JP2009150629A - Refrigerating cycle simulation system and coolant flow simulation device - Google Patents

Refrigerating cycle simulation system and coolant flow simulation device Download PDF

Info

Publication number
JP2009150629A
JP2009150629A JP2007331228A JP2007331228A JP2009150629A JP 2009150629 A JP2009150629 A JP 2009150629A JP 2007331228 A JP2007331228 A JP 2007331228A JP 2007331228 A JP2007331228 A JP 2007331228A JP 2009150629 A JP2009150629 A JP 2009150629A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
flow rate
liquid refrigerant
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007331228A
Other languages
Japanese (ja)
Inventor
Shunji Moriwaki
俊二 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2007331228A priority Critical patent/JP2009150629A/en
Publication of JP2009150629A publication Critical patent/JP2009150629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve simulation tests regarding coolant communication of various types large scale refrigerating cycle systems, in a form near reality and without requiring large space. <P>SOLUTION: The refrigerating cycle simulation system is comprised by equipping an indoor unit, an outdoor unit, and the coolant flow simulation device 100 arranged on a piping between the indoor unit and the outdoor unit. The coolant flow simulation device 100 is provided with a coolant storage part 1 carrying out gas-liquid separation of a coolant introduce via a coolant introduction port P1, storing gas coolant in an upper area 11, and storing liquid coolant in a lower area 12, a gas coolant delivery tube 2, a liquid coolant delivery tube 3, a liquid coolant storage amount detecting mechanism part detecting a liquid coolant storage amount in the coolant storage part 1, and a delivery liquid coolant amount control mechanism part controlling a flow rate of the liquid coolant flowing through the liquid coolant delivery piping such that a detected stored amount detected by the liquid coolant storage amount detecting mechanism part becomes a target storage amount set on the basis of a volume of piping to be simulated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ビルに設置される空気調和装置などのような大規模冷凍サイクルシステムを開発、評価する場合に好適に用いられる冷凍サイクルの模擬システム等に関するものである。   The present invention relates to a refrigeration cycle simulation system and the like suitably used when developing and evaluating a large-scale refrigeration cycle system such as an air conditioner installed in a building.

ビルに設置される空気調和装置などのような大規模冷凍サイクルシステムでは、家庭用の空気調和装置などに比べると、冷媒循環回路における配管長や配管径が非常に大きくなることから、その配管部分に滞留する冷媒の量が格段に多くなるうえ、室外機から室内機に至るまでの冷媒の移動にも時間がかかる。   In a large-scale refrigeration cycle system such as an air conditioner installed in a building, the pipe length and pipe diameter in the refrigerant circulation circuit are very large compared to a home air conditioner. The amount of refrigerant staying in the room increases significantly, and it takes time to move the refrigerant from the outdoor unit to the indoor unit.

したがって、大規模冷凍サイクルシステムを開発、設計する場合は、上述した配管部分での冷媒の滞留や挙動(時間遅れなど)を考慮して、圧縮機や蒸発器など、種々の部材の性能や信頼性を満足する仕様を設定する必要がある。なお、水分を一定水位に貯留するものとしては特許文献1があげられる。近時では、コンピュータを用いてある程度までシミュレーションできるようにしたものも開発されているが、やはり実物と同じ規模の実験機を製作してテストすることが好ましい。
特開平11−64053号公報
Therefore, when developing and designing a large-scale refrigeration cycle system, the performance and reliability of various components such as compressors and evaporators are taken into consideration in consideration of refrigerant retention and behavior (time delay, etc.) in the piping section described above. It is necessary to set specifications that satisfy the characteristics. Patent Document 1 is an example of storing water at a constant water level. Recently, a computer that can be simulated to some extent using a computer has been developed. However, it is preferable to manufacture and test an experimental machine of the same scale as the actual product.
JP 11-64053 A

しかしながら、敷設規模によっては、室外機から室内機までの配管長が数十m以上に及ぶ空気調和装置が存在し、それに合わせた実験機を製作することは、スペースの問題などから、事実上不可能な場合がある。また、ビルの規模や部屋の配置等によって配管長や配管容積がまちまちであり、その都度、実験機を製作するのは非現実的である。   However, depending on the laying scale, there are air conditioners that have piping lengths of several tens of meters or more from the outdoor unit to the indoor unit, and it is practically impossible to manufacture an experimental unit that matches it. It may be possible. In addition, pipe lengths and pipe volumes vary depending on the size of the building and the layout of the room, and it is impractical to produce an experimental machine each time.

本発明はかかる問題点を鑑みてなされたものであって、単なるコンピュータ上の仮想的なものではなく、実際に冷凍サイクルを構成した実機でありながら、液冷媒の配管内での滞留や挙動を、自在に設定でき、種々の大規模冷凍サイクルシステムの液冷媒流通に係る模擬試験を、実物に近い態様でなおかつ大きなスペースを必要とすることなく実現できるようにすることを主たる所期課題としたものである。   The present invention has been made in view of such a problem, and is not merely a virtual one on a computer, but is a real machine that actually configures a refrigeration cycle. The main objective was to enable simulation tests related to the flow of liquid refrigerant in various large-scale refrigeration cycle systems that can be set freely and in a mode close to the actual size without requiring a large space. Is.

すなわち、本発明の冷凍サイクル模擬システムは、室内機と、室外機と、前記室内機及び室外機間の配管上に設けた冷媒流模擬装置とを具備してなり、前記冷媒流模擬装置が、冷媒導入ポート及び冷媒導出ポートと、前記冷媒導入ポートを介して導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、前記冷媒貯留部内の液冷媒貯留量を検知する液冷媒貯留量検知機構部と、前記液冷媒貯留量検知機構部で検知された検知貯留量が、模擬する配管の容積に基づいて設定された目標貯留量となるように、前記液冷媒導出配管を流れる液冷媒の流量を制御する流出液流量制御機構部と、を具備していることを特徴とする。   That is, the refrigeration cycle simulation system of the present invention comprises an indoor unit, an outdoor unit, and a refrigerant flow simulator provided on a pipe between the indoor unit and the outdoor unit, and the refrigerant flow simulator is A refrigerant introduction port, a refrigerant outlet port, a refrigerant storage portion that gas-liquid separates the refrigerant introduced through the refrigerant introduction port, stores gas refrigerant in an upper region, and stores liquid refrigerant in a lower region; and the upper portion A gas refrigerant outlet tube whose one end communicates with the region and the other end communicates with the refrigerant outlet port; a liquid refrigerant outlet tube whose one end communicates with the lower region and the other end communicates with the refrigerant outlet port; and the refrigerant Liquid refrigerant storage amount detection mechanism that detects the amount of liquid refrigerant stored in the storage, and the target storage amount that is set based on the volume of the pipe that the detected storage amount detected by the liquid refrigerant storage amount detection mechanism unit is simulated So that Characterized in that it comprises the effluent flow rate control mechanism for controlling the flow rate of the liquid refrigerant flowing through the refrigerant deriving pipes, the.

このようなものであれば、前記冷媒貯留部に冷媒を貯留し、液冷媒の検知貯留量を模擬する配管内の容積などに基づいて制御することによって、模擬する配管内での液冷媒の滞留や挙動を再現することができる。従って、前記冷媒流模擬装置を室内機と室外機間の配管上に設けることによって、大規模な配管を敷設せずに、実物に近い態様で大規模冷凍サイクルシステムの液冷媒流通に係る模擬試験を行うことができる。   In such a case, the refrigerant is stored in the refrigerant storage unit, and the liquid refrigerant is retained in the simulated pipe by controlling the volume based on the volume in the pipe that simulates the detected storage amount of the liquid refrigerant. And can reproduce the behavior. Therefore, by providing the refrigerant flow simulation device on the pipe between the indoor unit and the outdoor unit, a simulation test related to the liquid refrigerant circulation of the large-scale refrigeration cycle system in a mode close to the actual one without laying a large-scale pipe. It can be performed.

模擬する配管中の液冷媒の滞留量や挙動を正確に再現するためには、前記冷凍サイクル模擬システムが、冷媒貯留部に導入される冷媒のVoid率を検知するVoid率検知機構部と、模擬する配管の容積及び検知Void率に基づいて前記目標貯留量を設定する目標貯留量設定部と、をさらに具備しているものが好ましい。   In order to accurately reproduce the retention amount and behavior of the liquid refrigerant in the simulated pipe, the refrigeration cycle simulation system includes a void rate detection mechanism unit that detects the void rate of the refrigerant introduced into the refrigerant storage unit, and a simulation It is preferable to further include a target storage amount setting unit that sets the target storage amount based on the volume of the piping to be performed and the detected Voice rate.

冷凍サイクル模擬システムは、安価で、かつ、簡単な構成でVoid率を検知し、模擬する配管中の液冷媒の滞留量や挙動を正確に再現できるほうが好ましい。そのためには、冷媒の圧力又は温度を検知する圧力/温度検知手段と、前記ガス冷媒導出管を流れるガス冷媒の流量を検知するガス流量検知手段と、前記液冷媒導出管を流れる液冷媒の流量を検知する流出液流量検知手段と、前記冷媒貯留部に流入する液冷媒の流量を検知する流入液流量検知機構部と、を具備し、前記Void率検知機構部が、冷媒の検知圧力(又は温度)、ガス冷媒導出管を流れるガス冷媒の検知流量、液冷媒導出管を流れる液冷媒の検知流出液流量及び前記冷媒貯留部に流入する液冷媒の検知流入液流量に基づいてVoid率を算出するものであればよい。   It is preferable that the refrigeration cycle simulation system is inexpensive and can detect the void ratio with a simple configuration and accurately reproduce the retention amount and behavior of the liquid refrigerant in the simulated pipe. For this purpose, pressure / temperature detection means for detecting the pressure or temperature of the refrigerant, gas flow rate detection means for detecting the flow rate of the gas refrigerant flowing through the gas refrigerant outlet pipe, and the flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet pipe And an influent liquid flow rate detection mechanism for detecting the flow rate of the liquid refrigerant flowing into the refrigerant reservoir. The void rate detection mechanism is configured to detect the refrigerant detection pressure (or Temperature), the detected flow rate of the gas refrigerant flowing through the gas refrigerant outlet tube, the detected effluent flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet tube, and the detected influent flow rate of the liquid refrigerant flowing into the refrigerant reservoir. Anything to do.

より正確な冷凍サイクルの模擬試験を行うためには、模擬する配管内の液冷媒の滞留量や挙動が、時間とともに変化する過渡状態を再現する必要がある。そのためには、冷凍サイクル模擬システムが、室内機と、室外機と、前記室内機及び室外機間の配管上に設けた冷媒流模擬装置とを具備してなり、前記冷媒流模擬装置が、冷媒導入ポート及び冷媒導出ポートと、前記凝縮器から導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、前記冷媒貯留部に流入する液冷媒の流量を検知する流入液流量検知機構部と、前記流入液流量検知機構部で検知された液冷媒の検知流入液流量と等しい流量が、当該流入液流量検知から所定時間経過後に、前記液冷媒導出配管を流れるように制御する流出液流量制御機構部と、を具備しているものが好ましい。   In order to conduct a more accurate simulation test of the refrigeration cycle, it is necessary to reproduce a transient state in which the amount and behavior of liquid refrigerant in the simulated pipe changes with time. For this purpose, the refrigeration cycle simulation system includes an indoor unit, an outdoor unit, and a refrigerant flow simulation device provided on a pipe between the indoor unit and the outdoor unit. An inlet port, a refrigerant outlet port, a refrigerant introduced from the condenser, and a refrigerant storage part for storing gas refrigerant in the upper region and storing liquid refrigerant in the lower region, and one end in the upper region A gas refrigerant outlet pipe that communicates with the refrigerant outlet port at the other end, a liquid refrigerant outlet pipe that communicates with the lower region at one end and communicates with the refrigerant outlet port at the other end, and flows into the refrigerant reservoir. An inflow liquid flow rate detection mechanism for detecting the flow rate of the liquid refrigerant to be detected, and a flow rate equal to the detected inflow liquid flow rate of the liquid refrigerant detected by the inflow liquid flow rate detection mechanism, after a lapse of a predetermined time from the inflow liquid flow rate detection, Liquid refrigerant lead-out distribution Those anda effluent flow control mechanism arranged to control the flow through is preferred.

模擬する配管内での液冷媒の滞留量や挙動が急激に変化するのを再現でき、配管長が長い場合でも正確に再現できるようにするためには、冷媒貯留部に導入される冷媒のVoid率を検知するVoid率検知機構部と、前記Void率検知機構部が検知したVoid率に基づいて模擬する配管内での液冷媒の移動距離を算出する液冷媒移動距離算出部と、その液冷媒移動距離から模擬する配管内で発生する時間遅れを算出する時間遅れ算出部と、を具備し前記所定時間が時間遅れ算出部が算出した時間遅れに基づいて決定されるものであればよい。   In order to be able to reproduce the sudden change in the amount and behavior of liquid refrigerant in the simulated pipe and to accurately reproduce even when the pipe length is long, the void of the refrigerant introduced into the refrigerant reservoir A void rate detecting mechanism for detecting a rate, a liquid refrigerant moving distance calculating unit for calculating a moving distance of the liquid refrigerant in a pipe simulated based on the void rate detected by the void rate detecting mechanism, and the liquid refrigerant What is necessary is just to be determined based on the time delay which the time delay calculation part which comprises the time delay calculation part which calculates the time delay which generate | occur | produces in piping simulated from a movement distance, and the said time delay calculation part calculated.

模擬する配管内での液冷媒の滞留量や挙動が急減に変化するのを再現するために、Void率を簡単な構成で求めるには、冷媒の圧力又は温度を検知する圧力/温度検知手段と、前記ガス冷媒導出管を流れるガス冷媒の流量を検知するガス流量検知手段と、を具備し、前記Void率検知機構部が、前記冷媒貯留部の検知圧力(又は温度)、ガス冷媒導出管を流れるガス冷媒の検知流量、液冷媒導出管を流れる液冷媒の検知流出液流量及び前記冷媒貯留部に流入する液冷媒の検知流入液流量に基づいてVoid率を算出するものであればよい。   In order to reproduce the retention rate and behavior of the liquid refrigerant in the simulated pipe suddenly decreasing, in order to obtain the void ratio with a simple configuration, a pressure / temperature detection means for detecting the pressure or temperature of the refrigerant and Gas flow rate detecting means for detecting the flow rate of the gas refrigerant flowing through the gas refrigerant outlet pipe, and the void rate detecting mechanism is configured to detect the detected pressure (or temperature) of the refrigerant reservoir and the gas refrigerant outlet pipe. Any method may be used as long as the void rate is calculated based on the detected flow rate of the flowing gas refrigerant, the detected effluent flow rate of the liquid refrigerant flowing in the liquid refrigerant outlet pipe, and the detected inflow rate of the liquid refrigerant flowing into the refrigerant reservoir.

前記冷媒貯留部に流入する液冷媒の流入液流量を簡単な構成で検知するには、前記冷媒貯留部内の液冷媒貯留量を検知する液冷媒貯留量検知機構部と、前記液冷媒導出管を流れる液冷媒の流量を検知する流出液流量検知手段と、を具備し、前記流入液流量検知機構部が、冷媒貯留部内に貯留される液冷媒の検知貯留量と、液冷媒導出管を流れる液冷媒の検知流出液流量とに基づいて流入液流量を算出するものが好ましい。   In order to detect the inflow liquid flow rate of the liquid refrigerant flowing into the refrigerant storage unit with a simple configuration, a liquid refrigerant storage amount detection mechanism unit for detecting the liquid refrigerant storage amount in the refrigerant storage unit, and the liquid refrigerant outlet pipe An effluent flow rate detection means for detecting a flow rate of the flowing liquid refrigerant, wherein the inflow liquid flow rate detection mechanism section detects and stores the liquid refrigerant stored in the refrigerant storage section and the liquid flowing through the liquid refrigerant outlet pipe. It is preferable to calculate the influent flow rate based on the detected effluent flow rate of the refrigerant.

模擬する配管内での液冷媒の滞留量や挙動を作り出すには、冷媒流模擬装置が、室内機及び室外機間の配管上に設けられるものであって、冷媒導入ポート及び冷媒導出ポートと、前記冷媒導入ポートを介して導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、前記冷媒貯留部内の液冷媒貯留量を検知する液冷媒貯留量検知機構部と、記液冷媒貯留量検知機構部で検知された検知貯留量が、模擬する配管の容積に基づいて設定された目標貯留量となるように、前記液冷媒導出配管を流れる液冷媒の流量を制御する流出液流量制御機構部と、を具備していればよい。   In order to create a retention amount and behavior of liquid refrigerant in the simulated pipe, a refrigerant flow simulator is provided on the pipe between the indoor unit and the outdoor unit, and includes a refrigerant introduction port and a refrigerant outlet port, The refrigerant introduced through the refrigerant introduction port is separated into gas and liquid, a gas refrigerant is stored in the upper region, and a liquid storage unit that stores the liquid refrigerant in the lower region, and one end communicates with the upper region, and the refrigerant A gas refrigerant outlet pipe whose other end communicates with the outlet port, a liquid refrigerant outlet pipe whose one end communicates with the lower region and the other end communicates with the refrigerant outlet port, and the amount of liquid refrigerant stored in the refrigerant reservoir. The liquid refrigerant derivation is performed so that the detected storage amount detected by the liquid refrigerant storage amount detection mechanism unit and the recording refrigerant storage amount detection mechanism unit becomes the target storage amount set based on the volume of the simulated pipe. The flow rate of liquid refrigerant flowing through the pipe And effluent flow control mechanism unit Gosuru, it is sufficient comprises a.

模擬する配管内の液冷媒の滞留量や挙動が、時間とともに変化する過渡状態を再現するには、冷媒流模擬装置が、室内機及び室外機間の配管上に設けられるものであって、 冷媒導入ポート及び冷媒導出ポートと、前記凝縮器から導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、前記冷媒貯留部に流入する液冷媒の流量を検知する流入液流量検知機構部と、前記流入液流量検知機構部で検知された液冷媒の検知流入液流量と等しい流量が、当該流入液流量検知から所定時間経過後に、前記液冷媒導出配管を流れるように制御する流出液流量制御機構部と、を具備しているのが好ましい。   In order to reproduce a transient state in which the amount and behavior of liquid refrigerant in the simulated pipe change over time, a refrigerant flow simulator is provided on the pipe between the indoor unit and the outdoor unit, An inlet port, a refrigerant outlet port, a refrigerant introduced from the condenser, and a refrigerant storage part for storing gas refrigerant in the upper region and storing liquid refrigerant in the lower region, and one end in the upper region A gas refrigerant outlet pipe that communicates with the refrigerant outlet port at the other end, a liquid refrigerant outlet pipe that communicates with the lower region at one end and communicates with the refrigerant outlet port at the other end, and flows into the refrigerant reservoir. An inflow liquid flow rate detection mechanism for detecting the flow rate of the liquid refrigerant to be detected, and a flow rate equal to the detected inflow liquid flow rate of the liquid refrigerant detected by the inflow liquid flow rate detection mechanism, after a lapse of a predetermined time from the inflow liquid flow rate detection, Deriving the liquid refrigerant And effluent flow control mechanism arranged to control the flow through the tube, preferably is provided with a.

このように本発明によれば、大きなスペースを使って大規模な配管を敷設することなく、模擬する配管内の液冷媒の滞留量や挙動を再現し、実物に近い態様で大規模冷凍サイクルシステムの液冷媒流通に係る模擬試験を行うことができる。   As described above, according to the present invention, a large-scale refrigeration cycle system is reproduced in a manner close to the real thing by reproducing the retention amount and behavior of the liquid refrigerant in the simulated pipe without laying a large-scale pipe using a large space. A simulation test relating to the flow of liquid refrigerant can be performed.

以下、本発明の第一実施形態を、図面を参照して説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る冷凍サイクル模擬システムSは、図1に示すように、室内機Aと、室外機Bと、前記室内機A及び室外機B間に大規模な配管Pを敷設する代わりに、その配管P部分を模擬する冷媒流模擬装置100を設けているものである。   As shown in FIG. 1, the refrigeration cycle simulation system S according to the present embodiment, instead of laying an indoor unit A, an outdoor unit B, and a large-scale pipe P between the indoor unit A and the outdoor unit B, A refrigerant flow simulation device 100 for simulating the pipe P portion is provided.

前記冷媒流模擬装置100は、図2に示すように、冷媒導入ポートPIと、冷媒貯留部1と、冷媒導出ポートPOとが、配管によって連通してあるものである。前記冷媒導入ポートPIと前記冷媒貯留部1とは、冷媒導入管13で連通し、前記冷媒貯留部1と前記導出ポートとは、ガス冷媒導出管2と液冷媒導出管3とで連通するように構成してある。   As shown in FIG. 2, the refrigerant flow simulation device 100 includes a refrigerant introduction port PI, a refrigerant reservoir 1, and a refrigerant outlet port PO that are connected by a pipe. The refrigerant introduction port PI and the refrigerant reservoir 1 communicate with each other through a refrigerant introduction pipe 13, and the refrigerant reservoir 1 and the outlet port communicate with each other through a gas refrigerant outlet pipe 2 and a liquid refrigerant outlet pipe 3. It is configured.

前記冷媒導入ポートPIは、室内機A又は室外機Bのいずれかに設定された図示しない凝縮器(冷暖房により切り替わる)から送り出された冷媒を前記冷媒貯留部1に前記冷媒導入管13を介して導入するものである。   The refrigerant introduction port PI supplies refrigerant sent from a condenser (not shown) set in either the indoor unit A or the outdoor unit B (switched by air conditioning) to the refrigerant reservoir 1 via the refrigerant introduction pipe 13. It is to be introduced.

前記冷媒貯留部1は、高さ方向に略同じ直径を有した中空の概略円筒形状のものである。前記導入ポートから導入された冷媒を気液分離して、その内部の上部領域11にはガス冷媒を貯留し、下部領域12には液冷媒を貯留するように構成してある。また、この冷媒貯留部1には、前記下部領域12に貯留された液冷媒の量を検知するために、液面高さ検知手段たるレベルセンサ41が設けてある。加えて、上部領域11にあるガス冷媒の圧力を検出するために圧力検知手段たる圧力センサ61が前記冷媒貯留部1の上面に設けてある。(なお、この圧力検知手段は、どこに設けてもよい。)   The refrigerant reservoir 1 has a hollow, generally cylindrical shape having substantially the same diameter in the height direction. The refrigerant introduced from the introduction port is separated into gas and liquid, and the gas refrigerant is stored in the upper region 11 and the liquid refrigerant is stored in the lower region 12. Further, the refrigerant reservoir 1 is provided with a level sensor 41 serving as a liquid level detection means in order to detect the amount of liquid refrigerant stored in the lower region 12. In addition, a pressure sensor 61 serving as pressure detection means is provided on the upper surface of the refrigerant reservoir 1 in order to detect the pressure of the gas refrigerant in the upper region 11. (Note that this pressure detection means may be provided anywhere.)

前記レベルセンサ41は、前記冷媒貯留部1の下部領域12の底面から上部領域11の上面に垂直に設けており、貯留されている液冷媒の液面高さを検知するものである。   The level sensor 41 is provided perpendicularly from the bottom surface of the lower region 12 of the refrigerant reservoir 1 to the upper surface of the upper region 11, and detects the liquid level of the stored liquid refrigerant.

前記冷媒導出ポートPOは、前記冷媒貯留部1で気液分離された冷媒を、ガス冷媒は前記ガス冷媒導出管2を介して、液冷媒は前記液冷媒導出管3を介して室内機A及び室外機Bのいずれかに設定された図示しない蒸発器(冷暖房により切り替わる)に導出するものである。   The refrigerant outlet port PO is the refrigerant separated from the gas and liquid in the refrigerant reservoir 1, the gas refrigerant via the gas refrigerant outlet pipe 2, and the liquid refrigerant via the liquid refrigerant outlet pipe 3 and the indoor units A and This is led out to an evaporator (not shown) set in one of the outdoor units B (switched by cooling and heating).

前記ガス冷媒導出管2は、前記上部領域11と接する前記冷媒貯留部1の上面と前記冷媒導出ポートPOとを連通し、常にガス冷媒が室外機Bに導出されるように構成してある。このガス冷媒導出管2の途中にはガス流量検知手段たるガスフローメータ62を設けている。   The gas refrigerant outlet pipe 2 communicates the upper surface of the refrigerant reservoir 1 in contact with the upper region 11 and the refrigerant outlet port PO so that the gas refrigerant is always led out to the outdoor unit B. A gas flow meter 62 as gas flow rate detection means is provided in the middle of the gas refrigerant outlet pipe 2.

前記液冷媒導出管3は、前記下部領域12と接する前記冷媒貯留部1の下面と前記冷媒導出ポートPOを前記ガス冷媒導出管2の前記ガスフローメータ62の下流を介して連通するものであり、その途中には液冷媒の流出流量を制御するための流出液流量制御手段たる流量制御弁51が設けてある。さらに、前記流量制御弁51の上流には、流出液流量検知手段たるリキッドフローメータ63が設けてある。   The liquid refrigerant outlet pipe 3 communicates the lower surface of the refrigerant reservoir 1 that is in contact with the lower region 12 and the refrigerant outlet port PO via the downstream of the gas flow meter 62 of the gas refrigerant outlet pipe 2. A flow rate control valve 51 as an effluent flow rate control means for controlling the effluent flow rate of the liquid refrigerant is provided in the middle. Further, a liquid flow meter 63 as effluent flow rate detection means is provided upstream of the flow rate control valve 51.

これらの構成に加えて、この冷媒流模擬装置100は、前記流量制御弁51を制御して、模擬する配管内での液冷媒滞留量を再現する制御機構部Cを設けている。   In addition to these configurations, the refrigerant flow simulation device 100 is provided with a control mechanism unit C that controls the flow rate control valve 51 and reproduces the liquid refrigerant retention amount in the simulated pipe.

制御機構部Cは、少なくとも、ハードウェア構成としては、CPU、メモリC1、各種ドライバ回路などを具備したものであり、前記メモリC1に記憶させたプログラムに従って、前記CPUや周辺機器が協動することで種々の機能を発揮する。   The control mechanism unit C has at least a hardware configuration including a CPU, a memory C1, various driver circuits, etc., and the CPU and peripheral devices cooperate in accordance with a program stored in the memory C1. Various functions can be achieved.

しかして、この実施形態においては、図3の機能ブロック図に示すように、少なくとも液冷媒貯留量算出部42と、流入液流量算出部64と、Void率算出部65と、目標貯留量設定部8と、弁制御部52としての機能を発揮するようにプログラムが構成してある。   Therefore, in this embodiment, as shown in the functional block diagram of FIG. 3, at least the liquid refrigerant storage amount calculation unit 42, the influent liquid flow rate calculation unit 64, the void rate calculation unit 65, and the target storage amount setting unit 8 and a program are configured to exhibit the function as the valve control unit 52.

前記液冷媒貯留量算出部42は、前記レベルセンサ41が検知した液面高さを用いて、前記液冷媒貯留部1に貯留されている液冷媒の貯留量を算出するものである。なお、この液冷媒貯留量算出部42と、前記液面高さ検知手段たるレベルセンサ41とが請求項での液冷媒貯留量検知機構部4に相当する。   The liquid refrigerant storage amount calculation unit 42 calculates the storage amount of the liquid refrigerant stored in the liquid refrigerant storage unit 1 using the liquid level detected by the level sensor 41. The liquid refrigerant storage amount calculation unit 42 and the level sensor 41 serving as the liquid level detection means correspond to the liquid refrigerant storage amount detection mechanism unit 4 in the claims.

前記流入液流量算出部64は、前記液冷媒貯留量算出部42が算出する液冷媒の貯留量の変位分と、前記リキッドフローメータ63が検知する前記液冷媒導出管3から流出する流出液流量を用いて、前記液冷媒貯留部1に流入する液冷媒の流入液流量を算出するものである。なお、本実施形態では、この流入液流量算出部64が請求項での流入液流量検知機構部に相当する。   The inflow liquid flow rate calculation unit 64 includes the displacement of the storage amount of the liquid refrigerant calculated by the liquid refrigerant storage amount calculation unit 42 and the outflow liquid flow rate flowing out from the liquid refrigerant outlet pipe 3 detected by the liquid flow meter 63. Is used to calculate the inflow liquid flow rate of the liquid refrigerant flowing into the liquid refrigerant reservoir 1. In the present embodiment, the inflow liquid flow rate calculation unit 64 corresponds to the inflow liquid flow rate detection mechanism in the claims.

前記Void率算出部65は、前記圧力センサ61が検知する圧力と、前記ガスフローメータ62が検知したガス冷媒の流出流量と、前記リキッドフローメータ63が検知する液冷媒の流出液流量を用いて、前記冷媒導入管13を通過している冷媒のVoid率を算出するものである。   The void ratio calculation unit 65 uses the pressure detected by the pressure sensor 61, the outflow rate of the gas refrigerant detected by the gas flow meter 62, and the outflow rate of the liquid refrigerant detected by the liquid flow meter 63. The Void rate of the refrigerant passing through the refrigerant introduction pipe 13 is calculated.

なお、本実施形態では、このVoid率算出部65が、請求項でのVoid率検知機構部に相当する。   In the present embodiment, the void rate calculation unit 65 corresponds to the void rate detection mechanism unit in the claims.

前記目標貯留量設定部8は、前記メモリC1に格納されている模擬しようとする配管の長さや管径などから決まる配管内の容積と、前記Void率算出部65が算出するVoid率に基づいて、前記冷媒貯留部1に貯留する液冷媒の目標貯留量を設定するものである。   The target storage amount setting unit 8 is based on the volume in the pipe determined from the length or pipe diameter of the pipe to be simulated stored in the memory C1 and the void rate calculated by the void rate calculation unit 65. The target storage amount of the liquid refrigerant stored in the refrigerant storage unit 1 is set.

前記弁制御部52は、前記液冷媒貯留量算出部42の算出する液冷媒貯留量が、前記目標貯留量設定部8が設定する目標貯留量に追従するように、前記流量制御弁51の制御を行うことによって、前記液冷媒導出管3から流出する液冷媒の量を制御するように構成してある。なお、前記弁制御部52と前記流量制御弁51とが、請求項での流出液流量制御機構部5に相当する。   The valve control unit 52 controls the flow rate control valve 51 such that the liquid refrigerant storage amount calculated by the liquid refrigerant storage amount calculation unit 42 follows the target storage amount set by the target storage amount setting unit 8. By performing this, the amount of liquid refrigerant flowing out from the liquid refrigerant outlet tube 3 is controlled. In addition, the said valve control part 52 and the said flow control valve 51 are equivalent to the effluent flow control mechanism part 5 in a claim.

次に、図4に示すような定常状態における液冷媒流通を模擬する制御について、図5に示すフローチャートを参照しながら説明する。   Next, control for simulating liquid refrigerant circulation in a steady state as shown in FIG. 4 will be described with reference to the flowchart shown in FIG.

前記液冷媒貯留量算出部42が、式(数1)に基づいて、前記冷媒貯留部1に貯留されている液冷媒の貯留量を算出する(ステップS1)。
ここで、Vは液冷媒の体積、Dは前記冷媒貯留部1の直径、hは液冷媒の液面高さである。
The liquid refrigerant storage amount calculation unit 42 calculates the storage amount of the liquid refrigerant stored in the refrigerant storage unit 1 based on the equation (Equation 1) (step S1).
Here, V t is the volume of the liquid refrigerant, D t is the diameter of the refrigerant reservoir 1, and h is the liquid level of the liquid refrigerant.

次に、流入液流量算出部64が、式(数2)に基づいて前記液冷媒貯留部1に流入する液冷媒の体積流量を算出する(ステップS2)。
ここで、Vliは流入する液冷媒の体積流量、Δtは所定時間、Δhは液面高さの変位量、Vldは液冷媒排出体積流量である。
Next, the inflow liquid flow rate calculation unit 64 calculates the volume flow rate of the liquid refrigerant flowing into the liquid refrigerant storage unit 1 based on the equation (Equation 2) (step S2).
Here, V li is a volume flow rate of the flowing liquid refrigerant, Δt is a predetermined time, Δh is a displacement amount of the liquid level, and V ld is a liquid refrigerant discharge volume flow rate.

そして、前記Void率算出部65は、前記圧力センサ61が検知した圧力Pを用いて、液相質量流量Mを以下の式(数3)を用いて算出する。
ここで、v(P)は圧力Pによって決まる液相比体積である。
And the said void ratio calculation part 65 calculates liquid phase mass flow rate Ml using the following formula | equation (Formula 3) using the pressure P which the said pressure sensor 61 detected.
Here, v l (P) is a liquid phase specific volume determined by the pressure P.

前記Void率算出部65は、圧力Pと前記ガスフローメータ62が検知した流入するガス冷媒の体積流量Vgiから式(数4)と同様にして算出される気相質量流量Mを用いて、以下の式(数4)の乾き度xを算出する。
The Void ratio calculation unit 65, by a vapor mass flow rate M g, which is calculated similarly from the volume flow V gi gas refrigerant flowing the pressure P gas flow meter 62 detects the equation (4) The dryness x of the following equation (Equation 4) is calculated.

前記Void率算出部65は、この乾き度xと気相比体積vg(P)、液相比体積vl(P)、定数εを用いて以下の式(数5)から気液速度比sを求め、
Void率αを以下の式(数6)から算出する(ステップS3)。
ここで、V(P)は圧力Pによって決まる気相比体積である。
The void ratio calculation unit 65 uses the dryness x, the gas phase specific volume vg (P), the liquid phase specific volume vl (P), and the constant ε to calculate the gas-liquid velocity ratio s from the following equation (Equation 5). Seeking
The void rate α is calculated from the following equation (Equation 6) (step S3).
Here, V g (P) is a gas phase specific volume determined by the pressure P.

次に、前記目標貯留量設定部8が、前記メモリC1から模擬する配管内の容積を読み出し、Void率算出部65が算出したVoid率から模擬する配管内の液冷媒の滞留量を以下の式(数7)によって算出し、前記冷媒貯留部1に貯留する液冷媒の目標貯留量に設定する(ステップS4)。
ここで、Vlpは模擬する配管内での液冷媒の滞留量、Dは模擬する配管の直径、Lは模擬する配管の長さ、αはVoid率である。
Next, the target storage amount setting unit 8 reads the volume in the pipe to be simulated from the memory C1, and the retention amount of the liquid refrigerant in the pipe to be simulated from the void rate calculated by the void rate calculation unit 65 is expressed by the following equation: It calculates by (Equation 7), and sets to the target storage amount of the liquid refrigerant stored in the said refrigerant | coolant storage part 1 (step S4).
Here, V lp is the residence amount of the liquid refrigerant in the simulated pipe, D p is the diameter of the simulated pipe, L is the length of the simulated pipe, and α is the void rate.

前記冷媒貯留部1に目標貯留量の液冷媒が貯留されるまでの間、前記弁制御部52は、前記流量制御弁51によって、前記液冷媒導出管3を閉塞し、液冷媒が流出しないようにする。液冷媒の量が目標貯留量に達したら、前記弁制御部52は、目標貯留量を維持するように前記流量制御弁51の制御を行う(ステップS5)。   Until the target amount of liquid refrigerant is stored in the refrigerant storage unit 1, the valve control unit 52 closes the liquid refrigerant outlet pipe 3 by the flow rate control valve 51 so that the liquid refrigerant does not flow out. To. When the amount of the liquid refrigerant reaches the target storage amount, the valve control unit 52 controls the flow rate control valve 51 so as to maintain the target storage amount (step S5).

次に、模擬する配管の液冷媒の滞留量が変化すると、ステップS1に戻って、前記目標貯留量設定部8が設定する目標貯留量が更新される。   Next, when the retention amount of the liquid refrigerant in the simulated pipe changes, the process returns to step S1 and the target storage amount set by the target storage amount setting unit 8 is updated.

この新しい目標貯留量に前記冷媒貯留部1の液冷媒の貯留量が追従するように前記弁制御部52は、前記流量制御弁51の制御を行う。   The valve control unit 52 controls the flow control valve 51 so that the storage amount of the liquid refrigerant in the refrigerant storage unit 1 follows the new target storage amount.

このように第一実施形態においては、模擬する配管の容積と流入する冷媒のVoid率に基づいて目標貯留量を設定して、その目標値に前記冷媒貯留部1に貯留する液冷媒が追従するように前記流量制御弁51を制御することによって、模擬する配管での液冷媒の滞留量を再現することができる。より具体的には、前記冷媒貯留部1に流入する液冷媒の流量が一定であり、前記冷媒貯留部1に貯留する液冷媒の量を目標貯留量になるように前記流量制御弁51を制御するので、模擬する配管での定常状態の流れにおける滞留量や時間遅れを再現することができる。   As described above, in the first embodiment, the target storage amount is set based on the volume of the pipe to be simulated and the void ratio of the refrigerant flowing in, and the liquid refrigerant stored in the refrigerant storage unit 1 follows the target value. By controlling the flow rate control valve 51 as described above, the retention amount of the liquid refrigerant in the simulated pipe can be reproduced. More specifically, the flow rate control valve 51 is controlled so that the flow rate of the liquid refrigerant flowing into the refrigerant storage unit 1 is constant and the amount of liquid refrigerant stored in the refrigerant storage unit 1 becomes the target storage amount. Therefore, it is possible to reproduce the staying amount and the time delay in the steady flow in the simulated pipe.

しかも、大掛かりな配管を敷設することなく、実機に近い形で液冷媒流通にかかる模擬試験を行うことができ、コンピュータだけに頼ったシミュレーションに比べて、より信頼できる試験結果を得ることができる。   In addition, it is possible to perform a simulation test for liquid refrigerant circulation in a form close to an actual machine without laying large piping, and it is possible to obtain a more reliable test result as compared with a simulation relying only on a computer.

さらに、前記メモリC1に格納する模擬する配管のデータを変更することによって、様々な長さや管径などの配管における液冷媒滞留量や挙動を再現できるので、幅広い形態の大規模冷凍サイクルシステムの液冷媒流通に係る模擬試験を実機に近い形で行うことができる。   Further, by changing the data of the simulated pipe stored in the memory C1, the liquid refrigerant retention amount and behavior in the pipe having various lengths and pipe diameters can be reproduced. A simulation test related to refrigerant distribution can be performed in a form close to that of an actual machine.

次に第2実施形態について、図面を参照しながら説明する。以下に示す説明において、第1実施形態に対応する部材には同一の符号を付すこととする。   Next, a second embodiment will be described with reference to the drawings. In the following description, the same reference numerals are assigned to members corresponding to the first embodiment.

この第2実施形態の冷凍サイクル模擬システムSは、図2の第1実施形態とほぼ同じ構成を有しており、前記冷媒貯留部1に流入する液冷媒の検知流量が所定時間経過後に、前記冷媒導出配管を流れるように制御するように前記制御機構部Cが動作する点が前記第1実施形態と異なる。   The refrigeration cycle simulation system S of the second embodiment has substantially the same configuration as that of the first embodiment of FIG. 2, and the detected flow rate of the liquid refrigerant flowing into the refrigerant storage unit 1 is after the elapse of a predetermined time. The point from which the said control-mechanism part C operate | moves so that it may control so that it may flow through refrigerant | coolant outlet piping differs from the said 1st Embodiment.

このため、図6の機能ブロック図に示すように、制御機構部Cには模擬する配管内での液冷媒の移動距離を算出する液冷媒移動距離算出部9と時間遅れ算出部10をさらに設けている。   For this reason, as shown in the functional block diagram of FIG. 6, the control mechanism C is further provided with a liquid refrigerant moving distance calculating unit 9 and a time delay calculating unit 10 for calculating the moving distance of the liquid refrigerant in the simulated pipe. ing.

この制御機構部Cの制御動作について図7のように流入する流量が変動する場合を例にして、図8のフローチャートを参照しながら説明する。   The control operation of the control mechanism C will be described with reference to the flowchart of FIG. 8 taking as an example the case where the flow rate of the flow varies as shown in FIG.

この制御では所定時間間隔で、前記ガスフローメータ62、前記リキッドフローメータ63、前記レベルセンサ41での検知を行いながら、前記冷媒貯留部1に流入する液冷媒の流量と、前記冷媒貯留部1に貯留されている液冷媒の貯留量と、液冷媒移動距離を算出し、それらをメモリC1に記憶している。ここで、所定時間間隔とは、一般的な液流速から模擬する配管長を通過するのにかかる時間を求め、例えば、その時間を5で割ったものとしている。   In this control, while detecting with the gas flow meter 62, the liquid flow meter 63, and the level sensor 41 at predetermined time intervals, the flow rate of the liquid refrigerant flowing into the refrigerant reservoir 1 and the refrigerant reservoir 1 The amount of liquid refrigerant stored and the liquid refrigerant moving distance are calculated and stored in the memory C1. Here, the predetermined time interval refers to the time taken to pass the simulated pipe length from a general liquid flow velocity, for example, the time divided by 5.

また、液冷媒移動距離は、前記液冷媒移動距離算出部9が、前記Void率算出部65が算出したVoid率αを用いて、以下の式(数8)によって、液相の流速Uを求め、その流速から一定時間ごとの液移動距離を式(数9)で算出し前記メモリC1に格納する(ステップST1)。
ここで、Dは模擬する配管の直径、Vldは流出する液冷媒の体積流量である。
The liquid refrigerant moving distance, the liquid refrigerant moving distance calculating unit 9, using a Void factor α of the Void ratio calculation unit 65 is calculated by the following equation (8), the flow velocity U l of the liquid phase The liquid movement distance for every fixed time is calculated from the flow velocity by the equation (Equation 9) and stored in the memory C1 (step ST1).
Here, D p is the piping to simulate diameter, the V ld is the volume flow rate of the liquid refrigerant flowing out.

次に、時間遅れ算出部10は、前記液冷媒移動距離算出部9が算出した現時点から過去データに向かって液移動距離を積算し、積算結果が模擬する配管の長さLとなる時点までの期間を算出する(ステップST2)。この期間が、現時点で流入する液冷媒が、模擬する配管に流れている場合に発生する時間遅れとなる。ここまでの具体的な計算フローは図9のようになる。   Next, the time delay calculation unit 10 integrates the liquid movement distance from the current time calculated by the liquid refrigerant movement distance calculation unit 9 toward the past data, and until the time when the integration result becomes the length L of the simulated pipe. A period is calculated (step ST2). This period is a time delay that occurs when the liquid refrigerant flowing in at the present time flows through the simulated pipe. The specific calculation flow so far is as shown in FIG.

前記弁制御部52は、図10に示すように、この時間遅れ算出部10が算出した時間遅れと、前記流入液流量検知機構部が検知する現時点の流入液流量から目標排出量を設定する。(ステップST3)。   As shown in FIG. 10, the valve control unit 52 sets a target discharge amount from the time delay calculated by the time delay calculation unit 10 and the current inflow liquid flow rate detected by the inflow liquid flow rate detection mechanism unit. (Step ST3).

弁制御部52は、最初に流入した液冷媒が排出される時刻になるまでの間、液冷媒を貯留するように、前記流量制御弁51を閉じておく。(ステップST4)。   The valve control unit 52 keeps the flow rate control valve 51 closed so as to store the liquid refrigerant until the time when the first flowing liquid refrigerant is discharged. (Step ST4).

最初に流入した液冷媒が排出される時点から、目標排出量と前記リキッドフローメータ63の検知する流出液流量が一致するように前記流量制御弁の制御を開始する。(ステップST5)。   The control of the flow rate control valve is started so that the target discharge amount and the effluent flow rate detected by the liquid flow meter 63 coincide with each other from the time when the first flowing liquid refrigerant is discharged. (Step ST5).

このように、第2実施形態においては、模擬する配管内での液冷媒の滞留量や挙動が急激に変化しても、再現することができ、より実機に近い液冷媒の流通にかかる模擬試験を行うことができる。   As described above, in the second embodiment, even if the retention amount or behavior of the liquid refrigerant in the simulated pipe suddenly changes, it can be reproduced, and the simulation test related to the distribution of the liquid refrigerant closer to the actual machine. It can be performed.

なお、本発明は、第1実施形態や第2実施形態に限られるものではない。以下対応する部材には同じ符号を付すこととする。   The present invention is not limited to the first embodiment or the second embodiment. Hereinafter, the same reference numerals are given to corresponding members.

前記実施形態では凝縮器の後の配管について模擬していたが、暖房時には凝縮器の前の
配管を模擬することもでき、冷房時には蒸発器の後の配管を模擬することもできる。
In the above embodiment, the piping after the condenser is simulated. However, the piping before the condenser can be simulated during heating, and the piping after the evaporator can be simulated during cooling.

冷媒貯留部1に、圧力センサ61の代わりに、温度センサを設けて、液相比体積や気相比体積を決めるものであっても構わない。   Instead of the pressure sensor 61, the refrigerant storage unit 1 may be provided with a temperature sensor to determine the liquid phase specific volume or the gas phase specific volume.

第2実施形態では、液冷媒の時間遅れに注目して流量制御を行っているが、模擬する配管内での滞留量に注目して制御を行っても構わない。この場合、滞留量の変動に合わせて、冷媒貯留部の液冷媒貯留量を制御することになる。   In the second embodiment, the flow rate control is performed by paying attention to the time delay of the liquid refrigerant, but the control may be performed by paying attention to the staying amount in the simulated pipe. In this case, the liquid refrigerant storage amount of the refrigerant storage unit is controlled in accordance with the fluctuation of the retention amount.

冷媒流擬装置100が、図11に示すようにレベルセンサ41のみを用いるものであっても構わない。この場合、予め模擬する配管内での液冷媒の滞留量をメモリC1に格納しておき、その貯留量に冷媒貯留部1の貯留量が追従するように流量制御弁51の制御を行えばよい。   The refrigerant flow simulation apparatus 100 may use only the level sensor 41 as shown in FIG. In this case, the retention amount of the liquid refrigerant in the simulated pipe is stored in the memory C1, and the flow rate control valve 51 is controlled so that the storage amount of the refrigerant storage unit 1 follows the storage amount. .

また、冷媒流模擬装置100が、図12に示すように、レベルセンサ41と液冷媒導出管3にリキッドフローメータ63を設けたものであっても構わない。この場合、冷媒貯留部1に貯留された液冷媒の貯留量の変化と、排出する液流量から流入する流量を算出し、その流入する流量を所定時間経過後に排出するようにすれば、模擬する配管での液冷媒の滞留量や挙動の変化を模擬することができる。   Moreover, the refrigerant | coolant flow simulation apparatus 100 may provide the liquid flow meter 63 in the level sensor 41 and the liquid refrigerant | coolant outlet tube 3, as shown in FIG. In this case, a simulation is performed by calculating the flow rate of the liquid refrigerant stored in the refrigerant storage unit 1 and the flow rate of the inflow from the liquid flow rate to be discharged and discharging the flow rate of the inflow after a predetermined time has elapsed. It is possible to simulate a change in the amount and behavior of liquid refrigerant in the pipe.

そして、図13に示すように、冷媒流模擬装置100が、冷媒導入管13にVoid率検知手段たるVoidメータVMを設け、液冷媒導出管3にはリキッドフローメータ63を設けるものであってもかまわない。この場合、流入する液冷媒のVoid率を正確に検知することができるので、模擬する配管内での液冷媒の滞留量や挙動をより正確に再現することができる。   As shown in FIG. 13, even if the refrigerant flow simulation device 100 is provided with a void meter VM serving as a void rate detection means in the refrigerant introduction pipe 13 and a liquid flow meter 63 in the liquid refrigerant outlet pipe 3. It doesn't matter. In this case, since the Void rate of the flowing liquid refrigerant can be detected accurately, the amount and behavior of the liquid refrigerant in the simulated pipe can be more accurately reproduced.

その他、本発明は前記図示例や実施形態に限られず、その主旨を逸脱しない範囲で種々の変形が可能である。   In addition, the present invention is not limited to the illustrated examples and embodiments, and various modifications can be made without departing from the gist thereof.

本発明の一実施形態が室内機と室外機間の配管を模擬することを示す概念図。The conceptual diagram which shows that one Embodiment of this invention simulates piping between an indoor unit and an outdoor unit. 本発明の第1実施形態に係る冷媒流模擬装置の模式図。The schematic diagram of the refrigerant | coolant flow simulation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る機能ブロック図。The functional block diagram which concerns on 1st Embodiment of this invention. 模擬する液冷媒の滞留量が定常状態である場合を示す模式図。The schematic diagram which shows the case where the residence amount of the liquid refrigerant to simulate is a steady state. 本発明の第1実施形態に係る液冷媒流通を模擬するフローチャート。The flowchart which simulates the liquid refrigerant distribution which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る機能ブロック図。The functional block diagram which concerns on 2nd Embodiment of this invention. 模擬する液冷媒の滞留量が変化する場合を示す模式図。The schematic diagram which shows the case where the residence amount of the liquid refrigerant to simulate changes. 本発明の第2実施形態に係る液冷媒流通を模擬するフローチャート。The flowchart which simulates the liquid refrigerant distribution which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る時間遅れを算出するフローチャート。The flowchart which calculates the time delay which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る流入する液冷媒量と液冷媒排出量の関係を示す模式図。The schematic diagram which shows the relationship between the liquid refrigerant | coolant amount which flows in and liquid refrigerant discharge | emission amount which concerns on 2nd Embodiment of this invention. 本発明の別の実施形態に係る冷媒流模擬装置の模式図。The schematic diagram of the refrigerant | coolant flow simulation apparatus which concerns on another embodiment of this invention. 本発明のさらに別の実施形態に係る冷媒流模擬装置の模式図。The schematic diagram of the refrigerant | coolant flow simulation apparatus which concerns on another embodiment of this invention. 本発明の他の実施形態に係る冷媒流模擬装置の模式図。The schematic diagram of the refrigerant | coolant flow simulation apparatus which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

S・・・冷凍サイクル模擬システム
A・・・室内機
B・・・室外機
P・・・配管
100・・・冷媒流模擬装置
PI・・・冷媒導入ポート
PO・・・冷媒導出ポート
1・・・冷媒貯留部
11・・・上部領域
12・・・下部領域
2・・・ガス冷媒導出管
3・・・液冷媒導出管
4・・・液冷媒貯留量検知機構部
5・・・流出液流量制御機構部
65・・・Void率検知機構部
61・・・圧力/温度検知手段
62・・・ガス流量検知手段
63・・・液流量検知手段
64・・・流入液流量検知機構部
8・・・目標貯留量設定部
9・・・液冷媒移動距離算出部
10・・・時間遅れ算出部
S ... Refrigeration cycle simulation system A ... Indoor unit B ... Outdoor unit P ... Piping 100 ... Refrigerant flow simulation device PI ... Refrigerant introduction port PO ... Refrigerant outlet port 1 ... -Refrigerant storage part 11 ... Upper region 12 ... Lower region 2 ... Gas refrigerant outlet pipe 3 ... Liquid refrigerant outlet pipe 4 ... Liquid refrigerant storage amount detection mechanism part 5 ... Outflow liquid flow rate Control mechanism 65 ... Void rate detection mechanism 61 ... Pressure / temperature detection means 62 ... Gas flow rate detection means 63 ... Liquid flow rate detection means 64 ... Inflow liquid flow rate detection mechanism 8 ... Target storage amount setting unit 9 ... Liquid refrigerant moving distance calculation unit 10 ... Time delay calculation unit

Claims (9)

室内機と、室外機と、前記室内機及び室外機間の配管上に設けた冷媒流模擬装置とを具備してなり、
前記冷媒流模擬装置が、
冷媒導入ポート及び冷媒導出ポートと、
前記冷媒導入ポートを介して導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、
前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、
前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、
前記冷媒貯留部内の液冷媒貯留量を検知する液冷媒貯留量検知機構部と、
前記液冷媒貯留量検知機構部で検知された検知貯留量が、模擬する配管の容積に基づいて設定された目標貯留量となるように、前記液冷媒導出配管を流れる液冷媒の流量を制御する流出液流量制御機構部と、を具備している冷凍サイクル模擬システム。
An indoor unit, an outdoor unit, and a refrigerant flow simulator provided on a pipe between the indoor unit and the outdoor unit,
The refrigerant flow simulator
A refrigerant inlet port and a refrigerant outlet port;
A refrigerant storage unit that gas-liquid separates the refrigerant introduced through the refrigerant introduction port, stores gas refrigerant in the upper region, and stores liquid refrigerant in the lower region;
A gas refrigerant outlet pipe having one end communicating with the upper region and the other end communicating with the refrigerant outlet port;
A liquid refrigerant outlet pipe having one end communicating with the lower region and the other end communicating with the refrigerant outlet port;
A liquid refrigerant storage amount detection mechanism for detecting a liquid refrigerant storage amount in the refrigerant storage unit;
The flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet pipe is controlled so that the detected storage quantity detected by the liquid refrigerant storage quantity detection mechanism unit becomes a target storage quantity set based on the volume of the pipe to be simulated. And an effluent flow rate control mechanism unit.
冷媒貯留部に導入される冷媒のVoid率を検知するVoid率検知機構部と、
模擬する配管の容積及び検知Void率に基づいて前記目標貯留量を設定する目標貯留量設定部と、をさらに具備している請求項1記載の冷凍サイクル模擬システム。
A void rate detection mechanism for detecting the void rate of the refrigerant introduced into the refrigerant reservoir;
The refrigeration cycle simulation system according to claim 1, further comprising: a target storage amount setting unit that sets the target storage amount based on a volume of the pipe to be simulated and a detected Voice rate.
冷媒の圧力又は温度を検知する圧力/温度検知手段と、
前記ガス冷媒導出管を流れるガス冷媒の流量を検知するガス流量検知手段と、
前記液冷媒導出管を流れる液冷媒の流量を検知する流出液流量検知手段と、
前記冷媒貯留部に流入する液冷媒の流量を検知する流入液流量検知機構部と、を具備し、
前記Void率検知機構部が、冷媒の検知圧力(又は温度)、ガス冷媒導出管を流れるガス冷媒の検知流量、液冷媒導出管を流れる液冷媒の検知流出液流量及び前記冷媒貯留部に流入する液冷媒の検知流入液流量に基づいてVoid率を算出するものである請求項2記載の冷凍サイクル模擬システム。
Pressure / temperature detection means for detecting the pressure or temperature of the refrigerant;
Gas flow rate detecting means for detecting the flow rate of the gas refrigerant flowing through the gas refrigerant outlet pipe;
An effluent flow rate detection means for detecting the flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet pipe;
An inflow liquid flow rate detection mechanism for detecting the flow rate of the liquid refrigerant flowing into the refrigerant storage unit,
The void ratio detection mechanism section flows into the refrigerant detection pressure (or temperature), the detection flow rate of the gas refrigerant flowing through the gas refrigerant outlet pipe, the detected effluent flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet pipe, and the refrigerant reservoir. The refrigeration cycle simulation system according to claim 2, wherein the void ratio is calculated based on a detected influent flow rate of the liquid refrigerant.
室内機と、室外機と、前記室内機及び室外機間の配管上に設けた冷媒流模擬装置とを具備してなり、
前記冷媒流模擬装置が、
冷媒導入ポート及び冷媒導出ポートと、
前記凝縮器から導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、
前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、
前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、
前記冷媒貯留部に流入する液冷媒の流量を検知する流入液流量検知機構部と、
前記流入液流量検知機構部で検知された液冷媒の検知流入液流量と等しい流量が、当該流入液流量検知から所定時間経過後に、前記液冷媒導出配管を流れるように制御する流出液流量制御機構部と、を具備している冷凍サイクル模擬システム。
An indoor unit, an outdoor unit, and a refrigerant flow simulator provided on a pipe between the indoor unit and the outdoor unit,
The refrigerant flow simulator
A refrigerant inlet port and a refrigerant outlet port;
A refrigerant storage unit that gas-liquid separates the refrigerant introduced from the condenser, stores gas refrigerant in the upper region, and stores liquid refrigerant in the lower region;
A gas refrigerant outlet pipe having one end communicating with the upper region and the other end communicating with the refrigerant outlet port;
A liquid refrigerant outlet pipe having one end communicating with the lower region and the other end communicating with the refrigerant outlet port;
An influent liquid flow rate detection mechanism for detecting the flow rate of the liquid refrigerant flowing into the refrigerant reservoir;
An effluent liquid flow rate control mechanism for controlling the flow rate equal to the detected influent flow rate of the liquid refrigerant detected by the inflow liquid flow rate detection mechanism unit to flow through the liquid refrigerant outlet pipe after a predetermined time has elapsed since the inflow liquid flow rate detection. And a refrigeration cycle simulation system.
冷媒貯留部に導入される冷媒のVoid率を検知するVoid率検知機構部と、
前記Void率検知機構部が検知したVoid率に基づいて模擬する配管内での液冷媒の移動距離を算出する液冷媒移動距離算出部と、
その液冷媒移動距離から模擬する配管内で発生する時間遅れを算出する時間遅れ算出部と、を具備し、
前記所定時間が前記時間遅れ算出部が算出した時間遅れに基づいて決定される請求項4記載の冷凍サイクル模擬システム。
A void rate detection mechanism for detecting the void rate of the refrigerant introduced into the refrigerant reservoir;
A liquid refrigerant moving distance calculating unit for calculating a moving distance of the liquid refrigerant in the pipe to be simulated based on the void rate detected by the void rate detecting mechanism;
A time delay calculation unit that calculates a time delay that occurs in the pipe simulated from the liquid refrigerant moving distance, and
The refrigeration cycle simulation system according to claim 4, wherein the predetermined time is determined based on the time delay calculated by the time delay calculation unit.
冷媒の圧力又は温度を検知する圧力/温度検知手段と、
前記ガス冷媒導出管を流れるガス冷媒の流量を検知するガス流量検知手段と、を具備し、
前記Void率検知機構部が、前記冷媒貯留部の検知圧力(又は温度)、ガス冷媒導出管を流れるガス冷媒の検知流量、液冷媒導出管を流れる液冷媒の検知流出液流量及び前記冷媒貯留部に流入する液冷媒の検知流入液流量に基づいてVoid率を算出するものである請求項5記載の冷凍サイクル模擬システム。
Pressure / temperature detection means for detecting the pressure or temperature of the refrigerant;
Gas flow rate detection means for detecting the flow rate of the gas refrigerant flowing through the gas refrigerant outlet pipe,
The Void rate detection mechanism section includes a detection pressure (or temperature) of the refrigerant reservoir, a detected flow rate of the gas refrigerant flowing through the gas refrigerant outlet pipe, a detected effluent flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet pipe, and the refrigerant reservoir section. 6. The refrigeration cycle simulation system according to claim 5, wherein the void ratio is calculated based on a detected influent flow rate of the liquid refrigerant flowing into the refrigeration.
前記冷媒貯留部内の液冷媒貯留量を検知する液冷媒貯留量検知機構部と、
前記液冷媒導出管を流れる液冷媒の流量を検知する流出液流量検知手段と、を具備し、
前記流入液流量検知機構部が、冷媒貯留部内に貯留される液冷媒の検知貯留量と、液冷媒導出管を流れる液冷媒の検知流出液流量とに基づいて流入液流量を算出するものである請求項5又は6記載の冷凍サイクル模擬システム。
A liquid refrigerant storage amount detection mechanism for detecting a liquid refrigerant storage amount in the refrigerant storage unit;
An effluent flow rate detection means for detecting the flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet pipe,
The inflow liquid flow rate detection mechanism unit calculates the inflow liquid flow rate based on the detected storage amount of the liquid refrigerant stored in the refrigerant storage unit and the detected outflow rate of the liquid refrigerant flowing in the liquid refrigerant outlet pipe. The refrigeration cycle simulation system according to claim 5 or 6.
室内機及び室外機間の配管上に設けられるものであって、
冷媒導入ポート及び冷媒導出ポートと、
前記冷媒導入ポートを介して導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、
前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、
前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、
前記冷媒貯留部内の液冷媒貯留量を検知する液冷媒貯留量検知機構部と、
前記液冷媒貯留量検知機構部で検知された検知貯留量が、模擬する配管の容積に基づいて設定された目標貯留量となるように、前記液冷媒導出配管を流れる液冷媒の流量を制御する流出液流量制御機構部と、を具備している冷媒流模擬装置。
It is provided on the pipe between the indoor unit and the outdoor unit,
A refrigerant inlet port and a refrigerant outlet port;
A refrigerant storage unit that gas-liquid separates the refrigerant introduced through the refrigerant introduction port, stores gas refrigerant in the upper region, and stores liquid refrigerant in the lower region;
A gas refrigerant outlet pipe having one end communicating with the upper region and the other end communicating with the refrigerant outlet port;
A liquid refrigerant outlet pipe having one end communicating with the lower region and the other end communicating with the refrigerant outlet port;
A liquid refrigerant storage amount detection mechanism for detecting a liquid refrigerant storage amount in the refrigerant storage unit;
The flow rate of the liquid refrigerant flowing through the liquid refrigerant outlet pipe is controlled so that the detected storage quantity detected by the liquid refrigerant storage quantity detection mechanism unit becomes a target storage quantity set based on the volume of the pipe to be simulated. An effluent flow rate control mechanism unit.
室内機及び室外機間の配管上に設けられるものであって、
冷媒導入ポート及び冷媒導出ポートと、
前記凝縮器から導入された冷媒を気液分離し、上部領域にガス冷媒を貯留するとともに下部領域に液冷媒を貯留する冷媒貯留部と、
前記上部領域に一端が連通し、前記冷媒導出ポートに他端が連通するガス冷媒導出管と、
前記下部領域に一端が連通し、前記冷媒導出ポートに他端が連通する液冷媒導出管と、
前記冷媒貯留部に流入する液冷媒の流量を検知する流入液流量検知機構部と、
前記流入液流量検知機構部で検知された液冷媒の検知流入液流量と等しい流量が、当該流入液流量検知から所定時間経過後に、前記液冷媒導出配管を流れるように制御する流出液流量制御機構部と、を具備している冷媒流模擬装置。
It is provided on the pipe between the indoor unit and the outdoor unit,
A refrigerant inlet port and a refrigerant outlet port;
A refrigerant storage unit that gas-liquid separates the refrigerant introduced from the condenser, stores gas refrigerant in the upper region, and stores liquid refrigerant in the lower region;
A gas refrigerant outlet pipe having one end communicating with the upper region and the other end communicating with the refrigerant outlet port;
A liquid refrigerant outlet pipe having one end communicating with the lower region and the other end communicating with the refrigerant outlet port;
An influent liquid flow rate detection mechanism for detecting the flow rate of the liquid refrigerant flowing into the refrigerant reservoir;
An effluent liquid flow rate control mechanism for controlling the flow rate equal to the detected influent flow rate of the liquid refrigerant detected by the inflow liquid flow rate detection mechanism unit to flow through the liquid refrigerant outlet pipe after a predetermined time has elapsed since the inflow liquid flow rate detection. A refrigerant flow simulator.
JP2007331228A 2007-12-22 2007-12-22 Refrigerating cycle simulation system and coolant flow simulation device Pending JP2009150629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331228A JP2009150629A (en) 2007-12-22 2007-12-22 Refrigerating cycle simulation system and coolant flow simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331228A JP2009150629A (en) 2007-12-22 2007-12-22 Refrigerating cycle simulation system and coolant flow simulation device

Publications (1)

Publication Number Publication Date
JP2009150629A true JP2009150629A (en) 2009-07-09

Family

ID=40919928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331228A Pending JP2009150629A (en) 2007-12-22 2007-12-22 Refrigerating cycle simulation system and coolant flow simulation device

Country Status (1)

Country Link
JP (1) JP2009150629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020023A1 (en) * 2013-08-08 2015-02-12 アズビル株式会社 Dryness measurement device
CN114279734A (en) * 2021-12-23 2022-04-05 苏州热工研究院有限公司 Pipe scale generation simulation device and pipe scale generation simulation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020023A1 (en) * 2013-08-08 2015-02-12 アズビル株式会社 Dryness measurement device
JP2015034736A (en) * 2013-08-08 2015-02-19 アズビル株式会社 Dryness measuring device
CN114279734A (en) * 2021-12-23 2022-04-05 苏州热工研究院有限公司 Pipe scale generation simulation device and pipe scale generation simulation method

Similar Documents

Publication Publication Date Title
CN101865509B (en) Refrigerant amount determination operation of air conditioner
US10852041B2 (en) HVAC system with electronically controlled expansion valve
CN100549584C (en) Be used for estimating heating, the method for the entrance and exit air condition of heating ventilation and air-conditioning system
AU2007264431A1 (en) Air conditioner
CN101216231A (en) Air conditioner and method of determining refrigerant quantity
Gräber et al. Moving boundary heat exchanger model and validation procedure
Tummescheit et al. Airconditioning–a Modelica library for dynamic simulation of AC systems
Chen et al. An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system
Tran et al. Refrigerant-based measurement method of heat pump seasonal performances
CN105206162A (en) Performance contrast experiment table for different throttle mechanisms
Chen et al. Development of a steady-state physical-based mathematical model for a direct expansion based enhanced dehumidification air conditioning system
Shen et al. Improved methodologies for simulating unitary air conditioners at off-design conditions
JP2009150629A (en) Refrigerating cycle simulation system and coolant flow simulation device
Shang et al. A study on the modeling of the minimal stable superheat for a variable speed refrigeration system
CN107729600B (en) Evaporator simulation calculation method
Wang et al. Influence factors of flow distribution and a feeder tube compensation method in multi-circuit evaporators
Ma et al. Experimental validation of void fraction models for R410A air conditioners
Eldredge et al. Improving the accuracy and scope of control-oriented vapor compression cycle system models
Kærn Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems
KR20210077342A (en) Method and apparatus for simulating air conditioner
Harms Charge inventory system modeling and validation for unitary air conditioners
Wu et al. Theoretical design and drainage characteristic of a C-type heat exchanger in duct air conditioner
Guzzardi et al. Refrigerant mass distribution in an invertible air-to-water heat pump: effect of the airflow velocity
JP2009156516A (en) Refrigerating cycle evaluation system
Shen et al. A method for tuning refrigerant charge in modeling off-design performance of unitary equipment (RP-1173)