WO2015020023A1 - Dryness measurement device - Google Patents

Dryness measurement device Download PDF

Info

Publication number
WO2015020023A1
WO2015020023A1 PCT/JP2014/070542 JP2014070542W WO2015020023A1 WO 2015020023 A1 WO2015020023 A1 WO 2015020023A1 JP 2014070542 W JP2014070542 W JP 2014070542W WO 2015020023 A1 WO2015020023 A1 WO 2015020023A1
Authority
WO
WIPO (PCT)
Prior art keywords
dryness
wet steam
light
pipe
liquid phase
Prior art date
Application number
PCT/JP2014/070542
Other languages
French (fr)
Japanese (ja)
Inventor
康博 五所尾
義一 西野
志功 田邉
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2015020023A1 publication Critical patent/WO2015020023A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3148Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using three or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N2021/354Hygrometry of gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8514Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
    • G01N2021/8521Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror with a combination mirror cell-cuvette

Definitions

  • the inventor of the present application describes the relationship between the distribution of the vapor phase and liquid phase portions of the wet steam that changes according to the direction of the piping, the speed difference and density difference between the gas phase portion and the liquid phase portion, and the correct dryness
  • the present invention has been conceived to overcome the above problems and solve the above problems by including the following means.
  • the light path is set along a horizontal plane when the pipe is a vertical pipe.
  • the dryness specifying unit determines whether the wet steam with respect to the light intensity depends on whether the axial direction of the pipe includes a vertical direction or a horizontal direction component. Changing the relational expression for calculating the areas of the gas phase portion and the liquid phase portion.
  • an environmental sensor for detecting the pressure and / or temperature of the wet steam is provided, and the gas phase portion and the liquid phase of the wet steam corresponding to the intensity of the light
  • the area of the portion is configured to calculate the pressure and / or temperature of the wet steam as a parameter, and the dryness specifying unit corresponds to the detected pressure and / or temperature, and the wet steam Identify the dryness of the.
  • “Vertical piping” A piping part installed so that the axial direction of the piping is parallel to the vertical direction.
  • the liquid phase portion of the wet steam flowing inside is in a state of being uniformly distributed without being biased in one direction on the pipe cross section due to gravity.
  • “Horizontal piping” A pipe part installed so that the projected shadow in the axial direction of the pipe has a horizontal component. In addition to the case where the axial direction of the pipe is parallel to the horizontal direction, a certain angle ⁇ ( It includes the case where it is installed so that 0 ⁇ ⁇ 90 °). In the “horizontal piping”, the liquid phase portion of the wet steam flowing inside is in a state of being distributed in one direction in the piping cross section due to gravity.
  • the first embodiment relates to a dryness measuring apparatus provided with an optical path for measurement so as to penetrate a wet steam pipe.
  • the computer apparatus 100 is a computing means that functions as the dryness specifying unit 200 of the present invention that specifies the dryness of the wet steam based on the detected light intensity.
  • the computer apparatus 100 includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102, a ROM (Read Only Memory) 103, and an interface (I / F) circuit 104.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • I / F interface
  • an input device 105 such as a keyboard and a touch panel
  • an output device 106 such as a display and a printer
  • an external storage device 300 are connected to the computer device 100.
  • the dryness specifying unit 200 functionally includes an absorbance calculating unit 201, a liquid phase optical path length calculating unit 202, an area calculating unit 203, and a dryness calculating unit 204.
  • the absorbance calculation unit 201 detects the light intensity I with reference to the light intensity signal Sd, and calculates the absorbance A of the wet steam with reference to the original light intensity Io output from the light emitting unit 11.
  • the liquid phase optical path length calculation unit 202 calculates the length Lw of the liquid phase part of the wet steam along the optical path L of the pipe 20 based on the absorbance A.
  • the liquid phase optical path length calculation unit 202 selectively selects the internal pressure p and / or temperature signal indicated by the pressure signal Sp in addition to the absorbance A.
  • the optical path length Lw of the liquid phase portion is calculated using the internal temperature t indicated by St as a parameter.
  • the dryness calculation unit 204 refers to the flow rate difference ⁇ v and the density difference ⁇ input as the piping conditions, and based on the calculated area Sw of the liquid phase portion of the wet steam and the area Sa of the gas phase portion, the dryness degree Calculate ⁇ .
  • FIG. 3 is a cross-sectional view illustrating an optical path for measuring dryness of wet steam in a vertical pipe.
  • FIG. 4 is a cross-sectional view illustrating an optical path for measuring wet steam dryness in a horizontal pipe.
  • the pipe 20 has a spatially symmetrical cylindrical shape with the axis C as the center.
  • the light path L for measuring the wetness dryness may be set along the horizontal plane, that is, perpendicular to the axial direction of the pipe 20, as in the past.
  • the optical path L for measuring wet steam it is preferable to set the optical path L for measuring wet steam so as to pass through the portion having the lowest density of the vapor phase portion of the wet steam and the deepest portion of the liquid phase portion of the wet steam.
  • the cross-sectional shape of the pipe is not a perfect circle, that is, if the pipe does not have an axisymmetric cylindrical shape, the vertical plane that passes through the axis always passes through the lowest density part and the highest density part. Not always.
  • the deepest part of the liquid phase part is a part where saturated liquid water is most likely to be accumulated earliest and is also a part where the density is highest.
  • the flow velocity difference ⁇ v may be obtained in advance by experiment, or may be calculated using a relational expression derived from the Navier-Stokes equation.
  • the liquid phase part has a higher density than the gas phase part. Even in the gas phase portion, the density differs depending on the vicinity of the interface of the liquid phase portion, the axis C, or the inner wall of the pipe 20, and the density of the liquid phase portion is slightly different near the interface with the gas phase portion or at the bottom. Each average and representative value is stored.
  • the density difference ⁇ can be determined by referring to a steam table or the like.
  • the liquid phase optical path length calculation unit 202 calculates the length Lw of the liquid phase portion of the wet steam along the optical path L of the pipe 20 based on the absorbance.
  • the liquid phase portion of the wet steam is distributed as shown in FIG. 3 if the pipe 20 is a vertical pipe, and is distributed as shown in FIG. 4 if it is a horizontal pipe. If the distribution of the liquid phase part is different, the length Lw of the liquid phase part through which light passes also changes. For example, if the pipe 20 is a vertical pipe, light passes through the liquid phase part on the incident side and the liquid phase part on the emission side, so the depth of the liquid phase part in the vertical pipe is Lvw as shown in FIG.
  • the liquid phase optical path length calculation unit 202 refers to the absorbance A and the pipe installation mode v / h, and calculates the length Lvw of the liquid phase part based on the formula (2) when the pipe is a vertical pipe. In the case of a horizontal pipe, the length Lhw of the liquid phase portion is calculated based on the equation (3).
  • the liquid phase optical path length calculation unit 202 refers to the pressure signal Sp from the pressure sensor 23 and substitutes it into the equations (2) and (3).
  • the temperature signal St from the temperature sensor 24 is referred to and substituted into the equations (2) and (3).
  • the length Lhw of the liquid phase part at the time of horizontal piping can be similarly modified.
  • the area calculation unit 203 calculates the area Sw of the liquid phase portion of the wet steam and the area Sa of the gas phase portion based on the optical path length Lw of the liquid phase portion of the wet steam and the shape of the pipe 20. Specifically, the area calculation unit 203 refers to the pipe installation mode v / h input as the pipe condition. When the pipe 20 is a vertical pipe, the area calculation unit 203 calculates the area Svw of the liquid phase portion of the wet steam based on the optical path length Lvw of the liquid phase portion of the wet steam and the pipe radius r ( 4) and the area Sva of the gas phase portion is calculated based on the formula (5).
  • a reflecting portion may be provided on the inner wall of the pipe 20 facing the entrance / exit opening A3.
  • the tip structure 15 When the pipe 20 is a vertical pipe, the tip structure 15 is inserted until the reflecting portion 16 comes into contact with the inner wall on the opposite side of the pipe 20 from the entrance / exit opening A3 as shown in FIG. At this time, the tip structure 15 is inserted perpendicularly to the wall surface of the pipe 20 so that the tip structure 15 passes through the axis C.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention addresses the problem of measuring appropriate dryness even when a pipe is inclined. A dryness measurement device is characterized by being provided with: a light incidence unit (11) which causes light to be incident along a light path (L) preset in a pipe (20) through which wet steam to be measured flows; a light reception unit (12) which detects the intensity of light transmitted through or reflected by the wet steam; and a dryness specification unit (100) which specifies the dryness of the detected wet steam on the basis of the detected light intensity, and characterized in that the light path (L) is set so as to pass a liquid-phase portion (w) flowing along the inner wall of the pipe (20) of the wet steam, the dryness specification unit (100) calculates the dryness of the wet steam on the basis of the detected light intensity (I), the areas (Sa/Sw) of a gas-phase portion and the liquid-phase portion of the wet steam which correspond to the light intensity (I), a speed difference (Δv) between the gas-phase portion and the liquid-phase portion of the wet steam, and a density difference (Δρ) between the gas-phase portion and the liquid-phase portion of the wet steam.

Description

乾き度測定装置Dryness measuring device
 本発明は湿り蒸気の測定装置に関する。 The present invention relates to a wet steam measuring device.
 水は沸点に達した後、水蒸気ガス(気相部分:飽和蒸気)と、水滴(液相部分:飽和水)とが混合した湿り蒸気となる。ここで、湿り蒸気に対する水蒸気ガスの重量比を、「乾き度」という。例えば、水蒸気ガスと水滴とが半分ずつ存在すれば、乾き度は0.5となる。また、水滴が存在せず、水蒸気ガスのみが存在する場合は、乾き度は1.0となる。熱交換器等において、湿り蒸気が保有する顕熱と潜熱とを有効に利用することや、水蒸気タービンにおいて、タービン翼の腐食を防止すること等の観点から、湿り蒸気の乾き度を1.0に近い状態にすることが望まれている。そのため、乾き度を測定する様々な方法が提案されている。 After water reaches the boiling point, it becomes wet steam in which water vapor gas (gas phase part: saturated steam) and water droplets (liquid phase part: saturated water) are mixed. Here, the weight ratio of the water vapor gas to the wet steam is referred to as “dryness”. For example, if water vapor gas and water droplets are present in half, the dryness is 0.5. Moreover, when there is no water droplet and only water vapor gas is present, the dryness is 1.0. In the heat exchanger or the like, the dryness of the wet steam is set to 1.0 from the viewpoint of effectively utilizing the sensible heat and latent heat possessed by the wet steam, and preventing the corrosion of the turbine blade in the steam turbine. It is desired to make the state close to. Therefore, various methods for measuring the dryness have been proposed.
 例えば、特許文献1記載の発明は、配管に設けられた圧力調節弁の前後で全エンタルピーに変化がないことを利用して、圧力調節弁の前後の湿り蒸気流量及び圧力に基づき、飽和蒸気表を用いて飽和水エンタルピーと飽和蒸気エンタルピーとを求めて、乾き度を算出する技術に関する。 For example, the invention described in Patent Document 1 utilizes the fact that there is no change in the total enthalpy before and after the pressure control valve provided in the pipe, and based on the wet steam flow and pressure before and after the pressure control valve, the saturated steam table It is related with the technique which calculates | requires saturated water enthalpy and saturated vapor | steam enthalpy using, and calculates dryness.
 また、特許文献2記載の発明は、乾き度を高速に測定するため、(a)湿り蒸気に光を照射する発光体と、(b)湿り蒸気を透過した光を受光する受光素子と、(c)湿り蒸気の温度又は圧力を測定する環境センサと、(d)湿り蒸気を透過した光の強度と、湿り蒸気の乾き度と、の関係を、温度又は圧力毎に保存する関係記憶部と、(e)受光素子による光の強度の測定値と、環境センサによる温度又は圧力の測定値と前記関係とに基づき、湿り蒸気の乾き度の値を特定する乾き度特定部とを備える乾き度測定装置に関する。 In addition, in order to measure the dryness at high speed, the invention described in Patent Document 2 includes (a) a light emitter that irradiates light to wet steam, (b) a light receiving element that receives light transmitted through the wet steam, and ( c) an environmental sensor that measures the temperature or pressure of the wet steam; and (d) a relation storage unit that stores the relationship between the intensity of light transmitted through the wet steam and the dryness of the wet steam for each temperature or pressure. (E) a dryness degree provided with a dryness specifying unit for specifying a dryness value of wet steam based on a measured value of light intensity by a light receiving element, a measured value of temperature or pressure by an environmental sensor, and the relationship It relates to a measuring device.
特開平8-312908号公報JP-A-8-312908 特開2013-092457号公報JP 2013-092457 A
 上記特許文献1や特許文献2に記載された発明は、配管の中を流れる湿り蒸気が均一の密度で分布していることを理論的な前提として湿り蒸気の乾き度を演算により測定している。しかしながら、本願発明者が実際に配管を流れる湿り蒸気の状態と測定される乾き度との関係を鋭意検証したところ、配管が敷設される向きによっては、湿り蒸気が配管内で均一な分布をしておらず、特定の部位における湿り蒸気の状態に基づいて演算された乾き度が、湿り蒸気全体の適正な乾き度を代表していないという問題があることを見いだした。 The inventions described in Patent Document 1 and Patent Document 2 measure the wetness of wet steam by calculation on the theoretical premise that the wet steam flowing in the pipe is distributed at a uniform density. . However, the present inventor has intensively verified the relationship between the state of wet steam actually flowing through the pipe and the measured dryness, and depending on the direction in which the pipe is laid, the wet steam has a uniform distribution in the pipe. However, it was found that the dryness calculated based on the state of the wet steam in a specific part does not represent the proper dryness of the entire wet steam.
 例えば、水平方向に敷設された配管では、湿り蒸気に働く重力のため、配管の鉛直方向下部では湿り蒸気の一部が液相化して流れるため、低めの乾き度が測定される。それに対して配管の鉛直方向上部では、相対的に密度が低くなった湿り蒸気が流れるため、高めの乾き度が測定されるのである。 For example, in a pipe laid in a horizontal direction, due to the gravity acting on the wet steam, a part of the wet steam flows in a liquid phase at the lower part in the vertical direction of the pipe, so a low dryness is measured. On the other hand, since the wet steam having a relatively low density flows in the upper part in the vertical direction of the pipe, a higher dryness is measured.
 そこで、本願発明は、配管の向きに応じた適正な乾き度を測定することを課題の1つとする。 Therefore, an object of the present invention is to measure an appropriate dryness according to the direction of piping.
 本願発明者は、配管の向きに応じて変化する湿り蒸気の気相部分および液相部分の分布状況や気相部分と液相部分との速度差や密度差の変動と、正しい乾き度の関係とを鋭意研究したところ、本発明は以下の手段を備えることにより、上記問題を克服し上記課題を解決することに想到した。 The inventor of the present application describes the relationship between the distribution of the vapor phase and liquid phase portions of the wet steam that changes according to the direction of the piping, the speed difference and density difference between the gas phase portion and the liquid phase portion, and the correct dryness As a result of intensive research, the present invention has been conceived to overcome the above problems and solve the above problems by including the following means.
 (1)本発明の乾き度測定装置は、測定対象の湿り蒸気が流れる配管に予め設定した光経路に沿って光を入射させる光入射部と、前記湿り蒸気を透過または反射した光の強度を検出する受光部と、検出された前記光の強度に基づいて前記湿り蒸気の乾き度を特定する乾き度特定部と、を備え、前記光経路は、前記配管の内壁に沿って流れる前記湿り蒸気の液相部分を通るように設定されており、前記乾き度特定部は、検出された前記光の強度、当該光の強度に対応する前記湿り蒸気の気相部分の面積および液相部分の面積、前記湿り蒸気の前記気相部分と前記液相部分との流速差、並びに前記湿り蒸気の前記気相部分と前記液相部分との密度差に基づいて、前記湿り蒸気の乾き度を演算する。 (1) The dryness measuring apparatus according to the present invention includes a light incident part that allows light to be incident on a pipe through which wet steam to be measured flows along a preset optical path, and an intensity of light transmitted or reflected by the wet steam. A light receiving unit for detecting; and a dryness specifying unit for specifying the dryness of the wet steam based on the detected light intensity, wherein the wet path flows along the inner wall of the pipe. The dryness specifying unit is configured to detect the intensity of the detected light, the area of the gas phase part of the wet steam corresponding to the intensity of the light, and the area of the liquid phase part. The dryness of the wet steam is calculated based on the flow rate difference between the gas phase part and the liquid phase part of the wet steam and the density difference between the gas phase part and the liquid phase part of the wet steam. .
 また本発明の乾き度測定方法は、測定対象の湿り蒸気が流れる配管に予め設定した光経路であって、前記配管の内壁に沿って流れる前記湿り蒸気の液相部分を通るように設定された光経路に沿って光を入射させる工程と、前記湿り蒸気を透過または反射した光の強度を検出する工程と、検出された前記光の強度に基づいて前記湿り蒸気の乾き度を特定する工程と、を備え、前記湿り蒸気の乾き度を特定する工程は、検出された前記光の強度、当該光の強度に対応する前記湿り蒸気の気相部分の面積および液相部分の面積、前記湿り蒸気の前記気相部分と前記液相部分との流速度差、並びに前記前記湿り蒸気の前記気相部分と前記液相部分との密度差に基づいて、前記湿り蒸気の乾き度を演算する。 The dryness measuring method of the present invention is an optical path set in advance in a pipe through which wet steam to be measured flows, and is set to pass through the liquid phase portion of the wet steam flowing along the inner wall of the pipe. A step of causing light to enter along a light path, a step of detecting the intensity of light transmitted or reflected through the wet vapor, and a step of determining the dryness of the wet vapor based on the detected intensity of the light; And the step of specifying the dryness of the wet steam comprises the detected intensity of the light, the area of the gas phase portion and the area of the liquid phase portion of the wet steam corresponding to the intensity of the light, the wet steam The wet steam dryness is calculated based on the flow velocity difference between the gas phase portion and the liquid phase portion and the density difference between the gas phase portion and the liquid phase portion of the wet steam.
 本発明は、所望により、以下の構成を備えていてもよい。
 (2)上記(1)において、前記光経路は、前記配管の軸芯を含む鉛直面に沿って設定されていること。
The present invention may have the following configuration as desired.
(2) In the above (1), the optical path is set along a vertical plane including the axis of the pipe.
 (3)上記(1)または(2)において、前記光経路は、前記湿り蒸気の気相部分と前記湿り蒸気の液相部分とを通過するように設定されていること。 (3) In the above (1) or (2), the optical path is set so as to pass through the vapor phase portion of the wet vapor and the liquid phase portion of the wet vapor.
 (4)上記(1)において、前記光経路は、前記配管が縦配管である場合には、水平面に沿って設定されていること。 (4) In the above (1), the light path is set along a horizontal plane when the pipe is a vertical pipe.
 (5)上記(1)~(4)のいずれかにおいて、前記乾き度特定部は、前記配管の軸方向が鉛直方向か水平方向成分を含むかに応じて、前記光の強度に対する前記湿り蒸気の前記気相部分および前記液相部分の面積を演算するための関係式を変更すること。 (5) In any one of the above (1) to (4), the dryness specifying unit determines whether the wet steam with respect to the light intensity depends on whether the axial direction of the pipe includes a vertical direction or a horizontal direction component. Changing the relational expression for calculating the areas of the gas phase portion and the liquid phase portion.
 (6)上記(1)~(5)のいずれかにおいて、前記湿り蒸気の圧力および/または温度を検出する環境センサを備え、前記光の強度に対応する前記湿り蒸気の気相部分および液相部分の面積は、前記湿り蒸気の圧力および/または温度をパラメータとして演算するように構成されており、前記乾き度特定部は、検出された前記圧力および/または温度に対応させて、前記湿り蒸気の乾き度を特定すること。 (6) In any one of the above (1) to (5), an environmental sensor for detecting the pressure and / or temperature of the wet steam is provided, and the gas phase portion and the liquid phase of the wet steam corresponding to the intensity of the light The area of the portion is configured to calculate the pressure and / or temperature of the wet steam as a parameter, and the dryness specifying unit corresponds to the detected pressure and / or temperature, and the wet steam Identify the dryness of the.
 (7)上記(1)~(6)のいずれかにおいて、前記湿り蒸気の液相部分を通る前記光を反射する反射部を備え、前記反射部は、反射した前記光が前記受光部に入射するように前記配管の内壁に設けられること。 (7) In any one of the above (1) to (6), a reflection part that reflects the light passing through the liquid phase part of the wet steam is provided, and the reflection part is incident on the light receiving part. To be provided on the inner wall of the pipe.
 (8)上記(1)~(7)のいずれかにおいて、前記光は、前記湿り蒸気の液相部分に対する吸収が相対的に大きい第1の波長を有すること。 (8) In any one of the above (1) to (7), the light has a first wavelength that has a relatively large absorption in the liquid phase portion of the wet vapor.
 (9)上記(8)において、前記湿り蒸気の気相部分に対する吸収が相対的に大きい第2の波長を有する参照光をさらに用いること。 (9) In the above (8), further using a reference light having a second wavelength in which the absorption of the wet vapor in the gas phase portion is relatively large.
 (10)上記(8)または(9)において、前記湿り蒸気の気相部分および気相部分に対する吸収が相対的に小さい第3の波長を有する参照光をさらに用いること。 (10) In the above (8) or (9), further using a reference light having a third wavelength in which the absorption of the wet vapor with respect to the gas phase portion and the gas phase portion is relatively small.
 本発明によれば、配管の向きに伴う湿り蒸気の気相部分および液相部分の分布状況の変動が考慮されるので、配管の向きに応じて乾き度を正しく測定することが可能である。 According to the present invention, since fluctuations in the distribution state of the vapor phase and the liquid phase of the wet steam accompanying the direction of the pipe are taken into account, it is possible to correctly measure the dryness according to the direction of the pipe.
本発明の実施形態1に係る乾き度測定装置の構成を説明する模式図。The schematic diagram explaining the structure of the dryness measuring apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る乾き度特定部の機能ブロック図。The functional block diagram of the dryness specific | specification part which concerns on Embodiment 1 of this invention. 縦配管における湿り蒸気の乾き度測定のための光経路を説明する断面図。Sectional drawing explaining the optical path for the dryness measurement of the wet steam in a vertical pipe. 横配管における湿り蒸気の乾き度測定のための光経路を説明する断面図。Sectional drawing explaining the optical path for the dryness measurement of the wet steam in a horizontal piping. 本発明の実施形態2に係る乾き度測定装置の構成を説明する模式図。The schematic diagram explaining the structure of the dryness measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る乾き度測定装置の光入射部の先端拡大斜視図。The front-end | tip enlarged perspective view of the light-incidence part of the dryness measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る乾き度測定装置の縦配管測定時の設置図。The installation figure at the time of vertical piping measurement of the dryness measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る乾き度測定装置の横配管測定時の設置図。The installation figure at the time of horizontal piping measurement of the dryness measuring apparatus which concerns on Embodiment 2 of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施例を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. In other words, the present invention can be implemented with various modifications (combining the embodiments, etc.) without departing from the spirit of the present invention. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings.
 (定義)
 本明細書で使用する主たる用語を以下のとおりに定義する。
 「蒸気」:各実施形態では、水蒸気のことを意味するが、気相部分と液相部分との二相状態となる物質の蒸気であればよく、水蒸気に限定されない。
 「湿り蒸気」:気相部分と液相部分を含む蒸気全体をいう。
 「乾き度」:湿り蒸気全体に対する気相部分の重量割合のことをいう。乾き度[%]=100[%]-湿り度[%]の関係がある。
 「光の強度」(光強度):光(電磁波)の強さを表す物理量をいい、その称呼や単位に限定はない。例えば、放射強度、光度、光量子束密度など、それぞれ単位が異なるが相互に換算可能な物理量である。
(Definition)
The main terms used in this specification are defined as follows.
“Vapor”: In each embodiment, it means water vapor, but it is not limited to water vapor as long as it is a vapor of a substance that is in a two-phase state of a gas phase portion and a liquid phase portion.
“Wet steam”: refers to the entire steam including a gas phase portion and a liquid phase portion.
“Dryness”: The weight ratio of the gas phase part to the whole wet steam. There is a relationship of dryness [%] = 100 [%] − wetness [%].
“Light intensity” (light intensity): A physical quantity indicating the intensity of light (electromagnetic wave), and there is no limitation on its name or unit. For example, these are physical quantities that are mutually different but can be converted into each other, such as radiation intensity, luminous intensity, and photon flux density.
 「縦配管」:配管の軸方向が鉛直方向に平行となるように設置された配管部分をいう。「縦配管」では、内部を流れる湿り蒸気の液相部分が重力により配管断面で一方向に偏ることなく均一に分布するような状態となる。 “Vertical piping”: A piping part installed so that the axial direction of the piping is parallel to the vertical direction. In the “vertical pipe”, the liquid phase portion of the wet steam flowing inside is in a state of being uniformly distributed without being biased in one direction on the pipe cross section due to gravity.
 「横配管」:配管の軸方向の投射影が水平方向成分を有するように設置された配管部分をいい、配管の軸方向が水平方向に平行となる場合のほか、水平面と一定の角度θ(0<θ<90°)となるように設置される場合を含む。「横配管」では、内部を流れる湿り蒸気の液相部分が重力により配管断面で一方向に偏って分布するような状態となる。 “Horizontal piping”: A pipe part installed so that the projected shadow in the axial direction of the pipe has a horizontal component. In addition to the case where the axial direction of the pipe is parallel to the horizontal direction, a certain angle θ ( It includes the case where it is installed so that 0 <θ <90 °). In the “horizontal piping”, the liquid phase portion of the wet steam flowing inside is in a state of being distributed in one direction in the piping cross section due to gravity.
 (実施形態1)
 本実施形態1は、湿り蒸気用配管を貫通するように測定用の光経路を設けた乾き度測定装置に関する。
(Embodiment 1)
The first embodiment relates to a dryness measuring apparatus provided with an optical path for measurement so as to penetrate a wet steam pipe.
 (ハードウェア構成)
 図1に、本発明の実施形態1に係る乾き度測定装置の構成を説明する模式断面図を示す。図1に示すように、湿り蒸気用配管20は、測定対象の湿り蒸気を流通させる流体流通路であり、配管20内に光を透過させるための光経路Lが設けられている。特に実施形態1では、配管20の内壁に入射開口A1および射出開口A2が設けられている。入射開口A1と射出開口A2とは、配管20の軸芯に対して対向した位置に設けられている。入射開口A1には入射側筒21が接続されており、射出開口A2には射出側筒22が設けられている。上記構成により、湿り蒸気の乾き度測定用の光経路Lが配管20を貫通するように設けられている。
(Hardware configuration)
In FIG. 1, the schematic cross section explaining the structure of the dryness measuring apparatus which concerns on Embodiment 1 of this invention is shown. As shown in FIG. 1, the wet steam pipe 20 is a fluid flow path through which the wet steam to be measured flows, and an optical path L for allowing light to pass through the pipe 20 is provided. Particularly in the first embodiment, the entrance opening A1 and the exit opening A2 are provided on the inner wall of the pipe 20. The entrance opening A1 and the exit opening A2 are provided at positions facing the axis of the pipe 20. An incident side cylinder 21 is connected to the incident opening A1, and an emission side cylinder 22 is provided at the emission opening A2. With the above configuration, the light path L for measuring the wetness of wet steam is provided so as to penetrate the pipe 20.
 次に、実施形態1に係る乾き度測定装置1aの構成を説明する。図1に示すように、実施形態1に係る乾き度測定装置1aは、光入射部11、受光部12、コンピュータ装置100(乾き度特定部200)を備えている。 Next, the configuration of the dryness measuring apparatus 1a according to the first embodiment will be described. As shown in FIG. 1, the dryness measuring apparatus 1a according to the first embodiment includes a light incident unit 11, a light receiving unit 12, and a computer device 100 (dryness specifying unit 200).
 光入射部11は、測定対象の湿り蒸気が流れる配管20に予め設定した光経路Lに沿って光を入射させる。具体的に、光入射部11は、入射側筒21を通って入射開口A1から配管20の中へ所定の波長の光を入射させる。光入射部11は、自ら光を発生させる自発光手段であっても、離間地の発光手段から発せられた光を導入する導光手段であってもよい。自発光手段としては、例えば、発光ダイオード、スーパールミネッセントダイオード、半導体レーザ、レーザ発振器、蛍光放電管、低圧水銀灯、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線光源、赤外線光源、及び電球等が例示できるが、安定した波長および強度を有する光を発生可能な手段であれば、上記に限定されない。導光手段としては、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び石英ガラスからなるガラス光ファイバ等が例示できるが、上記に例示したような自発光手段が発した光を伝播させる機能があれば、これに限定されない。 The light incident unit 11 causes light to be incident along a preset light path L to the pipe 20 through which the wet steam to be measured flows. Specifically, the light incident portion 11 causes light having a predetermined wavelength to enter the pipe 20 from the incident opening A <b> 1 through the incident side tube 21. The light incident part 11 may be a self-light emitting means for generating light itself or a light guiding means for introducing light emitted from a light emitting means at a remote place. Examples of self-light emitting means include light emitting diodes, superluminescent diodes, semiconductor lasers, laser oscillators, fluorescent discharge tubes, low pressure mercury lamps, xenon lamps, halogen lamps, metal halide lamps, ultraviolet light sources, infrared light sources, and light bulbs. However, the present invention is not limited to the above as long as it can generate light having a stable wavelength and intensity. Examples of the light guide means include a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methyl methacrylate)), a glass optical fiber made of quartz glass, and the like. The present invention is not limited to this as long as it has a function of propagating emitted light.
 受光部12は、湿り蒸気を透過した光の強度を検出する光検出手段である。具体的には、受光部12は、光経路Lに沿って湿り蒸気を通過し、射出開口A2から射出側筒22を通って射出された光を受けて、光の強度に対応した光強度信号Sdを出力する。受光部12としては、例えば、フォトダイオード、フォトトランジスタ等の光電変換素子を使用可能であるが、湿り蒸気を透過した光の強度に応じた光強度信号Sdを出力可能であれば、これに限定されない。 The light receiving unit 12 is a light detection unit that detects the intensity of light transmitted through the wet steam. Specifically, the light receiving unit 12 receives light emitted from the emission opening A2 through the emission side tube 22 through the wet vapor along the light path L, and receives a light intensity signal corresponding to the intensity of the light. Sd is output. As the light receiving unit 12, for example, a photoelectric conversion element such as a photodiode or a phototransistor can be used. However, the light receiving unit 12 is limited to this as long as the light intensity signal Sd corresponding to the intensity of the light transmitted through the wet steam can be output. Not.
 乾き度測定装置1aは、所望により、環境センサとして、圧力センサ23および温度センサ24のいずれか一方または双方を備えていてもよい。圧力センサ23は、配管20の内部圧力pを検出し、圧力信号Spを乾き度特定部200へ出力する。温度センサ24は、配管20の内部温度tを検出し、温度信号Stを乾き度特定部200へ出力する。 The dryness measuring apparatus 1a may include one or both of the pressure sensor 23 and the temperature sensor 24 as an environmental sensor as desired. The pressure sensor 23 detects the internal pressure p of the pipe 20 and outputs a pressure signal Sp to the dryness specifying unit 200. The temperature sensor 24 detects the internal temperature t of the pipe 20 and outputs a temperature signal St to the dryness specifying unit 200.
 コンピュータ装置100は、検出された光の強度に基づいて湿り蒸気の乾き度を特定する、本発明の乾き度特定部200として機能する演算手段である。コンピュータ装置100は、一例として、CPU(Central Processing Unit:中央演算装置)101、RAM(Random Access Memory)102、ROM(Read Only Memory)103、およびインターフェース(I/F)回路104を備える。コンピュータ装置100には、例えば、キーボード、タッチパネル等の入力装置105、ディスプレイ、プリンタ等の出力装置106、および外部記憶装置300が接続される。外部記憶装置300には、例えば、コンピュータ装置100に本発明に係る乾き度測定方法を実行させるためのソフトウェアプログラムが記憶されているほか、本発明に係る配管条件を記憶する配管条件記憶部301が設けられている。コンピュータ装置100は、外部記憶装置300等に記憶されている本発明に係る乾き度測定方法に係るソフトウェアプログラムをRAM102に読み込んで実行することにより、乾き度特定部200が機能的に実現される。 The computer apparatus 100 is a computing means that functions as the dryness specifying unit 200 of the present invention that specifies the dryness of the wet steam based on the detected light intensity. As an example, the computer apparatus 100 includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102, a ROM (Read Only Memory) 103, and an interface (I / F) circuit 104. For example, an input device 105 such as a keyboard and a touch panel, an output device 106 such as a display and a printer, and an external storage device 300 are connected to the computer device 100. The external storage device 300 stores, for example, a software program for causing the computer device 100 to execute the dryness measurement method according to the present invention, and a piping condition storage unit 301 that stores the piping conditions according to the present invention. Is provided. The computer device 100 functionally implements the dryness specifying unit 200 by reading the software program related to the dryness measurement method according to the present invention stored in the external storage device 300 or the like into the RAM 102 and executing it.
 配管条件記憶部301には、一例として、配管設置モードv/h、配管半径r、流速差Δv、密度差Δρが配管条件として格納されている。「配管設置モードv/h」は、配管20が縦配管vであるか横配管hであるかを示す情報である。「配管半径r」は、配管20の内径の半径である。「流速差Δv」は、縦配管であるか横配管であるかに応じて定まる、湿り蒸気の気相部分の流速と液相部分の流速との差分である。「密度差Δρ」は、縦配管であるか横配管であるかに応じて定まる、湿り蒸気の気相部分の密度と液相部分の密度との差分である。 As an example, the piping condition storage unit 301 stores piping installation mode v / h, piping radius r, flow velocity difference Δv, and density difference Δρ as piping conditions. “Piping installation mode v / h” is information indicating whether the pipe 20 is a vertical pipe v or a horizontal pipe h. “Pipe radius r” is the radius of the inner diameter of the pipe 20. The “flow velocity difference Δv” is a difference between the flow velocity of the vapor phase portion of the wet steam and the flow velocity of the liquid phase portion, which is determined depending on whether the pipe is a vertical pipe or a horizontal pipe. The “density difference Δρ” is a difference between the density of the vapor phase portion of the wet steam and the density of the liquid phase portion, which is determined depending on whether the pipe is a vertical pipe or a horizontal pipe.
 (機能ブロック)
 図2に、乾き度特定部200の機能ブロック図を示す。乾き度特定部200は、検出された光の強度Io、当該光の強度Ioに対応する湿り蒸気の気相部分の面積Saおよび液相部分の面積Sw、湿り蒸気の気相部分と液相部分との速度差Δ、並びに湿り蒸気の気相部分と液相部分との密度差Δρに基づいて、湿り蒸気の乾き度χを演算するように構成されている。
(Function block)
In FIG. 2, the functional block diagram of the dryness specific | specification part 200 is shown. The dryness specifying unit 200 includes the detected light intensity Io, the area Sa and the liquid phase area Sw of the wet vapor corresponding to the light intensity Io, and the vapor phase and liquid phase parts of the wet vapor. And the density difference Δρ between the gas phase portion and the liquid phase portion of the wet steam, and the dryness χ of the wet steam is calculated.
 具体的に、乾き度特定部200は、図2に示すように、吸光度演算部201、液相光路長演算部202、面積演算部203、および乾き度演算部204を機能的に備えている。 Specifically, as shown in FIG. 2, the dryness specifying unit 200 functionally includes an absorbance calculating unit 201, a liquid phase optical path length calculating unit 202, an area calculating unit 203, and a dryness calculating unit 204.
 吸光度演算部201は、光強度信号Sdを参照して光の強度Iを検出し、光射出部11から出力される原光強度Ioを参照して湿り蒸気の吸光度Aを演算する。 The absorbance calculation unit 201 detects the light intensity I with reference to the light intensity signal Sd, and calculates the absorbance A of the wet steam with reference to the original light intensity Io output from the light emitting unit 11.
 液相光路長演算部202は、吸光度Aに基づいて、配管20の光経路Lに沿った湿り蒸気の液相部分の長さLwを演算する。圧力信号Spおよび/または温度信号Stを入力している場合には、液相光路長演算部202は、選択的に、吸光度Aに加えて、圧力信号Spの示す内部圧力pおよび/または温度信号Stの示す内部温度tをパラメータとして、液相部分の光路長Lwを演算する。 The liquid phase optical path length calculation unit 202 calculates the length Lw of the liquid phase part of the wet steam along the optical path L of the pipe 20 based on the absorbance A. When the pressure signal Sp and / or the temperature signal St are input, the liquid phase optical path length calculation unit 202 selectively selects the internal pressure p and / or temperature signal indicated by the pressure signal Sp in addition to the absorbance A. The optical path length Lw of the liquid phase portion is calculated using the internal temperature t indicated by St as a parameter.
 面積演算部203は、湿り蒸気の液相部分の光路長Lwと配管20の形状とに基づいて湿り蒸気の液相部分の面積Swと気相部分の面積Saとを演算する。具体的には、面積演算部203は、配管条件として入力された配管設置モードv/hを参照して、配管20が縦配管であるか横配管であるかに応じて異なる演算式を参照し、湿り蒸気の液相部分の光路長Lwと配管条件として入力された配管半径rとに基づいて、湿り蒸気の液相部分の面積Swおよび気相部分の面積Saを演算する。 The area calculation unit 203 calculates the area Sw of the liquid phase part of the wet steam and the area Sa of the gas phase part based on the optical path length Lw of the liquid phase part of the wet steam and the shape of the pipe 20. Specifically, the area calculation unit 203 refers to the pipe installation mode v / h input as the pipe condition, and refers to a different calculation formula depending on whether the pipe 20 is a vertical pipe or a horizontal pipe. Based on the optical path length Lw of the liquid phase portion of the wet steam and the pipe radius r input as the piping condition, the area Sw of the liquid phase portion of the wet steam and the area Sa of the gas phase portion are calculated.
 乾き度演算部204は、配管条件として入力された流速差Δvおよび密度差Δρを参照して、演算された湿り蒸気の液相部分の面積Swおよび気相部分の面積Saに基づいて、乾き度χを演算する。 The dryness calculation unit 204 refers to the flow rate difference Δv and the density difference Δρ input as the piping conditions, and based on the calculated area Sw of the liquid phase portion of the wet steam and the area Sa of the gas phase portion, the dryness degree Calculate χ.
 (配管の向きと湿り蒸気の気相部分および液相部分の分布の関係)
 次に、配管の向きに応じた湿り蒸気の気相部分および液相部分の分布状況の変化を説明する。図3は、縦配管における湿り蒸気の乾き度測定のための光経路を説明する断面図である。図4は、横配管における湿り蒸気の乾き度測定のための光経路を説明する断面図である。以下、特に断りがない限り、配管20は、軸芯Cを中心とした、空間的に対称的な円筒形状を有するものとする。
(Relationship between the direction of piping and the distribution of gas phase and liquid phase of wet steam)
Next, the change in the distribution state of the vapor phase portion and the liquid phase portion of the wet steam according to the direction of the piping will be described. FIG. 3 is a cross-sectional view illustrating an optical path for measuring dryness of wet steam in a vertical pipe. FIG. 4 is a cross-sectional view illustrating an optical path for measuring wet steam dryness in a horizontal pipe. Hereinafter, unless otherwise specified, the pipe 20 has a spatially symmetrical cylindrical shape with the axis C as the center.
 配管の内部を流れる湿り蒸気については、従来、内壁に沿って液相流が生じることは知られていたが、配管が縦配管であるか横配管であるかで、湿り蒸気の気相部分と液相部分との分布がどのように変化するかは湿り蒸気の測定上、影響が大きいものとしては意識されていなかった。 Conventionally, it has been known that a liquid phase flow occurs along the inner wall of the wet steam flowing inside the pipe, but depending on whether the pipe is a vertical pipe or a horizontal pipe, How the distribution with the liquid phase part changed was not recognized as having a great influence on the measurement of wet steam.
 本願発明者は、配管が縦配管か横配管かで湿り蒸気の気相部分および液相部分の分布状況が大きく変化して、この分布状況の変化が湿り蒸気の気相部分と液相部分との流速差や密度差に影響することを突き止めた。湿り蒸気の気相部分と液相部分との流速差や密度差の変動は、湿り蒸気の乾き度の演算結果に直接的な影響を与える。このことから、本願発明者は、配管が縦配管であるか横配管であるかに応じて、湿り蒸気の演算式や係数を変更しなければならないことに想到したのである。 The inventor of the present application greatly changes the distribution state of the vapor phase and the liquid phase part of the wet steam depending on whether the pipe is a vertical pipe or a horizontal pipe. It has been found that it affects the flow velocity difference and density difference. Variations in the flow velocity difference and density difference between the vapor phase portion and the liquid phase portion of the wet steam directly affect the calculation result of the dryness of the wet steam. From this, the inventor of the present application has conceived that the calculation formula and coefficient of the wet steam must be changed depending on whether the pipe is a vertical pipe or a horizontal pipe.
 配管20が縦配管である場合、配管の軸方向が鉛直方向に平行であるため、配管20の内部を流れる湿り蒸気は、図3に示すように、配管20の内部にほぼ均一に分布する。湿り蒸気が液相部分と気相部分とに分離している場合には、配管20の内壁に沿って液相部分の層ができる。液相部分は、その表面が波立っており、配管20の内壁から液相部分の表面までの高さ(液相部分の深さ)は変化するが、話を簡単にするため、波の山と谷とを平均した一定の高さLvwを有するものと仮定する。 When the pipe 20 is a vertical pipe, the axial direction of the pipe is parallel to the vertical direction, so that the wet steam flowing inside the pipe 20 is distributed almost uniformly inside the pipe 20 as shown in FIG. When wet steam is separated into a liquid phase portion and a gas phase portion, a layer of the liquid phase portion is formed along the inner wall of the pipe 20. The surface of the liquid phase portion is undulating, and the height from the inner wall of the pipe 20 to the surface of the liquid phase portion (depth of the liquid phase portion) changes. And a constant height Lvw averaged over the valleys.
 縦配管では、配管20の断面で湿り蒸気に偏りが生じないので、湿り蒸気の乾き度を測定するための光経路の設定方向に特に限定はない。したがって、図3に示されるように、従来どおり、水平面に沿って、すなわち、配管20の軸方向に垂直となるように、湿り蒸気の乾き度測定用の光経路Lを設定すればよい。 In the vertical piping, there is no particular limitation on the direction of setting the optical path for measuring the dryness of the wet steam because the wet steam is not biased in the cross section of the pipe 20. Therefore, as shown in FIG. 3, the light path L for measuring the wetness dryness may be set along the horizontal plane, that is, perpendicular to the axial direction of the pipe 20, as in the past.
 配管20が横配管である場合、配管の軸方向の水平面への投射影に水平方向成分を含む。配管20の内部を流れる湿り蒸気は、重力の作用によって比重の大きな液相部分が集まり、図4に示すように、配管20の内壁のうち重力方向下側に偏って分布することになる。横配管である場合も、液相部分の表面は波立っており、配管20の内壁から液相部分の表面までの高さ(液相部分の深さ)は変化する。話を簡単にするため、横配管である場合の液相部分の波の山と谷とを平均した一定の高さLhwと仮定する。 When the pipe 20 is a horizontal pipe, a horizontal component is included in the projection shadow on the horizontal plane in the axial direction of the pipe. The wet steam flowing inside the pipe 20 gathers a liquid phase part having a large specific gravity by the action of gravity, and as shown in FIG. Even in the case of a horizontal pipe, the surface of the liquid phase portion is rippled, and the height from the inner wall of the pipe 20 to the surface of the liquid phase portion (depth of the liquid phase portion) changes. For the sake of simplicity, it is assumed that the wave height and the valley of the liquid phase portion in the case of a horizontal pipe are a constant height Lhw.
 横配管では、配管20の断面で湿り蒸気の分布に偏りが生じている。相対的に比重の大きい液相部分は重力方向下方に偏り、比重の小さい気相部分は重力方向上方に偏って分布する。気相部分の中でも、重力方向下方になるほど密度が高く、重力方向上方になるほど密度が低くなるように分布する。湿り蒸気の乾き度は、湿り蒸気中を通過し、または、反射する光の強度に基づいて測定するものであり、通過または反射する光の強度は、水分子の密度が高いほど、低くなるものである。したがって、横配管では、湿り蒸気の乾き度を測定するための光経路をどのような方向に設定するかで、異なる乾き度が測定されてしまう。例えば、湿り蒸気の乾き度測定用の光を気相部分のみ通過するように設定したのでは、相対的に密度の低い水分子の層を主として光が通過することになるため、湿り蒸気の乾き度が本来の正しい値より高く(1に近く)測定されてしまう。一方、湿り蒸気の乾き度測定用の光を液相部分のみを通過するように設定したのでは、相対的に密度の高い水分子の層を主として光が通過することになるため、湿り蒸気の乾き度が本来の正しい値より低く(0に近く)測定されてしまう。さらに、縦配管では、配管20の軸に垂直な面に沿う経路であれば、いずれの方向に光経路Lを設定してもよかったが、横配管の場合には、鉛直方向に沿って湿り蒸気の水分子の密度が異なるため、光経路の設定に留意する必要がある。配管20の軸に垂直な経路であっても、水平面に平行な方向に光経路を設定したのでは、測定される乾き度が、湿り蒸気全体の代表値(平均値)となっていない可能性がある。 In the horizontal piping, the distribution of the wet steam is uneven in the section of the piping 20. A liquid phase portion having a relatively large specific gravity is biased downward in the gravity direction, and a gas phase portion having a small specific gravity is biased upward in the gravity direction. In the gas phase portion, the density is higher as it is lower in the direction of gravity, and the density is lower as it is higher in the direction of gravity. The dryness of wet steam is measured based on the intensity of light that passes through or reflects in wet steam, and the intensity of light that passes or reflects decreases as the density of water molecules increases. It is. Therefore, in the horizontal pipe, different dryness is measured depending on in which direction the light path for measuring the dryness of the wet steam is set. For example, if light for wetness dryness measurement is set to pass only in the gas phase, light passes mainly through a layer of water molecules with relatively low density. The degree is measured higher than the correct value (close to 1). On the other hand, if the light for measuring the dryness of the wet steam is set so as to pass only through the liquid phase part, the light mainly passes through the layer of water molecules having a relatively high density. The dryness is measured lower than the original correct value (close to 0). Furthermore, in the vertical pipe, the light path L may be set in any direction as long as the path is along a plane perpendicular to the axis of the pipe 20, but in the case of a horizontal pipe, wet steam is formed along the vertical direction. Since the water molecules have different densities, it is necessary to pay attention to the setting of the optical path. Even if the path is perpendicular to the axis of the pipe 20, if the optical path is set in a direction parallel to the horizontal plane, the measured dryness may not be the representative value (average value) of the entire wet steam. There is.
 そこで、円筒形状の配管20が横配管である場合には、図4に示すように、配管20の内壁に沿って流れる湿り蒸気の液相部分を通過するように光経路Lを設定すべきである。例えば、図4のように配管20が軸対称な円筒形状を有している場合であれば、配管20の軸芯Cを含む鉛直面に沿って光経路Lを設定することになる。湿り蒸気の液相部分を通るように光経路Lが設定されていれば、湿り蒸気測定用の光が湿り蒸気の最も密度の高い部分を通過することになるため、測定される湿り蒸気の乾き度は湿り蒸気の正しい乾き度と等しいものとなると考えられるからである。 Therefore, when the cylindrical pipe 20 is a horizontal pipe, the optical path L should be set so as to pass through the liquid phase portion of the wet steam flowing along the inner wall of the pipe 20 as shown in FIG. is there. For example, if the pipe 20 has an axisymmetric cylindrical shape as shown in FIG. 4, the light path L is set along a vertical plane including the axis C of the pipe 20. If the light path L is set so as to pass through the liquid phase part of the wet steam, the light for measuring the wet steam passes through the densest part of the wet steam. This is because the degree is considered to be equal to the correct dryness of wet steam.
 言い換えると、横配管では、湿り蒸気の気相部分の最も密度の低い部分と湿り蒸気の液相部分の最深部とを通過するように、湿り蒸気測定用の光経路Lを設定することが好ましい。配管の断面形状が真円ではない場合、すなわち配管が軸対称な円柱形状を有していないような場合、軸芯を通る鉛直面が必ずしも最も密度の低い部分と最も密度の高い部分とを通過するとは限らない。液相部分の最深部は、液相状態の飽和水が最も早く溜まりやすい部分であり、最も密度が高くなる部分でもある。よって、配管が軸に対して対称的ではない形状を有している場合でも、その配管の気相部分の最も密度の低い部分と液相部分の最深部とを通過するようになっていれば、その光経路で測定される乾き度は、湿り蒸気の正しい乾き度を表しているものと考えられるからである。 In other words, in the horizontal pipe, it is preferable to set the optical path L for measuring wet steam so as to pass through the portion having the lowest density of the vapor phase portion of the wet steam and the deepest portion of the liquid phase portion of the wet steam. . If the cross-sectional shape of the pipe is not a perfect circle, that is, if the pipe does not have an axisymmetric cylindrical shape, the vertical plane that passes through the axis always passes through the lowest density part and the highest density part. Not always. The deepest part of the liquid phase part is a part where saturated liquid water is most likely to be accumulated earliest and is also a part where the density is highest. Therefore, even when the pipe has a shape that is not symmetric with respect to the axis, the pipe must pass through the lowest density portion of the gas phase portion and the deepest portion of the liquid phase portion of the pipe. This is because the dryness measured in the light path is considered to represent the correct dryness of the wet steam.
 (動作)
 次に図1および図2を参照しながら、本実施形態1に係る乾き度測定装置1aの動作を説明する。以下の演算内容は例示であって、公知の方法を種々に適用可能であり、本発明を限定するものではない。当該技術分野の技術常識、例えば、流体の流れを記述する基礎方程式であるナビエ・ストークス方程式を解くことによって導きだせる関係式や、検出される光の強度と理論的乾き度との関係を実験的に示した関係テーブルを用いて、乾き度を演算・測定することも可能である。
(Operation)
Next, the operation of the dryness measuring apparatus 1a according to the first embodiment will be described with reference to FIGS. The following calculation contents are merely examples, and various known methods can be applied, and the present invention is not limited thereto. Technical common sense in this technical field, such as the relational expression that can be derived by solving the Navier-Stokes equation, which is the basic equation describing fluid flow, and the relationship between the detected light intensity and the theoretical dryness It is also possible to calculate and measure the dryness using the relationship table shown in FIG.
 前述のように、外部記憶装置300の配管条件記憶部301には、配管条件として、配管設置モードv/h、配管半径r、流速差Δv、密度差Δρが記憶されている。さらに詳しく説明する。なお、これらの配管条件の1つ以上を測定の都度、入力装置105等から入力するように構成してもよい。 As described above, the piping condition storage unit 301 of the external storage device 300 stores the piping installation mode v / h, the piping radius r, the flow velocity difference Δv, and the density difference Δρ as the piping conditions. This will be described in more detail. In addition, you may comprise so that one or more of these piping conditions may be input from the input device 105 grade | etc., Whenever it measures.
 「配管設置モードv/h」としては、湿り蒸気の乾き度の測定対象となる配管20が縦配管である場合には「縦配管v」として、横配管である場合には「横配管h」として設定されている。配管20の軸方向が水平面と所定の角度θ(0<θ<90度)をなすように設置されている場合には、「横配管h」として設定されている。 As the “pipe installation mode v / h”, “vertical pipe v” is used when the pipe 20 to be measured for wetness dryness is a vertical pipe, and “horizontal pipe h” when the pipe 20 is a horizontal pipe. Is set as When the pipe 20 is installed so that the axial direction of the pipe 20 forms a predetermined angle θ (0 <θ <90 degrees) with the horizontal plane, it is set as “lateral pipe h”.
 「配管半径r」としては、円柱形状である配管20の内径に対応する寸法を記憶しておく。なお、配管半径rに代えて、面積に対応する他のパラメータ、例えば内径断面積Soを記憶しておいてもよい。湿り蒸気の液相部分の高さLwが測定でき、内径断面積Soが判っていれば、気相部分の面積Saや液相部分の面積Swが演算できるからである。 As the “pipe radius r”, a dimension corresponding to the inner diameter of the pipe 20 having a cylindrical shape is stored. Instead of the pipe radius r, another parameter corresponding to the area, for example, the inner diameter sectional area So may be stored. This is because if the height Lw of the liquid phase portion of the wet steam can be measured and the inner diameter sectional area So is known, the area Sa of the gas phase portion and the area Sw of the liquid phase portion can be calculated.
 「流速差Δv」としては、配管20の設置状態に応じて定まる湿り蒸気の気相部分の流速Vaと液相部分の流速Vwとの差分Δv(=Va-Vw)を記憶しておく。ただし、湿り蒸気の気相部分の流速Vaと液相部分の流速Vwとの差分に代えて、湿り蒸気の気相部分の流速Vaと液相部分の流速Vwとの比(=Va/Vw、Vw/Va)を記憶するようにしてもよい。通常、液相部分は配管20の内壁に接しており流路抵抗や粘性抵抗の影響を受けるので、気相部分よりも流速が遅い。気相部分でも液相部分の界面付近か軸芯C付近か配管20の内壁の近傍かで流速が異なり、液相部分でも配管20の内壁に近い部分か気相部分の界面付近かで流速が異なるが、それぞれの平均的・代表的な値を記憶しておく。なお、流速差Δvは、予め実験で求めてもよいし、ナビエ・ストークス方程式から導き出した関係式を用いて演算してもよい。また、配管20の軸方向が水平面と所定の角度θ(0<θ<90度)をなすように設置されている場合には、流速差Δvは、配管20の角度θに対応して変化する。そこで、角度θに応じた流速差Δvを固定値として記憶しておくか、入力装置105から角度θを入力し、それに対応する流速差Δvを、関係テーブルから求めたり、関係式を用いて演算したりしてもよい。なお、湿り蒸気の気相部分の流速Vaと液相部分の流速Vwとの差分に代えて、湿り蒸気の気相部分の流速Vaと液相部分の流速Vwとの比(=Va/Vw)を記憶するようにしてもよい。 As the “flow velocity difference Δv”, the difference Δv (= Va−Vw) between the flow velocity Va of the vapor phase portion of the wet steam and the flow velocity Vw of the liquid phase portion determined according to the installation state of the pipe 20 is stored. However, instead of the difference between the flow velocity Va of the vapor phase portion of the wet steam and the flow velocity Vw of the liquid phase portion, the ratio of the flow velocity Va of the vapor phase portion of the wet vapor and the flow velocity Vw of the liquid phase portion (= Va / Vw, Vw / Va) may be stored. Usually, the liquid phase portion is in contact with the inner wall of the pipe 20 and is affected by flow path resistance and viscous resistance, so the flow velocity is slower than that of the gas phase portion. Even in the gas phase portion, the flow velocity differs depending on whether it is near the interface of the liquid phase portion, near the axis C, or near the inner wall of the pipe 20, and even in the liquid phase portion, the flow velocity is near the inner wall of the pipe 20 or near the interface of the gas phase portion. Although different, each average and representative value is stored. Note that the flow velocity difference Δv may be obtained in advance by experiment, or may be calculated using a relational expression derived from the Navier-Stokes equation. When the pipe 20 is installed so that the axial direction of the pipe 20 forms a predetermined angle θ (0 <θ <90 degrees) with the horizontal plane, the flow velocity difference Δv changes corresponding to the angle θ of the pipe 20. . Therefore, the flow velocity difference Δv corresponding to the angle θ is stored as a fixed value, or the angle θ is input from the input device 105, and the corresponding flow velocity difference Δv is obtained from a relation table or calculated using a relational expression. You may do it. Instead of the difference between the flow velocity Va of the vapor phase portion of the wet steam and the flow velocity Vw of the liquid phase portion, the ratio of the flow velocity Va of the vapor phase portion of the wet vapor and the flow velocity Vw of the liquid phase portion (= Va / Vw). May be stored.
 「密度差Δρ」としては、配管20の設置状態に応じて定まる湿り蒸気の気相部分の密度ρaと液相部分の密度ρwの差分Δρ(=ρa-ρw)を記憶しておく。液相部分は気相部分よりも密度が高い。気相部分でも液相部分の界面付近か軸芯C付近か配管20の内壁の近傍かで密度が異なり、液相部分でも、気相部分との界面近くか底部かで密度が若干相違するが、それぞれの平均的・代表的な値を記憶しておく。なお、密度差Δρは、蒸気表等を参照することにより決定できる。なお、湿り蒸気の気相部分の密度ρaと液相部分の密度ρwとの差分に代えて、湿り蒸気の気相部分の密度ρaと液相部分の密度ρwとの比(=ρa/ρw、ρw/ρa)を記憶するようにしてもよい。 As the “density difference Δρ”, a difference Δρ (= ρa−ρw) between the density ρa of the vapor phase of the wet steam and the density ρw of the liquid phase determined according to the installation state of the pipe 20 is stored. The liquid phase part has a higher density than the gas phase part. Even in the gas phase portion, the density differs depending on the vicinity of the interface of the liquid phase portion, the axis C, or the inner wall of the pipe 20, and the density of the liquid phase portion is slightly different near the interface with the gas phase portion or at the bottom. Each average and representative value is stored. The density difference Δρ can be determined by referring to a steam table or the like. Instead of the difference between the density ρa of the vapor phase portion of the wet steam and the density ρw of the liquid phase portion, the ratio of the density ρa of the vapor phase portion of the wet vapor and the density ρw of the liquid phase portion (= ρa / ρw, ρw / ρa) may be stored.
 乾き度測定時、図1に示すように、光入射部11から湿り蒸気が流れる配管20に所定の波長を有する光が入射される。光入射部11から入射した光は、入射側筒21を通って入射開口A1から配管20の中へ光経路Lに沿って導入される。配管20の中へ導入された光は、湿り蒸気の水分子によって反射・散乱して強度を減衰される。湿り蒸気によって反射・散乱して強度が減衰した光は、射出開口A2から射出側筒22を通って受光部12に入射する。受光部12からは、入射した光の強度に対応する光強度信号Sdが出力される。 At the time of dryness measurement, as shown in FIG. 1, light having a predetermined wavelength is incident on the pipe 20 through which wet steam flows from the light incident portion 11. The light incident from the light incident portion 11 is introduced along the light path L from the incident opening A1 into the pipe 20 through the incident side tube 21. The light introduced into the pipe 20 is reflected and scattered by the water molecules of the wet steam, and the intensity is attenuated. The light that has been reflected / scattered by the wet steam and attenuated in intensity enters the light receiving unit 12 through the exit side tube 22 from the exit opening A2. A light intensity signal Sd corresponding to the intensity of incident light is output from the light receiving unit 12.
 吸光度演算部201は、光強度信号Sdを参照して湿り蒸気の吸光度Aを演算する。光強度信号Sdが示す光の強度をI、湿り蒸気による光の反射・散乱が無いとした場合の光の強さを原光強度Ioとした場合、吸光度Aは式(1)のように演算される。 The absorbance calculation unit 201 calculates the absorbance A of the wet steam with reference to the light intensity signal Sd. When the light intensity indicated by the light intensity signal Sd is I, and the light intensity when there is no reflection / scattering of light by wet steam is the original light intensity Io, the absorbance A is calculated as shown in Equation (1). Is done.
 吸光度A=-log(I/Io)   …(1)
吸光度Aは、光の波長に応じて変動するため、複数の波長の光を使用する場合には、光の波長λの関数として吸光度Aを演算する。
Absorbance A = −log (I / Io) (1)
Since the absorbance A varies depending on the wavelength of light, when light of a plurality of wavelengths is used, the absorbance A is calculated as a function of the light wavelength λ.
 ここで、湿り蒸気の乾き度測定用の光の波長は、湿り蒸気の液相部分に対する吸収が相対的に大きい第1の波長λ1とすることが好ましい。湿り蒸気が水蒸気である場合、湿り蒸気の液相部分に対する吸収が相対的に大きい第1の波長λ1は、1400nm付近や1900nm付近となる。 Here, it is preferable that the wavelength of the light for measuring the dryness of the wet steam is the first wavelength λ1 with relatively large absorption in the liquid phase portion of the wet steam. When the wet steam is water vapor, the first wavelength λ1 having relatively large absorption in the liquid phase portion of the wet steam is near 1400 nm or 1900 nm.
 また、湿り蒸気の乾き度測定用の光として、湿り蒸気の気相部分に対する吸収が相対的に大きい第2の波長λ2を有する参照光をさらに用いてもよい。湿り蒸気の気相部分に対する吸収が相対的に大きい第2の波長λ2は、湿り蒸気が水蒸気である場合、1800nm付近となる。湿り蒸気の気相部分に対する吸収が相対的に大きい波長λ2を有する光を測定光として用いると、湿り蒸気に圧力などの変動が生じた場合でも測定に対する誤差が少なくなる。 Further, as the light for measuring the dryness of the wet steam, reference light having a second wavelength λ2 that has relatively large absorption in the gas phase portion of the wet steam may be further used. The second wavelength λ <b> 2 in which the absorption of the wet vapor in the gas phase portion is relatively large is around 1800 nm when the wet vapor is water vapor. When light having a wavelength λ2 that has a relatively large absorption in the gas phase portion of the wet steam is used as the measurement light, an error in measurement is reduced even when the pressure of the wet steam varies.
 さらに、湿り蒸気の気相部分および気相部分に対する吸収が相対的に小さい第3の波長λ3を有する参照光を用いてもよい。湿り蒸気の気相部分および気相部分に対する吸収が相対的に小さい第3の波長λ3は、湿り蒸気が水蒸気である場合、600nm付近や1600nm付近となる。湿り蒸気の気相部分および気相部分に対する吸収が相対的に小さい波長を有する参照光として用いると、乾き度測定装置の光学系部品のばらつきや、それらにおける光散乱の影響等を小さくすることができる。 Furthermore, a reference light having a third wavelength λ3 in which the absorption of the wet vapor with respect to the gas phase portion and the gas phase portion is relatively small may be used. The third wavelength λ3 where the absorption of the wet vapor in the vapor phase portion and the vapor phase portion is relatively small is around 600 nm or around 1600 nm when the wet vapor is water vapor. When used as a reference light having a wavelength where the absorption of wet vapor in the gas phase portion and the gas phase portion is relatively small, variations in the optical system parts of the dryness measurement device, the influence of light scattering on them, etc. can be reduced. it can.
 次いで、液相光路長演算部202は、吸光度に基づいて、配管20の光経路Lに沿った湿り蒸気の液相部分の長さLwを演算する。湿り蒸気の液相部分は、配管20が縦配管であれば図3のように分布し、横配管であれば図4のように分布する。液相部分の分布が異なれば、光が通過する液相部分の長さLwも変化する。例えば、配管20が縦配管であれば、光は入射側の液相部分と射出側の液相部分とを通過するので、図3のように縦配管時の液相部分の深さをLvwとすれば、光は合計2Lvwの液相部分の長さを通過する。配管20が横配管であれば、光は配管20の底部に流れる液相部分を1回通過するので、図4に示すように横配管時の液相部分の最深部の深さをLhwとすれば、光はLhwで示される液相部分の長さを通過する。湿り蒸気を通過する光は、水の分子により反射され、散乱されるので、特に液相部分で強く反射され散乱され、光の強度が減衰し、吸光度Aが大きくなる。液相部分の長さLwは吸光度Aと相関関係を有することになる。例えば、縦配管の場合における液相部分の長さLvwと吸光度Aとの関係は式(2)で表され、横配管の場合における液相部分の長さLhwと吸光度Aとの関係は式(3)で表される。 Next, the liquid phase optical path length calculation unit 202 calculates the length Lw of the liquid phase portion of the wet steam along the optical path L of the pipe 20 based on the absorbance. The liquid phase portion of the wet steam is distributed as shown in FIG. 3 if the pipe 20 is a vertical pipe, and is distributed as shown in FIG. 4 if it is a horizontal pipe. If the distribution of the liquid phase part is different, the length Lw of the liquid phase part through which light passes also changes. For example, if the pipe 20 is a vertical pipe, light passes through the liquid phase part on the incident side and the liquid phase part on the emission side, so the depth of the liquid phase part in the vertical pipe is Lvw as shown in FIG. Then, the light passes through the length of the liquid phase part of a total of 2 Lvw. If the pipe 20 is a horizontal pipe, the light passes once through the liquid phase part that flows to the bottom of the pipe 20, so the depth of the deepest part of the liquid phase part in the horizontal pipe is set to Lhw as shown in FIG. For example, the light passes through the length of the liquid phase portion indicated by Lhw. The light that passes through the wet steam is reflected and scattered by water molecules, so that it is strongly reflected and scattered particularly in the liquid phase portion, the light intensity is attenuated, and the absorbance A is increased. The length Lw of the liquid phase portion has a correlation with the absorbance A. For example, the relationship between the length Lvw of the liquid phase portion and the absorbance A in the case of the vertical piping is expressed by the equation (2), and the relationship between the length Lhw of the liquid phase portion and the absorbance A in the case of the horizontal piping is expressed by the formula ( 3).
 縦配管時の液相部分の長さLvw=fv(A,p,t)   …(2)
 横配管時の液相部分の長さLhw=fh(A,p,t)   …(3)
ここで、pは湿り蒸気の圧力であり、tは湿り蒸気の温度である。湿り蒸気の圧力および/または温度に変動が生じない場合にはこれらは定数となり、式(2)および式(3)は液相部分の長さLwは吸光度Aのみに依存する以下のような関数となる。
 縦配管時の液相部分の長さLvw=fv(A)   …(2)’
 横配管時の液相部分の長さLhw=fh(A)   …(3)’
Length of liquid phase part in vertical piping Lvw = fv (A, p, t) (2)
Length of liquid phase portion in horizontal piping Lhw = fh (A, p, t) (3)
Here, p is the pressure of the wet steam, and t is the temperature of the wet steam. When there is no fluctuation in the pressure and / or temperature of the wet steam, these become constants, and the following functions in which the length Lw of the liquid phase part depends only on the absorbance A are the expressions (2) and (3) It becomes.
Length of liquid phase portion in vertical piping Lvw = fv (A) (2) ′
Length of liquid phase portion in horizontal piping Lhw = fh (A) (3) ′
 液相光路長演算部202は、吸光度Aおよびた配管設置モードv/hを参照して、縦配管である場合には式(2)に基づいて液相部分の長さLvwを演算する。また横配管である場合には式(3)に基づいて液相部分の長さLhwを演算する。選択的に、湿り蒸気の圧力pを考慮する場合には、液相光路長演算部202は、圧力センサ23からの圧力信号Spを参照して式(2)や式(3)に代入する。湿り蒸気の温度tを考慮する場合には、温度センサ24からの温度信号Stを参照して式(2)や式(3)に代入する。 The liquid phase optical path length calculation unit 202 refers to the absorbance A and the pipe installation mode v / h, and calculates the length Lvw of the liquid phase part based on the formula (2) when the pipe is a vertical pipe. In the case of a horizontal pipe, the length Lhw of the liquid phase portion is calculated based on the equation (3). When the pressure p of the wet steam is taken into consideration selectively, the liquid phase optical path length calculation unit 202 refers to the pressure signal Sp from the pressure sensor 23 and substitutes it into the equations (2) and (3). When considering the temperature t of the wet steam, the temperature signal St from the temperature sensor 24 is referred to and substituted into the equations (2) and (3).
 なお、液相光路長演算部202は、式(2)や式(3)に代えて、吸光度Aと液相部分の長さLwとの関係を示す関係テーブルを保持し、当該関係テーブルを参照して液相部分の長さLwを演算するようにしてもよい。選択的に湿り蒸気の圧力pおよび/または温度tを参照する場合には、湿り蒸気の圧力pおよび/または温度tに応じて複数の関係テーブルを保持するように構成してもよい。 Note that the liquid phase optical path length calculation unit 202 holds a relationship table indicating the relationship between the absorbance A and the length Lw of the liquid phase portion instead of the equations (2) and (3), and refers to the relationship table. Then, the length Lw of the liquid phase portion may be calculated. When selectively referring to the pressure p and / or the temperature t of the wet steam, a plurality of relational tables may be held according to the pressure p and / or the temperature t of the wet steam.
 また、上記したように、湿り蒸気の液相部分に対する吸収が相対的に大きい第1の波長λ1を有する測定光、湿り蒸気の気相部分に対する吸収が相対的に大きい第2の波長λ2を有する参照光、または湿り蒸気の液相部分および気相部分に対する吸収が相対的に小さい第3の波長λ3を有する参照光を用いた場合、例えば縦配管時の液相部分の長さLvw上記式(2)は以下のいずれかのように変形することができる。ただし、第1の波長λ1を有する測定光の吸光度をA、第2の波長λ2を有する参照光の吸光度をA、第3の波長λ3を有する参照光の吸光度をAとする。
 Lvw=fv(A,p,t)
 Lvw=fv(A,A,p,t)
 Lvw=fv(A,A,p,t)
 Lvw=fv(A,A,A,p,t)
 Lvw=fv(A,A,A
 Lvw=fv(A,A
 Lvw=fv(A,A
横配管時の液相部分の長さLhwについても同様に変形することができる。
Further, as described above, the measurement light having the first wavelength λ1 having relatively large absorption in the liquid phase portion of the wet vapor, and the second wavelength λ2 having relatively large absorption in the gas phase portion of the wet vapor. In the case of using the reference light or the reference light having the third wavelength λ3 with relatively small absorption in the liquid phase part and the gas phase part of the wet steam, for example, the length Lvw of the liquid phase part in the vertical piping ( 2) can be modified as follows. Here, it is assumed that the absorbance of the measurement light having the first wavelength λ1 is A 1 , the absorbance of the reference light having the second wavelength λ2 is A 2 , and the absorbance of the reference light having the third wavelength λ3 is A 3 .
Lvw = fv (A 1 , p, t)
Lvw = fv (A 1 , A 2 , p, t)
Lvw = fv (A 1 , A 3 , p, t)
Lvw = fv (A 1, A 2, A 3, p, t)
Lvw = fv (A 1 , A 2 , A 3 )
Lvw = fv (A 1 , A 2 )
Lvw = fv (A 1 , A 3 )
The length Lhw of the liquid phase part at the time of horizontal piping can be similarly modified.
 次いで面積演算部203は、湿り蒸気の液相部分の光路長Lwと配管20の形状とに基づいて湿り蒸気の液相部分の面積Swと気相部分の面積Saとを演算する。具体的には、面積演算部203は、配管条件として入力された配管設置モードv/hを参照する。そして、配管20が縦配管である場合には、面積演算部203は、湿り蒸気の液相部分の光路長Lvwと配管半径rとに基づいて、湿り蒸気の液相部分の面積Svwを式(4)に基づいて演算し、気相部分の面積Svaを式(5)に基づいて演算する。また配管20が横配管である場合には、面積演算部203は、湿り蒸気の液相部分の光路長Lhwと配管半径rとに基づいて、湿り蒸気の液相部分の面積Shwを式(6)に基づいて演算し、気相部分の面積Shaを式(7)に基づいて演算する。 Next, the area calculation unit 203 calculates the area Sw of the liquid phase portion of the wet steam and the area Sa of the gas phase portion based on the optical path length Lw of the liquid phase portion of the wet steam and the shape of the pipe 20. Specifically, the area calculation unit 203 refers to the pipe installation mode v / h input as the pipe condition. When the pipe 20 is a vertical pipe, the area calculation unit 203 calculates the area Svw of the liquid phase portion of the wet steam based on the optical path length Lvw of the liquid phase portion of the wet steam and the pipe radius r ( 4) and the area Sva of the gas phase portion is calculated based on the formula (5). When the pipe 20 is a horizontal pipe, the area calculation unit 203 calculates the area Shw of the liquid phase portion of the wet steam based on the optical path length Lhw of the liquid phase portion of the wet steam and the pipe radius r using the formula (6 ) And the area Sha of the gas phase portion is calculated based on the equation (7).
 縦配管時の液相部分の面積Svw=gv(r,Lvw)   …(4)
 縦配管時の気相部分の面積Sva=断面積So-Svw   …(5)
 横配管時の液相部分の面積Shw=gh(r,Lvw)   …(6)
 横配管時の気相部分の面積Sha=断面積So-Shw   …(7)
Area Svw = gv (r, Lvw) of the liquid phase part during vertical piping (4)
Area Sva of gas phase during vertical piping = cross-sectional area So-Svw (5)
Area of liquid phase portion in horizontal piping Shw = gh (r, Lvw) (6)
Area Sha of the gas phase during horizontal piping Sha = cross-sectional area So-Shw (7)
 次いで乾き度演算部204は、配管条件として読み出した流速差Δvおよび密度差Δρを参照して、演算された湿り蒸気の液相部分の面積Swおよび気相部分の面積Saに基づいて乾き度χを演算する。具体的に、乾き度演算部204は、配管20が縦配管である場合には、湿り蒸気の乾き度χvを式(8)に基づいて演算し、配管20が横配管である場合には、湿り蒸気の乾き度χhを式(9)に基づいて演算する。 Next, the dryness calculation unit 204 refers to the flow rate difference Δv and the density difference Δρ read out as the piping conditions, and determines the dryness χ based on the calculated area Sw of the liquid phase portion of the wet steam and the area Sa of the gas phase portion. Is calculated. Specifically, when the pipe 20 is a vertical pipe, the dryness calculating unit 204 calculates the wet steam dryness χv based on the equation (8), and when the pipe 20 is a horizontal pipe, The dryness χh of the wet steam is calculated based on the formula (9).
 縦配管時の湿り蒸気の乾き度χv=αv(Δv,Δρ)×Sva/(Sva+Svw) …(8)
 横配管時の湿り蒸気の乾き度χh=αh(Δv,Δρ)×Sha/(Sha+Shw) …(9)
ここで、係数αv、αhは、流速差Δvと密度差Δρとにより一義的に決定される係数である。
Dryness of wet steam during vertical piping χv = αv (Δv, Δρ) × Sva / (Sva + Svw) (8)
Dryness of wet steam during horizontal piping χh = αh (Δv, Δρ) × Sha / (Sha + Shw) (9)
Here, the coefficients αv and αh are coefficients uniquely determined by the flow velocity difference Δv and the density difference Δρ.
 以上の演算により、乾き度特定部13は、光強度信号Sdと配管条件とに基づき、湿り蒸気の乾き度χを演算する。演算された乾き度χは、出力装置106に表示・印刷したりインターフェース回路104を介して外部に出力したりする。 By the above calculation, the dryness specifying unit 13 calculates the dryness χ of the wet steam based on the light intensity signal Sd and the piping conditions. The calculated dryness χ is displayed / printed on the output device 106 or output to the outside via the interface circuit 104.
 なお、上記説明では、吸光度演算部201が吸光度Aを演算し、液相光路長演算部202が液相部分の光路長Lwを演算し、面積演算部203が液相部分の面積Swおよび気相部分の面積Saを演算し、乾き度演算部204が乾き度χを演算していたが、このように演算を切り分けなくてもよい。複数の機能ブロックの演算を合わせて1つの機能ブロックとしてもよい。例えば、光強度信号Sdを入力して、直接的に乾き度χを出力するような関係式または関係テーブルを作成してもよい。 In the above description, the absorbance calculation unit 201 calculates the absorbance A, the liquid phase optical path length calculation unit 202 calculates the optical path length Lw of the liquid phase part, and the area calculation unit 203 calculates the area Sw and the gas phase of the liquid phase part. Although the area Sa of the portion is calculated and the dryness calculation unit 204 calculates the dryness χ, the calculation does not have to be divided in this way. A plurality of functional blocks may be combined into one functional block. For example, a relational expression or relational table that inputs the light intensity signal Sd and directly outputs the dryness χ may be created.
 (実施形態1の効果)
 以上説明した実施形態1によれば、以下の作用効果を奏する。
 (1)本実施形態1の乾き度測定装置1aによれば、配管20の向きが縦配管であるか横配管であるかに応じて乾き度を演算するので、配管20の向きに応じた正確な演算により乾き度を算出することが可能である。
(Effect of Embodiment 1)
According to Embodiment 1 demonstrated above, there exist the following effects.
(1) According to the dryness measuring apparatus 1a of the first embodiment, the dryness is calculated according to whether the direction of the pipe 20 is a vertical pipe or a horizontal pipe. The dryness can be calculated by simple calculation.
 (2)本実施形態1の乾き度測定装置1aによれば、光経路Lが配管20の軸芯Cを含む鉛直面に沿って設定されているので、特に横配管の場合においても正確な乾き度を算出することが可能である。 (2) According to the dryness measuring apparatus 1a of the first embodiment, since the optical path L is set along the vertical plane including the axis C of the pipe 20, accurate drying is achieved particularly in the case of a horizontal pipe. It is possible to calculate the degree.
 (3)本実施形態1の乾き度測定装置1aによれば、光経路Lが湿り蒸気の気相部分の最も密度の低い部分と液相部分の最深部とを通過するように設定されているので、特に横配管の場合において配管内部で湿り蒸気の気相部分および液相部分の分布が偏っていても、正確な乾き度を算出することが可能である。 (3) According to the dryness measuring apparatus 1a of the first embodiment, the optical path L is set so as to pass through the lowest density portion of the vapor phase portion of the wet steam and the deepest portion of the liquid phase portion. Therefore, in particular in the case of a horizontal pipe, even if the distribution of the vapor phase portion and the liquid phase portion of the wet steam is biased inside the pipe, it is possible to calculate an accurate dryness.
 (4)本実施形態1の乾き度測定装置1aによれば、乾き度特定部200が配管20の軸方向が鉛直方向か水平方向成分を含むかに応じて光の強度に対する湿り蒸気の気相部分および前記液相部分の面積を演算するための関係式を変更するので、配管20の向きに応じた正確な乾き度を算出することが可能である。 (4) According to the dryness measuring apparatus 1a of the first embodiment, the wetness vapor phase with respect to the light intensity depends on whether the dryness specifying unit 200 includes the vertical direction or horizontal direction component of the pipe 20. Since the relational expression for calculating the area of the portion and the liquid phase portion is changed, it is possible to calculate an accurate dryness according to the direction of the pipe 20.
 (5)本実施形態1の乾き度測定装置1aによれば、圧力センサ23や温度センサ24といった環境センサが湿り蒸気の圧力pおよび/または温度tを検出し、乾き度特定部200が検出された圧力pおよび/または温度tに対応させて湿り蒸気の乾き度χを特定するので、湿り蒸気の圧力pおよび/または温度tが変動して乾き度χに影響を与えるような場合でも、変動する湿り蒸気の圧力pおよび/または温度tに応じた正確な乾き度を算出することが可能である。 (5) According to the dryness measuring apparatus 1a of the first embodiment, the environmental sensor such as the pressure sensor 23 and the temperature sensor 24 detects the pressure p and / or the temperature t of the wet steam, and the dryness specifying unit 200 is detected. The wet steam dryness χ is specified in accordance with the pressure p and / or the temperature t. Therefore, even if the wet steam pressure p and / or the temperature t fluctuates and affects the dryness χ, the fluctuation It is possible to calculate the exact dryness according to the pressure p and / or the temperature t of the wet steam.
 (実施形態2)
 本発明の実施形態2は、光入射部および受光部の変形例に関する。
 (構成)
 上記実施形態1では、配管20の軸に対して対向する2つの開口を設けて乾き度測定用の光が配管20内の湿り蒸気を通り抜けるように光経路を設定していたが、本実施形態2では、1つの開口を設けて乾き度測定用の光を反射させるように光経路が設定されている点で、上記実施形態1と異なる。
(Embodiment 2)
Embodiment 2 of this invention is related with the modification of a light-incidence part and a light-receiving part.
(Constitution)
In the first embodiment, two openings that face the axis of the pipe 20 are provided and the light path is set so that the light for dryness measurement passes through the wet steam in the pipe 20. 2 differs from the first embodiment in that an optical path is set so that one opening is provided and light for dryness measurement is reflected.
 図5に、本実施形態2に係る乾き度測定装置1bの構成を説明する模式図を示す。図6に、乾き度測定装置1bの光入射部の先端拡大斜視図を示す。図5に示すように、本実施形態2における乾き度測定装置1bは、光入射部11、受光部12、ビームスプリッタ13、導光部14、先端構造体15、および反射部16を備えている。乾き度測定装置1bは、先端構造体15が配管20に設けられた光入射出開口A3から内部に挿入可能に構成されている。光入射部11、受光部12、および乾き度特定部200(コンピュータ装置100)に関する構成は、上記実施形態1と同様であるため、説明を省略する。 FIG. 5 is a schematic diagram illustrating the configuration of the dryness measuring apparatus 1b according to the second embodiment. FIG. 6 shows an enlarged perspective view of the tip of the light incident part of the dryness measuring apparatus 1b. As shown in FIG. 5, the dryness measuring apparatus 1b according to the second embodiment includes a light incident part 11, a light receiving part 12, a beam splitter 13, a light guide part 14, a tip structure 15, and a reflection part 16. . The dryness measuring apparatus 1b is configured such that the tip structure 15 can be inserted into the inside through a light incident / exit opening A3 provided in the pipe 20. Since the structure regarding the light incident part 11, the light-receiving part 12, and the dryness specific | specification part 200 (computer apparatus 100) is the same as that of the said Embodiment 1, description is abbreviate | omitted.
 ビームスプリッタ13は、透過する光を分離するためのプリズム手段である。ビームスプリッタ13は、光入射部11から入射した光を透過させて導光部14に入射させる一方、反射部16により反射されて導光部14を介して戻ってきた反射光を反射面131で受光部12に向けて反射するように構成されている。導光部14は、光の減衰を抑制しながら伝達する光ファイバとしての構造を備えている。導光部14としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)からなるプラスチック光ファイバ、及び石英ガラスからなるガラス光ファイバ等が使用可能であるが、光入射部11が発した光を伝播させる機能があれば、これに限定されない。 The beam splitter 13 is a prism means for separating transmitted light. The beam splitter 13 transmits the light incident from the light incident portion 11 to be incident on the light guide portion 14, while reflecting light reflected by the reflection portion 16 and returned through the light guide portion 14 is reflected on the reflection surface 131. It is configured to reflect toward the light receiving unit 12. The light guide unit 14 has a structure as an optical fiber that transmits light while suppressing attenuation of light. For example, a plastic optical fiber made of polymethyl methacrylate resin (PMMA), a glass optical fiber made of quartz glass, or the like can be used as the light guide unit 14, but the light emitted from the light incident unit 11 is propagated. If there is a function, it is not limited to this.
 先端構造体15は、図6に示すように、導光部14の先端部に固定され、複数の脚部を有する構造物である。反射部16は、全反射可能なミラーであり、先端構造体15を構成する複数の脚部の先端に、反射面が導光部15の先端面と対向するように設けられている。 As shown in FIG. 6, the tip structure 15 is a structure that is fixed to the tip of the light guide 14 and has a plurality of legs. The reflecting portion 16 is a mirror that can be totally reflected, and is provided at the tips of a plurality of legs constituting the tip structure 15 so that the reflecting surface faces the tip surface of the light guide portion 15.
 上記のような構造を備えることにより、本実施形態2に係る乾き度測定装置1bは、光入射部11から射出された光が、ビームスプリッタ13、導光部14を経て、導光部14の先端面から反射部16に射出され、反射部16で反射された反射光が、再び先端面から導光部14、ビームスプリッタ13へ入射し、反射面131で反射されて受光部12に入射するように構成されている。 By providing the structure as described above, in the dryness measuring apparatus 1b according to the second embodiment, the light emitted from the light incident part 11 passes through the beam splitter 13 and the light guide part 14, and the light guide part 14 The reflected light that is emitted from the front end surface to the reflection unit 16 and reflected by the reflection unit 16 enters the light guide unit 14 and the beam splitter 13 from the front end surface again, is reflected by the reflection surface 131, and enters the light receiving unit 12. It is configured as follows.
 なお、先端構造体15の端部に反射部16を設ける代わりに、入射出開口A3に対向する配管20の内壁に反射部を設けてもよい。例えば、配管20の内壁にミラーを埋め込んだり配管20の内壁の一部に鏡面仕上げ加工を施したりすることも好ましい。 In addition, instead of providing the reflecting portion 16 at the end portion of the tip structure 15, a reflecting portion may be provided on the inner wall of the pipe 20 facing the entrance / exit opening A3. For example, it is also preferable to embed a mirror in the inner wall of the pipe 20 or to give a mirror finish to a part of the inner wall of the pipe 20.
 (測定方法)
 次に、本実施形態2に係る乾き度測定装置1bを用いた、配管の向きに応じた測定方法を説明する。図7は、本実施形態2に係る乾き度測定装置1bの縦配管測定時の設置図であり、図8は、本実施形態2に係る乾き度測定装置1bの横配管測定時の設置図である。
(Measuring method)
Next, the measuring method according to the direction of piping using the dryness measuring apparatus 1b which concerns on this Embodiment 2 is demonstrated. FIG. 7 is an installation diagram at the time of vertical piping measurement of the dryness measuring device 1b according to the second embodiment, and FIG. 8 is an installation diagram at the time of horizontal piping measurement of the dryness measuring device 1b according to the second embodiment. is there.
 図7および図8に示すように、本実施形態2では、配管20の壁面に1つの入射出開口A3が設けられる。上記実施形態1のように、乾き度測定用の光を貫通させる必要がないため、対向する2つの開口(入射開口A1および射出開口A2)を設ける必要がない。 As shown in FIGS. 7 and 8, in the second embodiment, one incident / exit opening A3 is provided on the wall surface of the pipe 20. Since it is not necessary to allow light for dryness measurement to penetrate as in the first embodiment, it is not necessary to provide two opposing openings (incidence opening A1 and exit opening A2).
 配管20が縦配管である場合、図7に示すように、入射出開口A3から配管20の反対側の内壁に反射部16が当接するまで、先端構造体15を挿入した状態とする。このとき、先端構造体15が軸芯Cを通過するように配管20の壁面に垂直に先端構造体15を挿入する。 When the pipe 20 is a vertical pipe, the tip structure 15 is inserted until the reflecting portion 16 comes into contact with the inner wall on the opposite side of the pipe 20 from the entrance / exit opening A3 as shown in FIG. At this time, the tip structure 15 is inserted perpendicularly to the wall surface of the pipe 20 so that the tip structure 15 passes through the axis C.
 また配管20が横配管である場合も、図8に示すように、入射出開口A3から配管20の反対側の内壁に反射部16が当接するまで、先端構造体15を挿入した状態とする。このとき、先端構造体15が軸芯Cを通過するように鉛直方向に先端構造体15を挿入する。このように、先端構造体15を鉛直方向に挿入することにより、反射部16は、湿り蒸気の液相部分の最深部に到達し、入射出開口A3に対向する配管20の内壁底部に当接することになる。 Also, when the pipe 20 is a horizontal pipe, the tip structure 15 is inserted until the reflecting portion 16 comes into contact with the inner wall on the opposite side of the pipe 20 from the entrance / exit opening A3 as shown in FIG. At this time, the tip structure 15 is inserted in the vertical direction so that the tip structure 15 passes through the axis C. Thus, by inserting the tip structure 15 in the vertical direction, the reflecting portion 16 reaches the deepest portion of the liquid phase portion of the wet steam and abuts on the bottom of the inner wall of the pipe 20 facing the entrance / exit opening A3. It will be.
 (動作)
 本実施形態2に係る乾き度測定装置1bは、上記実施形態1と同様に動作する。但し、本実施形態2に係る乾き度測定装置1bでは、反射部16により、乾き度測定用の光が配管20内の湿り蒸気を往復することになるため、湿り蒸気内の光路長が上記実施形態1の2倍の2Lとなっている。このため、乾き度特定部200における各種関係式も2倍の光路長2Lに適用するように変形させる必要がある。
(Operation)
The dryness measuring apparatus 1b according to the second embodiment operates in the same manner as in the first embodiment. However, in the dryness measuring apparatus 1b according to the second embodiment, the light for dryness measurement reciprocates the wet steam in the pipe 20 by the reflection unit 16, and thus the optical path length in the wet steam is as described above. It is 2L, twice that of Form 1. For this reason, it is necessary to modify various relational expressions in the dryness specifying unit 200 so as to be applied to the double optical path length 2L.
 (効果)
 (1)本実施形態2に係る乾き度測定装置1bによれば、上記実施形態1と同様の作用効果を奏するほか、配管20に設ける開口が1つでよいため、開口からの熱損失を些少に抑えることが可能である。
(effect)
(1) According to the dryness measuring apparatus 1b according to the second embodiment, the same effect as that of the first embodiment can be obtained, and since only one opening is provided in the pipe 20, heat loss from the opening is slightly reduced. It is possible to suppress it.
 (2)本実施形態2に係る乾き度測定装置1bによれば、配管20の内壁に反射部を設けた場合には、入射出開口A3と反射部との位置関係を固定することができ、正しい光経路を確定させることができるため、測定者の操作の影響を受けることなく、正確な乾き度を測定することができる。 (2) According to the dryness measuring apparatus 1b according to the second embodiment, when the reflecting portion is provided on the inner wall of the pipe 20, the positional relationship between the entrance / exit opening A3 and the reflecting portion can be fixed, Since a correct light path can be determined, an accurate dryness can be measured without being affected by an operator's operation.
産業上の利用分野Industrial application fields
 本発明の乾き度測定装置は、蒸気ボイラーなどを使用した蒸気配管や、蒸気を用いて加熱・乾燥・化学反応を起こす製造プロセス設備などに適用することが可能である。蒸気配管に乾き度測定装置取り付けることで、蒸気エネルギーの可視化を図ることができ、蒸気エネルギー量等を測定することができる。また、加熱・乾燥・化学反応を起こす製造プロセスにおいても製造品質を向上することが可能となる。 The dryness measuring apparatus of the present invention can be applied to steam piping using a steam boiler or the like, manufacturing process equipment that uses steam to cause heating, drying, and chemical reaction. By attaching a dryness measuring device to the steam pipe, it is possible to visualize the steam energy and measure the amount of steam energy and the like. In addition, it is possible to improve manufacturing quality even in a manufacturing process that causes heating, drying, and chemical reaction.
1a、1b 湿り蒸気測定装置
11 光入射部
12 受光部
13 ビームスプリッタ
14 導光部
15 先端構造体
16 反射部
21 入射側筒
22 射出側筒
100 コンピュータ装置
101 CPU(Central Processing Unit:中央演算装置)
102 RAM(Random Access Memory)
103 ROM(Read Only Memory)
104 インターフェース装置
105 入力装置
106 出力装置
200 乾き度特定部
201 吸光度演算部
202 液相光路長演算部
203 面積演算部
204 乾き度演算部
A、A、A、A 吸光度
A1 入射開口
A2 射出開口
A3 入射出開口
Sd 光強度信号
Sp 圧力信号
St 温度信号
v/h 配管設置モード
r 配管半径
Δv 流速差
Δρ 密度差
χ 乾き度
DESCRIPTION OF SYMBOLS 1a, 1b Wet steam measuring apparatus 11 Light incident part 12 Light receiving part 13 Beam splitter 14 Light guide part 15 Tip structure 16 Reflecting part 21 Incident side cylinder 22 Emission side cylinder 100 Computer apparatus 101 CPU (Central Processing Unit: Central processing unit)
102 RAM (Random Access Memory)
103 ROM (Read Only Memory)
104 interface unit 105 input unit 106 output unit 200 dryness of a specific unit 201 absorbance calculation section 202 liquid phase optical path length calculator 203 area calculation unit 204 dryness fraction calculating unit A, A 1, A 2, A 3 absorbance A1 entrance aperture A2 injection Opening A3 Entrance / exit opening Sd Light intensity signal Sp Pressure signal St Temperature signal v / h Pipe installation mode r Pipe radius Δv Flow rate difference Δρ Density difference χ Dryness

Claims (11)

  1.  測定対象の湿り蒸気が流れる配管に予め設定した光経路に沿って光を入射させる光入射部と、
     前記湿り蒸気を透過または反射した光の強度を検出する受光部と、
     検出された前記光の強度に基づいて前記湿り蒸気の乾き度を特定する乾き度特定部と、を備え、
     前記光経路は、前記配管の内壁に沿って流れる前記湿り蒸気の液相部分を通るように設定されており、
     前記乾き度特定部は、検出された前記光の強度、当該光の強度に対応する前記湿り蒸気の気相部分の面積および液相部分の面積、前記湿り蒸気の前記気相部分と前記液相部分との流速差、並びに前記湿り蒸気の前記気相部分と前記液相部分との密度差に基づいて、前記湿り蒸気の乾き度を演算する、
    乾き度測定装置。
    A light incident part for allowing light to enter along a preset light path in a pipe through which wet steam to be measured flows;
    A light receiving unit for detecting the intensity of light transmitted or reflected by the wet steam;
    A dryness specifying unit that specifies the dryness of the wet steam based on the detected intensity of the light, and
    The optical path is set to pass through the liquid phase portion of the wet steam flowing along the inner wall of the pipe,
    The dryness specifying unit includes the detected light intensity, the area of the gas phase part and the liquid phase part of the wet vapor corresponding to the intensity of the light, and the gas phase part and the liquid phase of the wet vapor. Calculating the dryness of the wet steam based on the flow rate difference between the parts and the density difference between the gas phase part and the liquid phase part of the wet steam;
    Dryness measuring device.
  2.  前記光経路は、前記配管が横配管である場合には、鉛直面に沿って設定されている、
    請求項1に記載の乾き度測定装置。
    The optical path is set along a vertical plane when the pipe is a horizontal pipe.
    The dryness measuring apparatus according to claim 1.
  3.  前記光経路は、前記湿り蒸気の気相部分と前記湿り蒸気の液相部分とを通過するように設定されている、
    請求項1または2に記載の乾き度測定装置。
    The optical path is set to pass through the gas phase portion of the wet steam and the liquid phase portion of the wet steam,
    The dryness measuring apparatus according to claim 1 or 2.
  4.  前記光経路は、前記配管が縦配管である場合には、水平面に沿って設定されている、
    請求項1に記載の乾き度測定装置。
    The optical path is set along a horizontal plane when the pipe is a vertical pipe.
    The dryness measuring apparatus according to claim 1.
  5.  前記乾き度特定部は、前記配管の軸方向が鉛直方向か水平方向成分を含むかに応じて、前記光の強度に対する前記湿り蒸気の前記気相部分および前記液相部分の面積を演算するための関係式を変更する、
    請求項1に記載の乾き度測定装置。
    The dryness specifying unit calculates the areas of the gas phase portion and the liquid phase portion of the wet steam with respect to the light intensity depending on whether the axial direction of the pipe includes a vertical direction component or a horizontal direction component. Change the relation of
    The dryness measuring apparatus according to claim 1.
  6.  前記湿り蒸気の圧力および/または温度を検出する環境センサを備え、
     前記光の強度に対応する前記湿り蒸気の気相部分の面積および液相部分の面積は、前記湿り蒸気の圧力および/または温度をパラメータとして演算するように構成されており、
     前記乾き度特定部は、検出された前記圧力および/または温度に対応させて、前記湿り蒸気の乾き度を特定する、
    請求項1に記載の乾き度測定装置。
    An environmental sensor for detecting the pressure and / or temperature of the wet steam;
    The area of the gas phase part and the liquid phase part of the wet steam corresponding to the intensity of the light is configured to calculate the pressure and / or temperature of the wet steam as a parameter,
    The dryness specifying unit specifies the dryness of the wet steam in correspondence with the detected pressure and / or temperature.
    The dryness measuring apparatus according to claim 1.
  7.  前記湿り蒸気の液相部分を通る前記光を反射する反射部を備え、
     前記反射部は、反射した前記光が前記受光部に入射するように前記配管の内壁に設けられる、
    請求項1に記載の乾き度測定装置。
    A reflection part for reflecting the light passing through the liquid phase part of the wet steam;
    The reflecting portion is provided on the inner wall of the pipe so that the reflected light is incident on the light receiving portion.
    The dryness measuring apparatus according to claim 1.
  8.  前記光は、前記湿り蒸気の液相部分に対する吸収が相対的に大きい第1の波長を有する、
    請求項1に記載の乾き度測定装置。
    The light has a first wavelength that is relatively large in absorption of the liquid phase portion of the wet vapor;
    The dryness measuring apparatus according to claim 1.
  9.  前記湿り蒸気の気相部分に対する吸収が相対的に大きい第2の波長を有する参照光をさらに用いる、
    請求項8に記載の乾き度測定装置。
    A reference light having a second wavelength that has a relatively large absorption in the gas phase portion of the wet vapor is further used;
    The dryness measuring apparatus according to claim 8.
  10.  前記湿り蒸気の気相部分および気相部分に対する吸収が相対的に小さい第3の波長を有する参照光をさらに用いる、
    請求項8または9に記載の乾き度測定装置。
    A reference light having a third wavelength with relatively small absorption of the wet vapor in the gas phase portion and the gas phase portion is further used;
    The dryness measuring apparatus according to claim 8 or 9.
  11.  測定対象の湿り蒸気が流れる配管に予め設定した光経路であって、前記配管の内壁に沿って流れる前記湿り蒸気の液相部分を通るように設定された光経路に沿って光を入射させる工程と、
     前記湿り蒸気を透過または反射した光の強度を検出する工程と、
     検出された前記光の強度に基づいて前記湿り蒸気の乾き度を特定する工程と、を備え、
     前記湿り蒸気の乾き度を特定する工程は、検出された前記光の強度、当該光の強度に対応する前記湿り蒸気の気相部分の面積および液相部分の面積、前記湿り蒸気の前記気相部分と前記液相部分との流速差、並びに前記前記湿り蒸気の前記気相部分と前記液相部分との密度差に基づいて、前記湿り蒸気の乾き度を演算する、
    乾き度測定方法。
    A step of causing light to enter along a light path that is set in advance in a pipe through which the wet steam to be measured flows and that passes through the liquid phase portion of the wet steam that flows along the inner wall of the pipe. When,
    Detecting the intensity of light transmitted or reflected by the wet vapor;
    Identifying the dryness of the wet steam based on the detected light intensity, and
    The step of specifying the dryness of the wet steam includes the detected light intensity, the area of the gas phase portion of the wet steam and the area of the liquid phase portion corresponding to the intensity of the light, and the gas phase of the wet steam. Calculating the dryness of the wet steam based on the flow rate difference between the part and the liquid phase part, and the density difference between the gas phase part and the liquid phase part of the wet steam;
    Dryness measurement method.
PCT/JP2014/070542 2013-08-08 2014-08-05 Dryness measurement device WO2015020023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013165235A JP6057859B2 (en) 2013-08-08 2013-08-08 Dryness measuring device
JP2013-165235 2013-08-08

Publications (1)

Publication Number Publication Date
WO2015020023A1 true WO2015020023A1 (en) 2015-02-12

Family

ID=52461354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070542 WO2015020023A1 (en) 2013-08-08 2014-08-05 Dryness measurement device

Country Status (2)

Country Link
JP (1) JP6057859B2 (en)
WO (1) WO2015020023A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151572A (en) * 2015-02-19 2016-08-22 アズビル株式会社 Dryness measurement device
CN114062285A (en) * 2020-08-07 2022-02-18 中国石油天然气股份有限公司 Steam dryness measuring system, measuring method and measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278376B2 (en) * 2019-06-20 2023-05-19 三菱電機株式会社 Outdoor unit, refrigeration cycle device and refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441777A (en) * 1987-08-05 1989-02-14 Kawasaki Heavy Ind Ltd Heat transfer tube body for recovering latent heat
JPH0318743A (en) * 1989-06-16 1991-01-28 Tlv Co Ltd Instrument for measuring humidity by near infrared ray
JP2000274856A (en) * 1999-03-24 2000-10-06 Mitsubishi Electric Corp Air conditioner
JP2009150629A (en) * 2007-12-22 2009-07-09 Samsung Electronics Co Ltd Refrigerating cycle simulation system and coolant flow simulation device
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method
JP2013148309A (en) * 2012-01-23 2013-08-01 Hitachi Appliances Inc Coolant distributor and refrigeration cycle device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441777A (en) * 1987-08-05 1989-02-14 Kawasaki Heavy Ind Ltd Heat transfer tube body for recovering latent heat
JPH0318743A (en) * 1989-06-16 1991-01-28 Tlv Co Ltd Instrument for measuring humidity by near infrared ray
JP2000274856A (en) * 1999-03-24 2000-10-06 Mitsubishi Electric Corp Air conditioner
JP2009150629A (en) * 2007-12-22 2009-07-09 Samsung Electronics Co Ltd Refrigerating cycle simulation system and coolant flow simulation device
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method
JP2013148309A (en) * 2012-01-23 2013-08-01 Hitachi Appliances Inc Coolant distributor and refrigeration cycle device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151572A (en) * 2015-02-19 2016-08-22 アズビル株式会社 Dryness measurement device
CN114062285A (en) * 2020-08-07 2022-02-18 中国石油天然气股份有限公司 Steam dryness measuring system, measuring method and measuring device

Also Published As

Publication number Publication date
JP6057859B2 (en) 2017-01-11
JP2015034736A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
US9372153B2 (en) Dryness fraction distribution measuring device and dryness fraction distribution measuring method
JP6236317B2 (en) Dryness measuring device
WO2015020023A1 (en) Dryness measurement device
JP2016517006A (en) Multi-parameter device for measuring the filling level, refractive index, and image analysis of tanks and reservoirs of liquid and liquefied products by optical means, without moving parts
JP2013092457A (en) Dryness measurement device and dryness measurement method
Mizushima A New Ray-Tracing-Assisted Calibration Method of a Fiber-Optic Thickness Probe for Measuring Liquid Film Flows
JP2016151572A (en) Dryness measurement device
JP6175370B2 (en) Dryness measuring device and dryness measuring method
JP5968241B2 (en) Dryness measuring device and dryness measuring method
WO2017183433A1 (en) Dryness measurement device and wet steam inspection device
WO2017183434A1 (en) Dryness measurement device and wet steam inspection device
WO2017104241A1 (en) Dryness measurement device
JP6392627B2 (en) Dryness measuring device and dryness measuring method
JP6664926B2 (en) Dryness measuring device
JP6307427B2 (en) Dryness measuring device and dryness measuring method
KR102265564B1 (en) Scattered light type gas sensing system
JP6006605B2 (en) Steam flow measuring device and steam flow measuring method
JP2018173323A (en) Dryness level determination device and dryness level determination method
JP2018169218A (en) Dryness measuring device and dryness measuring method
WO2021186877A1 (en) Flow rate measurement device
KR20120043581A (en) Device for measuring dryness fraction of two-phase fluid and method using the same
JP7462859B1 (en) Ozone concentration measuring device, ozone concentration measuring method, and ozone generation system
JP2017211350A (en) Dryness measurement device and wet steam inspection device
JP2015117977A (en) Heat quantity calculation device and heat quantity calculation method
JP2016151571A (en) Dryness measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834352

Country of ref document: EP

Kind code of ref document: A1