JP2018169218A - Dryness measuring device and dryness measuring method - Google Patents

Dryness measuring device and dryness measuring method Download PDF

Info

Publication number
JP2018169218A
JP2018169218A JP2017065199A JP2017065199A JP2018169218A JP 2018169218 A JP2018169218 A JP 2018169218A JP 2017065199 A JP2017065199 A JP 2017065199A JP 2017065199 A JP2017065199 A JP 2017065199A JP 2018169218 A JP2018169218 A JP 2018169218A
Authority
JP
Japan
Prior art keywords
wet steam
dryness
absorbance
phase portion
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017065199A
Other languages
Japanese (ja)
Inventor
志功 田邉
Shiko Tanabe
志功 田邉
康博 五所尾
Yasuhiro Goshoo
康博 五所尾
泰明 松儀
Yasuaki Matsugi
泰明 松儀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2017065199A priority Critical patent/JP2018169218A/en
Publication of JP2018169218A publication Critical patent/JP2018169218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a dryness measuring device and a dryness measuring method which can measure dryness according to a state of wet steam with improved accuracy.SOLUTION: A dryness measuring device includes: a measurement part for measuring intensity or absorbance of light transmitted or reflected by wet steam; sensors for detecting a first flow rate of a gas phase part of the wet steam and a second flow rate of a liquid phase part of the wet steam; a measurement value correction part 101 for correcting the measured intensity or absorbance of the light on the basis of the ratio between the detected first and second flow rates; and a dryness measurement part 103 for measuring dryness of the wet steam on the basis of the corrected intensity or absorbance of the light.SELECTED DRAWING: Figure 1

Description

本発明は、乾き度測定装置及び乾き度測定方法に関する。   The present invention relates to a dryness measuring apparatus and a dryness measuring method.

水は沸点に達した後、水蒸気ガス(気相部分:飽和蒸気)と、水滴(液相部分:飽和水)とが混合した湿り蒸気となる。ここで、湿り蒸気に対する水蒸気ガスの重量比を「乾き度」という。例えば、水蒸気ガスと水滴とが半分ずつ存在すれば、乾き度は0.5となる。また、水滴が存在せず、水蒸気ガスのみが存在する場合は、乾き度は1.0となる。熱交換器等において、湿り蒸気が保有する顕熱と潜熱とを有効に利用することや、水蒸気タービンにおいて、タービン翼の腐食を防止すること等の観点から、湿り蒸気の乾き度を1.0に近い状態にすることが望まれている。そのため、乾き度を測定する様々な方法が提案されている。   After the water reaches the boiling point, it becomes wet steam in which water vapor gas (gas phase portion: saturated steam) and water droplets (liquid phase portion: saturated water) are mixed. Here, the weight ratio of the water vapor gas to the wet steam is referred to as “dryness”. For example, if water vapor gas and water droplets are present in half, the dryness is 0.5. Moreover, when there is no water droplet and only water vapor gas is present, the dryness is 1.0. In the heat exchanger or the like, the dryness of the wet steam is set to 1.0 from the viewpoint of effectively utilizing the sensible heat and latent heat possessed by the wet steam, and preventing the corrosion of the turbine blade in the steam turbine. It is desired to make the state close to. Therefore, various methods for measuring the dryness have been proposed.

特許文献1に記載の発明は、乾き度を高速に測定するため、(a)湿り蒸気に光を照射する発光体と、(b)湿り蒸気を透過した光を受光する受光素子と、(c)湿り蒸気の温度又は圧力を測定する環境センサと、(d)湿り蒸気を透過した光の強度と、湿り蒸気の乾き度と、の関係を、温度又は圧力毎に保存する関係記憶部と、(e)受光素子による光の強度の測定値と、環境センサによる温度又は圧力の測定値と前記関係とに基づき、湿り蒸気の乾き度の値を特定する乾き度特定部とを備える乾き度測定装置に関する。   In order to measure the dryness at high speed, the invention described in Patent Document 1 includes (a) a light emitter that irradiates light to wet steam, (b) a light receiving element that receives light transmitted through the wet steam, and (c) A) an environmental sensor that measures the temperature or pressure of the wet steam; and (d) a relationship storage unit that stores the relationship between the intensity of light transmitted through the wet steam and the dryness of the wet steam for each temperature or pressure; (E) Dryness measurement provided with a dryness specifying unit for specifying the dryness value of wet steam based on the measured value of light intensity by the light receiving element, the measured value of temperature or pressure by the environmental sensor, and the relationship. Relates to the device.

上記特許文献1に記載の発明は、配管の中を流れる湿り蒸気が均一の密度で分布していることを理論的な前提として湿り蒸気の乾き度を演算により測定している。しかしながら、特許文献2に記載の発明においては、発明者が実際に配管を流れる湿り蒸気の状態と測定される乾き度との関係を鋭意検証したところ、湿り蒸気の流速、流量等(状態)によっては、特定の部位における湿り蒸気の状態に基づいて演算された乾き度が、湿り蒸気全体の適正な乾き度を代表していないという問題があることを見いだした。   The invention described in Patent Document 1 measures the wetness dryness by calculation on the theoretical premise that the wet steam flowing in the pipe is distributed at a uniform density. However, in the invention described in Patent Document 2, when the inventor has rigorously verified the relationship between the state of wet steam actually flowing through the pipe and the measured dryness, it depends on the flow rate, flow rate, etc. (state) of the wet steam. Found that there was a problem that the dryness calculated based on the state of wet steam at a specific site did not represent the proper dryness of the entire wet steam.

例えば、配管を流れる湿り蒸気が噴霧流(湿り蒸気の気相部分に液相部分が分散している状態)の場合、配管の壁面の影響を受けないため、湿り蒸気の流速、流量等によらず、液相部分と気相部分の流速はほぼ同等であると考えられる。しかしながら、湿り蒸気が波状流(湿り蒸気の気相部分と液相部分とが分離し液相部分が配管に壁面に沿って流れている状態)等の場合、液相部分は配管の壁面の影響を受けるため、湿り蒸気の流速、流量等によっては、液相部分と気相部分との流速が大きく異なることになり、乾き度測定が正確に行えない可能性がある。   For example, when the wet steam flowing through a pipe is a spray flow (a state where the liquid phase part is dispersed in the gas phase part of the wet steam), it is not affected by the wall surface of the pipe. Therefore, it is considered that the liquid phase portion and the gas phase portion have substantially the same flow rate. However, when the wet steam is in a wavy flow (a state where the vapor phase portion and the liquid phase portion of the wet steam are separated and the liquid phase portion is flowing along the wall surface), the liquid phase portion is affected by the wall surface of the pipe. Therefore, depending on the flow rate, flow rate, etc. of the wet steam, the flow rate of the liquid phase part and the gas phase part may be greatly different, and the dryness measurement may not be performed accurately.

そこで、上記特許文献2に記載の発明においては、正確な乾き度を測定するために、湿り蒸気の気相部分及び液相部分の各々の流速等を測定し、測定された湿り蒸気の流速等に基づいて、計測された光の強度又は吸光度を補正し、補正された光の強度又は吸光度に基づいて、湿り蒸気の乾き度を測定する。   Therefore, in the invention described in Patent Document 2, in order to accurately measure the dryness, the flow rate and the like of each of the vapor phase portion and the liquid phase portion of the wet vapor are measured, and the measured flow velocity of the wet vapor and the like Then, the measured light intensity or absorbance is corrected, and the wet steam dryness is measured based on the corrected light intensity or absorbance.

特開2013−092457号公報JP2013-092457A 特開2015−127648号公報JP, 2015-127648, A

上記特許文献2に記載された発明は、測定された湿り蒸気の流速等に基づいて、計測された光の強度又は吸光度を補正している。よって、液相部分と気相部分との流速が異なることの影響を一定程度排することができるが、測定された湿り蒸気の流速等を用いた、光の強度又は吸光度の具体的な補正方法はいまだ不明である。よって、液相部分と気相部分との流速が異なることの影響をより効果的に排することによって、湿り蒸気の乾き度をより正確に測定することが強く望まれている。   The invention described in Patent Document 2 corrects the measured light intensity or absorbance based on the measured wet steam flow velocity or the like. Therefore, it is possible to eliminate the influence of the difference in flow rate between the liquid phase part and the gas phase part to a certain extent, but a specific method for correcting the light intensity or absorbance using the measured wet steam flow rate, etc. Yes still unknown. Therefore, it is strongly desired to more accurately measure the dryness of the wet steam by more effectively eliminating the influence of the difference in flow rate between the liquid phase portion and the gas phase portion.

そこで、本発明は、湿り蒸気の状態に応じたより正確な乾き度を測定することができる乾き度測定装置及び乾き度測定方法を提供することを目的の一つとする。   Therefore, an object of the present invention is to provide a dryness measuring apparatus and a dryness measuring method capable of measuring the dryness more accurately according to the state of wet steam.

本願発明者が実際に、液相部分と気相部分との流速が異なることの影響を効果的に排する方法を鋭意検証したところ、後で詳述するとおり、少なくとも、湿り蒸気の気相部分の流速と液相部分の流速との比を含む、計測された光の強度又は吸光度を補正するための具体的な補正係数を見出すことに成功した。そこで、本発明の一実施形態に係る乾き度測定装置において、当該補正係数を用いて、計測された光の強度又は吸光度を補正し、補正された光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する。よって、湿り蒸気の状態に応じたより正確な乾き度を測定することができる。   The inventor of the present application has rigorously verified a method for effectively eliminating the influence of the difference in flow velocity between the liquid phase portion and the gas phase portion. As will be described in detail later, at least the gas phase portion of wet steam The present inventors have succeeded in finding a specific correction factor for correcting the measured light intensity or absorbance, including the ratio between the flow rate of the liquid phase and the flow rate of the liquid phase portion. Therefore, in the dryness measuring apparatus according to one embodiment of the present invention, the correction coefficient is used to correct the measured light intensity or absorbance, and the wet steam is dried based on the corrected light intensity or absorbance. Measure the degree. Therefore, it is possible to measure a more accurate dryness according to the state of wet steam.

上記課題を解決するために、本発明の一実施形態に係る乾き度測定装置は、湿り蒸気を透過又は反射した光の強度又は吸光度を計測する計測部と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速とを検出するセンサと、検出された前記第1流速と前記第2流速との比に基づいて、計測された前記光の強度又は前記吸光度を補正する計測値補正部と、補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定部と、を備える。   In order to solve the above problems, a dryness measuring apparatus according to an embodiment of the present invention includes a measuring unit that measures the intensity or absorbance of light transmitted or reflected through wet steam, and a gas phase portion of the wet steam. A sensor for detecting one flow rate and a second flow rate of the liquid phase portion of the wet steam, and the measured light intensity or absorbance based on the ratio between the detected first flow rate and the second flow rate. And a dryness measurement unit that measures the dryness of the wet steam based on the corrected light intensity or absorbance.

上記乾き度測定装置において、前記計測値補正部は、前記気相部分のモル吸光係数と前記液相部分のモル吸光係数との比に基づいて、計測された前記光の強度又は前記吸光度を補正してもよい。   In the dryness measurement apparatus, the measurement value correction unit corrects the measured light intensity or the absorbance based on a ratio of a molar absorption coefficient of the gas phase portion and a molar absorption coefficient of the liquid phase portion. May be.

上記課題を解決するために、本発明の一実施形態に係る乾き度測定装置は、湿り蒸気を透過又は反射した光の強度又は吸光度を計測する計測部と、前記湿り蒸気の圧力と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録する記録部と、前記湿り蒸気の圧力を検出するセンサと、検出された前記圧力に関連づけられた前記比に基づいて、計測された前記光の強度又は前記吸光度を補正する計測値補正部と、補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定部と、を備える。   In order to solve the above problems, a dryness measuring apparatus according to an embodiment of the present invention includes a measuring unit that measures the intensity or absorbance of light transmitted or reflected through wet steam, the pressure of the wet steam, and the wetness. A recording unit that records the ratio of the first flow rate of the vapor phase portion of the vapor and the second flow rate of the liquid phase portion of the wet vapor in association with each other; a sensor that detects the pressure of the wet vapor; Based on the ratio related to pressure, a measured value correction unit that corrects the measured light intensity or absorbance, and the wet steam dryness based on the corrected light intensity or absorbance. A dryness measuring unit for measuring.

上記課題を解決するために、本発明の一実施形態に係る乾き度測定装置は、湿り蒸気を透過又は反射した光の強度又は吸光度を計測する計測部と、前記湿り蒸気の温度と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録する記録部と、前記湿り蒸気の温度を検出するセンサと、検出された前記温度に関連づけられた前記比に基づいて、計測された前記光の強度又は前記吸光度を補正する計測値補正部と、補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定部と、を備える。   In order to solve the above problems, a dryness measuring apparatus according to an embodiment of the present invention includes a measuring unit that measures the intensity or absorbance of light transmitted or reflected through wet steam, the temperature of the wet steam, and the wetness. A recording unit that records the ratio of the first flow rate of the vapor phase portion of the vapor and the second flow rate of the liquid phase portion of the wet steam, the sensor that detects the temperature of the wet vapor, and the detected Based on the ratio related to temperature, a measured value correction unit that corrects the measured light intensity or absorbance, and the wet steam dryness based on the corrected light intensity or absorbance. A dryness measuring unit for measuring.

上記課題を解決するために、本発明の一実施形態に係る乾き度測定方法は、湿り蒸気を透過又は反射した光の強度又は吸光度を計測するステップと、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速とを検出するステップと、検出された前記第1流速と前記第2流速との比に基づいて、計測された前記光の強度又は前記吸光度を補正するステップと、補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定するステップと、を含む。   In order to solve the above problems, a dryness measurement method according to an embodiment of the present invention includes a step of measuring the intensity or absorbance of light transmitted or reflected through wet steam, and a first gas phase portion of the wet steam. Based on the step of detecting the flow rate and the second flow rate of the liquid phase portion of the wet steam, and the ratio of the detected first flow rate and the second flow rate, the measured light intensity or the absorbance is obtained. Correcting, and measuring the dryness of the wet steam based on the corrected light intensity or the absorbance.

上記課題を解決するために、本発明の一実施形態に係る乾き度測定方法は、湿り蒸気を透過又は反射した光の強度又は吸光度を計測するステップと、前記湿り蒸気の圧力と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録するステップと、前記湿り蒸気の圧力を検出するステップと、検出された前記圧力に関連づけられた前記比に基づいて、計測された前記光の強度又は前記吸光度を補正するステップと、補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定するステップと、を含む。   In order to solve the above problems, a dryness measurement method according to an embodiment of the present invention includes a step of measuring intensity or absorbance of light transmitted or reflected through wet steam, the pressure of the wet steam, and the wet steam. A step of associating and recording a ratio of a first flow rate of the gas phase portion and a second flow rate of the liquid phase portion of the wet steam, detecting a pressure of the wet steam, and detecting the pressure Correcting the measured light intensity or absorbance based on the associated ratio; measuring the wet steam dryness based on the corrected light intensity or absorbance; and including.

上記課題を解決するために、本発明の一実施形態に係る乾き度測定方法は、湿り蒸気を透過又は反射した光の強度又は吸光度を計測するステップと、前記湿り蒸気の温度と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録するステップと、前記湿り蒸気の温度を検出するステップと、検出された前記温度に関連づけられた前記比に基づいて、計測された前記光の強度または前記吸光度を補正するステップと、補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定するステップと、を含む。   In order to solve the above problems, a dryness measuring method according to an embodiment of the present invention includes a step of measuring the intensity or absorbance of light transmitted or reflected through wet steam, the temperature of the wet steam, and the wet steam. A step of associating and recording a ratio of a first flow rate of the vapor phase portion and a second flow rate of the liquid phase portion of the wet steam, detecting a temperature of the wet vapor, and detecting the detected temperature. Correcting the measured light intensity or absorbance based on the associated ratio, and measuring the wet steam dryness based on the corrected light intensity or absorbance; including.

本発明によれば、湿り蒸気の状態に応じたより正確な乾き度を測定することができる。   According to the present invention, a more accurate dryness according to the state of wet steam can be measured.

本発明の第1実施形態に係る乾き度測定装置の模式図である。It is a schematic diagram of the dryness measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る配管の断面図の一例を示す模式図である。It is a mimetic diagram showing an example of a sectional view of piping concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度と、液相部分の流速Vwと気相部分の流速Vvとの比と、の関係を示すグラフである。The ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam according to the first embodiment of the present invention, the dryness of the wet steam, the velocity Vw and the gas phase portion of the liquid-phase portion It is a graph which shows the relationship with ratio with the flow velocity Vv. 本発明の第1実施形態に係る乾き度測定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the dryness measurement process which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る乾き度測定装置の模式図である。It is a schematic diagram of the dryness measuring apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度と、湿り蒸気の圧力と、の関係を示すグラフである。Graph showing the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam according to a second embodiment of the present invention, the dryness of the wet steam, and pressure of wet steam, the relationship It is. 本発明の第2実施形態に係る乾き度測定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the dryness measurement process which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る乾き度測定装置の模式図である。It is a schematic diagram of the dryness measuring apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度と、湿り蒸気の温度と、の関係を示すグラフである。Graph showing the ratio of the third absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam according to an embodiment of the present invention, the dryness of the wet steam, and the temperature of the wet steam, the relationship It is.

以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施例を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. In other words, the present invention can be implemented with various modifications (combining the embodiments, etc.) without departing from the spirit of the present invention. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings.

(定義)
本明細書で使用する主たる用語を以下のとおりに定義する。
「蒸気」:各実施形態では、水蒸気のことを意味するが、気相部分と液相部分との二相状態となる物質の蒸気であればよく、水蒸気に限定されない。
「乾き度」:蒸気中の気相部分の重量割合のことをいう。乾き度[%]=100[%]−湿り度[%]の関係がある。
「湿り蒸気」:乾き度Xが0−100[%]の蒸気をいう。
「飽和蒸気」:湿り蒸気の気相部分をいう。乾き飽和蒸気(飽和乾き蒸気)ともいう。
「飽和水」:湿り蒸気の液相部分をいう。
「光の強度」(光強度):光(電磁波)の強さを表す物理量をいい、その称呼や単位に限定はない。例えば、放射強度、光度、光量子束密度など、それぞれ単位が異なるが相互に換算可能な物理量である。
「吸光度」:光が湿り蒸気中を通過した際に光の強度がどの程度弱まるかを示す無次元量であり、光学密度ともいう。吸光度といっても光の吸収のみならず、散乱や反射により光の強度が弱まる場合も含む。
(Definition)
The main terms used in this specification are defined as follows.
“Vapor”: In each embodiment, it means water vapor, but it is not limited to water vapor as long as it is a vapor of a substance that is in a two-phase state of a gas phase portion and a liquid phase portion.
“Dryness”: Refers to the weight ratio of the gas phase portion in the steam. There is a relationship of dryness [%] = 100 [%] − wetness [%].
“Wet steam”: refers to steam having a dryness X of 0 to 100%.
“Saturated steam”: refers to the gas phase portion of wet steam. Also called dry saturated steam (saturated dry steam).
“Saturated water”: refers to the liquid phase of wet steam.
“Light intensity” (light intensity): A physical quantity indicating the intensity of light (electromagnetic wave), and there is no limitation on its name or unit. For example, these are physical quantities that are mutually different but can be converted into each other, such as radiation intensity, luminous intensity, and photon flux density.
“Absorbance”: A dimensionless amount indicating how much light intensity is weakened when light passes through wet steam, and is also called optical density. Absorbance includes not only the absorption of light but also the case where the intensity of light is weakened by scattering and reflection.

(第1実施形態)
図1は、本発明の第1本実施形態に係る乾き度測定装置の模式図である。図1に示すように、乾き度測定装置1Aは、例示的に、発光部11と、受光部12(計測部)と、流速センサ30A,30B(センサ)と、コンピュータ装置100とを備えて構成される。また、コンピュータ装置100は、所定のソフトウェアプログラムを実行することにより機能的に実現される機能ブロックとして、計測値補正部101と、乾き度測定部103と、を備えて構成される。
(First embodiment)
FIG. 1 is a schematic diagram of a dryness measuring apparatus according to a first embodiment of the present invention. As illustrated in FIG. 1, the dryness measuring apparatus 1A includes, for example, a light emitting unit 11, a light receiving unit 12 (measurement unit), flow velocity sensors 30A and 30B (sensors), and a computer device 100. Is done. The computer apparatus 100 includes a measurement value correction unit 101 and a dryness measurement unit 103 as functional blocks that are functionally realized by executing a predetermined software program.

発光部11は、所定の波長の光を射出する発光手段である。例えば、発光部11としては、発光ダイオード、スーパールミネッセントダイオード、半導体レーザ、レーザ発振器、蛍光放電管、低圧水銀灯、キセノンランプ、及び電球等が使用可能である。   The light emitting unit 11 is a light emitting unit that emits light having a predetermined wavelength. For example, as the light emitting unit 11, a light emitting diode, a super luminescent diode, a semiconductor laser, a laser oscillator, a fluorescent discharge tube, a low pressure mercury lamp, a xenon lamp, a light bulb, and the like can be used.

発光部11には、例えば入射側筒21を接続する。入射側筒21は、配管20の側壁を貫通して設けられ、配管20の側壁に設けられた光透過性のガラス窓41に接続される。入射側筒21により伝搬された光は、光経路Lに沿って配管20の内部に進入する。入射側筒21には、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び、石英ガラスからなるガラス光ファイバ等が使用可能であるが、発光部11が発した光を伝搬可能であれば、これに限定されない。   For example, an incident side tube 21 is connected to the light emitting unit 11. The incident side tube 21 is provided through the side wall of the pipe 20 and is connected to a light transmissive glass window 41 provided on the side wall of the pipe 20. The light propagated by the incident side tube 21 enters the pipe 20 along the optical path L. The incident side tube 21 can be made of a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methymethacrylate)), a glass optical fiber made of quartz glass, or the like. It is not limited to this as long as light can propagate.

配管20は、測定対象となる湿り蒸気が流通する配管である。配管20には、入射側筒21から照射され、配管20の内部の湿り蒸気を透過又は反射した光が進入する射出側筒22を接続する。射出側筒22は、配管20の側壁を貫通して設けられ、配管20の側壁に設けられた光透過性のガラス窓42に接続される。例えば、射出側筒22の端部は、配管20の径方向での入射側筒21の端部と対向している。射出側筒22は、配管20のガラス窓42を介して光経路Lに沿って配管20内部の湿り蒸気を透過又は反射した光を受光部12に導くことが可能に構成されている。   The pipe 20 is a pipe through which wet steam to be measured flows. Connected to the pipe 20 is an emission side cylinder 22 into which the light irradiated from the incident side cylinder 21 and transmitted or reflected by the wet steam inside the pipe 20 enters. The emission side tube 22 is provided through the side wall of the pipe 20 and is connected to a light transmissive glass window 42 provided on the side wall of the pipe 20. For example, the end of the exit side tube 22 faces the end of the entrance side tube 21 in the radial direction of the pipe 20. The exit side tube 22 is configured to be able to guide the light transmitted through or reflected from the wet vapor inside the pipe 20 along the light path L through the glass window 42 of the pipe 20 to the light receiving unit 12.

なお、配管20の側壁に入射側筒21を設けずに発光部11を接近させて設けてもよく、配管20の側壁に射出側筒22を設けずに受光部12を接近させて設けてもよい。   The light emitting unit 11 may be provided close to the side wall of the pipe 20 without providing the incident side tube 21, or the light receiving unit 12 may be provided close to the side wall of the pipe 20 without providing the emission side tube 22. Good.

受光部12は、配管20内の湿り蒸気を透過又は反射した光を受けて、光の強度及び吸光度の少なくとも一方を計測する計測手段である。例えば、受光部12としては、フォトダイオード、フォトトランジスタ等の光電変換素子を使用可能である。受光部12は、湿り蒸気を透過又は反射した光の強度に応じた光強度信号Sdをコンピュータ装置100に出力する。また、受光部12として、分光光度計など、光の強度及び吸光度の少なくとも一方に対応する出力が得られる光学的計測機器を適用することも可能である。この場合、分光光度計は湿り蒸気を透過又は反射した光の吸光度に応じた吸光度信号Saをコンピュータ装置100に出力する。   The light receiving unit 12 is a measuring unit that receives light transmitted through or reflected from the wet vapor in the pipe 20 and measures at least one of light intensity and absorbance. For example, as the light receiving unit 12, a photoelectric conversion element such as a photodiode or a phototransistor can be used. The light receiving unit 12 outputs a light intensity signal Sd corresponding to the intensity of light transmitted or reflected through the wet steam to the computer apparatus 100. In addition, as the light receiving unit 12, an optical measuring device such as a spectrophotometer that can obtain an output corresponding to at least one of light intensity and absorbance can be applied. In this case, the spectrophotometer outputs an absorbance signal Sa corresponding to the absorbance of the light transmitted or reflected through the wet steam to the computer apparatus 100.

受光部12として分光光度計を用いる場合、具体的に、分光光度計は、湿り蒸気を透過又は反射する光の強度に基づいて、吸光度を演算し、吸光度信号Saとして出力する。ここで、吸光度Aは、入射光強度をI0、受光した光の強度をIとすると、式1のように定義される。
(式1)

吸光度A=−log10(I/I0

以上より、湿り蒸気を透過する光の強度を計測できれば、一義的に吸光度Aが特定される。
When a spectrophotometer is used as the light receiving unit 12, specifically, the spectrophotometer calculates the absorbance based on the intensity of the light that transmits or reflects the wet steam and outputs it as the absorbance signal Sa. Here, the absorbance A is defined as Equation 1 where I 0 is the incident light intensity and I is the intensity of the received light.
(Formula 1)

Absorbance A = −log 10 (I / I 0 )

From the above, if the intensity of light passing through the wet steam can be measured, the absorbance A is uniquely specified.

なお、受光部12に吸光度Aを出力させる代わりに、コンピュータ装置100が光の強度を含む光強度信号Sdを入力し、式1に基づいて吸光度Aを計算するように構成してもよい。   Instead of causing the light receiving unit 12 to output the absorbance A, the computer apparatus 100 may be configured to input the light intensity signal Sd including the light intensity and calculate the absorbance A based on Equation 1.

また、本実施形態においては、受光部12は一つのみ設けられているが、受光部12は二つ以上あってもよく、受光部12の数に特に制限はない。さらに、受光部12については、湿り蒸気を透過又は反射する光の強度に対応する物理量を出力可能であれば、任意の構成が適用可能である。   In the present embodiment, only one light receiving unit 12 is provided, but there may be two or more light receiving units 12, and the number of light receiving units 12 is not particularly limited. Furthermore, any configuration can be applied to the light receiving unit 12 as long as it can output a physical quantity corresponding to the intensity of light that transmits or reflects wet steam.

流速センサ30A,30B(センサ)は、配管20の上側及び下側のそれぞれに配置されている。流速センサ30Aは、配管20内の湿り蒸気の気相部分の流速Vvを検出して流速信号SFVvとしてコンピュータ装置100に出力する。流速センサ30Bは、湿り蒸気の液相部分の流速Vwを検出して流速信号SFVwとしてコンピュータ装置100に出力する。また、流速センサ30A又は流速センサ30Bは、湿り蒸気の液相部分と気相部分の一方の相の流速を検出し、その検出結果に基づいて他の相の流速を演算により求めることができるように構成されていてもよい。   The flow velocity sensors 30A and 30B (sensors) are arranged on the upper side and the lower side of the pipe 20, respectively. The flow velocity sensor 30A detects the flow velocity Vv of the gas phase portion of the wet steam in the pipe 20, and outputs it to the computer device 100 as a flow velocity signal SFVv. The flow rate sensor 30B detects the flow rate Vw of the liquid phase portion of the wet steam and outputs it to the computer device 100 as a flow rate signal SFVw. Further, the flow velocity sensor 30A or the flow velocity sensor 30B detects the flow velocity of one phase of the liquid phase portion and the vapor phase portion of the wet steam, and can obtain the flow velocity of the other phase by calculation based on the detection result. It may be configured.

計測値補正部101は、測定対象の湿り蒸気を透過又は反射した光の強度及び吸光度の少なくとも一方の値を補正する補正手段である。例えば、計測値補正部101は、受光部12から出力される光強度信号Sd及び吸光度信号Saの少なくとも一方を入力する。そして、流速信号SFVv,SFVwに基づいて生成される補正係数αに基づいて、受光部12により出力された光強度信号Sdに基づく湿り蒸気を透過又は反射した光の強度を補正する。また、流速センサ30A,30Bから出力される流速信号SFVv,SFVwに基づいて生成される補正係数αに基づいて、受光部12により出力された吸光度信号Saに基づく湿り蒸気を透過又は反射した光の吸光度を補正する。以下では、補正係数αの算出方法を具体的に説明する。   The measurement value correction unit 101 is a correction unit that corrects at least one of the intensity and absorbance of light transmitted or reflected from the measurement target wet steam. For example, the measurement value correcting unit 101 inputs at least one of the light intensity signal Sd and the absorbance signal Sa output from the light receiving unit 12. Based on the correction coefficient α generated based on the flow velocity signals SFVv and SFVw, the intensity of the light transmitted or reflected by the wet steam based on the light intensity signal Sd output by the light receiving unit 12 is corrected. Further, based on the correction coefficient α generated based on the flow velocity signals SFVv and SFVw output from the flow velocity sensors 30A and 30B, the light transmitted or reflected by the wet steam based on the absorbance signal Sa output by the light receiving unit 12 is obtained. Correct the absorbance. Hereinafter, a method for calculating the correction coefficient α will be specifically described.

湿り蒸気の乾き度Xは、例えば、気相部分の質量流量mv及び液相部分の質量流量mwを用いて、以下の式2のような関係式として記述できる。
(式2)
The dryness X of the wet steam can be described as a relational expression such as Expression 2 below using, for example, the mass flow rate m v of the gas phase portion and the mass flow rate m w of the liquid phase portion.
(Formula 2)

図2は、本発明の第1実施形態に係る配管の断面図の一例を示す模式図である。上記式2は、図2に示す配管20内の高さhと、配管20の内幅wと、湿り蒸気の液相部分の厚さtwと、に加えて、湿り蒸気の気相部分の流速Vvと、液相部分のVwと、気相部分の密度ρvと、液相部分の密度ρwと、を用いる下記式3のような関係式として導かれる。
(式3)
FIG. 2 is a schematic diagram illustrating an example of a cross-sectional view of a pipe according to the first embodiment of the present invention. The above equation 2, the height h of the pipe 20 shown in FIG. 2, the inner width w of the pipe 20, the thickness t w of the liquid-phase portion of the wet steam, in addition, the gas phase portion of the wet steam It is derived as a relational expression such as the following Expression 3 using the flow velocity Vv, the liquid phase portion Vw, the gas phase portion density ρ v, and the liquid phase portion density ρ w .
(Formula 3)

上記式3は、湿り蒸気の液相部分の吸光度awと、液相部分のモル吸光係数εwと、液相部分のモル濃度cwと、を用いると、下記式4で記述できる。
(式4)
The above equation 3 can be expressed by the following equation 4 using the absorbance a w of the liquid phase portion of the wet steam, the molar extinction coefficient ε w of the liquid phase portion, and the molar concentration c w of the liquid phase portion.
(Formula 4)

湿り蒸気の気相部分のモル濃度cvをさらに用いると上記式4は下記式5で示され、当該式5は下記式6のように整理される。
(式5)
(式6)
With further the molar concentration c v of the gas phase portion of the wet steam above formula 4 is represented by the following formula 5, the formula 5 is organized as shown in Equation 6.
(Formula 5)
(Formula 6)

ここで、上記式6において、湿り蒸気の気相部分のモル濃度cvを湿り蒸気の気相部分の吸光度avを用いて表すと、下記式7が得られ、当該式7は式8として整理することができる。
(式7)
(式8)
Here, in the formula 6, to represent the molar concentration c v of the gas phase portion of the wet steam with the absorbance a v of the gas phase portion of the wet steam, the following formula 7 is obtained, the formula 7 as Equation 8 Can be organized.
(Formula 7)
(Formula 8)

式8に示すように、湿り蒸気の乾き度Xは、湿り蒸気の気相部分の吸光度avと液相部分の吸光度awとの比と、気相部分のモル吸光係数εvと液相部分のモル吸光係数εwとの比と、気相部分の流速Vvと液相部分の流速Vwとの比と、を含む式で記述される。ここで、湿り蒸気の吸光度と光の強度とは式1に示す関係式で示される。よって、計測された光の強度又は吸光度を補正するための補正係数αは、気相部分のモル吸光係数εvと液相部分のモル吸光係数εwとの比と、気相部分の流速Vvと液相部分の流速Vwとの比と、を含む式9として見出すことができる。
(式9)
補正係数α=(εv/εw)×(Vw/Vv)
As shown in Equation 8, the dryness X of the humid steam, the ratio between the absorbance a w absorbance a v and a liquid phase portion of the gaseous phase of the wet steam, the molar absorption coefficient epsilon v and a liquid phase of the gaseous phase It is described by an equation including the ratio of the molar extinction coefficient ε w of the portion and the ratio of the flow velocity Vv of the gas phase portion and the flow velocity Vw of the liquid phase portion. Here, the absorbance of wet steam and the intensity of light are shown by the relational expression shown in Equation 1. Therefore, the correction coefficient α for correcting the measured light intensity or absorbance is the ratio of the molar absorption coefficient ε v of the gas phase portion to the molar absorption coefficient ε w of the liquid phase portion, and the flow velocity Vv of the gas phase portion. And the ratio of the flow velocity Vw of the liquid phase portion can be found as Equation 9.
(Formula 9)
Correction coefficient α = (ε v / ε w ) × (Vw / Vv)

図3は、本発明の第1実施形態に係る湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度と、液相部分の流速Vwと気相部分の流速Vvとの比と、の関係を示すグラフである。上記式8からも明らかなとおり、湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度と、の間には相関関係がある。本願発明者が具体的に当該相関関係を検討したところ、湿り蒸気の乾き度Xと、湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、の間には、湿り蒸気の液相部分の流速Vwと気相部分の流速Vvとの比に対応する、図3に示すような相関関係があることを見出した。 3, the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam according to the first embodiment of the present invention, the dryness of the wet steam, and the flow rate Vw of the liquid-phase portion It is a graph which shows the relationship with ratio with the flow velocity Vv of a gaseous-phase part. As is clear from the above equation 8, and the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam, there is a correlation between the dryness of the wet steam. The present inventors have studied a specific the correlation, and the dryness X of wet steam, the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam, during the It was found that there is a correlation as shown in FIG. 3 corresponding to the ratio between the flow velocity Vw of the liquid phase portion of the wet steam and the flow velocity Vv of the gas phase portion.

図1に戻り、乾き度測定部103は、計測値補正部101で補正された光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する測定手段である。例えば、湿り蒸気の乾き度は、気相部分の光の強度IV、液相部分の光の強度IWを用いて、以下の式10のような関係式として記述することができる。また、乾き度は、気相部分の光の吸光度AV、液相部分の光の吸光度AWを用いて、以下の式11のような関係式として記述することができる。
(式10)
乾き度X=IV/(IV+IW)

(式11)
乾き度X=AV/(AV+AW)
Returning to FIG. 1, the dryness measurement unit 103 is a measurement unit that measures the dryness of the wet steam based on the light intensity or absorbance corrected by the measurement value correction unit 101. For example, the dryness of the wet steam can be described as a relational expression such as Expression 10 below using the light intensity IV of the gas phase portion and the light intensity IW of the liquid phase portion. Further, the dryness can be described as a relational expression such as Expression 11 below using the light absorbance AV of the gas phase portion and the light absorbance AW of the liquid phase portion.
(Formula 10)
Dryness X = IV / (IV + IW)

(Formula 11)
Dryness X = AV / (AV + AW)

一方で、受光部12により計測された光の強度の補正後の乾き度は、気相部分の光の強度IV、液相部分の光の強度IW、及び流速センサ30A,30Bから出力される流速信号SFVv,SFVwに基づいて生成される補正係数αを用いて、以下の式12のような関係式として記述することができる。また、受光部12により計測された光の吸光度の補正後の乾き度は、気相部分の光の吸光度AV、液相部分の光の吸光度AW、及び補正係数αを用いて、以下の式13のような関係式として記述することができる。
(式12)
乾き度X'=IV/(IV+α・IW)

(式13)
乾き度X'=AV/(AV+α・AW)
On the other hand, the dryness after correction of the light intensity measured by the light receiving unit 12 includes the light intensity IV of the gas phase portion, the light intensity IW of the liquid phase portion, and the flow velocity output from the flow velocity sensors 30A and 30B. Using the correction coefficient α generated based on the signals SFVv and SFVw, it can be described as a relational expression such as Expression 12 below. The dryness after the correction of the light absorbance measured by the light receiving unit 12 is expressed by the following equation 13 using the light absorbance AV of the gas phase portion, the light absorbance AW of the liquid phase portion, and the correction coefficient α. It can be described as a relational expression such as
(Formula 12)
Dryness X ′ = IV / (IV + α · IW)

(Formula 13)
Dryness X ′ = AV / (AV + α · AW)

したがって、乾き度測定部103は、式12を用いる場合には、気相部分の光の強度、液相部分の光の強度、及び補正係数αを代入し、湿り蒸気の流速に応じた乾き度X'を求めることができる。また、乾き度測定部103は、式13を用いる場合には、気相部分の光の吸光度、液相部分の光の吸光度、及び補正係数αを代入し、湿り蒸気の流速に応じた乾き度X'を求めることができる。   Therefore, when using Equation 12, the dryness measurement unit 103 substitutes the light intensity of the gas phase portion, the light intensity of the liquid phase portion, and the correction coefficient α, and determines the dryness according to the flow rate of the wet steam. X ′ can be obtained. In addition, when Equation 13 is used, the dryness measurement unit 103 substitutes the light absorbance of the gas phase portion, the light absorbance of the liquid phase portion, and the correction coefficient α, and the dryness according to the wet steam flow rate. X ′ can be obtained.

(乾き度測定処理)
第1実施形態に係る乾き度測定処理を説明する。
図4は、本発明の第1実施形態に係る乾き度測定処理の一例を示すフローチャートである。
(Dryness measurement process)
The dryness measurement process according to the first embodiment will be described.
FIG. 4 is a flowchart showing an example of dryness measurement processing according to the first embodiment of the present invention.

(ステップS1)
まず、図1に示すように、湿り蒸気が配管20の内部を流れている状態で湿り蒸気の乾き度を測定する場合、発光部11において光を発する。発光部11から入射側筒21を伝播した光は、配管20内部の湿り蒸気に照射される。湿り蒸気を透過又は反射した光は、射出側筒22に入射して伝播する。次に、受光部12は射出側筒22から射出された光を受け、光の強度及び吸光度の少なくとも一方を計測する。次に、受光部12は、湿り蒸気を透過又は反射した光の強度に対応した光強度信号Sdを出力する。また、受光部12は、湿り蒸気を透過又は反射した光の吸光度に対応した吸光度信号Saをコンピュータ装置100に出力する。
(Step S1)
First, as shown in FIG. 1, when measuring the dryness of the wet steam in a state where the wet steam is flowing inside the pipe 20, the light emitting unit 11 emits light. The light propagated from the light emitting unit 11 through the incident side tube 21 is applied to the wet steam inside the pipe 20. The light transmitted or reflected by the wet steam enters the exit side tube 22 and propagates. Next, the light receiving unit 12 receives the light emitted from the emission side tube 22 and measures at least one of the light intensity and the absorbance. Next, the light receiving unit 12 outputs a light intensity signal Sd corresponding to the intensity of light transmitted or reflected by the wet steam. In addition, the light receiving unit 12 outputs an absorbance signal Sa corresponding to the absorbance of light transmitted or reflected through the wet steam to the computer apparatus 100.

(ステップS3)
流速センサ30A,30Bは、配管20内の湿り蒸気の気相部分の流速Vvと液相部分の流速Vwとを検出する。そして、流速センサ30A,30Bは、流速Vv及びVwに応じた流速信号SFVv及びSFVwとしてコンピュータ装置100に出力する。
(Step S3)
The flow velocity sensors 30A and 30B detect the flow velocity Vv of the vapor phase portion of the wet steam in the pipe 20 and the flow velocity Vw of the liquid phase portion. The flow rate sensors 30A and 30B output the flow rate signals SFVv and SFVw corresponding to the flow rates Vv and Vw to the computer device 100.

(ステップS5)
計測値補正部101は、受光部12から出力される光強度信号Sd及び吸光度信号Saの少なくとも一方を入力する。また、流速センサ30A,30Bから出力される流速信号SFVv,SFVwを入力する。そして、計測値補正部101は、流速センサ30A,30Bから出力される流速信号SFVv,SFVwに基づいて生成される補正係数αに基づいて、受光部12により出力された光強度信号Sdに基づく湿り蒸気を透過又は反射した光の強度を補正する。また、計測値補正部101は、流速センサ30A,30Bから出力される流速信号SFVv,SFVwに基づいて生成される補正係数αに基づいて、受光部12により出力された吸光度信号Saに基づく湿り蒸気を透過又は反射した光の吸光度を補正する。
(Step S5)
The measurement value correcting unit 101 inputs at least one of the light intensity signal Sd and the absorbance signal Sa output from the light receiving unit 12. Further, flow velocity signals SFVv and SFVw output from the flow velocity sensors 30A and 30B are input. The measured value correction unit 101 then wets based on the light intensity signal Sd output by the light receiving unit 12 based on the correction coefficient α generated based on the flow rate signals SFVv and SFVw output from the flow rate sensors 30A and 30B. Corrects the intensity of light transmitted or reflected by the vapor. The measured value correction unit 101 also includes wet steam based on the absorbance signal Sa output from the light receiving unit 12 based on the correction coefficient α generated based on the flow rate signals SFVv and SFVw output from the flow rate sensors 30A and 30B. The absorbance of the light transmitted or reflected through is reflected.

(ステップS7)
乾き度測定部103は、計測値補正部101により補正された、湿り蒸気を透過又は反射した光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する。
(Step S7)
The dryness measurement unit 103 measures the dryness of the wet steam based on the intensity or absorbance of the light that has been transmitted or reflected through the wet steam, corrected by the measurement value correction unit 101.

なお、本実施形態においては、流速を検出する代わりに流量を検出して流量の比を含む補正係数に基づいて光の強度又は吸光度を補正することも可能である。しかしながら、一般に流量測定においては、湿り蒸気の気相のみ或いは液相のみの単相流が測定対象となっている。そのため通常、二相流である湿り蒸気の流量を検出する場合、セパレーター等を用いて湿り蒸気を分離し、分離されたそれぞれを測定する必要がある。一方、二相流である湿り蒸気の流速を検出する場合、複数の熱式センサ等を用いることで、配管の上側に配置された一のセンサで湿り蒸気の気相部分の流速を検出し、他のセンサで湿り蒸気の液相部分の流速を検出することができる。このように、湿り蒸気の流速の検出には、湿り蒸気の気相部分と液相部分とを分離するセパレーター等が不要であり、湿り蒸気の状態に悪影響を及ぼすことないというメリットがある。   In this embodiment, instead of detecting the flow velocity, it is also possible to detect the flow rate and correct the light intensity or absorbance based on the correction coefficient including the flow rate ratio. However, in general, in the flow rate measurement, a single-phase flow of only wet gas phase or liquid phase is a measurement target. Therefore, normally, when detecting the flow rate of the wet steam which is a two-phase flow, it is necessary to separate the wet steam using a separator or the like and measure each separated. On the other hand, when detecting the flow rate of the wet steam that is a two-phase flow, by using a plurality of thermal sensors, etc., the flow rate of the gas phase part of the wet steam is detected with one sensor arranged on the upper side of the pipe, The flow rate of the liquid phase part of the wet steam can be detected by another sensor. Thus, the detection of the flow rate of the wet steam does not require a separator or the like that separates the vapor phase portion and the liquid phase portion of the wet steam, and has an advantage that the wet steam state is not adversely affected.

(第2実施形態)
第2実施形態は、湿り蒸気の圧力と、湿り蒸気の気相部分の流速Vv(第1流速)と湿り蒸気の液相部分の流速Vw(第2流速)との比と、を関連づけて予め記録し、実際に検出された湿り蒸気の圧力に関連づけられた上記比に基づいて、計測された光の強度又は吸光度を補正し、補正された光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する乾き度測定装置に関する。以下では、第1実施形態と異なる点について特に説明する。
(Second Embodiment)
In the second embodiment, the pressure of the wet steam and the ratio of the flow velocity Vv (first flow velocity) of the gas phase portion of the wet steam and the flow velocity Vw (second flow velocity) of the liquid phase portion of the wet steam are related in advance. Record and correct the measured light intensity or absorbance based on the above ratio related to the actual detected wet steam pressure, and wet steam dryness based on the corrected light intensity or absorbance The present invention relates to a dryness measuring apparatus that measures the temperature. Below, a different point from 1st Embodiment is demonstrated especially.

図5は、本発明の第2実施形態に係る乾き度測定装置の模式図である。図5に示すように、第2実施形態に係る乾き度測定装置1Bは、コンピュータ装置100に接続された記録部200を更に備える。記録部200は、少なくとも、湿り蒸気の圧力を示す圧力情報PIと、湿り蒸気の気相部分の流速Vvと湿り蒸気の液相部分の流速Vwとの比を示す比情報RIと、を関連づけて記録する。なお、圧力情報PIは、配管20内の抵抗等を考慮しない理想的な状態における湿り蒸気の圧力を含んでもよいし、湿り蒸気の気相部分の圧力と液相部分の圧力とをそれぞれ含んでもよい。   FIG. 5 is a schematic diagram of a dryness measuring apparatus according to the second embodiment of the present invention. As shown in FIG. 5, the dryness measuring apparatus 1 </ b> B according to the second embodiment further includes a recording unit 200 connected to the computer apparatus 100. The recording unit 200 associates at least the pressure information PI indicating the pressure of the wet steam with the ratio information RI indicating the ratio between the flow velocity Vv of the gas phase portion of the wet steam and the flow velocity Vw of the liquid phase portion of the wet steam. Record. The pressure information PI may include the pressure of the wet steam in an ideal state that does not consider the resistance in the pipe 20 or the like, or may include the pressure of the vapor phase portion and the pressure of the liquid phase portion of the wet steam, respectively. Good.

図6は、本発明の第2実施形態に係る湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度と、湿り蒸気の圧力と、の関係を示すグラフである。図5に示す記録部200には、例えば図6に示すような、湿り蒸気の圧力の大きさに対応させた、湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度又は補正係数と、の複数の相関関係がデータテーブルとして記録される。複数の相関関係は、乾き度測定装置1Bが想定している湿り蒸気について、湿り蒸気の圧力ごとに湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度又は補正係数と、の関係を例示したものである。図1に示す計測値補正部101は、例えば図3及び図6に示す相関関係を参照することで、検出された湿り蒸気の圧力から、湿り蒸気の液相部分の流速Vwと気相部分の流速Vvとの比を算出する。なお、湿り蒸気の圧力と、湿り蒸気の液相部分の流速Vwと気相部分の流速Vvとの比と、の間にも相関関係があるので、記録部200には、湿り蒸気の圧力の大きさに対応させた、湿り蒸気の液相部分の流速Vwと気相部分の流速Vvとの比と、湿り蒸気の乾き度又は補正係数と、の複数の相関関係がデータテーブルとして記録されてもよい。 6, the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam according to a second embodiment of the present invention, the dryness of the wet steam, and pressure of wet steam, the It is a graph which shows a relationship. The recording unit 200 shown in FIG. 5, for example, as shown in FIG. 6, the pressure of the wet steam is made to correspond to the size, the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam A plurality of correlations between the ratio and the wet steam dryness or the correction coefficient are recorded as a data table. A plurality of correlation, the humid steam dryness fraction measuring device 1B is assumed, the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam per pressure wet steam, humid The relationship between the dryness of steam or the correction coefficient is illustrated. The measured value correction unit 101 shown in FIG. 1 refers to the correlation shown in FIG. 3 and FIG. 6, for example, and detects the flow velocity Vw of the liquid phase part of the wet steam and the gas phase part from the detected pressure of the wet steam. A ratio with the flow velocity Vv is calculated. Since there is a correlation between the pressure of the wet steam and the ratio between the flow velocity Vw of the liquid phase portion of the wet steam and the flow velocity Vv of the gas phase portion, the recording unit 200 includes the pressure of the wet steam. A plurality of correlations between the ratio of the flow rate Vw of the liquid phase part of the wet steam and the flow rate Vv of the gas phase part and the dryness or correction coefficient of the wet steam corresponding to the magnitude are recorded as a data table. Also good.

乾き度測定装置1Bは、図1に示す第1実施形態に係る乾き度測定装置1Aの流速センサ30A,30Bに代えて、又は、当該流速センサ30A,30Bに加えて、湿り蒸気の圧力を検出する圧力センサ32を備える。圧力センサ32は、例えば、配管20内の抵抗等を考慮しない理想的な状態で湿り蒸気の圧力を検出し、検出した圧力に応じた圧力信号SPとしてコンピュータ装置100に出力する。また、図1に示す流量センサ30A及び30Bのように、圧力センサ32は、複数の圧力センサを備えてよく、各センサが湿り蒸気の気相部分の圧力と液相部分の圧力とをそれぞれ検出して各圧力に応じた圧力信号をコンピュータ装置100に出力してもよい。さらに、圧力センサ32は、湿り蒸気の液相部分と気相部分の一方の相の圧力を検出し、その検出結果に基づいて他の相の圧力を演算により求めることができるように構成されていてもよい。   The dryness measuring device 1B detects the pressure of wet steam instead of or in addition to the flow rate sensors 30A, 30B of the dryness measurement device 1A according to the first embodiment shown in FIG. The pressure sensor 32 is provided. For example, the pressure sensor 32 detects the pressure of the wet steam in an ideal state without considering the resistance in the pipe 20 and outputs the pressure signal SP to the computer apparatus 100 as a pressure signal SP corresponding to the detected pressure. Further, like the flow rate sensors 30A and 30B shown in FIG. 1, the pressure sensor 32 may include a plurality of pressure sensors, and each sensor detects the pressure of the vapor phase portion and the pressure of the liquid phase portion of the wet steam, respectively. Then, a pressure signal corresponding to each pressure may be output to the computer apparatus 100. Furthermore, the pressure sensor 32 is configured to detect the pressure of one phase of the liquid phase portion and the gas phase portion of the wet steam and obtain the pressure of the other phase by calculation based on the detection result. May be.

計測値補正部101は、圧力信号SPに基づいて生成される補正係数βに基づいて、受光部12により出力された光強度信号Sd又は吸光度信号Saに基づく湿り蒸気を透過又は反射した光の強度又は吸光度を補正する。   The measured value correcting unit 101 is based on the correction coefficient β generated based on the pressure signal SP, and the intensity of the light transmitted or reflected by the wet steam based on the light intensity signal Sd or the absorbance signal Sa output from the light receiving unit 12. Alternatively, the absorbance is corrected.

(乾き度測定処理)
第2実施形態に係る乾き度測定処理を説明する。
図7は、本発明の第2実施形態に係る乾き度測定処理の一例を示すフローチャートである。
(Dryness measurement process)
A dryness measurement process according to the second embodiment will be described.
FIG. 7 is a flowchart showing an example of dryness measurement processing according to the second embodiment of the present invention.

(ステップS11)
図1に示すように、受光部12は射出側筒22から射出された光を受け、光の強度及び吸光度の少なくとも一方を計測する。次に、受光部12は、湿り蒸気を透過又は反射した光の強度に対応した光強度信号Sdを出力し、又は、湿り蒸気を透過又は反射した光の吸光度に対応した吸光度信号Saをコンピュータ装置100に出力する。
(Step S11)
As shown in FIG. 1, the light receiving unit 12 receives light emitted from the emission side tube 22 and measures at least one of light intensity and absorbance. Next, the light receiving unit 12 outputs a light intensity signal Sd corresponding to the intensity of light transmitted or reflected through the wet steam, or an absorbance signal Sa corresponding to the absorbance of light transmitted or reflected through the wet steam. Output to 100.

(ステップS13)
図5に示す記録部200は、少なくとも、湿り蒸気の圧力を示す圧力情報PIと、湿り蒸気の気相部分の流速Vvと湿り蒸気の液相部分の流速Vwとの比を示す比情報RIと、を関連づけて記録する。
(Step S13)
The recording unit 200 shown in FIG. 5 includes at least pressure information PI indicating the pressure of the wet steam, ratio information RI indicating the ratio of the flow velocity Vv of the vapor phase portion of the wet steam and the flow velocity Vw of the liquid phase portion of the wet steam. , Are recorded in association with each other.

(ステップS15)
圧力センサ32は、配管20内の湿り蒸気の圧力を検出する。そして、図5に示すように、圧力センサ32は、検出した圧力に応じた圧力信号SPとしてコンピュータ装置100に出力する。計測値補正部101は、受光部12から出力される光強度信号Sd及び吸光度信号Saの少なくとも一方を入力する。また、圧力センサ32から出力される圧力信号SPを入力する。そして、計測値補正部101は、圧力センサ32から出力される圧力信号SPに基づいて生成される補正係数βに基づいて、受光部12により出力された光強度信号Sd又は吸光度信号Saに基づく、湿り蒸気を透過又は反射した光の強度又は吸光度を補正する。
(Step S15)
The pressure sensor 32 detects the pressure of the wet steam in the pipe 20. Then, as shown in FIG. 5, the pressure sensor 32 outputs the pressure signal SP corresponding to the detected pressure to the computer apparatus 100. The measurement value correcting unit 101 inputs at least one of the light intensity signal Sd and the absorbance signal Sa output from the light receiving unit 12. Further, the pressure signal SP output from the pressure sensor 32 is input. And the measured value correction | amendment part 101 is based on the light intensity signal Sd output from the light-receiving part 12, or the light absorbency signal Sa based on the correction coefficient (beta) produced | generated based on the pressure signal SP output from the pressure sensor 32. Correct the intensity or absorbance of light transmitted or reflected through the wet steam.

(ステップS17)
乾き度測定部103は、計測値補正部101により補正された、湿り蒸気を透過又は反射した光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する。
(Step S17)
The dryness measurement unit 103 measures the dryness of the wet steam based on the intensity or absorbance of the light that has been transmitted or reflected through the wet steam, corrected by the measurement value correction unit 101.

(第3実施形態)
第3実施形態は、湿り蒸気の温度と、湿り蒸気の気相部分の流速Vv(第1流速)と湿り蒸気の液相部分の流速Vw(第2流速)との比と、を関連づけて記録し、実際に検出された湿り蒸気の温度に関連づけられた上記比に基づいて、計測された光の強度又は吸光度を補正し、補正された光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する乾き度測定装置に関する。なお、以下では、第1実施形態及び第2実施形態と異なる点について特に説明する。
(Third embodiment)
In the third embodiment, the temperature of the wet steam and the ratio of the flow velocity Vv (first flow velocity) of the vapor phase portion of the wet vapor and the flow velocity Vw (second flow velocity) of the liquid phase portion of the wet vapor are recorded in association with each other. The measured light intensity or absorbance is corrected based on the above ratio related to the actually detected wet steam temperature, and the wet steam dryness is calculated based on the corrected light intensity or absorbance. The present invention relates to a dryness measuring apparatus for measuring. In the following, differences from the first embodiment and the second embodiment will be particularly described.

図8は、本発明の第3実施形態に係る乾き度測定装置の模式図である。図8に示すように、第3実施形態に係る乾き度測定装置1Cは、コンピュータ装置100に接続された記録部200を更に備える。記録部200は、少なくとも、湿り蒸気の温度を示す温度情報TIと、湿り蒸気の気相部分の流速Vvと湿り蒸気の液相部分の流速Vwとの比を示す比情報RIと、を関連づけて記録する。なお、温度情報TIは、配管20内の抵抗等を考慮しない理想的な状態における湿り蒸気の温度を含んでもよいし、湿り蒸気の気相部分の温度と液相部分の温度とをそれぞれ含んでもよい。   FIG. 8 is a schematic diagram of a dryness measuring apparatus according to a third embodiment of the present invention. As shown in FIG. 8, the dryness measuring apparatus 1 </ b> C according to the third embodiment further includes a recording unit 200 connected to the computer apparatus 100. The recording unit 200 associates at least the temperature information TI indicating the temperature of the wet steam with the ratio information RI indicating the ratio between the flow velocity Vv of the gas phase portion of the wet steam and the flow velocity Vw of the liquid phase portion of the wet steam. Record. The temperature information TI may include the temperature of the wet steam in an ideal state that does not consider the resistance in the pipe 20 or the like, or may include the temperature of the vapor phase portion and the temperature of the liquid phase portion of the wet steam, respectively. Good.

図9は、本発明の第3実施形態に係る湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度と、湿り蒸気の温度と、の関係を示すグラフである。湿り蒸気の圧力と温度との間には相関関係があることが知られているので、図8に示す記録部200には、例えば図9に示すような、湿り蒸気の温度の大きさに対応させた、湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度又は補正係数と、の複数の相関関係がデータテーブルとして記録されてもよい。複数の相関関係は、乾き度測定装置1Cが想定している湿り蒸気について、湿り蒸気の温度ごとに湿り蒸気の液相部分の吸光度awと気相部分の吸光度avとの比と、湿り蒸気の乾き度又は補正係数と、の関係を例示したものである。図1に示す計測値補正部101は、例えば図3及び図9に示す相関関係を参照することで、検出された湿り蒸気の温度から、湿り蒸気の液相部分の流速Vwと気相部分の流速Vvとの比を算出する。なお、湿り蒸気の温度と、湿り蒸気の液相部分の流速Vwと気相部分の流速Vvとの比と、の間にも相関関係があるので、記録部200には、湿り蒸気の温度の大きさに対応させた、湿り蒸気の液相部分の流速Vwと気相部分の流速Vvとの比と、湿り蒸気の乾き度又は補正係数と、の複数の相関関係がデータテーブルとして記録されてもよい。 9, the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam according to a third embodiment of the present invention, the dryness of the wet steam, and the temperature of the wet steam, the It is a graph which shows a relationship. Since it is known that there is a correlation between the pressure and temperature of the wet steam, the recording unit 200 shown in FIG. 8 corresponds to the temperature of the wet steam as shown in FIG. It was, and the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam, and the dryness or the correction factor of wet steam, a plurality of correlation may be recorded as a data table . A plurality of correlation, the humid steam dryness fraction measuring device 1C is assumed, the ratio between the absorbance a v absorbance a w and the gas phase portion of the liquid-phase portion of the wet steam per temperature wet steam, humid The relationship between the dryness of steam or the correction coefficient is illustrated. The measured value correction unit 101 shown in FIG. 1 refers to, for example, the correlation shown in FIGS. 3 and 9, and detects the flow velocity Vw of the liquid phase part of the wet steam and the gas phase part from the detected temperature of the wet steam. A ratio with the flow velocity Vv is calculated. Since there is a correlation between the temperature of the wet steam and the ratio between the flow velocity Vw of the liquid phase portion of the wet steam and the flow velocity Vv of the gas phase portion, the recording unit 200 includes the temperature of the wet steam. A plurality of correlations between the ratio of the flow rate Vw of the liquid phase part of the wet steam and the flow rate Vv of the gas phase part and the dryness or correction coefficient of the wet steam corresponding to the magnitude are recorded as a data table. Also good.

乾き度測定装置1Cは、図5に示す第2実施形態に係る乾き度測定装置1Bの圧力センサ32に代えて、湿り蒸気の温度を検出する温度センサ34を備える。温度センサ34は、例えば、配管20内において理想的な状態で湿り蒸気の温度を検出し、検出した温度に応じた温度信号STとしてコンピュータ装置100に出力する。また、図1に示す流量センサ30A及び30Bのように、温度センサ34は、複数の温度センサを備えてよく、各センサが湿り蒸気の気相部分の温度と液相部分の温度とをそれぞれ検出して各温度に応じた温度信号をコンピュータ装置100に出力してもよい。さらに、温度センサ34は、湿り蒸気の液相部分と気相部分の一方の相の温度を検出し、その検出結果に基づいて他の相の温度を演算により求めることができるように構成されていてもよい。   The dryness measuring apparatus 1C includes a temperature sensor 34 that detects the temperature of wet steam instead of the pressure sensor 32 of the dryness measuring apparatus 1B according to the second embodiment shown in FIG. For example, the temperature sensor 34 detects the temperature of the wet steam in an ideal state in the pipe 20 and outputs the temperature signal ST to the computer apparatus 100 as a temperature signal ST corresponding to the detected temperature. Further, like the flow rate sensors 30A and 30B shown in FIG. 1, the temperature sensor 34 may include a plurality of temperature sensors, and each sensor detects the temperature of the vapor phase portion and the temperature of the liquid phase portion of the wet steam, respectively. Then, a temperature signal corresponding to each temperature may be output to the computer apparatus 100. Further, the temperature sensor 34 is configured to detect the temperature of one phase of the liquid phase portion and the gas phase portion of the wet steam and obtain the temperature of the other phase by calculation based on the detection result. May be.

(効果)
以上説明した第1実施形態によれば、少なくとも、湿り蒸気の気相部分の流速と液相部分の流速との比を含む、計測された光の強度又は吸光度を補正するための具体的な補正係数を用いて、計測された光の強度又は吸光度を補正し、補正された光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する。よって、湿り蒸気の状態に応じたより正確な乾き度を測定することができる。
(effect)
According to the first embodiment described above, a specific correction for correcting the measured light intensity or absorbance including at least the ratio of the flow rate of the vapor phase portion of the wet steam to the flow rate of the liquid phase portion. The coefficient is used to correct the measured light intensity or absorbance, and the wet steam dryness is measured based on the corrected light intensity or absorbance. Therefore, it is possible to measure a more accurate dryness according to the state of wet steam.

以上説明した第2実施形態によれば、湿り蒸気の圧力と、湿り蒸気の気相部分の流速Vvと湿り蒸気の液相部分の流速Vwとの比と、を関連づけて予め記録し、実際に検出された湿り蒸気の圧力に関連づけられた上記比に基づいて、計測された光の強度又は吸光度を補正し、補正された光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する。よって、実際に湿り蒸気の流速を検出する必要がなくなり、且つ、湿り蒸気の流速に応じたより正確な乾き度を測定することができる。   According to the second embodiment described above, the pressure of the wet steam and the ratio of the flow velocity Vv of the vapor phase portion of the wet steam and the flow velocity Vw of the liquid phase portion of the wet steam are recorded in advance in association with each other. The measured light intensity or absorbance is corrected based on the ratio related to the detected wet steam pressure, and the wet steam dryness is measured based on the corrected light intensity or absorbance. Therefore, it is not necessary to actually detect the flow rate of the wet steam, and a more accurate dryness according to the flow rate of the wet steam can be measured.

以上説明した第3実施形態によれば、湿り蒸気の温度と、湿り蒸気の気相部分の流速Vvと湿り蒸気の液相部分の流速Vwとの比と、を関連づけて予め記録し、実際に検出された湿り蒸気の温度に関連づけられた上記比に基づいて、計測された光の強度又は吸光度を補正し、補正された光の強度又は吸光度に基づいて湿り蒸気の乾き度を測定する。よって、実際に湿り蒸気の流速を検出する必要がなくなり、且つ、湿り蒸気の流速に応じたより正確な乾き度を測定することができる。   According to the third embodiment described above, the temperature of the wet steam and the ratio between the flow velocity Vv of the gas phase portion of the wet steam and the flow velocity Vw of the liquid phase portion of the wet steam are recorded in advance in association with each other. The measured light intensity or absorbance is corrected based on the ratio related to the detected wet steam temperature, and the wet steam dryness is measured based on the corrected light intensity or absorbance. Therefore, it is not necessary to actually detect the flow rate of the wet steam, and a more accurate dryness according to the flow rate of the wet steam can be measured.

(他の実施形態)
上記各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するものではない。本発明はその趣旨を逸脱することなく、変更/改良(たとえば、各実施形態を組み合わせること、各実施形態の一部の構成を省略すること)され得るとともに、本発明にはその等価物も含まれる。
(Other embodiments)
Each of the above embodiments is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed / improved (for example, by combining the embodiments, omitting a part of the configuration of each embodiment) without departing from the spirit thereof, and the present invention includes equivalents thereof. It is.

1A,1B,1C:乾き度測定装置、11:発光部、12:受光部、20:配管、21:入射側筒、22:射出側筒、30A,30B:流速センサ、32:圧力センサ、34:温度センサ、41,42:ガラス窓、100:コンピュータ装置、101:計測値補正部、103:乾き度測定部、200:記録部 1A, 1B, 1C: Dryness measuring device, 11: light emitting unit, 12: light receiving unit, 20: piping, 21: incident side tube, 22: exit side tube, 30A, 30B: flow rate sensor, 32: pressure sensor, 34 : Temperature sensor, 41, 42: Glass window, 100: Computer device, 101: Measurement value correction unit, 103: Dryness measurement unit, 200: Recording unit

Claims (7)

湿り蒸気を透過又は反射した光の強度又は吸光度を計測する計測部と、
前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速とを検出するセンサと、
検出された前記第1流速と前記第2流速との比に基づいて、計測された前記光の強度又は前記吸光度を補正する計測値補正部と、
補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定部と、を備える、
乾き度測定装置。
A measurement unit that measures the intensity or absorbance of light transmitted or reflected through wet steam;
A sensor for detecting a first flow rate of the gas phase portion of the wet steam and a second flow rate of the liquid phase portion of the wet steam;
A measurement value correction unit that corrects the measured light intensity or absorbance based on the ratio between the detected first flow rate and the second flow rate;
A dryness measurement unit that measures the dryness of the wet steam based on the corrected light intensity or the absorbance, and
Dryness measuring device.
前記計測値補正部は、前記気相部分のモル吸光係数と前記液相部分のモル吸光係数との比に基づいて、計測された前記光の強度又は前記吸光度を補正する、
請求項1に記載の乾き度測定装置。
The measured value correction unit corrects the measured light intensity or the absorbance based on the ratio of the molar extinction coefficient of the gas phase portion and the molar extinction coefficient of the liquid phase portion.
The dryness measuring apparatus according to claim 1.
湿り蒸気を透過又は反射した光の強度又は吸光度を計測する計測部と、
前記湿り蒸気の圧力と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録する記録部と、
前記湿り蒸気の圧力を検出するセンサと、
検出された前記圧力に関連づけられた前記比に基づいて、計測された前記光の強度又は前記吸光度を補正する計測値補正部と、
補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定部と、を備える、
乾き度測定装置。
A measurement unit that measures the intensity or absorbance of light transmitted or reflected through wet steam;
A recording unit that records the pressure of the wet steam in association with the ratio of the first flow rate of the gas phase part of the wet steam and the second flow rate of the liquid phase part of the wet steam;
A sensor for detecting the pressure of the wet steam;
A measured value correction unit that corrects the measured light intensity or absorbance based on the ratio associated with the detected pressure;
A dryness measurement unit that measures the dryness of the wet steam based on the corrected light intensity or the absorbance, and
Dryness measuring device.
湿り蒸気を透過又は反射した光の強度又は吸光度を計測する計測部と、
前記湿り蒸気の温度と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録する記録部と、
前記湿り蒸気の温度を検出するセンサと、
検出された前記温度に関連づけられた前記比に基づいて、計測された前記光の強度又は前記吸光度を補正する計測値補正部と、
補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定部と、を備える、
乾き度測定装置。
A measurement unit that measures the intensity or absorbance of light transmitted or reflected through wet steam;
A recording unit that records the temperature of the wet steam in association with the ratio of the first flow rate of the gas phase part of the wet steam and the second flow rate of the liquid phase part of the wet steam;
A sensor for detecting the temperature of the wet steam;
A measured value correction unit that corrects the measured light intensity or absorbance based on the ratio associated with the detected temperature;
A dryness measurement unit that measures the dryness of the wet steam based on the corrected light intensity or the absorbance, and
Dryness measuring device.
湿り蒸気を透過又は反射した光の強度又は吸光度を計測するステップと、
前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速とを検出するステップと、
検出された前記第1流速と前記第2流速との比に基づいて、計測された前記光の強度又は前記吸光度を補正するステップと、
補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定するステップと、を含む、
乾き度測定方法。
Measuring the intensity or absorbance of light transmitted or reflected through the wet steam;
Detecting a first flow rate of the gas phase portion of the wet steam and a second flow rate of the liquid phase portion of the wet steam;
Correcting the measured light intensity or absorbance based on the ratio of the detected first flow rate to the second flow rate;
Measuring the dryness of the wet steam based on the corrected light intensity or the absorbance.
Dryness measurement method.
湿り蒸気を透過又は反射した光の強度又は吸光度を計測するステップと、
前記湿り蒸気の圧力と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録するステップと、
前記湿り蒸気の圧力を検出するステップと、
検出された前記圧力に関連づけられた前記比に基づいて、計測された前記光の強度又は前記吸光度を補正するステップと、
補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定するステップと、を含む、
乾き度測定方法。
Measuring the intensity or absorbance of light transmitted or reflected through the wet steam;
Correlating and recording the pressure of the wet steam and the ratio of the first flow rate of the gas phase portion of the wet steam and the second flow rate of the liquid phase portion of the wet steam;
Detecting the pressure of the wet steam;
Correcting the measured light intensity or absorbance based on the ratio associated with the detected pressure;
Measuring the dryness of the wet steam based on the corrected light intensity or the absorbance.
Dryness measurement method.
湿り蒸気を透過又は反射した光の強度又は吸光度を計測するステップと、
前記湿り蒸気の温度と、前記湿り蒸気の気相部分の第1流速と前記湿り蒸気の液相部分の第2流速との比と、を関連づけて記録するステップと、
前記湿り蒸気の温度を検出するステップと、
検出された前記温度に関連づけられた前記比に基づいて、計測された前記光の強度または前記吸光度を補正するステップと、
補正された前記光の強度又は前記吸光度に基づいて前記湿り蒸気の乾き度を測定するステップと、を含む、
乾き度測定方法。
Measuring the intensity or absorbance of light transmitted or reflected through the wet steam;
Recording the temperature of the wet steam in association with the ratio of the first flow rate of the gas phase portion of the wet steam and the second flow rate of the liquid phase portion of the wet steam;
Detecting the temperature of the wet steam;
Correcting the measured light intensity or the absorbance based on the ratio associated with the detected temperature;
Measuring the dryness of the wet steam based on the corrected light intensity or the absorbance.
Dryness measurement method.
JP2017065199A 2017-03-29 2017-03-29 Dryness measuring device and dryness measuring method Pending JP2018169218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065199A JP2018169218A (en) 2017-03-29 2017-03-29 Dryness measuring device and dryness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065199A JP2018169218A (en) 2017-03-29 2017-03-29 Dryness measuring device and dryness measuring method

Publications (1)

Publication Number Publication Date
JP2018169218A true JP2018169218A (en) 2018-11-01

Family

ID=64020396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065199A Pending JP2018169218A (en) 2017-03-29 2017-03-29 Dryness measuring device and dryness measuring method

Country Status (1)

Country Link
JP (1) JP2018169218A (en)

Similar Documents

Publication Publication Date Title
JP5539176B2 (en) Dryness measuring device and dryness measuring method
JP2013092457A (en) Dryness measurement device and dryness measurement method
US9632028B2 (en) Dryness measurement device
JP2018169218A (en) Dryness measuring device and dryness measuring method
JP6175370B2 (en) Dryness measuring device and dryness measuring method
WO2015020023A1 (en) Dryness measurement device
JP2016151572A (en) Dryness measurement device
JPWO2020066769A5 (en)
JP6379007B2 (en) Piping and dryness measuring device
US9625384B2 (en) Dryness fraction distribution measuring device and dryness fraction distribution measuring method
JP6307390B2 (en) Dryness measuring device and dryness measuring method
JP2015232520A (en) Dryness measurement apparatus
JP6392627B2 (en) Dryness measuring device and dryness measuring method
JP6006605B2 (en) Steam flow measuring device and steam flow measuring method
WO2017183434A1 (en) Dryness measurement device and wet steam inspection device
WO2017104241A1 (en) Dryness measurement device
JP6664926B2 (en) Dryness measuring device
WO2015098278A1 (en) Steam-quality measurement device and steam-quality measurement method
JP6307427B2 (en) Dryness measuring device and dryness measuring method
WO2018179992A1 (en) Dryness determination device and dryness determination method
JP6392661B2 (en) Dryness measuring device
WO2017183433A1 (en) Dryness measurement device and wet steam inspection device
WO2017203841A1 (en) Dryness measurement device and moist vapor inspection device
JP2015117977A (en) Heat quantity calculation device and heat quantity calculation method
WO2017187784A1 (en) Degree-of-dryness measurement device and measurement error evaluation method for degree-of-dryness measurement device