2017-08-01 | Waymo Llc | Methods and systems for calibrating sensors using road map data |
US9495602B2 (en) * | 2013-10-23 | 2016-11-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Image and map-based detection of vehicles at intersections |
US9530313B2 (en) | 2014-10-27 | 2016-12-27 | Here Global B.V. | Negative image for sign placement detection |
CN107851387B (zh) | 2015-07-13 | 2021-04-27 | 日产自动车株式会社 | 信号机识别装置及信号机识别方法 |
JP6776513B2 (ja) * | 2015-08-19 | 2020-10-28 | ソニー株式会社 | 車両制御装置と車両制御方法と情報処理装置および交通情報提供システム |
JP6616257B2 (ja) * | 2016-07-13 | 2019-12-04 | 株式会社Soken | 位置推定装置 |
-
2018
- 2018-03-05 JP JP2019509086A patent/JPWO2018180245A1/ja active Pending
- 2018-03-05 US US16/497,747 patent/US11420632B2/en active Active
- 2018-03-05 WO PCT/JP2018/008340 patent/WO2018180245A1/ja unknown
- 2018-03-05 EP EP18775296.9A patent/EP3605500B1/en active Active
-
2021
- 2021-04-02 JP JP2021063632A patent/JP2021113816A/ja active Pending
-
2023
- 2023-02-27 JP JP2023028548A patent/JP2023075184A/ja active Pending
-
2024
- 2024-03-27 JP JP2024052299A patent/JP2024095712A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014048205A (ja) | 2012-08-31 | 2014-03-17 | Toyota Motor Corp | 運転支援システムおよび運転支援方法 |
JP2014169922A (ja) * | 2013-03-04 | 2014-09-18 | Denso Corp | 物標認識装置 |
WO2015098915A1 (ja) * | 2013-12-24 | 2015-07-02 | 株式会社デンソー | 逆走判定装置 |
JP2016038757A (ja) * | 2014-08-08 | 2016-03-22 | 日産自動車株式会社 | 信号機認識装置及び信号機認識方法 |
Also Published As
Publication number | Publication date |
---|---|
US11420632B2 (en) | 2022-08-23 |
JP2021113816A (ja) | 2021-08-05 |
EP3605500C0 (en) | 2023-11-15 |
EP3605500A1 (en) | 2020-02-05 |
US20200114923A1 (en) | 2020-04-16 |
EP3605500A4 (en) | 2021-01-13 |
JP2024095712A (ja) | 2024-07-10 |
EP3605500B1 (en) | 2023-11-15 |
JP2023075184A (ja) | 2023-05-30 |
JPWO2018180245A1 (ja) | 2020-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018221453A1 (ja) | 出力装置、制御方法、プログラム及び記憶媒体 | |
WO2018181974A1 (ja) | 判定装置、判定方法、及び、プログラム | |
WO2017060947A1 (ja) | 推定装置、制御方法、プログラム及び記憶媒体 | |
JP7155284B2 (ja) | 計測精度算出装置、自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
WO2018180245A1 (ja) | 出力装置、制御方法、プログラム及び記憶媒体 | |
JP2017072422A (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
JP6980010B2 (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
JP2023054314A (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
JP2022176322A (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
JP2021181995A (ja) | 自己位置推定装置 | |
JP2021120683A (ja) | 出力装置、制御方法、プログラム及び記憶媒体 | |
JP2023164553A (ja) | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 | |
JP2017072423A (ja) | 推定装置、制御方法、プログラム及び記憶媒体 | |
JP2023174739A (ja) | データ構造、情報処理装置、及び地図データ生成装置 | |
WO2018212302A1 (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
JP2023181415A (ja) | 情報処理装置 | |
WO2019188886A1 (ja) | 端末装置、情報処理方法、プログラム、及び、記憶媒体 | |
US20240053440A1 (en) | Self-position estimation device, self-position estimation method, program, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18775296 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019509086 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018775296 Country of ref document: EP Effective date: 20191028 |