WO2015098278A1 - Steam-quality measurement device and steam-quality measurement method - Google Patents

Steam-quality measurement device and steam-quality measurement method Download PDF

Info

Publication number
WO2015098278A1
WO2015098278A1 PCT/JP2014/078821 JP2014078821W WO2015098278A1 WO 2015098278 A1 WO2015098278 A1 WO 2015098278A1 JP 2014078821 W JP2014078821 W JP 2014078821W WO 2015098278 A1 WO2015098278 A1 WO 2015098278A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wet steam
dryness
steam
intensity
Prior art date
Application number
PCT/JP2014/078821
Other languages
French (fr)
Japanese (ja)
Inventor
康博 五所尾
義一 西野
志功 田邉
アレクサンドル ルクラー
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2015098278A1 publication Critical patent/WO2015098278A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K5/00Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
    • F01K5/02Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type used in regenerative installation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

This invention provides a steam-quality measurement device and a steam-quality measurement method that make it possible to accurately measure the quality of wet steam inside a pipe as follows: light emitted by a plurality of light-producing bodies is collected and suitably inputted into a light-guiding part from one end face thereof, said end face being of limited size; the wet steam is suitably exposed to said light; and the quality of the wet steam is measured on the basis of the intensity of light reflected thereby or the absorbance of said wet steam with respect to light passing therethrough. This steam-quality measurement device, which measures the quality of wet steam on the basis of the intensity of light reflected thereby or the absorbance of said wet steam with respect to light passing therethrough, is provided with the following: a light-producing-body array comprising a plurality of light-producing bodies that each produce light; a light-collecting part that collects the light produced by said light-producing bodies; and a first light-guiding part that has a first end face via which the collected light is inputted and a second end face via which the inputted light is outputted to the aforementioned wet steam.

Description

乾き度測定装置及び乾き度測定方法Dryness measuring device and dryness measuring method
 本発明は、乾き度測定装置及び乾き度測定方法に関する。 The present invention relates to a dryness measuring apparatus and a dryness measuring method.
 水は沸点に達した後、水蒸気ガス(気相部分:飽和蒸気)と、水滴(液相部分:飽和水)とが混合した湿り蒸気となる。ここで、湿り蒸気に対する水蒸気ガスの重量比を、「乾き度」という。例えば、水蒸気ガスと水滴とが半分ずつ存在すれば、乾き度は0.5となる。また、水滴が存在せず、水蒸気ガスのみが存在する場合は、乾き度は1.0となる。熱交換器等において、湿り蒸気が保有する顕熱と潜熱とを有効に利用することや、水蒸気タービンにおいて、タービン翼の腐食を防止すること等の観点から、湿り蒸気の乾き度を1.0に近い状態にすることが望まれている。そのため、乾き度を測定する様々な方法が提案されている。 After water reaches the boiling point, it becomes wet steam in which water vapor gas (gas phase part: saturated steam) and water droplets (liquid phase part: saturated water) are mixed. Here, the weight ratio of the water vapor gas to the wet steam is referred to as “dryness”. For example, if water vapor gas and water droplets are present in half, the dryness is 0.5. Moreover, when there is no water droplet and only water vapor gas is present, the dryness is 1.0. In the heat exchanger or the like, the dryness of the wet steam is set to 1.0 from the viewpoint of effectively utilizing the sensible heat and latent heat possessed by the wet steam, and preventing the corrosion of the turbine blade in the steam turbine. It is desired to make the state close to. Therefore, various methods for measuring the dryness have been proposed.
 たとえば、特許文献1記載の発明は、乾き度を高速に測定するため、(a)湿り蒸気に光を照射する発光体と、(b)湿り蒸気を透過した光を受光する受光素子と、(c)湿り蒸気の温度又は圧力を測定する環境センサと、(d)湿り蒸気を透過した光の強度と、湿り蒸気の乾き度と、の関係を、温度又は圧力毎に保存する関係記憶部と、(e)受光素子による光の強度の測定値と、環境センサによる温度又は圧力の測定値と前記関係とに基づき、湿り蒸気の乾き度の値を特定する乾き度特定部とを備える乾き度測定装置に関する。 For example, in the invention described in Patent Document 1, in order to measure the dryness at high speed, (a) a light emitter that irradiates light to wet steam, (b) a light receiving element that receives light transmitted through the wet steam, and ( c) an environmental sensor that measures the temperature or pressure of the wet steam; and (d) a relation storage unit that stores the relationship between the intensity of light transmitted through the wet steam and the dryness of the wet steam for each temperature or pressure. (E) a dryness degree provided with a dryness specifying unit for specifying a dryness value of wet steam based on a measured value of light intensity by a light receiving element, a measured value of temperature or pressure by an environmental sensor, and the relationship It relates to a measuring device.
 上記特許文献1に記載された発明では、一つの発光体から複数の波長を有する光を照射し、照射複数の波長のそれぞれにおける湿り蒸気を透過した光の強度の複数の測定値の大小関係に基づいて、湿り蒸気の乾き度を算出することが開示されている。 In the invention described in the above-mentioned Patent Document 1, light having a plurality of wavelengths is irradiated from one light emitter, and the magnitude relationship between a plurality of measured values of the intensity of light transmitted through the wet steam at each of the plurality of wavelengths irradiated. Based on this, it is disclosed to calculate the dryness of wet steam.
特開2013-092457号公報JP 2013-092457 A
 しかしながら、複数の発光体から照射された光を、導光路を用いず同一の光路に合せることは難しく、また、大きさが限定的である、光ファイバなどの導光部の一方の端面に適切に入射させ、配管内の測定対象の湿り蒸気に適切に照射させることが難しく、正確な乾き度を測定することが困難であるという問題があった。 However, it is difficult to match the light emitted from multiple light emitters to the same optical path without using a light guide, and it is suitable for one end face of a light guide such as an optical fiber, which is limited in size. Therefore, it is difficult to properly irradiate the wet steam to be measured in the pipe, and it is difficult to accurately measure the dryness.
 そこで、本発明は、正確な乾き度を測定することができる乾き度測定装置及び乾き度測定方法を提供することを目的の一つとする。 Therefore, an object of the present invention is to provide a dryness measuring apparatus and a dryness measuring method capable of measuring an accurate dryness.
 上記課題を解決するために、本発明に係る乾き度測定装置は、測定対象の湿り蒸気を透過または反射した複数の光の強度または吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定装置であって、各々が光を発する、複数の発光体を有する発光体アレイと、前記複数の発光体の各々により発せられた複数の光を集光する集光部と、集光された前記複数の光を入射する第1端面と入射された前記複数の光を前記湿り蒸気に対して射出する第2端面とを有する第1導光部と、を備える。 In order to solve the above-mentioned problem, the dryness measuring apparatus according to the present invention is a dryness measurement that measures the dryness of the wet steam based on the intensity or absorbance of a plurality of lights transmitted or reflected from the wet steam to be measured. An apparatus, a light emitter array having a plurality of light emitters each emitting light, a light collecting portion for collecting a plurality of light emitted by each of the light emitters, and the light collected A first light guide section having a first end face on which a plurality of lights are incident and a second end face on which the plurality of incident lights are emitted to the wet steam.
 また、上記課題を解決するために、本発明に係る乾き度測定方法は、測定対象の湿り蒸気を透過または反射した複数の光の強度または吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定方法であって、複数の光を集光することと、集光された前記複数の光を入射し、入射された前記複数の光を前記湿り蒸気に対して射出することと、を含む。 In order to solve the above-described problem, the dryness measurement method according to the present invention is a dryness measurement method that measures the dryness of the wet steam based on the intensity or absorbance of a plurality of light beams that are transmitted or reflected through the wet steam to be measured. A method for measuring a degree of light, comprising: condensing a plurality of lights; and entering the plurality of collected lights, and emitting the incident light to the wet steam .
 本発明によれば、複数の発光体から照射された光を集光し、大きさが限定的である、導光部の一方の端面に適切に入射させ、配管内の測定対象の湿り蒸気に適切に照射させ、湿り蒸気を透過または反射した光の強度または吸光度に基づいて湿り蒸気の乾き度を測定することにより、正確な乾き度を測定することができる。 According to the present invention, light emitted from a plurality of light emitters is collected and appropriately incident on one end surface of the light guide unit, which has a limited size, and is applied to the wet steam to be measured in the pipe. Accurate dryness can be measured by measuring the dryness of the wet steam based on the intensity or absorbance of light that is appropriately irradiated and transmitted or reflected through the wet steam.
本発明の実施形態に係る乾き度測定装置の模式図である。It is a schematic diagram of the dryness measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る光入射部の模式図である。It is a schematic diagram of the light-incidence part which concerns on embodiment of this invention. 本発明の実施形態に係る発光体から発せられる光が入射側光通過部に投射される場合の条件について説明した図である。It is a figure explaining the conditions in case the light emitted from the light-emitting body which concerns on embodiment of this invention is projected on the incident side light passage part. 本発明の実施形態に係る受光部の模式図である。It is a schematic diagram of the light-receiving part which concerns on embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings.
 (定義)
 本明細書で使用する主たる用語を以下のとおりに定義する。
 「蒸気」:各実施形態では、水蒸気のことを意味するが、気相部分と液相部分との二相状態となる物質の蒸気であればよく、水蒸気に限定されない。
 「乾き度」:蒸気中の気相部分の重量割合のことをいう。乾き度[%]=100[%]-湿り度[%]の関係がある。
 「湿り蒸気」:乾き度χが0-100[%]の蒸気をいう。
 「飽和蒸気」:湿り蒸気の気相部分をいう。乾き飽和蒸気(飽和乾き蒸気)ともいう。
 「飽和水」:湿り蒸気の液相部分をいう。
 「光の強度」(光強度):光(電磁波)の強さを表す物理量をいい、その称呼や単位に限定はない。例えば、放射強度、光度、光量子束密度など、それぞれ単位が異なるが相互に換算可能な物理量である。
(Definition)
The main terms used in this specification are defined as follows.
“Vapor”: In each embodiment, it means water vapor, but it is not limited to water vapor as long as it is a vapor of a substance that is in a two-phase state of a gas phase portion and a liquid phase portion.
“Dryness”: Refers to the weight ratio of the gas phase portion in the steam. There is a relationship of dryness [%] = 100 [%] − wetness [%].
“Wet steam”: refers to steam having a dryness χ of 0 to 100%.
“Saturated steam”: refers to the gas phase portion of wet steam. Also called dry saturated steam (saturated dry steam).
“Saturated water”: refers to the liquid phase of wet steam.
“Light intensity” (light intensity): A physical quantity indicating the intensity of light (electromagnetic wave), and there is no limitation on its name or unit. For example, these are physical quantities that are mutually different but can be converted into each other, such as radiation intensity, luminous intensity, and photon flux density.
 「吸光度」:光が湿り蒸気中を通過した際に光の強度がどの程度弱まるかを示す無次元量であり、光学密度ともいう。吸光度といっても光の吸収のみならず、散乱や反射により光の強度が弱まる場合も含む。 “Absorbance”: A dimensionless amount indicating how much light intensity is weakened when light passes through wet steam, and is also called optical density. Absorbance includes not only the absorption of light but also the case where the intensity of light is weakened by scattering and reflection.
 (構成)
 図1に、本実施形態における乾き度測定装置1の構成を示す。図1に示すように、本実施形態に係る乾き度測定装置1は、例示的に、光入射部11、受光部13、入射側導光部21(第1導光部)、射出側導光部22(第2導光部)、入射側コリメータレンズ42(第1光集束部)、射出側コリメータレンズ44(第2光集束部)、及びコンピュータ装置100を備えて構成される。また、コンピュータ装置100は、機能ブロックとして、乾き度測定部200を備えて構成される。
(Constitution)
In FIG. 1, the structure of the dryness measuring apparatus 1 in this embodiment is shown. As shown in FIG. 1, the dryness measuring apparatus 1 according to the present embodiment exemplarily includes a light incident part 11, a light receiving part 13, an incident side light guide part 21 (first light guide part), and an emission side light guide. A unit 22 (second light guide unit), an incident side collimator lens 42 (first light focusing unit), an emission side collimator lens 44 (second light focusing unit), and the computer apparatus 100 are configured. Further, the computer apparatus 100 includes a dryness measurement unit 200 as a functional block.
 図2に、本実施形態に係る光入射部11の構成を示す。図2に示すように、光入射部11は、例示的に、発光体支持部30、発光体32a、32b、及び32c、並びに集光レンズ40(集光部)を備えて構成される。 FIG. 2 shows a configuration of the light incident part 11 according to the present embodiment. As illustrated in FIG. 2, the light incident unit 11 is configured to include, for example, a light emitter support 30, light emitters 32 a, 32 b, and 32 c, and a condenser lens 40 (light collector).
 図2に示す発光体32a、32b、及び32cは、各々が単一の波長を有する光を発する発光手段である。たとえば、発光体32a、32b、及び32cは発光ダイオードで構成されており、発光体32aは湿り蒸気の液相部分には吸収されず、気相部分に吸収されるような波長を有する光を発し、発光体32bは湿り蒸気の気相部分には吸収されず、液相部分に吸収されるような波長を有する光を発し、発光体32cは湿り蒸気の気相部分及び液相部分に吸収されないような波長を有する光(参照用)を発するように構成されている。 The light emitters 32a, 32b, and 32c shown in FIG. 2 are light emitting means that each emit light having a single wavelength. For example, the light emitters 32a, 32b, and 32c are formed of light emitting diodes, and the light emitter 32a emits light having a wavelength that is not absorbed by the liquid phase portion of the wet vapor but absorbed by the gas phase portion. The light emitter 32b emits light having a wavelength that is not absorbed by the vapor phase portion of the wet vapor but is absorbed by the liquid phase portion, and the light emitter 32c is not absorbed by the vapor phase portion and the liquid phase portion of the wet vapor. It is configured to emit light (for reference) having such a wavelength.
 また、湿り蒸気の気相部分には吸収されず、液相部分に吸収されるような光の波長は、クラスタ(水素結合を介して結合する水分子同士の結合体)における水分子同士が形成した水素結合の数と相関するよう、設定される。例えば、発光体32a、32b、及び32cのいずれかが発する光の波長は、水素結合数が0の場合の水分子の吸光ピークが表れる1880nmであってもよく、水素結合数が1の場合の水分子の吸光ピークが表れる1910nmであってもよい。ただし、発光体32a、32b、及び32cのいずれかが発する光の波長は、水に吸収される波長帯域内であれば、水分子の吸光ピーク波長と異なっていてもよい。例えば、発光体32a、32b、及び32cのいずれかが発する光の波長は、1880乃至1910nmの間であってもよい。 In addition, the wavelength of light that is not absorbed by the vapor phase portion of the wet vapor but absorbed by the liquid phase portion is formed by water molecules in the cluster (a combination of water molecules bonded through hydrogen bonds). Set to correlate with the number of hydrogen bonds made. For example, the wavelength of the light emitted from any one of the light emitters 32a, 32b, and 32c may be 1880 nm at which the absorption peak of a water molecule appears when the number of hydrogen bonds is 0. It may be 1910 nm where the absorption peak of water molecules appears. However, the wavelength of the light emitted from any of the light emitters 32a, 32b, and 32c may be different from the absorption peak wavelength of water molecules as long as it is within the wavelength band absorbed by water. For example, the wavelength of light emitted from any of the light emitters 32a, 32b, and 32c may be between 1880 and 1910 nm.
 なお、発光体32a、32b、及び32cとしては、スーパールミネッセントダイオード、半導体レーザ、レーザ発振器、蛍光放電管、低圧水銀灯、キセノンランプ、及び電球等が使用可能である。 As the light emitters 32a, 32b, and 32c, a super luminescent diode, a semiconductor laser, a laser oscillator, a fluorescent discharge tube, a low-pressure mercury lamp, a xenon lamp, a light bulb, and the like can be used.
 また、発光体32a、32b、及び32cのそれぞれは同一種類のものである必要はなく、発光体32aは発光ダイオード、発光体32bはスーパールミネッセントダイオード、発光体32aは電球というように構成することも可能である。 The light emitters 32a, 32b, and 32c do not have to be of the same type, and the light emitter 32a is configured as a light emitting diode, the light emitter 32b is configured as a super luminescent diode, and the light emitter 32a is configured as a light bulb. It is also possible.
 図2に示す集光レンズ40は、発光体32a、32b、及び32cから発せられた光を適切に入射側導光部21に導くように集光する手段である。具体的に、集光レンズ40は、光経路Laに示すように、発光体32aから発せられる光を入射側導光部21の入射開口A1に導き、光経路Lbに示すように、発光体32bから発せられる光を入射側導光部21の入射開口A1に導き、光経路Lcに示すように、発光体32cから発せられる光を入射側導光部21の入射開口A1に導く。このように、集光レンズ40により、入射側導光部21の端面(入射開口A1)は大きさが制限されている(例えば、数μm)にも関わらず、発光体32a、32b、及び32cから発せられた光を適切に入射側導光部21に導くことができる。 The condensing lens 40 shown in FIG. 2 is a means for condensing light emitted from the light emitters 32a, 32b, and 32c so as to appropriately guide the light to the incident-side light guide unit 21. Specifically, the condensing lens 40 guides the light emitted from the light emitter 32a to the incident opening A1 of the incident side light guide 21 as shown in the light path La, and as shown in the light path Lb, the light emitter 32b. The light emitted from the light-emitting body 32c is guided to the incident opening A1 of the incident-side light guide 21 as shown by the light path Lc. Thus, although the size of the end surface (incidence opening A1) of the incident-side light guide 21 is limited (for example, several μm) by the condenser lens 40, the light emitters 32a, 32b, and 32c. Can be appropriately guided to the incident-side light guide 21.
 なお、集光レンズ40は、光を集光する機能を有していれば特に制限はなく、例えば、凸型形状、ドーム型形状、円形形状のレンズ等も使用可能である。 The condensing lens 40 is not particularly limited as long as it has a function of condensing light. For example, a convex lens, a dome lens, a circular lens, or the like can be used.
 図3に、本発明の実施形態に係る発光体32a、32b、及び32cから発せられる光が入射側導光部21に投射される場合の条件について説明した図を示す。図3に示すように、発光体32から発せられる光経路Lの光が集光レンズ40により集光されて入射側導光部21に導かれている。また、図3に示すように、例えば、物体(発光体32)が焦点Fの外側に設置されている場合は、物面から主点Oまでの距離f1、主点Oから像面までの距離f2、物体高a、及び像高bの関係は、以下のような関係式(1)で示すことができる。
 
 (a/f1)=(b/f2) …(1)
 
さらに、図3に示すように、発光体32から発せられる光経路Lの光が集光レンズ40により集光されて、適切に入射側導光部21に導かれるためには、物面から主点Oまでの距離f1、主点Oから像面までの距離f2、物体高a、像高b、及び入射側導光部21の半径Xが以下のような関係であるとよい。すなわち、像高bが入射側導光部21の半径Xと同じか、より小さいという関係であると、発光体32から発せられる光がより適切に入射側導光部21に導かれる。ここで、上記関係は、以下のような関係式(2)で定義される。
 
 X≧b=(a/f1)・f2 …(2)
 
したがって、上記関係式(2)を満たすように、発光体32a、32b、及び32cは設置される。
In FIG. 3, the figure explaining the conditions in case the light emitted from the light-emitting bodies 32a, 32b, and 32c which concerns on embodiment of this invention is projected on the incident side light guide part 21 is shown. As shown in FIG. 3, the light in the light path L emitted from the light emitter 32 is condensed by the condenser lens 40 and guided to the incident-side light guide unit 21. As shown in FIG. 3, for example, when the object (light emitter 32) is installed outside the focal point F, the distance f 1 from the object plane to the principal point O, and from the principal point O to the image plane. The relationship between the distance f 2 , the object height a, and the image height b can be expressed by the following relational expression (1).

(A / f 1 ) = (b / f 2 ) (1)

Furthermore, as shown in FIG. 3, in order for the light of the light path L emitted from the light emitter 32 to be condensed by the condenser lens 40 and appropriately guided to the incident-side light guide unit 21, the main surface is viewed from the object surface. It is preferable that the distance f 1 to the point O, the distance f 2 from the principal point O to the image plane, the object height a, the image height b, and the radius X of the incident-side light guide 21 are as follows. In other words, when the image height b is the same as or smaller than the radius X of the incident-side light guide 21, the light emitted from the light emitter 32 is more appropriately guided to the incident-side light guide 21. Here, the above relationship is defined by the following relational expression (2).

X ≧ b = (a / f 1 ) · f 2 (2)

Accordingly, the light emitters 32a, 32b, and 32c are installed so as to satisfy the relational expression (2).
 なお、上記関係式(2)で示される、発光体32a、32b、及び32cから発せられる光がより適切に入射側導光部21に導かれるための関係は、あくまで一例であって、発光体32a、32b、及び32cから発せられる光が適切に入射側導光部21に導かれるような関係であれば特に制限はなく、上記で説明したこれらの関係を満たすように、発光体32a、32b、及び32cを設置することができる。 In addition, the relationship for the light emitted from the light emitters 32a, 32b, and 32c to be more appropriately guided to the incident-side light guide unit 21 shown in the relational expression (2) is merely an example, and the light emitter There is no particular limitation as long as the light emitted from 32a, 32b, and 32c is appropriately guided to the incident-side light guide unit 21, and the light emitters 32a, 32b are satisfied so as to satisfy these relationships described above. , And 32c can be installed.
 図1に戻り、配管20は、測定対象となる湿り蒸気が流通する配管である。入射側コリメータレンズ42は、入射側導光部21と接続されている。また、入射側コリメータレンズ42は、入射側導光部21を伝播した複数の光について、複数の光が発散するのを防止し、複数の光が測定対象の湿り蒸気が流れる配管20に適切に入射するために、複数の光を平行光になるように集束させる。また、透過型のガラス窓50は、入射側コリメータレンズ42により集束された複数の光を光経路Lに沿って配管20内に射出する入射窓である。 Referring back to FIG. 1, the pipe 20 is a pipe through which wet steam to be measured flows. The incident side collimator lens 42 is connected to the incident side light guide 21. In addition, the incident-side collimator lens 42 prevents a plurality of lights from diverging with respect to a plurality of lights propagated through the incident-side light guide unit 21, and the plurality of lights are appropriately applied to the pipe 20 through which the wet steam to be measured flows. In order to enter, a plurality of lights are focused so as to become parallel lights. The transmissive glass window 50 is an incident window that emits a plurality of lights focused by the incident-side collimator lens 42 into the pipe 20 along the optical path L.
 射出側コリメータレンズ44は、配管20内部の湿り蒸気を透過又は反射した複数の光が、配管20に設置されている透過型のガラス窓52を介して照射される際に、該複数の光が発散しないように集束させる。 The exit side collimator lens 44 is configured to receive a plurality of light beams transmitted or reflected through the wet vapor inside the pipe 20 through a transmission type glass window 52 installed in the pipe 20. Focus so that it does not diverge.
 なお、入射側コリメータレンズ42及び射出側コリメータレンズ44は、複数の光を集束させ、平行光となるようにできるものであれば、特に制限はなく、平行光を得られるように収差補正されたあらゆるレンズを使用可能である。 The incident-side collimator lens 42 and the emission-side collimator lens 44 are not particularly limited as long as a plurality of lights can be converged to become parallel lights, and aberration correction has been performed so as to obtain parallel lights. Any lens can be used.
 射出側導光部22は、射出側コリメータレンズ44と接続されている。また、射出側導光部22は、射出側コリメータレンズ44により集束された複数の光を伝播させ、光経路Lに沿って受光部13に進入させることが可能なように構成されている。また、射出側導光部22の端部は、配管20の径方向での入射側導光部21の端部と対向している。 The exit side light guide unit 22 is connected to the exit side collimator lens 44. Further, the emission side light guide unit 22 is configured to be able to propagate a plurality of lights focused by the emission side collimator lens 44 and to enter the light receiving unit 13 along the optical path L. Further, the end portion of the exit-side light guide portion 22 faces the end portion of the incident-side light guide portion 21 in the radial direction of the pipe 20.
 なお、入射側導光部21及び射出側導光部22は、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び石英ガラスからなるガラス光ファイバ等が使用可能であるが、複数の光を同一光路で伝搬可能であれば、これに限定されない。また、複数の光を完全同一光路で伝搬可能でなければいけないわけではなく、湿り蒸気の乾き度を正確に測定するために、湿り蒸気を透過又は反射した複数の光の強度又は吸光度を正確に計測できる程度に同一光路であればよい。 In addition, the incident side light guide part 21 and the emission side light guide part 22 can use a plastic optical fiber made of polymethylmethacrylate resin (PMMA: Poly (methyl methacrylate)), a glass optical fiber made of quartz glass, and the like. However, the present invention is not limited to this as long as a plurality of lights can propagate through the same optical path. In addition, it is not necessary that a plurality of lights can be propagated in the same optical path, and in order to accurately measure the dryness of the wet steam, the intensity or absorbance of the plurality of lights transmitted or reflected by the wet steam is accurately determined. It is sufficient if the optical paths are the same so that they can be measured.
 図4に、本発明の実施形態に係る受光部13の構成を示す。図4に示すように、受光部13は、機能ブロックとして、計測部60及び信号生成部62を備えて構成される。 FIG. 4 shows a configuration of the light receiving unit 13 according to the embodiment of the present invention. As shown in FIG. 4, the light receiving unit 13 includes a measuring unit 60 and a signal generating unit 62 as functional blocks.
 計測部60は、配管20内の湿り蒸気を透過又は反射した光を受けて、光の強度I及び/又は吸光度Aを計測する計測手段である。たとえば、計測部60としては、フォトダイオード、フォトトランジスタ等の光電変換素子を使用可能である。 The measuring unit 60 is a measuring unit that receives the light transmitted through or reflected from the wet vapor in the pipe 20 and measures the intensity I and / or absorbance A of the light. For example, as the measurement unit 60, a photoelectric conversion element such as a photodiode or a phototransistor can be used.
 信号生成部62は、湿り蒸気を透過又は反射した光の強度I又は吸光度Aに応じた信号を生成する手段である。具体的には、信号生成部62は、湿り蒸気を透過又は反射した光の強度Iに応じた光強度信号Sdを生成し、コンピュータ装置100に出力する。また、受光部13として、分光光度計などの光の強度及び/又は吸光度に対応する出力が得られる光学的計測機器を適用することも可能である。この場合、信号生成部62は、湿り蒸気を透過又は反射した光の吸光度に応じた吸光度信号Saを生成し、コンピュータ装置100に出力する。 The signal generator 62 is a means for generating a signal corresponding to the intensity I or the absorbance A of the light transmitted or reflected by the wet steam. Specifically, the signal generation unit 62 generates a light intensity signal Sd corresponding to the intensity I of the light transmitted or reflected by the wet steam and outputs the light intensity signal Sd to the computer device 100. Further, as the light receiving unit 13, an optical measuring instrument such as a spectrophotometer that can obtain an output corresponding to the intensity and / or absorbance of light can be applied. In this case, the signal generation unit 62 generates an absorbance signal Sa corresponding to the absorbance of the light transmitted or reflected through the wet steam and outputs the absorbance signal Sa to the computer device 100.
 具体的に、分光光度計は、湿り蒸気を透過又は反射する光の強度Iに基づいて、吸光度Aを演算し、吸光度信号Saとして出力する。ここで、吸光度Aは、入射光強度をI0、受光した光の強度をIとすると、式(3)のように定義される。
 
 吸光度A=-log10(I/I0) …(3)
 
以上より、入射光強度をI0及び湿り蒸気を透過する光の強度Iを計測できれば、一義的に吸光度Aが特定される。
Specifically, the spectrophotometer calculates the absorbance A based on the intensity I of the light that transmits or reflects the wet steam, and outputs it as the absorbance signal Sa. Here, the absorbance A is defined as in Expression (3) where I 0 is the incident light intensity and I is the intensity of the received light.

Absorbance A = −log 10 (I / I 0 ) (3)

From the above, if the incident light intensity I 0 and the intensity I of the light passing through the wet steam can be measured, the absorbance A is uniquely specified.
 なお、コンピュータ装置100が光強度信号Sdを入力し、式(3)に基づいて吸光度Aを計算するように構成してもよい。 Note that the computer apparatus 100 may be configured to input the light intensity signal Sd and calculate the absorbance A based on Expression (3).
 図1に戻り、上述した構成要素のうち、乾き度測定部200は、所定のソフトウェアプログラムをコンピュータ装置100が実行することにより機能的に実現される機能ブロックである。また、コンピュータ装置100には、関係記憶部(不図示)を含むデータ記憶装置(不図示)が接続されている。関係記憶部は、例えば、予め取得された、受光部13による受光強度Iと、湿り蒸気の乾き度と、の関係を記憶する。受光強度Iと、乾き度と、の関係は、式として保存されてもよいし、表として保存されてもよい。 Referring back to FIG. 1, among the components described above, the dryness measuring unit 200 is a functional block that is functionally realized by the computer device 100 executing a predetermined software program. The computer device 100 is connected to a data storage device (not shown) including a relation storage unit (not shown). The relationship storage unit stores, for example, the relationship between the light reception intensity I obtained by the light receiving unit 13 and the dryness of the wet steam, which is acquired in advance. The relationship between the received light intensity I and the dryness may be stored as an equation or may be stored as a table.
 なお、関係記憶部は、受光部13による受光強度(光の強度I)と、湿り蒸気の乾き度と、の関係を、環境センサ(不図示)により検出された湿り蒸気の温度、圧力、流速及び流量の群から選ばれる一又は二以上ごとに記憶するように構成されていてもよい。 The relationship storage unit shows the relationship between the light reception intensity (light intensity I) by the light receiving unit 13 and the dryness of the wet steam, and the temperature, pressure, and flow velocity of the wet steam detected by an environmental sensor (not shown). And one or two or more selected from the group of flow rates.
 受光部13による受光強度Iと、湿り蒸気の乾き度と、の関係は、例えば、ボイラ等で湿り蒸気を加熱しながら、従来の乾き度計で湿り蒸気の乾き度を測定し、あわせて湿り蒸気を透過した光の強度Iを測定することによって、予め取得することが可能である。従来、種々の乾き度計があるが、関係を取得する際には、それらのいずれかを単独で用いても、組み合わせて用いてもよい。 The relationship between the received light intensity I by the light receiving unit 13 and the dryness of the wet steam is measured by measuring the dryness of the wet steam with a conventional dryness meter while heating the wet steam with a boiler or the like, for example. It can be acquired in advance by measuring the intensity I of the light transmitted through the vapor. Conventionally, there are various dryness meters, but when acquiring the relationship, any one of them may be used alone or in combination.
 乾き度測定部200は、例えば、受光部13から、配管20内部の湿り蒸気を透過した光の強度Iに応じた光強度信号Sdを受信する。また、乾き度測定部200は、環境センサから、配管20内部の湿り蒸気の温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値を受信する。さらに乾き度測定部200は、関係記憶部から、湿り蒸気の温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値に対応する温度、圧力、流速及び流量の群から選ばれる一又は二以上の条件下の、受光部13による受光強度と、湿り蒸気の乾き度と、の関係を読み出す。 The dryness measuring unit 200 receives, for example, the light intensity signal Sd corresponding to the intensity I of the light transmitted through the wet steam inside the pipe 20 from the light receiving unit 13. In addition, the dryness measurement unit 200 receives one or more detection values selected from the group of the temperature, pressure, flow rate, and flow rate of the wet steam inside the pipe 20 from the environment sensor. Further, the dryness measuring unit 200 is selected from the group of temperature, pressure, flow rate, and flow rate corresponding to one or more detection values selected from the group of wet steam temperature, pressure, flow rate, and flow rate from the relationship storage unit. The relationship between the intensity of light received by the light receiving unit 13 and the dryness of wet steam under one or more conditions is read out.
 ここで、乾き度測定部200は、温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値に一致する温度、圧力、流速及び流量の群から選ばれる一又は二以上の条件下の関係が関係記憶部に保存されている場合は、温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値に一致する温度、圧力、流速及び流量の群から選ばれる一又は二以上の条件下の関係を関係記憶部から読み出す。また、乾き度測定部200は、例えば、温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値に一致する温度、圧力、流速及び流量の群から選ばれる一又は二以上の条件下の関係が関係記憶部に保存されていない場合は、温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値に最も近似する温度、圧力、流速及び流量の群から選ばれる一又は二以上の条件下の関係を関係記憶部から読み出す。 Here, the dryness measuring unit 200 has one or more conditions selected from the group of temperature, pressure, flow rate, and flow rate that match one or more detection values selected from the group of temperature, pressure, flow rate, and flow rate. When the following relationship is stored in the relationship storage unit, one selected from the group of temperature, pressure, flow rate, and flow rate that matches one or more detection values selected from the group of temperature, pressure, flow rate, and flow rate. Alternatively, a relationship under two or more conditions is read from the relationship storage unit. In addition, the dryness measuring unit 200 is, for example, one or more selected from the group of temperature, pressure, flow rate, and flow rate that matches one or more detection values selected from the group of temperature, pressure, flow rate, and flow rate. If the relationship of the conditions is not stored in the relationship storage unit, select from the group of temperature, pressure, flow rate and flow rate that most closely approximates one or more detection values selected from the group of temperature, pressure, flow rate and flow rate. The relationship under one or more conditions is read from the relationship storage unit.
 乾き度測定部200は、読み出した関係と、受光強度Iの計測値と、に基づいて、湿り蒸気の乾き度の値を特定する。例えば、関係が、受光強度Iを独立変数とし、乾き度を従属変数とする式で表現されている場合、乾き度測定部200は、式の受光強度Iの独立変数に、受光強度Iの計測値を代入して、配管20内部の測定対象の湿り蒸気の乾き度の値を算出する。 The dryness measurement unit 200 identifies the dryness value of the wet steam based on the read relationship and the measured value of the received light intensity I. For example, when the relationship is expressed by an expression in which the received light intensity I is an independent variable and the dryness is a dependent variable, the dryness measuring unit 200 measures the received light intensity I as an independent variable of the received light intensity I in the expression. By substituting the value, the dryness value of the wet steam to be measured in the pipe 20 is calculated.
 なお、関係記憶部は、湿り蒸気による吸光度Aと、湿り蒸気の乾き度と、の関係を保存していてもよい。この場合、乾き度測定部200は、上記の式(3)に示すように、発光体32a、32b、32cの発光強度I0と、受光部13による受光強度Iと、から、測定対象の湿り蒸気による吸光度Aの計測値を算出し、吸光度Aと乾き度の関係と、吸光度Aの測定値と、に基づいて、測定対象の湿り蒸気の乾き度の値を特定すればよい。 Note that the relationship storage unit may store the relationship between the absorbance A due to the wet steam and the dryness of the wet steam. In this case, as shown in the above formula (3), the dryness measurement unit 200 determines the wetness of the measurement target from the light emission intensity I 0 of the light emitters 32a, 32b, and 32c and the light reception intensity I by the light receiver 13. The measured value of the absorbance A by steam is calculated, and the value of the dryness of the wet steam to be measured may be specified based on the relationship between the absorbance A and the dryness and the measured value of the absorbance A.
 また、配管20の内部の湿り蒸気の乾き度と、湿り蒸気を透過した光強度Iと、の相関の態様は、湿り蒸気内の光透過体積によっても変化し得る。例えば、光透過体積の変化の要因としては、配管径や発光体の面積並びに受光素子の面積などが挙げられる。したがって、関係記憶部は、湿り蒸気の光透過体積毎に、湿り蒸気の乾き度と、湿り蒸気を透過した光強度Iと、の相関を保存してもよい。この場合、乾き度測定部200は、関係記憶部から、湿り蒸気の温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値、並びに測定対象の湿り蒸気の光透過体積の値に対応する、受光強度Iと、乾き度と、の関係を読み出せばよい。 Also, the correlation between the dryness of the wet steam inside the pipe 20 and the light intensity I transmitted through the wet steam can be changed by the light transmission volume in the wet steam. For example, factors of the change in the light transmission volume include the pipe diameter, the area of the light emitter, the area of the light receiving element, and the like. Therefore, the relationship storage unit may store the correlation between the dryness of the wet steam and the light intensity I transmitted through the wet steam for each light transmission volume of the wet steam. In this case, the dryness measurement unit 200 receives one or more detection values selected from the group of the temperature, pressure, flow rate, and flow rate of the wet steam from the relation storage unit, and the value of the light transmission volume of the wet steam to be measured. The relationship between the received light intensity I and the dryness level corresponding to the above may be read.
 なお、乾き度測定部200は、光の強度I又は吸収度Aに基づいて乾き度を測定する過程において、飽和蒸気の量や飽和水の量も求めることができるように構成されていてもよい。 The dryness measuring unit 200 may be configured to be able to obtain the amount of saturated steam and the amount of saturated water in the process of measuring the dryness based on the light intensity I or the absorbance A. .
 (動作)
 次に本実施形態の動作を説明する。
 まず、図2に示すように、湿り蒸気が配管20の内部を流れている状態で湿り蒸気の乾き度を測定する場合、光入射部11の発光体32a、32b、及び32cは光を発する。次に、光入射部11の集光レンズ40(集光部)は、発せられた複数の光を適切に入射側導光部21に導くように集光する。次に、集光レンズ40により集光された光は、入射側導光部21(第1導光部)により配管20に導光される。
(Operation)
Next, the operation of this embodiment will be described.
First, as shown in FIG. 2, when measuring the dryness of the wet steam while the wet steam is flowing in the pipe 20, the light emitters 32 a, 32 b, and 32 c of the light incident portion 11 emit light. Next, the condensing lens 40 (condensing part) of the light incident part 11 condenses so that the emitted several light may be guide | induced to the incident side light guide part 21 appropriately. Next, the light condensed by the condenser lens 40 is guided to the pipe 20 by the incident side light guide 21 (first light guide).
 次に、図1に示すように、入射側導光部21を同一光路で導光された複数の光は、入射側コリメータレンズ42(第1光集束部)により平行光になるように集束され、透過型のガラス窓50を介して、配管20に進入する(光経路L)。 Next, as shown in FIG. 1, the plurality of lights guided through the incident-side light guide unit 21 along the same optical path are converged to become parallel light by the incident-side collimator lens 42 (first light focusing unit). Then, the light enters the pipe 20 through the transmissive glass window 50 (light path L).
 次に、配管20に進入した複数の光は、測定対象の湿り蒸気を透過又は反射する。次に、配管20内部の湿り蒸気を透過又は反射した複数の光は、配管20に設置されている透過型のガラス窓52を介して配管20の外に射出される。そして、複数の光が配管20の外側に射出された後、射出側コリメータレンズ44(第2光集束部)により、該複数の光が発散しないように集束される。 Next, the plurality of lights that have entered the pipe 20 transmit or reflect the wet vapor to be measured. Next, the plurality of lights that have transmitted or reflected the wet steam inside the pipe 20 are emitted outside the pipe 20 through the transmission type glass window 52 installed in the pipe 20. Then, after the plurality of lights are emitted to the outside of the pipe 20, the plurality of lights are converged by the emission side collimator lens 44 (second light focusing unit) so as not to diverge.
 次に、射出側導光部22(第2導光部)は、射出側コリメータレンズ44により集束された複数の光を同一光路となるように導光させ、光経路Lに沿って受光部13に進入させる。 Next, the exit-side light guide unit 22 (second light guide unit) guides the plurality of lights focused by the exit-side collimator lens 44 so as to have the same optical path, and the light-receiving unit 13 along the optical path L. To enter.
 次に、図4に示すように、受光部13の計測部60は、配管20内の湿り蒸気を透過又は反射した光を受けて、光の強度I及び/又は吸光度Aを計測する。次に、信号生成部62は、湿り蒸気を透過又は反射した光の強度Iに応じた光強度信号Sdを生成し、また、湿り蒸気を透過又は反射した光の吸光度Aに応じた吸光度信号Saを生成する。 Next, as shown in FIG. 4, the measurement unit 60 of the light receiving unit 13 receives the light transmitted or reflected through the wet vapor in the pipe 20 and measures the light intensity I and / or absorbance A. Next, the signal generation unit 62 generates a light intensity signal Sd corresponding to the intensity I of the light transmitted or reflected through the wet steam, and the absorbance signal Sa corresponding to the absorbance A of the light transmitted or reflected through the wet steam. Is generated.
 次に、図1に戻り、受光部13は、湿り蒸気を透過又は反射した光の強度Iに対応した光強度信号Sdをコンピュータ装置100に出力する。また、受光部12は、湿り蒸気を透過又は反射した光の吸光度Aに対応した吸光度信号Saをコンピュータ装置100に出力する。 Next, returning to FIG. 1, the light receiving unit 13 outputs a light intensity signal Sd corresponding to the intensity I of the light transmitted or reflected through the wet steam to the computer apparatus 100. In addition, the light receiving unit 12 outputs an absorbance signal Sa corresponding to the absorbance A of light transmitted or reflected through the wet steam to the computer device 100.
 次いで、乾き度測定部200は、温度、圧力、流速及び流量の群から選ばれる一又は二以上の検出値に一致(又は近似)する温度、圧力、流速及び流量の群から選ばれる一又は二以上の条件下の受光強度Iと、湿り蒸気の乾き度と、の関係を関係記憶部から読み出す。読み出した関係と、受光強度Iの計測値と、に基づいて、湿り蒸気の乾き度を測定する。 Next, the dryness measurement unit 200 selects one or two selected from the group of temperature, pressure, flow rate, and flow rate that matches (or approximates) one or more detection values selected from the group of temperature, pressure, flow rate, and flow rate. The relationship between the received light intensity I under the above conditions and the dryness of the wet steam is read from the relation storage unit. Based on the read relationship and the measured value of the received light intensity I, the dryness of the wet steam is measured.
 (効果)
 以上説明した本実施形態によれば、複数の発光体から照射された光を集光し、大きさが限定的である、導光部の一方の端面に適切に入射させ、配管内の測定対象の湿り蒸気に適切に照射させ、湿り蒸気を透過または反射した光の強度または吸光度に基づいて湿り蒸気の乾き度を測定することにより、正確な乾き度を測定することができる。
(effect)
According to the present embodiment described above, the light irradiated from a plurality of light emitters is collected, and the measurement target in the pipe is appropriately incident on one end surface of the light guide unit having a limited size. By accurately irradiating the wet steam, and measuring the dryness of the wet steam based on the intensity or absorbance of the light transmitted or reflected by the wet steam, the accurate dryness can be measured.
 (他の実施形態)
 上記に説明した実施形態は、あくまでも例示であり、上記に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形して実施することができる。
(Other embodiments)
The embodiment described above is merely an example, and there is no intention of excluding various modifications and technical applications that are not explicitly described above. That is, the present invention can be implemented with various modifications without departing from the spirit of the present invention.
1  乾き度測定装置
11  光入射部
13  受光部
20  配管
21  入射側導光部
22  射出側導光部
32、32a、32b、32c  発光体
40  集光レンズ
42  入射側コリメータレンズ
44  射出側コリメータレンズ
100  コンピュータ装置
200  乾き度測定部
DESCRIPTION OF SYMBOLS 1 Dryness measuring apparatus 11 Light incident part 13 Light receiving part 20 Piping 21 Incident side light guide part 22 Emission side light guide part 32, 32a, 32b, 32c Light emitter 40 Condensing lens 42 Incident side collimator lens 44 Emission side collimator lens 100 Computer device 200 Dryness measuring unit

Claims (4)

  1.  測定対象の湿り蒸気を透過または反射した複数の光の強度または吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定装置であって、
     各々が光を発する、複数の発光体を有する発光体アレイと、
     前記複数の発光体の各々により発せられた複数の光を集光する集光部と、
     集光された前記複数の光を入射する第1端面と入射された前記複数の光を前記湿り蒸気に対して射出する第2端面とを有する第1導光部と、を備える、
    乾き度測定装置。
    A dryness measuring device that measures the dryness of the wet steam based on the intensity or absorbance of a plurality of light beams transmitted or reflected from the wet steam to be measured,
    A light emitter array having a plurality of light emitters, each emitting light;
    A condensing unit that condenses a plurality of light emitted by each of the plurality of light emitters;
    A first light guide section having a first end face for entering the collected light and a second end face for emitting the entered light to the wet steam.
    Dryness measuring device.
  2.  前記第1導光部が射出する前記複数の光を平行光になるように集束させる第1光集束部をさらに備える、
    請求項1に記載の乾き度測定装置。
    A first light focusing section for focusing the plurality of lights emitted by the first light guide section so as to be parallel light;
    The dryness measuring apparatus according to claim 1.
  3.  湿り蒸気を透過または反射した複数の光を集束させる第2光集束部と、
     前記第2光集束部により集束された前記複数の光を入射する第3端面と入射された前記複数の光を射出する第4端面とを有する第2導光部と、をさらに備える、
    請求項1又は2に記載の乾き度測定装置。
    A second light focusing portion for focusing a plurality of light beams transmitted or reflected by the wet steam;
    A second light guide part having a third end face for entering the plurality of lights focused by the second light focusing part and a fourth end face for emitting the plurality of incident lights;
    The dryness measuring apparatus according to claim 1 or 2.
  4.  測定対象の湿り蒸気を透過または反射した複数の光の強度または吸光度に基づいて前記湿り蒸気の乾き度を測定する乾き度測定方法であって、
     複数の光を集光することと、
     集光された前記複数の光を入射し、入射された前記複数の光を前記湿り蒸気に対して射出することと、を含む、
    乾き度測定方法。
    A dryness measurement method that measures the dryness of the wet steam based on the intensity or absorbance of a plurality of light beams transmitted or reflected from the wet steam to be measured,
    Condensing multiple lights,
    Injecting the collected plurality of lights, and emitting the entered plurality of lights to the wet steam,
    Dryness measurement method.
PCT/JP2014/078821 2013-12-27 2014-10-29 Steam-quality measurement device and steam-quality measurement method WO2015098278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-272678 2013-12-27
JP2013272678A JP2015127649A (en) 2013-12-27 2013-12-27 Dryness measuring device and dryness measuring method

Publications (1)

Publication Number Publication Date
WO2015098278A1 true WO2015098278A1 (en) 2015-07-02

Family

ID=53478156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078821 WO2015098278A1 (en) 2013-12-27 2014-10-29 Steam-quality measurement device and steam-quality measurement method

Country Status (2)

Country Link
JP (1) JP2015127649A (en)
WO (1) WO2015098278A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269146A (en) * 1985-09-24 1987-03-30 Hitachi Ltd Measuring device for wetness of vapor
JPH09127424A (en) * 1995-11-01 1997-05-16 Yokogawa Electric Corp Light source
JP2005010296A (en) * 2003-06-17 2005-01-13 Olympus Corp Fluorescent microscope
US7034302B2 (en) * 2002-09-19 2006-04-25 Battelle Energy Alliance, Llc Optical steam quality measurement system and method
JP2009098148A (en) * 2007-10-18 2009-05-07 General Electric Co <Ge> System and method for sensing fuel humidification
JP2012026918A (en) * 2010-07-26 2012-02-09 Fuji Electric Co Ltd Multicomponent laser gas analyzer
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189864A (en) * 1995-01-06 1996-07-23 Tokai Carbon Co Ltd Photo-coupler
JP2011164182A (en) * 2010-02-05 2011-08-25 Alps Electric Co Ltd Optical connector connection body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269146A (en) * 1985-09-24 1987-03-30 Hitachi Ltd Measuring device for wetness of vapor
JPH09127424A (en) * 1995-11-01 1997-05-16 Yokogawa Electric Corp Light source
US7034302B2 (en) * 2002-09-19 2006-04-25 Battelle Energy Alliance, Llc Optical steam quality measurement system and method
JP2005010296A (en) * 2003-06-17 2005-01-13 Olympus Corp Fluorescent microscope
JP2009098148A (en) * 2007-10-18 2009-05-07 General Electric Co <Ge> System and method for sensing fuel humidification
JP2012026918A (en) * 2010-07-26 2012-02-09 Fuji Electric Co Ltd Multicomponent laser gas analyzer
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIICHI NISHINO ET AL.: "Kinsekigaiko o Riyo shita Suijoki no Kawakido Keisoku Gijutsu", PROCEEDINGS OF THE JAPANESE SYMPOSIUM ON COMBUSTION, vol. 49 TH, 20 November 2011 (2011-11-20), pages 354 - 355 *
JOKI NO KAWAKI DOAI SOKUTEI, AZUBIRU GA SENSOR BOILER NO SHOENE TAISAKU NI MICHI, NIKKAN KOGYO SHINBUN, 21 November 2013 (2013-11-21), pages 8 *

Also Published As

Publication number Publication date
JP2015127649A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP5539176B2 (en) Dryness measuring device and dryness measuring method
JP2022095987A (en) Confocal displacement meter
JP5885461B2 (en) Dryness measuring device and dryness measuring method
JP6045352B2 (en) Dryness distribution measuring device and dryness distribution measuring method
WO2015098279A1 (en) Steam-quality measurement device
WO2015098278A1 (en) Steam-quality measurement device and steam-quality measurement method
JP6379007B2 (en) Piping and dryness measuring device
RU2010123872A (en) METHOD AND DEVICE FOR DETERMINING FLOW LIQUID FLOW
JP6057859B2 (en) Dryness measuring device
JP6175370B2 (en) Dryness measuring device and dryness measuring method
JP2016151572A (en) Dryness measurement device
JP5800472B2 (en) Light source device
WO2014119641A1 (en) Dryness measuring device and dryness measuring method
JP6664926B2 (en) Dryness measuring device
JP2015232520A (en) Dryness measurement apparatus
WO2017183433A1 (en) Dryness measurement device and wet steam inspection device
JP6307390B2 (en) Dryness measuring device and dryness measuring method
WO2017183434A1 (en) Dryness measurement device and wet steam inspection device
JP2018169218A (en) Dryness measuring device and dryness measuring method
JP6006605B2 (en) Steam flow measuring device and steam flow measuring method
JP5885462B2 (en) Dryness control device and dryness control method
JP2017111000A (en) Dryness measuring device
JP6392627B2 (en) Dryness measuring device and dryness measuring method
JPH0658793A (en) Method and apparatus for detecting interface
WO2017187784A1 (en) Degree-of-dryness measurement device and measurement error evaluation method for degree-of-dryness measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873640

Country of ref document: EP

Kind code of ref document: A1