WO2018179992A1 - Dryness determination device and dryness determination method - Google Patents

Dryness determination device and dryness determination method Download PDF

Info

Publication number
WO2018179992A1
WO2018179992A1 PCT/JP2018/005696 JP2018005696W WO2018179992A1 WO 2018179992 A1 WO2018179992 A1 WO 2018179992A1 JP 2018005696 W JP2018005696 W JP 2018005696W WO 2018179992 A1 WO2018179992 A1 WO 2018179992A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dryness
steam
intensity
contact surface
Prior art date
Application number
PCT/JP2018/005696
Other languages
French (fr)
Japanese (ja)
Inventor
志功 田邉
康博 五所尾
泰明 松儀
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2018179992A1 publication Critical patent/WO2018179992A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content

Definitions

  • the present invention relates to a dryness determination device and a dryness determination method.
  • the weight ratio of the water vapor gas to the wet steam is referred to as “dryness”. For example, if water vapor gas and water droplets are present in half, the dryness is 0.5. Moreover, when there is no water droplet and only water vapor gas is present, the dryness is 1.0. In the heat exchanger or the like, the dryness of the wet steam is set to 1.0 from the viewpoint of effectively utilizing the sensible heat and latent heat possessed by the wet steam, and preventing the corrosion of the turbine blade in the steam turbine. It is desired to make the state close to. Therefore, various methods for measuring the dryness have been proposed.
  • the invention described in Patent Document 1 measures a light emitter that emits light to wet steam, a light receiving element that receives light transmitted through the wet steam, and the temperature or pressure of the wet steam.
  • the relationship storage unit that stores the relationship between the environmental sensor, the intensity of light transmitted through the wet steam, and the dryness of the wet steam for each temperature or pressure, the measured value of the light intensity by the light receiving element, and the environmental sensor.
  • the present invention relates to a dryness measuring apparatus including a dryness specifying unit that specifies a dryness value of wet steam based on the measured value of temperature or pressure by the above-described relationship.
  • an object of the present invention is to provide a dryness determination device and a dryness determination method that can determine the dryness in a space more accurately and at low cost.
  • a dryness determination apparatus includes a light incident unit that causes light to enter a predetermined space, and the incident light through at least one of a gas and a liquid that exist in the space.
  • a light emitting unit that emits light to be emitted, and a determination unit that determines a dryness in the space based on the intensity of the emitted light, wherein the light emitting unit includes at least one of the gas and the liquid.
  • the contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface.
  • the determination unit can accurately determine the presence of saturated water (liquid phase portion of wet steam) based on a change in the intensity of light emitted from the light emitting unit. Moreover, since it is not necessary to provide a sensor for detecting the pressure or temperature of the steam, the dryness in the space can be determined at low cost.
  • the determination unit is based on a difference or ratio between the intensity of the light emitted from the light emitting unit and the intensity of the light emitted from the light emitting unit in the past. You may determine dryness.
  • the contact surface of the light emitting part may be polished.
  • the wavelength region of the light may be 200 nm to 1000 nm.
  • a dryness determination method includes a step of causing light to enter a predetermined space, and at least one of gas and liquid existing in the space by a light emitting unit. And a step of determining the dryness in the space based on the intensity of the emitted light, and the light emitting portion includes at least one of the gas and the liquid
  • the contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface.
  • the “unit” does not simply mean a physical means, but includes a case where the function of the “unit” is realized by software. Also, even if the functions of one “unit” or device are realized by two or more physical means or devices, the functions of two or more “units” or devices are realized by one physical means or device. May be.
  • the present invention from the light emitting portion in which the contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface with the gas and / or liquid existing in the space.
  • the degree of dryness in the space is determined based on the intensity of the emitted light. Therefore, since the presence of saturated water (liquid phase portion of wet steam) can be accurately determined, the dryness in the space can be more accurately determined, and a sensor for detecting the pressure or temperature of the steam is provided. Since it is not necessary, the dryness in the space can be determined at low cost.
  • the vapor is not limited to water vapor as long as it is a vapor of a substance that can be in a two-phase state of a gas phase portion and a liquid phase portion.
  • “Wet steam” Steam with a dryness X of 0-100 [%].
  • saturated steam refers to the gas phase portion of wet steam. Also called dry saturated steam (saturated dry steam).
  • saturated water refers to the liquid phase of wet steam.
  • Light intensity A physical quantity indicating the intensity of light (electromagnetic wave), and there is no limitation on its name or unit. For example, these are physical quantities that are mutually different but can be converted into each other, such as radiation intensity, luminous intensity, and photon flux density.
  • “Absorbance” A dimensionless amount indicating how much light intensity is weakened when light passes through wet steam, and is also called optical density. Absorbance includes not only the absorption of light but also the case where the intensity of light is weakened by scattering and reflection.
  • FIG. 1 is a schematic diagram of a dryness determination device according to a first embodiment of the present invention.
  • the dryness determination device 1 exemplarily includes a pipe 20 through which steam flows, a light emitting unit 11 that emits light of a predetermined wavelength, and a glass window that allows light to enter the steam flowing through the pipe 20.
  • 41 light incident portion
  • a glass window 42 light emitting portion for emitting light that has been transmitted through or reflected from the vapor, and light that has been transmitted through or reflected from the vapor in the pipe 20 are received.
  • the light receiving unit 12 that measures at least one, the computer apparatus 100, and the recording unit 200 that records information used in the dryness determination process for determining the dryness in the pipe 20 are configured.
  • the computer apparatus 100 includes a determination unit 101 that determines the degree of dryness in space as a functional block that is functionally realized by executing a predetermined software program.
  • an incident side tube 21 is connected to the light emitting unit 11.
  • the incident side tube 21 is provided through the side wall of the pipe 20 and connected to a glass window 41 provided on the side wall of the pipe 20.
  • the light propagated by the incident side tube 21 enters the pipe 20 along the optical path L.
  • a light emitting diode for example, a light emitting diode, a super luminescent diode, a semiconductor laser, or the like can be used.
  • a plastic optical fiber made of polymethyl methacrylate resin PMMA: Poly (methymethacrylate)
  • a glass optical fiber made of quartz glass and the like can be used. If the light which the light emission part 11 emitted can be propagated, it will not be limited to this.
  • the piping 20 is connected to an emission side tube 22 into which light that has been injected from the glass window 41 and transmitted or reflected through the vapor inside the piping 20 enters.
  • the injection side cylinder 22 is provided through the side wall of the pipe 20 and connected to a glass window 42 provided on the side wall of the pipe 20.
  • the end of the exit side tube 22 faces the end of the entrance side tube 21 in the radial direction of the pipe 20.
  • the emission side tube 22 is configured to be able to guide the light transmitted through or reflected by the vapor inside the pipe 20 along the optical path L through the glass window 42 of the pipe 20 to the light receiving unit 12.
  • the light emitting unit 11 may be provided close to the side wall of the pipe 20 without providing the incident side tube 21, or the light receiving unit 12 may be provided close to the side wall of the pipe 20 without providing the emission side tube 22. Good.
  • the light receiving unit 12 outputs a light intensity signal Sd corresponding to the intensity of the light transmitted through or reflected by the vapor to the computer apparatus 100.
  • an optical measuring device such as a spectrophotometer that can obtain an output corresponding to at least one of light intensity and absorbance can be applied.
  • the spectrophotometer outputs to the computer device 100 an absorbance signal Sa corresponding to the absorbance of the light that has passed through the vapor or reflected by the vapor.
  • a photoelectric conversion element such as a photodiode or a phototransistor can be used as the light receiving unit 12.
  • only one light receiving unit 12 is provided, but two or more light receiving units 12 may be provided, and the number of light receiving units 12 is not particularly limited. Furthermore, any configuration can be applied to the light receiving unit 12 as long as it can output a physical quantity corresponding to the intensity or absorbance of light that is transmitted or reflected by the vapor.
  • the determination part 101 determines the dryness in space based on the intensity
  • the determination unit 101 determines, for example, the degree of dryness in space based on the light intensity signal Sd corresponding to the light intensity output from the light receiving unit 12 or the absorbance signal Sa corresponding to the light absorbance.
  • the determination principle of the dryness in the space will be described with reference to FIGS.
  • FIG. 2 and 3 are schematic views showing an example of a partial cross-sectional view of a pipe, and are enlarged schematic cross-sectional views of a portion surrounded by an ellipse in FIG.
  • FIG. 2 is a diagram illustrating a state of light transmitted through the glass window when the vapor flowing through the pipe includes only a gas phase portion (saturated vapor) (gas).
  • FIG. 3 is a diagram illustrating a state of light transmitted through the glass window when the vapor flowing through the pipe includes a gas phase portion (saturated vapor) (gas) and a liquid phase portion (saturated water) (liquid).
  • FIG. 4 is a graph showing the relationship between the amount of moisture on the surface of the glass window according to an embodiment of the present invention and the light scattering rate in the glass window.
  • the glass window 42 has a contact surface S such that the light scattering rate changes nonlinearly in accordance with the amount of moisture on the contact surface S with at least one of gas and liquid.
  • the vapor flowing through the pipe 20 includes only the gas phase portion (saturated vapor)
  • the light transmitted through the glass window 42 in which the contact surface S is processed is reflected on the contact surface S. Strongly scattered.
  • the light receiving unit 12 shown in FIG. 1 can receive the light emitted by the glass window 42, so that the determination unit 101 can determine the degree of dryness in the space.
  • the contact surface S is processed.
  • the contact surface S of the glass window 42 should just be processed so that the light scattering rate may change nonlinearly according to the moisture content on the contact surface S with steam, for example, polishing, embossing, Various processing forms such as uneven processing can be adopted.
  • the light receiving intensity in the light receiving unit 12 shown in FIG. 1 can be changed not only by the scattering by the glass window 42 but also by the light absorption rate by the water phase portion. That is, when light in a wavelength region having a property that is easily absorbed in the water phase portion is employed, the light receiving intensity in the light receiving unit 12 decreases. Therefore, in the present embodiment, it is preferable to employ light in a wavelength region having a property that is difficult to be absorbed in the aqueous phase portion.
  • FIG. 5 is a graph showing the relationship between the wavelength of light and the light absorption coefficient in water according to an embodiment of the present invention. As shown in FIG. 5, it can be seen that light having a wavelength region of 200 nm to 1000 nm has a light absorption coefficient of 1/100 (cm ⁇ 1 ) or less, and is not easily absorbed by water. Therefore, in the present embodiment, by employing light having a wavelength region of 200 nm to 1000 nm, it is easy to distinguish between the case where the steam includes only saturated steam and the case where the steam includes saturated steam and saturated water. Therefore, the dryness in the space can be determined more accurately.
  • the determination unit 101 shown in FIG. 1 is based on the difference or ratio between the intensity of light emitted from the glass window 42 and the intensity of light emitted from the glass window 42 recorded in the past in the recording unit 200. Determine the dryness in space.
  • the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. To do. Further, when the calculated difference (increase amount) exceeds a predetermined threshold, the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. May be. On the other hand, when the determination unit 101 determines that the light intensity has decreased based on the calculated difference, the determination unit 101 determines that the steam includes only saturated steam, and determines the dryness of the steam. Further, the determination unit 101 may determine that the steam contains only saturated steam when the calculated difference (decrease amount) exceeds a predetermined threshold, and determine the degree of dryness of the steam.
  • the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. To do. Further, when the calculated ratio (increase rate) exceeds a predetermined threshold, the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. May be. On the other hand, when the determination unit 101 determines that the light intensity has decreased based on the calculated ratio, the determination unit 101 determines that the steam contains only saturated steam, and determines the dryness of the steam. Further, the determination unit 101 may determine that the steam contains only saturated steam when the calculated ratio (decrease rate) exceeds a predetermined threshold, and may determine the dryness of the steam.
  • the determination unit 101 is based on the difference or ratio between the absorbance of light emitted from the glass window 42 and the absorbance of light emitted from the light emission unit in the past recorded in the recording unit 200. You may determine the dryness in.
  • the determination unit 101 may determine that the steam is wet steam including saturated steam and saturated water when the intensity of light emitted from the glass window 42 exceeds a predetermined threshold. On the other hand, the determination unit 101 may determine that the steam contains only saturated steam when the intensity of the light emitted from the glass window 42 is lower than a predetermined threshold.
  • the determination unit 101 may determine that the steam is wet steam including saturated steam and saturated water when the absorbance of light emitted from the glass window 42 is below a predetermined threshold. On the other hand, the determination unit 101 may determine that the vapor contains only saturated vapor when the absorbance of the light emitted from the glass window 42 exceeds a predetermined threshold.
  • FIG. 6 is a flowchart illustrating an example of dryness determination processing for determining dryness in a space according to an embodiment of the present invention.
  • Step S1 First, as shown in FIG. 1, when the state of the steam is determined while the steam is flowing in the pipe 20, the light emitting unit 11 emits light. The light propagated from the light emitting unit 11 through the incident side tube 21 is irradiated to the vapor inside the pipe 20 through the glass window 41.
  • Step S3 the light transmitted or reflected by the vapor is incident on the emission side tube 22 through the glass window 42 and propagates.
  • Step S5 The light receiving unit 12 receives the light emitted from the emission side tube 22 and measures at least one of the light intensity and the absorbance. Next, the light receiving unit 12 outputs a light intensity signal Sd corresponding to the intensity of light transmitted or reflected through the vapor to the computer device 100.
  • the light receiving unit 12 may output an absorbance signal Sa corresponding to the absorbance of light transmitted or reflected through the vapor to the computer device 100. Then, the determination unit 101 determines the vapor state based on the light intensity signal Sd corresponding to the light intensity output from the light receiving unit 12 or the absorbance signal Sa corresponding to the light absorbance. Determine the dryness.
  • the contact surface S is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface S with at least one of the gas and liquid existing in the space.
  • the state of the vapor is determined based on the intensity or absorbance of the light emitted from the glass window 42, and the dryness in the space is determined. Therefore, since the presence of saturated water (liquid phase portion of wet steam) can be accurately determined, the dryness in the space can be more accurately determined, and a sensor for detecting the pressure or temperature of the steam is provided. Since it is not necessary, the dryness in the space can be determined at low cost.
  • light having a wavelength region of 200 nm to 1000 nm is adopted. Therefore, by employing light having a wavelength that is difficult to be absorbed by water, it becomes easier to determine the presence of saturated water (liquid phase portion of wet steam), and thus it is possible to more accurately determine the degree of dryness in space.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

This dryness determination device 1 is provided with: a light entry part for allowing light to enter a prescribed space, a light emission part for allowing the emission of light that has entered therein via at least one from among a gas and liquid in the prescribed space, and a determination unit 101 for determining the dryness of the prescribed space on the basis of the intensity of the emitted light. The light emission part has a contact surface S with at least one from among the gas and liquid that has been treated such that the light scattering rate varies nonlinearly according to the amount of water on the contact surface S.

Description

乾き度判定装置及び乾き度判定方法Dryness determination device and dryness determination method
 本発明は、乾き度判定装置及び乾き度判定方法に関する。 The present invention relates to a dryness determination device and a dryness determination method.
 水は沸点に達した後、水蒸気ガス(気相部分:飽和蒸気)と、水滴(液相部分:飽和水)とが混合した湿り蒸気となる。ここで、湿り蒸気に対する水蒸気ガスの重量比を、「乾き度」という。例えば、水蒸気ガスと水滴とが半分ずつ存在すれば、乾き度は0.5となる。また、水滴が存在せず、水蒸気ガスのみが存在する場合は、乾き度は1.0となる。熱交換器等において、湿り蒸気が保有する顕熱と潜熱とを有効に利用することや、水蒸気タービンにおいて、タービン翼の腐食を防止すること等の観点から、湿り蒸気の乾き度を1.0に近い状態にすることが望まれている。そのため、乾き度を測定する様々な方法が提案されている。 After water reaches the boiling point, it becomes wet steam in which water vapor gas (gas phase part: saturated steam) and water droplets (liquid phase part: saturated water) are mixed. Here, the weight ratio of the water vapor gas to the wet steam is referred to as “dryness”. For example, if water vapor gas and water droplets are present in half, the dryness is 0.5. Moreover, when there is no water droplet and only water vapor gas is present, the dryness is 1.0. In the heat exchanger or the like, the dryness of the wet steam is set to 1.0 from the viewpoint of effectively utilizing the sensible heat and latent heat possessed by the wet steam, and preventing the corrosion of the turbine blade in the steam turbine. It is desired to make the state close to. Therefore, various methods for measuring the dryness have been proposed.
 特許文献1記載の発明は、乾き度を高速に測定するため、湿り蒸気に光を照射する発光体と、湿り蒸気を透過した光を受光する受光素子と、湿り蒸気の温度又は圧力を測定する環境センサと、湿り蒸気を透過した光の強度と、湿り蒸気の乾き度と、の関係を、温度又は圧力毎に保存する関係記憶部と、受光素子による光の強度の測定値と、環境センサによる温度又は圧力の測定値と前記関係とに基づき、湿り蒸気の乾き度の値を特定する乾き度特定部とを備える乾き度測定装置に関する。 In order to measure dryness at high speed, the invention described in Patent Document 1 measures a light emitter that emits light to wet steam, a light receiving element that receives light transmitted through the wet steam, and the temperature or pressure of the wet steam. The relationship storage unit that stores the relationship between the environmental sensor, the intensity of light transmitted through the wet steam, and the dryness of the wet steam for each temperature or pressure, the measured value of the light intensity by the light receiving element, and the environmental sensor The present invention relates to a dryness measuring apparatus including a dryness specifying unit that specifies a dryness value of wet steam based on the measured value of temperature or pressure by the above-described relationship.
特開2013-092457号公報JP 2013-092457 A
 しかしながら、特許文献1記載の乾き度測定装置においては、パイプを流れる蒸気の状態が湿り蒸気か飽和蒸気かを判定するためには、例えば、蒸気の圧力値、及び、パイプにおいて光の経路上に配置される光透過性窓のそれぞれの間の距離等の様々なパラメータを考慮して吸光係数を測定する必要があった。このように、上記乾き度測定装置においては、測定条件によって随時変化する様々なパラメータを考慮して蒸気の乾き度を判定しなければならず、例えば蒸気の圧力を正確に検出できなかった場合は、蒸気の乾き度も正確に判定することができないおそれがあった。また、蒸気の圧力を検出するための圧力センサを備える必要があり、装置全体として高コストになるおそれがあった。 However, in the dryness measuring apparatus described in Patent Document 1, in order to determine whether the state of the steam flowing through the pipe is wet steam or saturated steam, for example, the pressure value of the steam and on the light path in the pipe It was necessary to measure the extinction coefficient in consideration of various parameters such as the distance between each of the arranged light transmissive windows. As described above, in the dryness measuring apparatus, it is necessary to determine the dryness of the steam in consideration of various parameters that change from time to time depending on the measurement conditions. For example, when the steam pressure cannot be accurately detected. Further, there is a possibility that the dryness of steam cannot be accurately determined. Moreover, it is necessary to provide a pressure sensor for detecting the pressure of the steam, which may increase the cost of the entire apparatus.
 そこで、本発明は、空間における乾き度をより正確に、且つ、低コストで判定することができる乾き度判定装置及び乾き度判定方法を提供することを目的の一つとする。 Therefore, an object of the present invention is to provide a dryness determination device and a dryness determination method that can determine the dryness in a space more accurately and at low cost.
 上記課題を解決するために、本発明の一実施形態に係る乾き度判定装置は、所定の空間に光を入射させる光入射部と、前記空間に存在する気体及び液体の少なくとも一方を介して入射する光を射出させる光射出部と、射出された前記光の強度に基づいて前記空間における乾き度を判定する判定部と、を備え、前記光射出部は、前記気体及び液体の少なくとも一方との接触面上における水分量に応じて光の散乱率が非線形に変化するように前記接触面が加工されている。 In order to solve the above-described problem, a dryness determination apparatus according to an embodiment of the present invention includes a light incident unit that causes light to enter a predetermined space, and the incident light through at least one of a gas and a liquid that exist in the space. A light emitting unit that emits light to be emitted, and a determination unit that determines a dryness in the space based on the intensity of the emitted light, wherein the light emitting unit includes at least one of the gas and the liquid The contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface.
 光射出部は、気体及び液体の少なくとも一方との接触面上における水分量に応じて光の散乱率が非線形に変化するように接触面が加工されているので、気体及び液体の少なくとも一方との接触面上における水分量が所定量に到達した場合に、光の散乱率が急激に変化する。よって、光の散乱率が急激に変化することに対応して、光射出部から射出された光の強度が急激に変化する。したがって、判定部は、光射出部から射出された光の強度の変化に基づいて、飽和水(湿り蒸気の液相部分)の存在を的確に判定できる。また、蒸気の圧力又は温度を検出するためのセンサを備える必要がないので、空間における乾き度を低コストで判定することができる。 Since the light emission part is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface with at least one of the gas and the liquid, When the amount of water on the contact surface reaches a predetermined amount, the light scattering rate changes rapidly. Therefore, the intensity of the light emitted from the light emitting portion changes rapidly corresponding to the rapid change in the light scattering rate. Therefore, the determination unit can accurately determine the presence of saturated water (liquid phase portion of wet steam) based on a change in the intensity of light emitted from the light emitting unit. Moreover, since it is not necessary to provide a sensor for detecting the pressure or temperature of the steam, the dryness in the space can be determined at low cost.
 上記乾き度判定装置において、前記判定部は、前記光射出部から射出された前記光の強度と、過去に前記光射出部から射出された前記光の強度と、の差又は比に基づいて前記乾き度を判定してもよい。 In the dryness determination apparatus, the determination unit is based on a difference or ratio between the intensity of the light emitted from the light emitting unit and the intensity of the light emitted from the light emitting unit in the past. You may determine dryness.
 上記乾き度判定装置において、前記光射出部の前記接触面が磨り加工されてもよい。 In the dryness determination device, the contact surface of the light emitting part may be polished.
 上記乾き度判定装置において、前記光の波長領域が200nm~1000nmであってもよい。 In the dryness determination apparatus, the wavelength region of the light may be 200 nm to 1000 nm.
 上記課題を解決するために、本発明の一実施形態に係る乾き度判定方法は、所定の空間に光を入射させる工程と、光射出部により、前記空間に存在する気体及び液体の少なくとも一方を介して入射する光を射出させる工程と、射出された前記光の強度に基づいて前記空間における乾き度を判定する工程と、を備え、前記光射出部は、前記気体及び液体の少なくとも一方との接触面上における水分量に応じて光の散乱率が非線形に変化するように前記接触面が加工されている。 In order to solve the above-described problem, a dryness determination method according to an embodiment of the present invention includes a step of causing light to enter a predetermined space, and at least one of gas and liquid existing in the space by a light emitting unit. And a step of determining the dryness in the space based on the intensity of the emitted light, and the light emitting portion includes at least one of the gas and the liquid The contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface.
 なお、本発明において、「部」とは、単に物理的手段を意味するものではなく、その「部」が有する機能をソフトウェアによって実現する場合も含む。また、1つの「部」や装置が有する機能が2つ以上の物理的手段や装置により実現されても、2つ以上の「部」や装置の機能が1つの物理的手段や装置により実現されても良い。 In the present invention, the “unit” does not simply mean a physical means, but includes a case where the function of the “unit” is realized by software. Also, even if the functions of one “unit” or device are realized by two or more physical means or devices, the functions of two or more “units” or devices are realized by one physical means or device. May be.
 本発明によれば、空間に存在する気体及び液体の少なくとも一方との接触面上における水分量に応じて光の散乱率が非線形に変化するように当該接触面が加工されている光射出部から射出された光の強度に基づいて空間における乾き度を判定する。よって、飽和水(湿り蒸気の液相部分)の存在を的確に判定できるので、空間における乾き度をより正確に判定することができ、且つ、蒸気の圧力又は温度を検出するためのセンサを備える必要がないので、空間における乾き度を低コストで判定することができる。 According to the present invention, from the light emitting portion in which the contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface with the gas and / or liquid existing in the space. The degree of dryness in the space is determined based on the intensity of the emitted light. Therefore, since the presence of saturated water (liquid phase portion of wet steam) can be accurately determined, the dryness in the space can be more accurately determined, and a sensor for detecting the pressure or temperature of the steam is provided. Since it is not necessary, the dryness in the space can be determined at low cost.
本発明の一実施形態に係る乾き度判定装置の模式図である。It is a schematic diagram of the dryness determination apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る配管の一部の断面図の一例を示す模式図である。It is a mimetic diagram showing an example of some sectional views of piping concerning one embodiment of the present invention. 本発明の一実施形態に係る配管の一部の断面図の一例を示す模式図である。It is a mimetic diagram showing an example of some sectional views of piping concerning one embodiment of the present invention. 本発明の一実施形態に係るガラス窓の表面上の水分量と、ガラス窓における光の散乱率と、の関係を示すグラフである。It is a graph which shows the relationship between the moisture content on the surface of the glass window which concerns on one Embodiment of this invention, and the light scattering rate in a glass window. 本発明の一実施形態に係る光の波長と、水における光の吸光係数と、の関係を示すグラフである。It is a graph which shows the relationship between the wavelength of the light which concerns on one Embodiment of this invention, and the light absorption coefficient in the water. 本発明の一実施形態に係る空間における乾き度を判定する乾き度判定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the dryness determination process which determines the dryness in the space which concerns on one Embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施例を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. In other words, the present invention can be implemented with various modifications (combining the embodiments, etc.) without departing from the spirit of the present invention. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings.
 (定義)
 本明細書で使用する主たる用語を以下のとおりに定義する。
 「蒸気」:各実施形態では、気相部分と液相部分との二相状態となり得る物質の蒸気であればよく、水蒸気に限定されない。
 「乾き度」:蒸気中の気相部分の重量割合のことをいう。乾き度[%]=100[%]-湿り度[%]の関係がある。
 「湿り蒸気」:乾き度Xが0-100[%]の蒸気をいう。
 「飽和蒸気」:湿り蒸気の気相部分をいう。乾き飽和蒸気(飽和乾き蒸気)ともいう。
 「飽和水」:湿り蒸気の液相部分をいう。
 「光の強度」(光強度):光(電磁波)の強さを表す物理量をいい、その称呼や単位に限定はない。例えば、放射強度、光度、光量子束密度など、それぞれ単位が異なるが相互に換算可能な物理量である。
 「吸光度」:光が湿り蒸気中を通過した際に光の強度がどの程度弱まるかを示す無次元量であり、光学密度ともいう。吸光度といっても光の吸収のみならず、散乱や反射により光の強度が弱まる場合も含む。
(Definition)
The main terms used in this specification are defined as follows.
“Vapor”: In each embodiment, the vapor is not limited to water vapor as long as it is a vapor of a substance that can be in a two-phase state of a gas phase portion and a liquid phase portion.
“Dryness”: Refers to the weight ratio of the gas phase portion in the steam. There is a relationship of dryness [%] = 100 [%] − wetness [%].
“Wet steam”: Steam with a dryness X of 0-100 [%].
“Saturated steam”: refers to the gas phase portion of wet steam. Also called dry saturated steam (saturated dry steam).
“Saturated water”: refers to the liquid phase of wet steam.
“Light intensity” (light intensity): A physical quantity indicating the intensity of light (electromagnetic wave), and there is no limitation on its name or unit. For example, these are physical quantities that are mutually different but can be converted into each other, such as radiation intensity, luminous intensity, and photon flux density.
“Absorbance”: A dimensionless amount indicating how much light intensity is weakened when light passes through wet steam, and is also called optical density. Absorbance includes not only the absorption of light but also the case where the intensity of light is weakened by scattering and reflection.
 (第1実施形態)
 図1は、本発明の第1本実施形態に係る乾き度判定装置の模式図である。図1に示すように、乾き度判定装置1は、例示的に、蒸気が流れる配管20と、所定の波長の光を射出する発光部11と、配管20を流れる蒸気に光を入射させるガラス窓41(光入射部)と、蒸気を透過し又は反射した光を射出させるガラス窓42(光射出部)と、配管20内の蒸気を透過又は反射した光を受けて、光の強度及び吸光度の少なくとも一方を計測する受光部12と、コンピュータ装置100と、配管20における乾き度を判定するための乾き度判定処理に用いられる情報を記録する記録部200と、を備えて構成される。
(First embodiment)
FIG. 1 is a schematic diagram of a dryness determination device according to a first embodiment of the present invention. As shown in FIG. 1, the dryness determination device 1 exemplarily includes a pipe 20 through which steam flows, a light emitting unit 11 that emits light of a predetermined wavelength, and a glass window that allows light to enter the steam flowing through the pipe 20. 41 (light incident portion), a glass window 42 (light emitting portion) for emitting light that has been transmitted through or reflected from the vapor, and light that has been transmitted through or reflected from the vapor in the pipe 20 are received. The light receiving unit 12 that measures at least one, the computer apparatus 100, and the recording unit 200 that records information used in the dryness determination process for determining the dryness in the pipe 20 are configured.
 コンピュータ装置100は、所定のソフトウェアプログラムを実行することにより機能的に実現される機能ブロックとして、空間における乾き度を判定する判定部101を備えて構成される。 The computer apparatus 100 includes a determination unit 101 that determines the degree of dryness in space as a functional block that is functionally realized by executing a predetermined software program.
 発光部11には、例えば入射側筒21を接続する。入射側筒21は、配管20の側壁を貫通して設けられ、配管20の側壁に設けられたガラス窓41に接続される。入射側筒21により伝搬された光は、光経路Lに沿って配管20の内部に進入する。 For example, an incident side tube 21 is connected to the light emitting unit 11. The incident side tube 21 is provided through the side wall of the pipe 20 and connected to a glass window 41 provided on the side wall of the pipe 20. The light propagated by the incident side tube 21 enters the pipe 20 along the optical path L.
 例えば、発光部11としては、発光ダイオード、スーパールミネッセントダイオード、及び半導体レーザ等が使用可能である。入射側筒21及び後述する射出側筒22には、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び、石英ガラスからなるガラス光ファイバ等が使用可能であるが、発光部11が発した光を伝搬可能であれば、これに限定されない。 For example, as the light emitting unit 11, a light emitting diode, a super luminescent diode, a semiconductor laser, or the like can be used. For the incident side tube 21 and the exit side tube 22 described later, a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methymethacrylate)), a glass optical fiber made of quartz glass, and the like can be used. If the light which the light emission part 11 emitted can be propagated, it will not be limited to this.
 配管20には、ガラス窓41から射出され、配管20の内部の蒸気を透過又は反射した光が進入する射出側筒22を接続する。射出側筒22は、配管20の側壁を貫通して設けられ、配管20の側壁に設けられたガラス窓42に接続される。例えば、射出側筒22の端部は、配管20の径方向での入射側筒21の端部と対向している。射出側筒22は、配管20のガラス窓42を介して光経路Lに沿って配管20内部の蒸気を透過し又は蒸気で反射した光を受光部12に導くことが可能に構成されている。 The piping 20 is connected to an emission side tube 22 into which light that has been injected from the glass window 41 and transmitted or reflected through the vapor inside the piping 20 enters. The injection side cylinder 22 is provided through the side wall of the pipe 20 and connected to a glass window 42 provided on the side wall of the pipe 20. For example, the end of the exit side tube 22 faces the end of the entrance side tube 21 in the radial direction of the pipe 20. The emission side tube 22 is configured to be able to guide the light transmitted through or reflected by the vapor inside the pipe 20 along the optical path L through the glass window 42 of the pipe 20 to the light receiving unit 12.
 なお、配管20の側壁に入射側筒21を設けずに発光部11を接近させて設けてもよく、配管20の側壁に射出側筒22を設けずに受光部12を接近させて設けてもよい。 The light emitting unit 11 may be provided close to the side wall of the pipe 20 without providing the incident side tube 21, or the light receiving unit 12 may be provided close to the side wall of the pipe 20 without providing the emission side tube 22. Good.
 受光部12は、蒸気を透過し又は蒸気で反射した光の強度に応じた光強度信号Sdをコンピュータ装置100に出力する。また、受光部12として、分光光度計など、光の強度及び吸光度の少なくとも一方に対応する出力が得られる光学的計測機器を適用することも可能である。この場合、分光光度計は蒸気を透過し又は蒸気で反射した光の吸光度に応じた吸光度信号Saをコンピュータ装置100に出力する。受光部12としては、例えばフォトダイオード、フォトトランジスタ等の光電変換素子を使用可能である。 The light receiving unit 12 outputs a light intensity signal Sd corresponding to the intensity of the light transmitted through or reflected by the vapor to the computer apparatus 100. In addition, as the light receiving unit 12, an optical measuring device such as a spectrophotometer that can obtain an output corresponding to at least one of light intensity and absorbance can be applied. In this case, the spectrophotometer outputs to the computer device 100 an absorbance signal Sa corresponding to the absorbance of the light that has passed through the vapor or reflected by the vapor. As the light receiving unit 12, for example, a photoelectric conversion element such as a photodiode or a phototransistor can be used.
 なお、本実施形態においては、受光部12は一つのみ設けられているが、受光部12は二つ以上あってもよく、受光部12の数に特に制限はない。さらに、受光部12については、蒸気を透過し又は蒸気で反射する光の強度又は吸光度に対応する物理量を出力可能であれば、任意の構成が適用可能である。 In the present embodiment, only one light receiving unit 12 is provided, but two or more light receiving units 12 may be provided, and the number of light receiving units 12 is not particularly limited. Furthermore, any configuration can be applied to the light receiving unit 12 as long as it can output a physical quantity corresponding to the intensity or absorbance of light that is transmitted or reflected by the vapor.
 判定部101は、ガラス窓42(光射出部)により射出された光の強度又は吸光度に基づいて空間における乾き度を判定する。判定部101は、例えば、受光部12から出力された、光の強度に応じた光強度信号Sd、又は、光の吸光度に応じた吸光度信号Saに基づいて空間における乾き度を判定する。以下では、図2~図5を用いて、空間における乾き度の判定原理について説明する。 The determination part 101 determines the dryness in space based on the intensity | strength or light absorbency of the light inject | emitted by the glass window 42 (light emission part). The determination unit 101 determines, for example, the degree of dryness in space based on the light intensity signal Sd corresponding to the light intensity output from the light receiving unit 12 or the absorbance signal Sa corresponding to the light absorbance. Hereinafter, the determination principle of the dryness in the space will be described with reference to FIGS.
 図2及び図3は、配管の一部の断面図の一例を示す模式図であって、図1に楕円で囲んだ部分を拡大した模式断面図である。特に、図2は、配管を流れる蒸気が気相部分(飽和蒸気)(気体)のみを含む場合の、ガラス窓を透過する光の様子を示す図である。図3は、配管を流れる蒸気が気相部分(飽和蒸気)(気体)と液相部分(飽和水)(液体)とを含む場合の、ガラス窓を透過する光の様子を示す図である。図4は、本発明の一実施形態に係るガラス窓の表面上の水分量と、ガラス窓における光の散乱率と、の関係を示すグラフである。 2 and 3 are schematic views showing an example of a partial cross-sectional view of a pipe, and are enlarged schematic cross-sectional views of a portion surrounded by an ellipse in FIG. In particular, FIG. 2 is a diagram illustrating a state of light transmitted through the glass window when the vapor flowing through the pipe includes only a gas phase portion (saturated vapor) (gas). FIG. 3 is a diagram illustrating a state of light transmitted through the glass window when the vapor flowing through the pipe includes a gas phase portion (saturated vapor) (gas) and a liquid phase portion (saturated water) (liquid). FIG. 4 is a graph showing the relationship between the amount of moisture on the surface of the glass window according to an embodiment of the present invention and the light scattering rate in the glass window.
 ここで、図2及び図3に示すように、ガラス窓42は、気体及び液体の少なくとも一方との接触面S上における水分量に応じて光の散乱率が非線形に変化するように接触面Sが加工されている。具体的に、図2に示すように、配管20を流れる蒸気が気相部分(飽和蒸気)のみを含む場合は、接触面Sが加工されているガラス窓42を透過する光は、接触面Sにおいて、強く散乱する。 Here, as shown in FIGS. 2 and 3, the glass window 42 has a contact surface S such that the light scattering rate changes nonlinearly in accordance with the amount of moisture on the contact surface S with at least one of gas and liquid. Has been processed. Specifically, as shown in FIG. 2, when the vapor flowing through the pipe 20 includes only the gas phase portion (saturated vapor), the light transmitted through the glass window 42 in which the contact surface S is processed is reflected on the contact surface S. Strongly scattered.
 他方で、図3に示すように、配管20を流れる蒸気が気相部分(飽和蒸気)と液相部分(飽和水)とを含む場合には、所定量の水が接触面Sを覆うことで当該接触面Sが平滑状態となるため、光は、接触面Sにおいて散乱せず、ガラス窓42を透過する。よって、図1に示す受光部12においては、ガラス窓42により射出された光を受光することができるので、判定部101において空間における乾き度を判定することができる。 On the other hand, as shown in FIG. 3, when the steam flowing through the pipe 20 includes a gas phase part (saturated steam) and a liquid phase part (saturated water), a predetermined amount of water covers the contact surface S. Since the contact surface S is in a smooth state, the light does not scatter on the contact surface S and passes through the glass window 42. Therefore, the light receiving unit 12 shown in FIG. 1 can receive the light emitted by the glass window 42, so that the determination unit 101 can determine the degree of dryness in the space.
 このように、ガラス窓42においては、蒸気との接触面S上における水分量が所定量に到達した場合には、光の散乱率が非線形的に、例えば図4に示すように、急激に減少するように接触面Sが加工されている。 Thus, in the glass window 42, when the amount of moisture on the contact surface S with the vapor reaches a predetermined amount, the light scattering rate decreases nonlinearly, for example, as shown in FIG. Thus, the contact surface S is processed.
 なお、ガラス窓42の接触面Sは、蒸気との接触面S上における水分量に応じて光の散乱率が非線形に変化するように加工されていればよく、例えば、磨り加工、エンボス加工、凸凹加工等様々な加工形態を採用可能である。 In addition, the contact surface S of the glass window 42 should just be processed so that the light scattering rate may change nonlinearly according to the moisture content on the contact surface S with steam, for example, polishing, embossing, Various processing forms such as uneven processing can be adopted.
 ここで、図1に示す受光部12における受光強度は、ガラス窓42による散乱以外にも、水相部分による光の吸収率によっても変化し得る。つまり、水相部分において吸収されやすい性質を持つ波長領域の光を採用すると、受光部12における受光強度は低下する。よって、本実施形態においては、水相部分において吸収されにくい性質を持つ波長領域の光を採用することが好ましい。 Here, the light receiving intensity in the light receiving unit 12 shown in FIG. 1 can be changed not only by the scattering by the glass window 42 but also by the light absorption rate by the water phase portion. That is, when light in a wavelength region having a property that is easily absorbed in the water phase portion is employed, the light receiving intensity in the light receiving unit 12 decreases. Therefore, in the present embodiment, it is preferable to employ light in a wavelength region having a property that is difficult to be absorbed in the aqueous phase portion.
 図5は、本発明の一実施形態に係る光の波長と、水における光の吸光係数と、の関係を示すグラフである。図5に示すように、波長領域が200nm~1000nmである光は、吸光係数が1/100(cm-1)以下であるので、水に吸収されにくいことがわかる。よって、本実施形態においては、波長領域が200nm~1000nmの光を採用することで、蒸気が飽和蒸気のみを含む場合と、蒸気が飽和蒸気と飽和水とを含む場合と、を判別しやすくなるので、空間における乾き度をより正確に判定することができる。 FIG. 5 is a graph showing the relationship between the wavelength of light and the light absorption coefficient in water according to an embodiment of the present invention. As shown in FIG. 5, it can be seen that light having a wavelength region of 200 nm to 1000 nm has a light absorption coefficient of 1/100 (cm −1 ) or less, and is not easily absorbed by water. Therefore, in the present embodiment, by employing light having a wavelength region of 200 nm to 1000 nm, it is easy to distinguish between the case where the steam includes only saturated steam and the case where the steam includes saturated steam and saturated water. Therefore, the dryness in the space can be determined more accurately.
 図1に示す判定部101は、ガラス窓42から射出された光の強度と、記録部200に記録された、過去にガラス窓42から射出された光の強度と、の差又は比に基づいて空間における乾き度を判定する。 The determination unit 101 shown in FIG. 1 is based on the difference or ratio between the intensity of light emitted from the glass window 42 and the intensity of light emitted from the glass window 42 recorded in the past in the recording unit 200. Determine the dryness in space.
 判定部101は、算出された差に基づいて、光の強度が増加したと判断する場合は、蒸気が飽和蒸気と飽和水とを含む湿り蒸気であると判定し、湿り蒸気の乾き度を判定する。また、判定部101は、算出された差(増加量)が、所定の閾値を上回る場合に、蒸気が飽和蒸気と飽和水とを含む湿り蒸気であると判定し、湿り蒸気の乾き度を判定してもよい。他方で、判定部101は、算出された差に基づいて、光の強度が減少したと判断する場合は、蒸気が飽和蒸気のみを含むと判定し、蒸気の乾き度を判定する。また、判定部101は、算出された差(減少量)が、所定の閾値を上回る場合に、蒸気が飽和蒸気のみを含むと判定し、蒸気の乾き度を判定してもよい。 When the determination unit 101 determines that the light intensity has increased based on the calculated difference, the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. To do. Further, when the calculated difference (increase amount) exceeds a predetermined threshold, the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. May be. On the other hand, when the determination unit 101 determines that the light intensity has decreased based on the calculated difference, the determination unit 101 determines that the steam includes only saturated steam, and determines the dryness of the steam. Further, the determination unit 101 may determine that the steam contains only saturated steam when the calculated difference (decrease amount) exceeds a predetermined threshold, and determine the degree of dryness of the steam.
 判定部101は、算出された比に基づいて、光の強度が増加したと判断する場合は、蒸気が飽和蒸気と飽和水とを含む湿り蒸気であると判定し、湿り蒸気の乾き度を判定する。また、判定部101は、算出された比(増加率)が、所定の閾値を上回る場合に、蒸気が飽和蒸気と飽和水とを含む湿り蒸気であると判定し、湿り蒸気の乾き度を判定してもよい。他方で、判定部101は、算出された比に基づいて、光の強度が減少したと判断する場合は、蒸気が飽和蒸気のみを含むと判定し、蒸気の乾き度を判定する。また、判定部101は、算出された比(減少率)が、所定の閾値を上回る場合に、蒸気が飽和蒸気のみを含むと判定し、蒸気の乾き度を判定してもよい。 When the determination unit 101 determines that the light intensity has increased based on the calculated ratio, the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. To do. Further, when the calculated ratio (increase rate) exceeds a predetermined threshold, the determination unit 101 determines that the steam is wet steam including saturated steam and saturated water, and determines the dryness of the wet steam. May be. On the other hand, when the determination unit 101 determines that the light intensity has decreased based on the calculated ratio, the determination unit 101 determines that the steam contains only saturated steam, and determines the dryness of the steam. Further, the determination unit 101 may determine that the steam contains only saturated steam when the calculated ratio (decrease rate) exceeds a predetermined threshold, and may determine the dryness of the steam.
 なお、判定部101は、ガラス窓42から射出された光の吸光度と、記録部200に記録された、過去に前記光射出部から射出された光の吸光度と、の差又は比に基づいて空間における乾き度を判定してもよい。 The determination unit 101 is based on the difference or ratio between the absorbance of light emitted from the glass window 42 and the absorbance of light emitted from the light emission unit in the past recorded in the recording unit 200. You may determine the dryness in.
 また、判定部101は、ガラス窓42から射出された光の強度が所定の閾値を上回る場合に、蒸気が飽和蒸気と飽和水とを含む湿り蒸気であると判定してもよい。他方で、判定部101は、ガラス窓42から射出された光の強度が所定の閾値を下回る場合に、蒸気が飽和蒸気のみを含むと判定してもよい。 Further, the determination unit 101 may determine that the steam is wet steam including saturated steam and saturated water when the intensity of light emitted from the glass window 42 exceeds a predetermined threshold. On the other hand, the determination unit 101 may determine that the steam contains only saturated steam when the intensity of the light emitted from the glass window 42 is lower than a predetermined threshold.
 さらに、判定部101は、ガラス窓42から射出された光の吸光度が所定の閾値を下回る場合に、蒸気が飽和蒸気と飽和水とを含む湿り蒸気であると判定してもよい。他方で、判定部101は、ガラス窓42から射出された光の吸光度が所定の閾値を上回る場合に、蒸気が飽和蒸気のみを含むと判定してもよい。 Furthermore, the determination unit 101 may determine that the steam is wet steam including saturated steam and saturated water when the absorbance of light emitted from the glass window 42 is below a predetermined threshold. On the other hand, the determination unit 101 may determine that the vapor contains only saturated vapor when the absorbance of the light emitted from the glass window 42 exceeds a predetermined threshold.
 (乾き度判定処理)
 図6は、本発明の一実施形態に係る空間における乾き度を判定する乾き度判定処理の一例を示すフローチャートである。
(Dryness determination process)
FIG. 6 is a flowchart illustrating an example of dryness determination processing for determining dryness in a space according to an embodiment of the present invention.
 (ステップS1)
 まず、図1に示すように、蒸気が配管20の内部を流れている状態で蒸気の状態を判定する場合、発光部11において光を発する。発光部11から入射側筒21を伝播した光は、ガラス窓41を介して配管20内部の蒸気に照射される。
(Step S1)
First, as shown in FIG. 1, when the state of the steam is determined while the steam is flowing in the pipe 20, the light emitting unit 11 emits light. The light propagated from the light emitting unit 11 through the incident side tube 21 is irradiated to the vapor inside the pipe 20 through the glass window 41.
 (ステップS3)
 そして、蒸気を透過又は反射した光は、ガラス窓42を介して射出側筒22に入射して伝播する。
(Step S3)
Then, the light transmitted or reflected by the vapor is incident on the emission side tube 22 through the glass window 42 and propagates.
 (ステップS5)
 受光部12は射出側筒22から射出された光を受け、光の強度及び吸光度の少なくとも一方を計測する。次に、受光部12は、蒸気を透過又は反射した光の強度に対応した光強度信号Sdをコンピュータ装置100に出力する。
(Step S5)
The light receiving unit 12 receives the light emitted from the emission side tube 22 and measures at least one of the light intensity and the absorbance. Next, the light receiving unit 12 outputs a light intensity signal Sd corresponding to the intensity of light transmitted or reflected through the vapor to the computer device 100.
 また、受光部12は、蒸気を透過又は反射した光の吸光度に対応した吸光度信号Saをコンピュータ装置100に出力してもよい。そして、判定部101は、受光部12から出力された、光の強度に応じた光強度信号Sd、又は、光の吸光度に応じた吸光度信号Saに基づいて蒸気の状態を判定し、配管20における乾き度を判定する。 Further, the light receiving unit 12 may output an absorbance signal Sa corresponding to the absorbance of light transmitted or reflected through the vapor to the computer device 100. Then, the determination unit 101 determines the vapor state based on the light intensity signal Sd corresponding to the light intensity output from the light receiving unit 12 or the absorbance signal Sa corresponding to the light absorbance. Determine the dryness.
 (効果)
 以上説明した実施形態によれば、空間に存在する気体及び液体の少なくとも一方との接触面S上における水分量に応じて光の散乱率が非線形に変化するように当該接触面Sが加工されているガラス窓42から射出された光の強度又は吸光度に基づいて蒸気の状態を判定し、空間における乾き度を判定する。よって、飽和水(湿り蒸気の液相部分)の存在を的確に判定できるので、空間における乾き度をより正確に判定することができ、且つ、蒸気の圧力又は温度を検出するためのセンサを備える必要がないので、空間における乾き度を低コストで判定することができる。
(effect)
According to the embodiment described above, the contact surface S is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface S with at least one of the gas and liquid existing in the space. The state of the vapor is determined based on the intensity or absorbance of the light emitted from the glass window 42, and the dryness in the space is determined. Therefore, since the presence of saturated water (liquid phase portion of wet steam) can be accurately determined, the dryness in the space can be more accurately determined, and a sensor for detecting the pressure or temperature of the steam is provided. Since it is not necessary, the dryness in the space can be determined at low cost.
 また、波長領域が200nm~1000nmの光を採用する。よって、水に吸収されにくい波長の光を採用することで、飽和水(湿り蒸気の液相部分)の存在を判定しやすくなるので、空間における乾き度をより正確に判定することができる。 Also, light having a wavelength region of 200 nm to 1000 nm is adopted. Therefore, by employing light having a wavelength that is difficult to be absorbed by water, it becomes easier to determine the presence of saturated water (liquid phase portion of wet steam), and thus it is possible to more accurately determine the degree of dryness in space.
 (他の実施形態)
 上記各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するものではない。本発明はその趣旨を逸脱することなく、変更/改良(例えば、各実施形態を組み合わせること、各実施形態の一部の構成を省略すること)され得るとともに、本発明にはその等価物も含まれる。例えば、本発明においては、上記実施形態において、配管を流れる蒸気の湿り状態を検知する形態について説明したが、これに限られず、所定の空間における湿り具合や乾き度を検知する形態を含んでもよい。
(Other embodiments)
Each of the above embodiments is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed / improved (for example, combining the embodiments, omitting a part of the configuration of each embodiment) without departing from the spirit thereof, and the present invention includes equivalents thereof. It is. For example, in the present invention, in the above-described embodiment, the form of detecting the wet state of the steam flowing through the pipe has been described. However, the present invention is not limited to this, and may include a form of detecting the wetness and dryness in a predetermined space. .
1:乾き度判定装置、11:発光部、12:受光部、20:配管、21:入射側筒、22:射出側筒、41,42:ガラス窓、100:コンピュータ装置、101:判定部、200:記録部、S:接触面
 
1: dryness determination device, 11: light emitting unit, 12: light receiving unit, 20: piping, 21: incident side tube, 22: emission side tube, 41, 42: glass window, 100: computer device, 101: determination unit, 200: recording part, S: contact surface

Claims (5)

  1.  所定の空間に光を入射させる光入射部と、
     前記空間に存在する気体及び液体の少なくとも一方を介して入射する光を射出させる光射出部と、
     射出された前記光の強度に基づいて前記空間における乾き度を判定する判定部と、
    を備え、
     前記光射出部は、前記気体及び液体の少なくとも一方との接触面上における水分量に応じて光の散乱率が非線形に変化するように前記接触面が加工されている、
    乾き度判定装置。
    A light incident part for allowing light to enter a predetermined space;
    A light emitting portion for emitting light incident through at least one of a gas and a liquid existing in the space;
    A determination unit that determines the dryness in the space based on the intensity of the emitted light;
    With
    In the light emitting portion, the contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface with at least one of the gas and the liquid,
    Dryness determination device.
  2.  前記判定部は、前記光射出部から射出された前記光の強度と、過去に前記光射出部から射出された前記光の強度と、の差又は比に基づいて前記乾き度を判定する、
     請求項1に記載の乾き度判定装置。
    The determination unit determines the dryness based on a difference or ratio between the intensity of the light emitted from the light emitting unit and the intensity of the light emitted from the light emitting unit in the past.
    The dryness determination apparatus according to claim 1.
  3.  前記光射出部の前記接触面が磨り加工されている、
     請求項1又は2に記載の乾き度判定装置。
    The contact surface of the light emitting part is polished,
    The dryness determination apparatus according to claim 1 or 2.
  4.  前記光の波長領域が200nm~1000nmである、
     請求項1~3のいずれか一項に記載の乾き度判定装置。
    The wavelength region of the light is 200 nm to 1000 nm,
    The dryness determination apparatus according to any one of claims 1 to 3.
  5.  所定の空間に光を入射させる工程と、
     光射出部により、前記空間に存在する気体及び液体の少なくとも一方を介して入射する光を射出させる工程と、
     射出された前記光の強度に基づいて前記空間における乾き度を判定する工程と、
    を備え、
     前記光射出部は、前記気体及び液体の少なくとも一方との接触面上における水分量に応じて光の散乱率が非線形に変化するように前記接触面が加工されている、
    乾き度判定方法。
     
    A step of making light enter a predetermined space;
    A step of emitting light incident through at least one of gas and liquid existing in the space by a light emitting unit;
    Determining a dryness in the space based on the intensity of the emitted light;
    With
    In the light emitting portion, the contact surface is processed so that the light scattering rate changes nonlinearly according to the amount of moisture on the contact surface with at least one of the gas and the liquid,
    Dryness judgment method.
PCT/JP2018/005696 2017-03-31 2018-02-19 Dryness determination device and dryness determination method WO2018179992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070891 2017-03-31
JP2017070891A JP2018173323A (en) 2017-03-31 2017-03-31 Dryness level determination device and dryness level determination method

Publications (1)

Publication Number Publication Date
WO2018179992A1 true WO2018179992A1 (en) 2018-10-04

Family

ID=63675007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005696 WO2018179992A1 (en) 2017-03-31 2018-02-19 Dryness determination device and dryness determination method

Country Status (2)

Country Link
JP (1) JP2018173323A (en)
WO (1) WO2018179992A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325827A (en) * 1998-05-20 1999-11-26 Ishikawajima Harima Heavy Ind Co Ltd Droplet detecting method and droplet detecting sensor
JP2002529700A (en) * 1998-10-30 2002-09-10 オプティガイド リミテッド Dew point hygrometer and dew sensor
US20130100453A1 (en) * 2011-10-20 2013-04-25 Christopher Harrison Measurement of liquid fraction dropout using micropatterned surfaces
JP2015047800A (en) * 2013-09-03 2015-03-16 ブラザー工業株式会社 Liquid detection member, liquid discharge device, and production method of the liquid detection member
JP2015127647A (en) * 2013-12-27 2015-07-09 アズビル株式会社 Dryness measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325827A (en) * 1998-05-20 1999-11-26 Ishikawajima Harima Heavy Ind Co Ltd Droplet detecting method and droplet detecting sensor
JP2002529700A (en) * 1998-10-30 2002-09-10 オプティガイド リミテッド Dew point hygrometer and dew sensor
US20130100453A1 (en) * 2011-10-20 2013-04-25 Christopher Harrison Measurement of liquid fraction dropout using micropatterned surfaces
JP2015047800A (en) * 2013-09-03 2015-03-16 ブラザー工業株式会社 Liquid detection member, liquid discharge device, and production method of the liquid detection member
JP2015127647A (en) * 2013-12-27 2015-07-09 アズビル株式会社 Dryness measuring device

Also Published As

Publication number Publication date
JP2018173323A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US9372153B2 (en) Dryness fraction distribution measuring device and dryness fraction distribution measuring method
CN105277513B (en) Surface plasma resonance refractive index sensor based on optical fiber micro-ring
CN105829868A (en) Steam-quality measurement device
WO2018179992A1 (en) Dryness determination device and dryness determination method
JP5786191B2 (en) Temperature sensitive body, optical temperature sensor, temperature measuring device and heat flux measuring device
TWI719650B (en) Concentration measurement method
WO2015020023A1 (en) Dryness measurement device
JP6379007B2 (en) Piping and dryness measuring device
JP2016151572A (en) Dryness measurement device
US9625384B2 (en) Dryness fraction distribution measuring device and dryness fraction distribution measuring method
JP6175370B2 (en) Dryness measuring device and dryness measuring method
JP6392627B2 (en) Dryness measuring device and dryness measuring method
JP6307427B2 (en) Dryness measuring device and dryness measuring method
JP6664926B2 (en) Dryness measuring device
JP6307390B2 (en) Dryness measuring device and dryness measuring method
WO2017183434A1 (en) Dryness measurement device and wet steam inspection device
WO2017183433A1 (en) Dryness measurement device and wet steam inspection device
WO2017104241A1 (en) Dryness measurement device
KR102265564B1 (en) Scattered light type gas sensing system
JP2016133491A (en) Gas detection device
JP2018169218A (en) Dryness measuring device and dryness measuring method
Ashworth et al. Transducer mechanisms for optical biosensors. Part 2: Transducer design
WO2017187784A1 (en) Degree-of-dryness measurement device and measurement error evaluation method for degree-of-dryness measurement device
WO2017203841A1 (en) Dryness measurement device and moist vapor inspection device
JPS638522A (en) Measurement of temperature at end face of optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778344

Country of ref document: EP

Kind code of ref document: A1