JPS6269146A - Measuring device for wetness of vapor - Google Patents

Measuring device for wetness of vapor

Info

Publication number
JPS6269146A
JPS6269146A JP20870385A JP20870385A JPS6269146A JP S6269146 A JPS6269146 A JP S6269146A JP 20870385 A JP20870385 A JP 20870385A JP 20870385 A JP20870385 A JP 20870385A JP S6269146 A JPS6269146 A JP S6269146A
Authority
JP
Japan
Prior art keywords
light
optical fiber
signal
scattered
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20870385A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20870385A priority Critical patent/JPS6269146A/en
Publication of JPS6269146A publication Critical patent/JPS6269146A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission

Abstract

PURPOSE:To measure the wetness of vapor with high accuracy by dividing the light from a light source into two, leading one of them to an optical fiber for irradiating it to a detecting part, and leading the other to an photoelectric converting element. CONSTITUTION:To light sources 3, 3' and 3'', a power source is supplied successively through a controller 24 and a power source switching device 25 by a command from a signal operation processor 27, and its light is switched by an optical switch 23 which has synchronized with the switching device 25. This light is divided into two by an equal light quantity by a half mirror 50, and one of them is converted to an electric signal IO by a photodetector 51. The other is led to an optical fiber 6, becomes an incident light 5 to a wet vapor flow of a measuring space A, led to photodetectors 16, 12, as light 13 which is scattered by a water droplet in the space A and light 10 which is attenuated by the water droplet, by optical fibers 15, 11, respectively, converted to electric signals and fetched as a scattered light signal Is, and a transmission light signal Ir. These signals IO, Is and Ir are amplified 22, synchronized with a wavelength variation of the light source by the switching device 25, and the respective signals are identified and stored in a data store part of the device 27.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、i〜気ツタ−ビンび蒸気を利用する各種の装
置において、蒸気の状態変化に伴っである条件下で発生
する蒸気中の湿分(蒸気湿り度)を測定するための装置
に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is aimed at reducing moisture in steam that occurs under certain conditions as the state of the steam changes in steam turbines and various devices that utilize steam. The present invention relates to a device for measuring steam humidity.

〔発明の背景〕[Background of the invention]

特開昭57−199943号公報に示すように蒸気湿り
度測定装置は、従来がらの手法を大幅に改善し、蒸気流
路内の乃所湿り度を瞬時に、がっ、連続的に測定するこ
とが可能となっている。この装置は。
As shown in Japanese Patent Application Laid-Open No. 57-199943, the steam humidity measuring device greatly improves the conventional method and measures the humidity at any spot in the steam flow path instantaneously and continuously. It is now possible. This device is.

光学的手法に基づくものであり、検出すべき湿り蒸気中
の水滴群からの散乱光が入射光源強度が一定であること
を条件としているため、引例における装置の入射光の波
長を変化させて水滴群からの散乱光の特徴を検出する方
法、及び、入射光に対する水滴群からの散乱光強度の角
度特性を検出する方法では、入射光強度の変化は水滴群
からの散乱光強度の変化として検出されることになり、
湿り度の測定精度に大きな影響を与える。ところで、入
射光強度変化の原因は、電源電圧の変動が最も多く、そ
のほかに、電子部品の熱的影響による特性変化などにあ
げられる。このような入射光強度変化には、現在の技術
レベルで十分に対処できるが蒸気湿り度を瞬時、かつ、
連続的に測定することはできない。特に、湿り蒸気流が
非定常性の強い流れであるため、入射光強度の変化を伴
った場合には、湿り度の測定値の信頼度が非常に低下す
る。従って、入射光強度が変化した場合に即応性のある
技術的な解決策を要するが、引例では、この点に検反さ
れていない。
It is based on an optical method, and the condition is that the incident light source intensity is constant for scattered light from a group of water droplets in wet steam to be detected. In the method of detecting the characteristics of scattered light from a group of water droplets and the method of detecting the angular characteristics of the intensity of scattered light from a group of water droplets with respect to incident light, changes in the intensity of incident light are detected as changes in the intensity of scattered light from a group of water droplets. will be
This has a significant impact on the humidity measurement accuracy. By the way, the most common cause of changes in incident light intensity is changes in power supply voltage, and other causes include changes in characteristics due to thermal effects of electronic components. Such changes in the intensity of incident light can be adequately dealt with with the current level of technology, but it is difficult to measure vapor humidity instantly and
It cannot be measured continuously. In particular, since the wet vapor flow is a strongly unsteady flow, the reliability of the measured value of the wetness is greatly reduced when it is accompanied by a change in the intensity of the incident light. Therefore, a technical solution that can quickly respond when the incident light intensity changes is required, but this point is not examined in the cited document.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高精度で蒸気湿り度を測定するための
装置を提供することにある6 〔発明の概要〕 従来、装置が光ファイバによって伝達される光源からの
光を、流路内にそう人された検出部の空間内を流動する
湿り蒸気流中に照射し、湿り蒸気中の水滴の粒径分布と
水滴の総量とによって変化する透過光と散乱光の光量を
光ファイバで受光した光−電気変換部に伝達する構成に
なっているのに対して、本発明では前述の欠点をなくす
るために、光源からの光が検出部へ伝達する光ファイバ
に入れる前で、ハーフミラ−によって光量を二分割し、
この二分割された光の一方を検出部に照射するための光
ファイバに導き、他方を光−電気変換素子(第一電気信
号)に導くようにしている。
An object of the present invention is to provide a device for measuring steam humidity with high accuracy. The light was irradiated into a stream of wet steam flowing in the space of the detection unit, and the amount of transmitted light and scattered light, which varied depending on the particle size distribution of water droplets in the wet steam and the total amount of water droplets, was received by an optical fiber. In contrast, in the present invention, in order to eliminate the above-mentioned drawbacks, the light from the light source is transmitted by a half mirror before entering the optical fiber to be transmitted to the detection part. Divide the amount of light into two,
One of the two divided lights is guided to an optical fiber for irradiating the detection section, and the other is guided to a light-to-electrical conversion element (first electrical signal).

さらに、検出部からの透過・散乱光を光−電気変換した
電気信号(第二電気信号)と第一電気信号とを同側時に
データ処理装置に収納するように構成する。
Furthermore, the configuration is such that an electrical signal (second electrical signal) obtained by optical-to-electrical conversion of transmitted/scattered light from the detection section and the first electrical signal are stored in the data processing device at the same time.

このように構成したことによる利点は、光源の光量変動
を測定データと同時性をもって検出することが可能なた
め、光源光量の変化の影響を検出部に透過・散乱の光量
変化から除外でき1局所湿り度を瞬時、かつ、連続的に
測定することがより確実になる。
The advantage of this configuration is that it is possible to detect variations in the light intensity of the light source at the same time as the measurement data, so the influence of changes in the light source light intensity can be excluded from changes in the transmitted and scattered light intensity on the detection unit. Instant and continuous measurement of wetness becomes more reliable.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を下記に詳述する。 Examples of the invention are detailed below.

第1図は、本湿り度測定装置に実施域を示したものであ
り、円筒状の検出器1の先端部2が1lll定する蒸気
流路内にそう入される。検出器1及び先端部2の内部に
は、蒸気流路の測定空間Aに照射する光を導くための光
ファイバ6と照射された光が蒸気中の水滴によって散乱
した光を検知するための受光素子12.16に導くため
の光ファイバ11.15がそう人されている。また、光
源3゜3′及び31等からの光は光スケッチ23を介し
てハーフミラ−50に導かれて二分割され、一方は受光
素子51に入り、他方は先端部2の内部に設けられた光
ファイバ6によって測定空間Aに90度偏向させて照射
するためのプリズム7に導かれる。さらに、プリズム7
によって測定空間へを直進した光をプリズム9を介して
受光素子12に導くための光ファイバ1】を設ける。さ
らに、測定空間Aにプリズム、または、反射鏡7によっ
て照射された光の通路と直交する方向の散乱光は受光窓
14を設け、光ファイバ15によって受光素子16に導
くように構成する。
FIG. 1 shows the practical area of this humidity measuring device, in which the tip 2 of a cylindrical detector 1 is inserted into a defined steam flow path. Inside the detector 1 and the tip 2, there is an optical fiber 6 for guiding the light irradiated into the measurement space A of the steam flow path, and a light receiver for detecting the light scattered by the water droplets in the steam. An optical fiber 11.15 is provided for leading to element 12.16. Further, the light from the light sources 3, 3', 31, etc. is guided to the half mirror 50 via the light sketch 23 and is divided into two parts, one of which enters the light receiving element 51 and the other which is provided inside the tip part 2. The optical fiber 6 guides the beam to a prism 7 for irradiating the measurement space A with a 90 degree deflection. Furthermore, prism 7
An optical fiber 1 is provided for guiding the light that has traveled straight into the measurement space via the prism 9 to the light receiving element 12. Further, a light receiving window 14 is provided so that scattered light in a direction perpendicular to the path of light irradiated into the measurement space A by the prism or the reflecting mirror 7 is guided to a light receiving element 16 by an optical fiber 15.

第1図において、光源3.3’ 、3’は一例ヲ示すも
のであり、実質的には複数個の発光ダイオード、または
、レーザダイオード等のそれぞれ波長のことなるm波長
の発生するもので構成される。
In FIG. 1, light sources 3.3' and 3' are shown as an example, and are substantially composed of a plurality of light emitting diodes or laser diodes, each of which generates m wavelengths different from each other. be done.

この複数個の光源は、信号演算処理装置27からの指令
によって、制御器24を介して電源切換器25が作動し
5M次に電源が光源に供給され、この[瀬切換器25の
動作と同期して動作する光スィッチ23によって、光源
からの光が切換えられる。このようにして切換えられた
光は、支持部材52の中心部↓こ位置する光の通路53
に設けられたハーフミラ−50によって、光量が等しく
なるように二分割され、一方は受光素子51によって電
気信号Ioに変換される。他方は光ファイバ6に導かれ
て、測定空間Aの湿り蒸気流への入射光5となり、測定
空間A内の水滴によって散乱した光13.及び、水滴に
よって減衰した光10として、それぞれ光ファイバ15
.11によって受光素子16.12に導かれ、電気信号
に変換されて散乱光信号Is及び透過光信号Itとして
取出される。このように、本発明では光源光量の1/2
の信号Io、散乱光信号Is及び透過光信号ITの三種
の情報が得られるが、これらの信号は電圧増幅器、22
によって所定の電圧に増幅され、信号処理装置27内の
データ格納部に記憶させる動作が、所定のデータ数が格
納されるまで継続される。この三種類の信号データの収
納は、信号処理装置27からの命令によって、制御器2
4が電源切換器25を動作させて光源の波長を変化させ
るのと同期させるとともに、前述した三種類の信号を識
別して収納する。この収納状態の詳細は第2図(a)の
ように、信号処理装置27から取込み信号61が時間間
隔Δtで発生し、この信号の発生時点からΔtpの時間
遅れでIs+ It、  It+の信号が取込まれて収
納される。この信号取込みは一種類の光源の波長λ1に
対してデータの変肉化処理に必要な回数nだけ繰返して
行われる6 従って、光源の波長の種類をλ1からλ、とすると、信
号処理装置のデータ数は第2図(b)のようになり、そ
れぞれの取込みにおけるIS、ITの信号は光源光量の
変化の影響を含んだものであるが、このIs、ITと同
時に光源光量の信号Ioを取込んでいるので、次のよう
な時間平均化することによって、極めて確度の高いデー
タが得られる。
The power switch 25 is operated via the controller 24 in response to a command from the signal processing unit 27, and power is supplied to the light sources 5M in synchronization with the operation of the switch 25. The light from the light source is switched by the optical switch 23 which operates as follows. The light switched in this way is transmitted to the light path 53 located at the center of the support member 52.
A half mirror 50 provided at the side divides the light into two halves so that the amount of light is equal, and one side is converted into an electric signal Io by a light receiving element 51. The other is guided into an optical fiber 6 and becomes incident light 5 into the wet vapor stream in the measurement space A, light 13. scattered by the water droplets in the measurement space A. and an optical fiber 15 as the light 10 attenuated by the water droplets.
.. 11 to light receiving elements 16 and 12, where it is converted into an electrical signal and taken out as a scattered light signal Is and a transmitted light signal It. In this way, in the present invention, 1/2 of the amount of light from the light source is used.
Three types of information are obtained: a signal Io, a scattered light signal Is, and a transmitted light signal IT.
The operation of amplifying the data to a predetermined voltage and storing it in the data storage section in the signal processing device 27 is continued until a predetermined number of data are stored. Storage of these three types of signal data is carried out by the controller 2 according to instructions from the signal processing device 27.
4 operates the power supply switch 25 to synchronize with changing the wavelength of the light source, and also identifies and stores the three types of signals mentioned above. The details of this storage state are as shown in FIG. 2(a), where the signal processing device 27 generates the acquisition signal 61 at the time interval Δt, and the signals Is+ It and It+ are generated with a time delay of Δtp from the time of generation of this signal. It is taken in and stored. This signal acquisition is repeated for the wavelength λ1 of one type of light source the number of times n necessary for data transformation processing.6 Therefore, if the types of wavelengths of the light source are λ1 to λ, the signal processing device The number of data is as shown in Figure 2 (b), and the IS and IT signals in each acquisition include the influence of changes in the light source light intensity, but at the same time as the Is and IT signals, the light source light intensity signal Io is Since the data is taken in, data with extremely high accuracy can be obtained by averaging over time as shown below.

信号の平均値、M=光源波長の種類数(1からm)であ
る。
The average value of the signal, M=the number of types of light source wavelengths (1 to m).

このような信号処理を行った後に、信号処理装置では、
入射光量と散乱光量との関係式である次式を基本として
、湿り蒸気中の水滴の粒径分布を求め、湿り度を算定す
る。
After performing such signal processing, the signal processing device
Based on the following equation, which is a relational expression between the amount of incident light and the amount of scattered light, the particle size distribution of water droplets in humid steam is determined, and the degree of wetness is calculated.

ここに、■=散乱または透過光量 Io=入射光量 I = I / I oの時間平均値(IsまたはIt
)Cn=粒子数濃度 Q=測定空間の光路長さ D=粒子径 i=粉粒子屈折率/流体の屈折率 0=入射光と散乱光とのなす角度 α=粒子パラメータ (=πD/λ) λ、=光の波長 N(D)=粒径分布関数 に=散乱係数 他の実施例を第3図に示す。図において、8tq定空間
Cに照射する光源の発光ダイオード、または、レーザダ
イオド81が一個とその電源装置94とを装備し、この
光源からの光を支持部材71の中心部に位置する光の通
路72に設けられたハーフミラ−73に導き、このハー
フミラ−73によって光源の光量を二分割して、一方を
受光素子74によって電気信号Ioに変換し、他方を本
体85の内部に配置された光ファイバ85によって照射
窓83からに+!I定空間Cに照射する。測定空間Cに
は照射光と同一平面内に入射光に対して種々の角度位置
に複数の受光窓86.87,88.89を先端部84の
空間Cに接する面に設けて、湿り蒸気流からの散乱光を
受光し、それぞれの受光窓に入射する散乱光を受光窓に
対する光ファイバ90゜91.92.93によって受光
素子75,76゜77.78に導いて電気信号にIsz
、 Isz+l5stISAに変換する。電気信号に変
換されたIO+IS1゜l5zt l5at IS4の
信号は、電圧増幅器22を介して信号処理装置27に接
続され、データ格納部に収納される。さらに、各信号の
取込み方法について、第4図によって説明する。第4図
(a)は信号取込みのタイミングを示したものであるが
、信号処理装@27で取込み信号がΔし時間ごとに発生
させ、これに対応して遅れ時間Δ14e後に各角度位置
(OL* Dz+  Osr  O+)  における散
乱光信号■si + I s x r I s 3HI
 s番と光源の信号Ioとが同時刻で取込まれる。この
取込みは信号の時間平均値を算定するのに十分な回数n
まで繰返し行われ、データの格納形式は第4図(b)の
ように、それぞれの信号がn個ずつ収納されることにな
り、ISIからISmの信号の各取込み時点で、電源光
量の変化の影響を含んでいるが、次のように平均化する
ことによって、この変化の影響を除外することができる
Here, ■ = amount of scattered or transmitted light Io = amount of incident light I = I / time average value of Io (Is or It
) Cn = particle number concentration Q = optical path length of measurement space D = particle diameter i = refractive index of powder particles/refractive index of fluid 0 = angle between incident light and scattered light α = particle parameter (=πD/λ) λ,=wavelength of light N(D)=particle size distribution function=scattering coefficient Another example is shown in FIG. In the figure, a light emitting diode or laser diode 81 as a light source for irradiating an 8tq constant space C is equipped with its power supply device 94, and light from this light source is transmitted to a light path 72 located at the center of a support member 71. The amount of light from the light source is divided into two parts by the half mirror 73, one part is converted into an electric signal Io by the light receiving element 74, and the other part is sent to the optical fiber 85 disposed inside the main body 85. + from the irradiation window 83! Irradiate a constant space C. In the measurement space C, a plurality of light receiving windows 86, 87, 88, 89 are provided in the same plane as the irradiation light and at various angular positions with respect to the incident light on the surface of the tip 84 that is in contact with the space C. The scattered light incident on each light receiving window is guided to the light receiving elements 75, 76° 77.78 through optical fibers 90°91, 92, 93 to the light receiving windows and converted into electrical signals.
, convert to Isz+l5stISA. The IO+IS1°l5zt l5at IS4 signal converted into an electrical signal is connected to the signal processing device 27 via the voltage amplifier 22 and stored in the data storage section. Furthermore, the method of capturing each signal will be explained with reference to FIG. FIG. 4(a) shows the timing of signal acquisition. The signal processing device @27 generates the acquisition signal every Δ time, and correspondingly, after a delay time Δ14e, each angular position (OL *Scattered light signal at Dz+ Osr O+) ■si + I s x r I s 3HI
The s number and the light source signal Io are captured at the same time. This acquisition is carried out a sufficient number of times n to calculate the time average value of the signal.
The data storage format is as shown in Figure 4(b), in which n pieces of each signal are stored, and at each point in time when the signals from ISI to ISm are captured, changes in the amount of power light are recorded. However, the effect of this change can be removed by averaging as follows.

ここに(I s)sは各角度位置における散乱光の平均
値、Mは角度位置のことなる散乱光測定位置の数である
Here, (Is)s is the average value of scattered light at each angular position, and M is the number of scattered light measurement positions at different angular positions.

従って、この実施例では光源を一個とし、光の波長を一
定としているため、 al!I定空間C内における湿り
蒸気中の水滴群からの散乱光の角度依存性をKil+定
して、水滴群の粒径分布を演算し、湿り度を求めるもの
であるから、演算の基本式は(3)式と同様であり、に
3)式で波長人を一定として下を(4)式の118とし
て演算処理する。
Therefore, in this embodiment, since there is only one light source and the wavelength of the light is constant, al! Since the angular dependence of scattered light from a group of water droplets in wet steam in I constant space C is determined by Kil+, the particle size distribution of the group of water droplets is calculated, and the wetness is determined, the basic formula for calculation is as follows. This is the same as equation (3), and the calculation process is performed using equation (3) as 118 in equation (4), with the wavelength constant being constant.

本発明の実施例で、光源とする発光素子及び受光素子と
して構成している電子部品が高温に耐え得るものであれ
ば、光ファイバ及び冷却機構等が不要になり、本発明の
受光窓を相当する位置に、発光素子及び受光素子をアレ
イ状に配備することが可能となり、測定装置が小型化し
、測定値の情報数を増加させることが出来るので、より
精度の高い測定が実現できる。
In the embodiment of the present invention, if the electronic components constituting the light emitting element as a light source and the light receiving element can withstand high temperatures, optical fibers, cooling mechanisms, etc. are unnecessary, and the light receiving window of the present invention can be used as a light receiving window. It becomes possible to arrange the light emitting elements and the light receiving elements in an array at the positions where the light emitting elements and the light receiving elements are arranged, the measuring device becomes smaller, and the number of information on the measured values can be increased, so that more accurate measurement can be realized.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の悪影響を及ぼす要因を容認し、
その測定精度を低下させる変動値(光源の光量変動値)
をデータとした採用できるように構成し、このデータに
よって本来必要とする散乱光量を正規化するとともに、
変動過程の時間を平均化することによって、極めて安定
した高精度の湿り度測定が可能である。
According to the present invention, conventional adverse factors are accepted;
Fluctuation value that reduces measurement accuracy (light source fluctuation value)
The system is configured so that it can be used as data, and this data can be used to normalize the originally required amount of scattered light.
By averaging the time of the fluctuation process, extremely stable and highly accurate humidity measurement is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構造断面図、第2図は(a
)は第1図の信号取込みタイミンクを示す図、第2図(
b)は第2図(a)の信号取込みによるデータ収納形態
図、第3図は本発明の他の実施例の構造断面図、第4図
(a)は第3図の信号取込みタイミングを示す図、第4
図(b)は第4図(a)の信号取込みによるデータ収納
形態図である。 1・・・検出器、6,11.15・・・光ファイバ、3
゜3’ 、3’ 、81・・・光源、12.16,51
.74・・受光素子、23・・・光スツチ、7,9・・
・ブリズAx g反射鏡、14・・・受光窓、24・・
制御器、25・・電源切換器、50.73・・・光分岐
器1.ハーフミラ−122・・増幅器、27・・・信号
処理装置。
FIG. 1 is a structural sectional view of one embodiment of the present invention, and FIG. 2 is (a
) is a diagram showing the signal acquisition timing in Figure 1, and Figure 2 (
b) is a data storage configuration diagram by signal acquisition in FIG. 2(a), FIG. 3 is a structural sectional view of another embodiment of the present invention, and FIG. 4(a) is a diagram showing the signal acquisition timing in FIG. 3. Figure, 4th
FIG. 4(b) is a diagram illustrating the data storage format by signal acquisition in FIG. 4(a). 1...Detector, 6,11.15...Optical fiber, 3
゜3', 3', 81...Light source, 12.16,51
.. 74... Light receiving element, 23... Optical switch, 7,9...
・Blizz Ax g reflector, 14...light receiving window, 24...
Controller, 25... Power switch, 50.73... Optical branching device 1. Half mirror 122...Amplifier, 27...Signal processing device.

Claims (1)

【特許請求の範囲】 1、湿り蒸気流の湿り度を測定するために、蒸気流に光
を照射するための光源と、この光を照射窓まで伝達する
光ファイバ及びプリズムまたは反射鏡と、前記の照射し
た光が前記湿り蒸気流を透過した透過光を受光するプリ
ズムまたは反射鏡と、前記透過光を受光素子まで伝達す
る前記光ファイバ、及び前記透過光の方向と直交して蒸
気中の水滴からの散乱光の光を受光するための受光窓と
、前記散乱光を前記受光索子へ伝達する前記光ファイバ
を備え、前記照射するための光源として波長のことなる
複数の発光素子を配備し、前記発光素子からの光を湿り
蒸気中に照射するための前記光ファイバへ順次切換える
ためのスイッチを具備した装置において、 前記発光素子からの前記照射光を伝達するための前記光
ファイバまでの光路内に光源からの光量を同一強度に二
分割する光分岐器またはハーフミラーを配置し、分岐さ
れた光の一方の照射を伝達するための前記光ファイバー
に導き、地方を別に設けた受光素子によつて電気信号に
変換して、前記照射光の波長の切換えに対応して得られ
る透過光及び散乱光を受光する前記受光素子からの電気
信号と同時性を保つて信号処理装置内に収納するように
構成したことを特徴とする蒸気の湿り度測定装置。
[Scope of Claims] 1. A light source for irradiating light to the steam flow, an optical fiber and a prism or a reflecting mirror for transmitting the light to the irradiation window, in order to measure the wetness of the wet steam flow; a prism or a reflecting mirror that receives transmitted light from which the irradiated light has passed through the wet steam flow, the optical fiber that transmits the transmitted light to the light receiving element, and water droplets in the steam that are perpendicular to the direction of the transmitted light. the light receiving window for receiving scattered light from the light receiving window; and the optical fiber for transmitting the scattered light to the light receiving cable, and a plurality of light emitting elements having different wavelengths as the light source for the irradiation. , an apparatus comprising a switch for sequentially switching the light from the light emitting element to the optical fiber for irradiating the wet steam, an optical path to the optical fiber for transmitting the irradiated light from the light emitting element; An optical splitter or half mirror that divides the amount of light from the light source into two with the same intensity is arranged inside the interior, and one of the split lights is guided to the optical fiber for transmission, and the other part is connected to a separately installed light receiving element. The transmitted light and scattered light obtained in response to the switching of the wavelength of the irradiated light are converted into electrical signals and stored in a signal processing device while maintaining simultaneity with the electrical signals from the light receiving element that receives the transmitted light and scattered light. A steam humidity measuring device characterized by comprising:
JP20870385A 1985-09-24 1985-09-24 Measuring device for wetness of vapor Pending JPS6269146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20870385A JPS6269146A (en) 1985-09-24 1985-09-24 Measuring device for wetness of vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20870385A JPS6269146A (en) 1985-09-24 1985-09-24 Measuring device for wetness of vapor

Publications (1)

Publication Number Publication Date
JPS6269146A true JPS6269146A (en) 1987-03-30

Family

ID=16560677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20870385A Pending JPS6269146A (en) 1985-09-24 1985-09-24 Measuring device for wetness of vapor

Country Status (1)

Country Link
JP (1) JPS6269146A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141615A (en) * 1991-11-15 1993-06-08 Tlv Co Ltd Controlling device for quality of steam
WO2015098278A1 (en) * 2013-12-27 2015-07-02 アズビル株式会社 Steam-quality measurement device and steam-quality measurement method
JP2016125828A (en) * 2014-12-26 2016-07-11 アズビル株式会社 Dryness measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654459B2 (en) * 1976-04-26 1981-12-25
JPS57142547A (en) * 1981-02-27 1982-09-03 Fujitsu Ltd Smoke detector
JPS57199943A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Measuring device for wetness of steam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654459B2 (en) * 1976-04-26 1981-12-25
JPS57142547A (en) * 1981-02-27 1982-09-03 Fujitsu Ltd Smoke detector
JPS57199943A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Measuring device for wetness of steam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141615A (en) * 1991-11-15 1993-06-08 Tlv Co Ltd Controlling device for quality of steam
WO2015098278A1 (en) * 2013-12-27 2015-07-02 アズビル株式会社 Steam-quality measurement device and steam-quality measurement method
JP2015127649A (en) * 2013-12-27 2015-07-09 アズビル株式会社 Dryness measuring device and dryness measuring method
JP2016125828A (en) * 2014-12-26 2016-07-11 アズビル株式会社 Dryness measurement device

Similar Documents

Publication Publication Date Title
US5767976A (en) Laser diode gas sensor
JPH0256623B2 (en)
US4703175A (en) Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
WO2014071691A1 (en) Vcsel-based low-power-consumption gas detection method and device
US9671325B2 (en) Particle measuring device
CN108061722A (en) The detection device and detection method of a kind of carbonomonoxide concentration
CN105891074A (en) Dust concentration image collecting device and collecting method
CN102175591A (en) Laser forward-scattering cloud droplet spectrum probing system
US4361402A (en) Apparatus for determining the refractive-index profile of optical fibers
JPH04151546A (en) Gas detecting apparatus
CN103940341A (en) Displacement and inclination angle integrated test instrument
RU75885U1 (en) OPTICAL GAS SENSOR BASED ON IMMERSION DIODE OPTOCARS
CN110967124A (en) Dual-wavelength multichannel distributed optical fiber temperature measurement system
JPS6269146A (en) Measuring device for wetness of vapor
CN101799408B (en) Optical fiber multi-parameter detector for gas power generation
US9188528B2 (en) Sensor for monitoring a medium
JPS59135350A (en) Measuring device for water content in moving web
CN100403347C (en) Interference photoelectric smoke and fire detecting method and its device
EP1017995A1 (en) Method and apparatus for measuring properties of paper
KR100694318B1 (en) Multi-channel optical receiving system using single etalon and Apparatus for measuring particle group velocity having the system
CN211263143U (en) Multi-component gas remote measuring system
JP2007199076A (en) Method and system for measuring laser
CN207816816U (en) A kind of laser-correlation device realized multi-method and measured
JPS57105831A (en) Detector for optical position
CN111208082A (en) Gas detection system based on mid-infrared absorption spectrum measurement