WO2018179804A1 - 入力装置、情報処理装置、情報処理方法、およびプログラム - Google Patents

入力装置、情報処理装置、情報処理方法、およびプログラム Download PDF

Info

Publication number
WO2018179804A1
WO2018179804A1 PCT/JP2018/003164 JP2018003164W WO2018179804A1 WO 2018179804 A1 WO2018179804 A1 WO 2018179804A1 JP 2018003164 W JP2018003164 W JP 2018003164W WO 2018179804 A1 WO2018179804 A1 WO 2018179804A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
operation panel
input device
determination threshold
input
Prior art date
Application number
PCT/JP2018/003164
Other languages
English (en)
French (fr)
Inventor
猛史 荻田
山野 郁男
諒 横山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/488,159 priority Critical patent/US11320936B2/en
Publication of WO2018179804A1 publication Critical patent/WO2018179804A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • This technology relates to a technology such as an electronic device capable of touch input operation and an input device used for the electronic device.
  • the mobile phone described in Patent Document 1 includes a pressure-sensitive sensor that detects a pressing force applied to the touch panel, and an acceleration sensor that detects an acceleration applied to the mobile phone.
  • the controller of the mobile phone changes the input determination threshold according to the magnitude of the acceleration detected by the acceleration sensor. As a result, for example, even if the user unconsciously holds the touch panel strongly due to shaking of the train and the pressing force applied to the touch panel increases, the input determination process is not executed, thus preventing an input operation error. (See, for example, specification paragraph [0088], FIG. 7).
  • the input device described in Patent Literature 2 includes a gripping determination unit that determines whether or not the casing of the input device is gripped by a user, and a threshold value that adjusts the detection sensitivity of pressing on the operation panel according to the determination result. And an adjustment unit.
  • the grip determination unit detects a change in capacitance caused by the user touching a contact detection unit provided on the housing, and determines whether or not the housing is gripped by the user.
  • the threshold adjustment unit changes the threshold used by the pressing amount detection unit (see, for example, paragraphs [0040] and [0056] of the specification).
  • An object of the present disclosure is to provide an input device, an information processing device, an information processing method, and a program that can improve the operability of an operation panel.
  • an input device includes an operation panel and a push-in amount determination unit.
  • the push-in amount determination unit is configured to determine the push-in amount due to an input operation to the operation panel based on a plurality of different determination thresholds corresponding to each region of the operation panel.
  • the operability of the operation panel is improved by setting an appropriate determination threshold according to the form of the operation panel, the input operation method, and the state.
  • the input device includes a motion detection unit, a posture detection unit, and a determination threshold control unit.
  • the motion detection unit is configured to detect a motion of a device having the input device.
  • the posture detection unit is configured to detect the posture of the device based on an output value of the motion detection unit.
  • the determination threshold value control unit is configured to variably control the determination threshold value according to the detected posture.
  • the operation panel may be configured in a rectangular shape having a long side and a short side.
  • the posture detection unit includes at least a first posture of the device such that a gravity component along the short side is larger than a gravity component along the long side, and a posture of the device different from the first posture. May be configured to detect.
  • the posture detection unit is configured to detect a posture of the device such that a gravity component along the long side is larger than a gravity component along the short side as a second posture different from the first posture. May be.
  • the posture detection unit determines the posture of the device such that a gravity component in a direction perpendicular to the operation panel is larger than both a gravity component along the short side and a gravity component along the long side. It may be configured to detect a posture different from the posture.
  • the posture detection unit includes a state in which a first short side, which is one of the short sides of the casing of the device, is gripped by a user, and a second facing the first short side of the casing.
  • the first posture may be detected by distinguishing at least a state in which the short side is gripped by the user. Thereby, regardless of which of the first short side and the second short side of the device is held by the user, the input device can prevent an erroneous operation of the user due to a difference in the holding state.
  • the posture detection unit is configured to detect the first posture by further distinguishing a state in which both the first short side and the second short side of the housing are gripped by a user. May be.
  • the determination threshold value control unit may be configured to variably control the determination threshold value according to the distinguished and determined gripping state.
  • the pushing amount determination unit may be configured to acquire the detected pressing force to the operation panel and determine the pressing amount based on the pressing force.
  • the input device may further include a correction unit that corrects the pressing force based on an output value of the motion detection unit. Thereby, the determination accuracy of the push amount by the determination threshold can be increased.
  • the push-in amount determination unit may have a plurality of stepwise determination thresholds for each of at least one of the regions of the operation panel. Even when a plurality of stepwise determination thresholds that are likely to cause an erroneous operation are employed, according to the present technology, the occurrence of the erroneous operation can be suppressed.
  • An information processing apparatus is an information processing apparatus used for an apparatus including an operation panel, and includes an acquisition unit and a push-in amount determination unit.
  • the acquisition unit is configured to acquire a detection value of a pressing force by an input operation of the operation panel.
  • the push-in amount determination unit is configured to determine the push-in amount due to the input operation on the basis of the detected value of the pressing force, based on a plurality of different determination threshold values corresponding to each region of the operation panel.
  • An information processing method is an information processing method used for a device including an operation panel.
  • the detection value of the pressing force by the input operation of the operation panel is acquired.
  • the amount of pressing by the input operation is determined by a plurality of different determination threshold values corresponding to the respective regions of the operation panel.
  • a program causes an information processing apparatus to execute the information processing method.
  • the operability of the operation panel of the device can be improved.
  • FIG. 1 is a block diagram illustrating a hardware configuration of an electronic apparatus having an input device according to Embodiment 1 of the present technology.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the electronic device.
  • FIG. 3 is a diagram illustrating a smartphone as an example of an electronic apparatus. 4A and 4B show determination threshold values for the push amount in the detection target region in the x and y directions of the pressure sensor.
  • FIG. 5 is a diagram illustrating a tablet computer as an electronic apparatus. 6A and 6B respectively show threshold values for determining the push amount in the detection target region in the x and y directions of the pressure-sensitive sensor of the tablet computer.
  • FIG. 7A and 7B show determination thresholds for the push-in amount in the detection target region in the x and y directions of the pressure sensor, respectively.
  • FIG. 8A shows a user's gripping state 1 when the electronic device is in a horizontal posture (first posture).
  • FIG. 8B is a graph showing an example of a change over time in the output value of the acceleration sensor in the z direction in the gripping state 1.
  • FIGS. 9A and 9B show different gripping states 2 and 3 of the user when the electronic device is in the lateral posture (first posture), respectively.
  • FIG. 9C is a graph showing an example of temporal change in the output value of the acceleration sensor in the z direction in the gripping states 2 and 3.
  • FIG. 10 shows the user's gripping state 4 when in the vertical orientation (second posture).
  • FIG. 11 is a diagram illustrating a mounting posture placed on a horizontal plane such as a desk or a floor.
  • FIG. 12 is a slow chart showing processing including posture detection and push amount determination by the electronic device.
  • FIG. 13 is a graph illustrating an example of a determination threshold applied to the gripping state 1 in the horizontal posture.
  • FIG. 14 is a graph illustrating an example of a determination threshold applied to the gripping state 2 or 3 in the horizontal posture.
  • FIG. 15 is a graph illustrating an example of the determination threshold applied to the placement posture.
  • FIGS. 16A and 16B show examples of determination threshold values applied respectively to the gripping states 2 and 3 in the horizontal posture.
  • FIG. 17 shows an example of the determination threshold value for each detection region applied to the gripping state 4 in the vertical orientation.
  • FIG. 18 illustrates an example of the determination threshold value for each detection region applied to the gripping state 1 in the horizontal posture.
  • FIG. 19 shows an example of the determination threshold value for each detection region applied to the mounting posture.
  • FIG. 20 is a flowchart illustrating processing for posture detection and push amount determination according to another embodiment.
  • FIG. 21A shows an output value (acceleration value) of the acceleration sensor output by a user's hand shake.
  • FIG. 21B shows the pressing force before the camera shake correction
  • FIG. 21C is a graph showing an example of the pressing force after the camera shake correction.
  • FIG. 1 is a block diagram showing a hardware configuration of an electronic device having an input device according to an embodiment of the present technology.
  • the electronic device 100 is typically a portable computer device represented by a smartphone or a tablet computer.
  • the electronic device 100 includes a CPU (Central Processing Unit) 10, a RAM (Random Access Memory) 12, a ROM (Read Only Memory) 14, a display 20, an operation panel 30, a pressure sensor 40, and an acceleration sensor 50.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • FIG. 2 is a schematic cross-sectional view showing the structure of the electronic device 100.
  • the electronic device 100 has a circuit board 80 in the housing 90.
  • a display structure is provided in the opening at the top of the housing 90.
  • the pressure-sensitive sensor 40, the display 20, and the operation panel 30 are arranged in order from the bottom to form a display structure.
  • an IC chip including the CPU 10, an acceleration sensor 50, a battery 103, and the like are mainly provided on the circuit board 80.
  • the operation panel 30 is a touch panel that can be input by a user touch operation.
  • the operation panel 30 is typically a capacitance type, but may be a pressure sensitive type or a resistance type.
  • the pressure sensor 40 is a device that detects a pressing force generated by a user input operation to the operation panel 30.
  • the pressure-sensitive sensor 40 for example, a piezoelectric type, a resistance type, or a capacitance type is used.
  • the area of the pressure-sensitive sensor 40 is substantially the same as the area of the display 20 or the operation panel 30 as shown in FIG. However, a plurality of pressure sensitive sensors having an area smaller than the area of the display 20 or the operation panel 30 may be provided in the plane of the display 20 (in the xy plane).
  • the acceleration sensor 50 functions as a “motion detection unit” that detects the motion of the electronic device 100.
  • a triaxial acceleration sensor is preferably used as the acceleration sensor 50.
  • ROM 14 stores software. Various functions in the present technology are realized by the cooperation of the hardware and software expanded in the RAM 12.
  • a plurality of different determination thresholds for determining the amount of pressing by the user's input operation depends on each area constituting the entire operation area 35 of the operation panel 30. Is set. A specific example of this will be described below.
  • FIG. 3 is a diagram illustrating a smartphone as one example of the electronic device 100 described above.
  • the directions along the short side 31 and the long side 32 of the operation panel 30 (or display 20) of the smartphone are defined as the x and y directions, respectively.
  • the entire operation area 35 on the operation panel 30, the entire display area of the display 20, and the entire detection area 45 on the pressure sensor 40 are provided so as to correspond on the x and y axes. ing.
  • the entire operation area means the entire operable area on the operation panel 30.
  • “Whole detection area” means the entire detectable area on the pressure sensor 40.
  • the entire operation area 35 that means the entire area is distinguished from “operation areas” (plural) that are configured by dividing the entire operation area 35.
  • the entire detection area 45 is distinguished from “detection areas” (plural) configured by dividing the entire detection area 45.
  • the entire operation area 35 of the operation panel 30 is basically divided into three operation areas 351x, 352x, 352x in the x direction and three operation areas 351y, 352y, 352y in the y direction.
  • the entire detection area 45 is also divided into nine operation areas so as to correspond to these operation areas. That is, three detection regions 451x, 452x, 452x are provided in the z direction, and three detection regions 451y, 452y, 452y are provided in the y direction.
  • a determination threshold is set in advance in each of these detection areas.
  • the CPU 10 acquires the detection value of the pressing force by the pressure-sensitive sensor 40 at the time of an input operation by the user, and determines the pressing amount by the input operation based on the detection value.
  • the CPU 10 and the program for the determination function as an “acquisition unit” and a “push-in amount determination unit”, and function as an information processing apparatus including these.
  • the entire detection region 45 is configured as a detection region divided into three regions in the x direction, that is, an end region 452x, a central region 451x, and an end region 452x.
  • the entire detection area 45 is configured by being divided into three areas in the y direction: an end area 452y, a center area 451y, and an end area 452y.
  • the end region 452x (or 452y) may be defined as a range of 5 to 20% of the entire region in the x direction (or y direction) from the edge in the x direction (or y direction) in the entire detection region 45.
  • the central region 451x (or 451y) is a region sandwiched between both end regions 452x (or 452y).
  • FIG. 4A and 4B show determination thresholds for the push-in amount in the entire detection region 45.
  • FIG. The horizontal axis of FIG. 4A corresponds to the position of the entire detection region 45 in the x direction of the pressure sensor 40.
  • the horizontal axis in FIG. 4B corresponds to the position of the entire detection region 45 in the y direction of the pressure sensor 40.
  • the amount of the determination threshold on the vertical axis is assumed to increase toward the bottom in the figure.
  • the determination threshold value is different between the central region 451x and the end region 452x in the x direction.
  • the determination threshold value of the end region 452x is set lower than that of the central region 451x. Assuming that the detection dynamic range is 100%, for example, the determination threshold value of the central region 451x is 30% (50%).
  • the determination threshold for the end region 452x is set to 20% (40%) to 30% (50%). In the end region 452x, the determination threshold is set to be lower as the edge is approached. In this sense, it can be said that the end region 452x is divided into finer regions in the x direction.
  • the determination threshold value is different between the central region 451y and the two end regions 452y even in the y direction, and the determination threshold value of the end region 452y is set lower than that of the central region 451y.
  • the determination threshold values for these areas are set to the same values as those in the x direction.
  • the end region 452x (452y) of the operation panel 30 feels harder to press than the central region 451x (451y). Therefore, even if the user intends to apply the same pressing force, the pressing force of the end region 452x (452y) tends to be lower than that of the central region 451x (451y). Therefore, as described above, the determination threshold value of the central region 451x (451y) is set higher than that of the end region 452x (452y).
  • determination threshold value in the end region 452x (452y) may be constant.
  • a plurality of stepwise determination threshold values are set for at least one of the detection regions on the pressure sensor 40 (over the entire detection region 45 in the present embodiment). Has been. For example, it is possible to detect the pressing force in three stages of “tap” (first range), “weakly press” (second range), and “strongly press” (third range).
  • the first range is more than 0% and less than 20% in the end region 452x, and more than 0% and less than 30% in the central region 451x (451y).
  • the second range is more than 20% and less than 40% in the end region 452x (452y), and more than 30% and less than 50% in the central region 451x (451y).
  • the third range is greater than 40% in the end region 452x (452y) and greater than 50% in the central region 451x (451y).
  • FIG. 5 is a diagram illustrating a tablet computer as the electronic device 100.
  • the directions along the long side 32 and the short side 31 of the operation panel 30 of the tablet computer are defined as the x and y directions, respectively.
  • FIGS. 6A and 6B show the threshold values for determining the amount of pressing in the entire detection region 45 in the x and y directions of the pressure sensor 40 of the tablet computer, as in FIGS. 4A and 4B.
  • the entire detection area 45 is divided into a total of 16 in the x and y directions.
  • the entire detection region 45 is composed of both end regions 452x (452y) and a first region 454x (454y) and a second region 455x (455y) sandwiched between them in the x direction (y direction). Is done.
  • the determination threshold values of both end regions 452x (452y) are the same as the determination threshold values shown in Example 1 (FIG. 4A).
  • the determination threshold is set to be lower as the boundary position is approached. At the boundary position, the determination threshold is 20% (40%).
  • the threshold for determining the boundary position between the end region 452x (452y) and the first region 454x (454y) is 30% (50%).
  • the determination threshold value of the boundary position between the end region 452x (452y) and the second region 455x (455y) is also 30% (50%).
  • a plurality of stepwise determination thresholds are set in one detection region, as in Example 1.
  • the determination threshold value in the y direction is the same as that in the x direction.
  • the determination threshold is set to be smaller as it is closer to the center position of the operation panel 30 (the boundary position between the first region 454x (454y) and the second region 455x (455y)).
  • FIG. 7A and 7B show determination thresholds for the push amount of the entire detection region 45 in the x and y directions for a wearable computer such as a smart watch as the electronic device 100.
  • a wearable computer such as a smart watch as the electronic device 100.
  • FIG. Although the wearable computer is not shown here, the lengths of the operation panel 30 and the pressure-sensitive sensor 40 in the x and y directions are different. But these lengths can be the same.
  • the entire detection area 45 is divided into nine detection areas in the same manner as a smartphone.
  • the operation panel of a wearable computer is smaller than that of a smartphone, so the user feels difficult to press. Therefore, the determination threshold is set low overall.
  • the determination threshold value of the end region is set lower than that of the central region, and the determination threshold value decreases as the edge approaches.
  • the operability of the operation panel 30 can be improved by setting an appropriate determination threshold according to the form of the operation panel 30.
  • An example of the electronic device 100 is a smartphone including a rectangular operation panel 30 (or display 20) having two short sides 31 and two long sides 32 facing each other.
  • Accelerometer 50 is used as a sensor for posture detection, for example.
  • the CPU 10 and its detection program function as an “attitude detection unit” that detects the attitude of the electronic device 100 based on the output value of the acceleration sensor 50.
  • FIG. 8A shows a user's gripping state 1 when the electronic device 100 is in a lateral orientation (first posture).
  • the horizontal orientation is a posture when the long side 32 of the operation panel 30 is held in a horizontal state or a state close to the horizontal. More precisely, the lateral orientation is such that the gravity component along the short side 31 of the operation panel 30 is larger than the gravity component along the long side 32.
  • the acceleration sensor 50 can detect these gravity components.
  • the gripping state 1 is a state in which the electronic device 100 is in the horizontal orientation, and the user moves the first short side 91 and the second short side 92 on the two short sides 31 side of the casing 90 of the electronic device 100. It is in a state of holding with both hands. In this state, as indicated by white circles in the figure, at least two points on the first short side 91 and two points on the second short side 92 are fixed by the user's hand, and the posture of the electronic device 100 is stabilized. .
  • FIG. 8B is a graph showing an example of a temporal change in the output value of the acceleration sensor 50 in the z direction when the user performs a pushing operation on the operation panel 30 when gripping in the gripping state 1.
  • the output value of the acceleration sensor 50 may be referred to as an “acceleration value”.
  • the detection threshold value on the vertical axis for detecting the gripping state is set relatively high. Specifically, the detection threshold is set to a value that is sufficiently higher than at least the value of the output waveform P due to camera shake. The detection threshold can be appropriately changed in design.
  • the acceleration of the casing 90 in the push-in direction that is, the acceleration value of the casing 90 in the direction along the z-axis does not exceed a preset detection threshold. Even if the pushing operation is performed, the user holds the casing 90 firmly with both hands. Therefore, the acceleration applied to the housing 90 by this pushing operation is close to zero, and only the acceleration applied to the housing 90 due to hand shake is detected substantially.
  • the CPU 10 determines that the gripping state 1 is “sideways / both-handed”. Can do.
  • FIGS. 9A and 9B show different gripping states 2 and 3 of the user when the electronic device 100 is in the lateral posture (first posture), respectively.
  • 9A is a state in which only the first short side 91 of the housing 90 is gripped by the user.
  • a gripping state 3 shown in FIG. 9B is a state in which only the second short side 92 of the housing 90 is gripped by the user.
  • the posture of the housing 90 becomes unstable particularly during an operation of “push” (“weakly push” or “strongly push”), which is the push amount of the next stage larger than the push amount of “tap”.
  • Such input operations of “tap” and “push” are currently used for a shutter button of a camera function (a two-stage operation of autofocus and shooting).
  • FIG. 9C is a graph illustrating an example of a change over time in the output value of the acceleration sensor 50 in the z direction when the user performs a pushing operation on the operation panel 30 when gripping in the gripping states 2 and 3. .
  • the housing 90 In the gripping states 2 and 3, when the pushing operation is performed, the housing 90 is displaced as illustrated in FIGS. 9A and 9B, so that a force due to the movement of the displacement is applied to the output value from the acceleration sensor 50 in the z direction. . Therefore, when the acceleration value exceeds the detection threshold, the CPU 10 can determine that the gripping state of the housing 90 by the user is the gripping state 2 or 3.
  • the CPU 10 can distinguish between the gripping states 2 and 3 according to the sign (plus, minus) of the acceleration value by acquiring the acceleration value in the y direction. From this point, it is preferable that the motion sensor such as an acceleration sensor is arranged at a position as close to the center in the y direction as possible.
  • the CPU 10 can detect not only the gripping state 1 but also the gripping states 2 and 3 to detect the lateral orientation of the electronic device 100.
  • FIG. 10 shows the gripping state 4 of the user when in the vertical orientation (second posture).
  • the vertical orientation is an orientation when the short side 31 of the operation panel 30 is held in a horizontal state or a state close to the horizontal. More precisely, the vertical posture is a posture in which the gravity component along the long side 32 of the operation panel 30 is larger than the gravity component along the short side 31.
  • the CPU 10 can detect the vertical orientation by detecting these gravity components by the acceleration sensor 50.
  • FIG. 11 is a diagram illustrating a mounting posture placed on a horizontal surface such as a desk or a floor.
  • the mounting posture is basically a state where the housing 90 is not gripped by the user. More precisely, the mounting posture is a posture of the electronic device 100 in which the gravity component in the direction perpendicular to the operation panel 30 is larger than both the gravity component along the short side 31 and the long side 32. Therefore, the mounting posture is not limited to the horizontal plane, and may be a posture in which the operation panel 30 is inclined with respect to the horizontal plane. For example, when these gravity components are detected by the acceleration sensor 50, the CPU 10 can detect the mounting posture.
  • the housing 90 may be held by the user.
  • the above-described methods for detecting each posture and gripping state of the electronic device 100 are not limited to smartphones, and can be applied to other portable computers.
  • FIG. 12 is a slow chart showing processing including posture detection and push amount determination by the electronic device 100.
  • the input operation (mainly “tap”, “push”, etc.) of the operation panel 30 is started by the user (step 101).
  • a predetermined time for example, several milliseconds to several tens of milliseconds
  • the CPU 10 starts the attitude detection process of the electronic device 100 after step 102.
  • CPU 10 acquires an acceleration value, and based on the acceleration value, detects and distinguishes three postures of a horizontal posture, a vertical posture, and a mounting posture (step 102). Further, when the CPU 10 detects the horizontal orientation, the CPU 10 determines one of the three types of gripping states 1, 2, and 3 by the method using the acceleration detection threshold as described above (step 103). .
  • the CPU 10 variably controls the determination threshold according to the detected five states of the gripping states 1, 2, 3, the vertical orientation (griping state 4), and the placement posture (steps 104 to 108).
  • the CPU 10 and a program for controlling the CPU 10 function as a “determination threshold value control unit”.
  • the CPU 10 detects the pressing force by the input operation by the pressure sensor 40 (step 109). Based on the pressing force, the CPU 10 determines the push amount using the determination threshold set in any one of steps 104 to 108 (step 110).
  • FIG. 13 is a graph showing an example of a determination threshold applied to the “gripping state 1” in the horizontal posture.
  • a three-stage push amount having two determination thresholds that is, “tap”, “weakly press”, and “strongly press” are determined. The same applies to the gripping states 2 and 3, the vertical orientation, and the mounting posture.
  • the detection dynamic range of the pressure sensor 40 is set to 100%.
  • “tap” is a range of 30% or less
  • “weakly press” is a range exceeding 30% and 50 or less
  • “strongly press” is a range exceeding 50%.
  • the CPU 10 determines the push amount in three steps based on the determination threshold values 30% and 50%.
  • the determination threshold value of the central region 451x of the operation panel 30 is taken as an example.
  • the example shown in FIG. The same applies to the determination threshold value of the end region 452x.
  • FIG. 14 is a graph showing an example of a determination threshold applied to the “gripping state 2” or “gripping state 3” in the horizontal posture.
  • the electronic device 100 is in an unstable state as described above. If the determination threshold value shown in FIG. 13 is applied to these gripping states 2 and 3, even if the user intends to push the operation panel 30 weakly, there is a possibility that it is actually determined as “tap”. Further, even if the operation panel 30 is intended to be pressed strongly, there is a possibility that it is actually determined that the button is pressed weakly. That is, even if the user presses the operation panel 30 with the same force, the pressing force differs and an erroneous operation occurs. Therefore, in the gripping states 2 and 3, a relatively low determination threshold is applied as shown in FIG. Thereby, the above problem is solved.
  • the CPU 10 may change the determination threshold, hold the threshold for a predetermined time, and then return to the previous determination threshold.
  • the predetermined time is about several seconds to several tens of seconds, for example, about 5 seconds to 20 seconds.
  • the CPU 10 holds the setting of the determination threshold shown in FIG. 13 as a basic setting, changes the determination threshold of the basic setting to the determination threshold shown in FIG. 14, and then holds the changed determination threshold for a predetermined time. Then, return to the basic settings.
  • the predetermined time may be changeable by the user.
  • a determination threshold as shown in FIG. 13 can be applied.
  • FIG. 15 is a graph showing an example of a determination threshold applied to the placement posture.
  • “Tap” is a range of 40% or less
  • “Weakly press” is a range exceeding 40% and 70 or less
  • “Strongly press” is a range exceeding 70%.
  • the determination threshold applied to the mounting posture may be that shown in FIG.
  • FIG. 16A shows an example of a determination threshold applied to the gripping state 2 in the horizontal posture.
  • FIG. 16B shows an example of the determination threshold applied to the gripping state 3 in the horizontal posture.
  • Each horizontal axis represents the entire detection region 45 of the pressure-sensitive sensor 40 in the y direction (see FIGS. 9A and 9B).
  • the idea that the determination threshold value is different for each detection region described in FIGS. 4A and 4B is applied to the gripping states 2 and 3.
  • a detection region having a high determination threshold corresponds to the gripping position side.
  • the gripping position in the example shown in FIG. 16A is the first short side 91 (left hand side), and the gripping position in the example shown in FIG. 16B is the second short side 92 (right hand side).
  • the determination threshold is set lower as the distance from the gripping position increases in the y direction. In the entire detection region 45, the lowest determination threshold is set to 10% or 20%, for example.
  • the casing 90 is more easily displaced as the entire detection region 45 is farther from the gripping position. According to the setting of the determination threshold shown in FIGS. 16A and 16B, user's erroneous operation due to the deviation can be effectively suppressed.
  • the determination threshold value in the x direction of the entire detection region 45 may be set to the example illustrated in FIG. 4A, for example.
  • FIG. 17 shows an example of the determination threshold applied to the gripping state 4 in the vertical orientation.
  • the horizontal axis represents, for example, the entire detection region 45 of the pressure sensor 40 in the y direction (see FIG. 10).
  • a detection area having a high determination threshold for example, 30% or 50%
  • the gripping position side lower second short side 92
  • the determination threshold is set to be lower toward the first short side 91 from the center or an upper position.
  • the lowest determination threshold is set to 20% or 30%, for example.
  • the casing 90 is more easily displaced as the entire detection area 45 is farther from the gripping position. According to the setting of the determination threshold shown in FIG. 17, user's erroneous operation due to the deviation can be effectively suppressed.
  • the determination threshold value in the x direction of the entire detection region 45 may be set to the example shown in FIG. 4A, for example.
  • FIG. 18 shows an example of a determination threshold applied to the gripping state 1 in the horizontal posture.
  • the horizontal axis represents, for example, the entire detection region 45 of the pressure sensor 40 in the y direction (see FIG. 8A).
  • FIG. 19 shows an example of the determination threshold value applied to the mounting posture.
  • the horizontal axis represents, for example, the entire detection region 45 of the pressure sensor 40 in the y direction (see FIG. 11A).
  • the determination threshold value for each detection region may be constant.
  • the determination threshold value may be set higher in the central region 451y of the entire detection region 45 and lower in the end region 452y in the y direction.
  • the determination threshold may be constant or may be set as shown in FIG. 4A.
  • FIG. 20 is a flowchart showing processing of posture detection and push-in amount determination according to another embodiment. This flowchart is different from FIG. 12 in that step 210 is added.
  • step 210 the CPU 10 corrects the pressing force detected in step 109 based on the acceleration value.
  • the CPU 10 and the correction program function as a “correction unit”.
  • FIG. 21A shows an output value (acceleration value) of the acceleration sensor 50 output by, for example, a user's hand shake.
  • This acceleration value is a value along the z direction, that is, a direction perpendicular to the operation panel 30.
  • FIG. 21B is a graph illustrating an example in which the pressing force detected by the pressure-sensitive sensor 40 is affected by the hand shake when the user pushes the operation panel 30.
  • the CPU 10 subtracts a value based on the acceleration value from the pressing force affected by the camera shake.
  • the CPU 10 sequentially executes this calculation every unit time.
  • the value based on the acceleration value is, for example, a value obtained by multiplying the acceleration value by a coefficient.
  • the coefficient is a value determined by design as appropriate. Accordingly, as illustrated in FIG. 21C, the CPU 10 can acquire the value of the pressing force from which the acceleration value due to the hand shake is removed. As a result, the accuracy of determining the amount of push in step 110 can be increased.
  • the value to be subtracted does not have to be an acceleration value due to camera shake.
  • it may be caused by shaking when a vehicle such as a train or an automobile travels.
  • it may be a combined acceleration of the hand shake and the shake during traveling.
  • the electronic device 100 may hold a program that allows the user to customize the determination threshold for the push amount.
  • the present technology is applicable not only to an input device provided with the pressure-sensitive sensor 40 in the display 20, but also to an input device (touch pad) that does not have a display.
  • the electronic device 100 is not limited to a smartphone or a tablet computer, and the present technology can be applied to other electronic devices such as a camera device and a game device.
  • the acceleration sensor 50 is taken as an example of the motion detection unit, but in addition to this, a gyro sensor or other known sensors may be provided.
  • a plurality of stepwise determination threshold values are set over the entire detection region 45 of the pressure sensor 40 as the determination threshold value of the push amount.
  • one determination threshold value may be set over the entire detection area.
  • one determination threshold value may be set in one or more detection regions, and a plurality of stepwise determination threshold values may be set in another one or more detection regions different from it.
  • the number of stepwise determination thresholds is two, but may be three or more.
  • the attitude of the electronic device 100 is detected based on the output value of the acceleration sensor 50.
  • the posture may be detected based on the hysteresis of the output value.
  • step 109 and subsequent step 210 can be executed anytime, for example, after step 101.
  • this technique can also take the following structures.
  • An operation panel An input device comprising: a push amount determination unit configured to determine a push amount by an input operation to the operation panel based on a plurality of different determination thresholds corresponding to each region of the operation panel.
  • a motion detection unit configured to detect motion of a device having the input device;
  • An attitude detection unit configured to detect an attitude of the device based on an output value of the motion detection unit;
  • An input device further comprising: a determination threshold value control unit configured to variably control the determination threshold value according to the detected posture.
  • the input device is configured in a rectangular shape having a long side and a short side
  • the posture detection unit includes at least a first posture of the device such that a gravity component along the short side is larger than a gravity component along the long side, and a posture of the device different from the first posture.
  • An input device configured to detect.
  • the posture detection unit is configured to detect a posture of the device such that a gravity component along the long side is larger than a gravity component along the short side as a second posture different from the first posture. Input device.
  • the posture detection unit determines the posture of the device such that a gravity component in a direction perpendicular to the operation panel is larger than both a gravity component along the short side and a gravity component along the long side.
  • An input device configured to detect a posture different from the posture.
  • the posture detection unit includes a state in which a first short side, which is one of the short sides of the casing of the device, is gripped by a user, and a second facing the first short side of the casing.
  • An input device configured to detect the first posture by distinguishing at least a state in which a short side is gripped by a user.
  • the posture detection unit is configured to detect the first posture by further distinguishing a state in which both the first short side and the second short side of the housing are gripped by a user.
  • Input device (8)
  • the input device according to (6) or (7), The input device configured to variably control the determination threshold according to the distinction and determination of a gripping state.
  • the pushing amount determination unit is configured to acquire a pressing force to the operation panel that is detected, and to determine the pushing amount based on the pressing force, An input device further comprising a correction unit that corrects the pressing force based on an output value of the motion detection unit.
  • the input device includes a plurality of stepwise determination threshold values for at least one of the regions of the operation panel.
  • An information processing apparatus used for equipment including an operation panel, An acquisition unit configured to acquire a detection value of a pressing force by an input operation of the operation panel; An information processing apparatus comprising: a push amount determination unit configured to determine a push amount by the input operation based on a detection value of the pressing force and using a plurality of different determination thresholds corresponding to each region of the operation panel.
  • An information processing method used for a device including an operation panel Obtain a detection value of the pressing force by the input operation of the operation panel, An information processing method for determining an amount of pressing by the input operation based on a detection value of the pressing force and using a plurality of different determination thresholds corresponding to each region of the operation panel.
  • a program executed by a device having an operation panel Obtain a detection value of the pressing force by the input operation of the operation panel, A program for determining a push-in amount by the input operation based on a detection value of the pressing force and using a plurality of different determination threshold values corresponding to each region of the operation panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • User Interface Of Digital Computer (AREA)
  • Position Input By Displaying (AREA)
  • Telephone Function (AREA)

Abstract

【解決手段】入力装置は、操作パネルと、押し込み量判定部とを具備する。前記押し込み量判定部は、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記操作パネルへの入力操作による押し込み量を判定するように構成される。

Description

入力装置、情報処理装置、情報処理方法、およびプログラム
 本技術は、タッチ入力操作が可能な電子機器、またその電子機器に用いられる入力装置等の技術に関する。
 特許文献1に記載の携帯電話機は、タッチパネルに加えられる押圧力を検出する感圧センサーと、携帯電話機に加えられる加速度を検出する加速度センサとを備える。携帯電話機のコントローラは、加速度センサーにより検出された加速度の大きさに応じて、入力決定閾値を変化させる。これにより、例えば、電車の揺れ等が原因でユーザが無意識にタッチパネルを強く握ってしまい、タッチパネルに加わる押圧力が上昇してしまったとしても入力決定の処理が実行されないので、入力操作ミスが防止される(例えば、明細書段落[0088]、図7参照)。
 特許文献2に記載の入力装置は、この入力装置の筐体がユーザーに把持されたか否かを判定する把持判定手段と、その判定結果に応じて操作パネルへの押圧の検出感度を調整する閾値調整部とを備える。把持判定手段は、筺体に設けられた接触検出部にユーザーが触れることで生じる静電容量変化を検出して、筺体がユーザーにより把持されているか否かを判定する。閾値調整部は、押圧量検出部で用いられる閾値を変更する(例えば、明細書段落[0040]、[0056]参照)。
特開2012-027875号公報 特許第5987993号
 近年、電子機器の操作パネルの形態やその入力操作の方法は多様化している。このような多様化に合わせて、操作性の向上のための技術が要求される。
 本開示の目的は、操作パネルの操作性を向上させることができる入力装置、情報処理装置、情報処理方法、およびプログラムを提供することにある。
 上記目的を達成するため、一形態に係る入力装置は、操作パネルと、押し込み量判定部とを具備する。
 前記押し込み量判定部は、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記操作パネルへの入力操作による押し込み量を判定するように構成される。
 本技術によれば、操作パネルの形態や、入力操作の方法や状態に応じて適切な判定閾値が設定されることにより、操作パネルの操作性が向上する。
 前記入力装置は、モーション検出部と、姿勢検出部と、判定閾値制御部とを具備する。
 前記モーション検出部は、前記入力装置を有する機器のモーションを検出するように構成される。
 前記姿勢検出部は、前記モーション検出部の出力値に基づき、前記機器の姿勢を検出するように構成される。
 前記判定閾値制御部は、前記検出された姿勢に応じて、前記判定閾値を可変に制御するように構成される。
 ユーザーによる入力操作において、ユーザーが同じ力で操作パネルを押したとしても、機器の姿勢の違いによって押圧力が異なり誤操作が生じる、という問題を解決できる。
 前記操作パネルは、長辺および短辺を有する矩形状に構成されていてもよい。前記姿勢検出部は、少なくとも、前記短辺に沿う重力成分が前記長辺に沿う重力成分より大きくなるような前記機器の第1の姿勢、および、前記第1の姿勢とは異なる前記機器の姿勢を検出するように構成されていてもよい。

 前記姿勢検出部は、前記長辺に沿う重力成分が前記短辺に沿う重力成分より大きくなるような前記機器の姿勢を、前記第1の姿勢とは異なる第2の姿勢として検出するように構成されていてもよい。
 前記姿勢検出部は、前記操作パネルに垂直な方向の重力成分が、前記短辺に沿う重力成分および前記長辺に沿う重力成分の両方より大きくなるような前記機器の姿勢を、前記第1の姿勢とは異なる姿勢として検出するように構成されていてもよい。
 前記姿勢検出部は、前記機器の筐体の前記短辺側の1つである第1短辺側がユーザーに把持される状態と、前記筐体の、前記第1短辺側に対向する第2短辺側がユーザーに把持される状態とを少なくとも区別して、前記第1の姿勢を検出するように構成されていてもよい。これにより、ユーザーは機器の第1短辺側および第2短辺側のうちどちらを把持しても、入力装置はその把持状態の違いによるユーザーの誤操作を防止できる。
 前記姿勢検出部は、前記筐体の前記第1短辺側および前記第2短辺側の両方がユーザーに把持される状態をさらに区別して、前記第1の姿勢を検出するように構成されていてもよい。
 前記判定閾値制御部は、前記区別されて判定された把持状態に応じて、前記判定閾値を可変に制御するように構成されていてもよい。
 前記押し込み量判定部は、検出される前記操作パネルへの押圧力を取得し、前記押圧力に基づき前記押し込み量を判定するように構成されていてもよい。前記入力装置は、前記モーション検出部の出力値に基づき、前記押圧力を補正する補正部をさらに具備してもよい。これにより、判定閾値による押し込み量の判定精度を高めることができる。
 前記押し込み量判定部は、前記操作パネルの前記各領域のうち少なくとも1つの領域ごとに段階的な複数の判定閾値を有していてもよい。誤操作が発生しやすい段階的な複数の判定閾値が採用される場合であっても、本技術によればその誤操作の発生を抑えることができる。
 一形態に係る情報処理装置は、操作パネルを備える機器に用いられる情報処理装置であって、取得部と、押し込み量判定部とを具備する。
 前記取得部は、前記操作パネルの入力操作による押圧力の検出値を取得するように構成される。
 前記押し込み量判定部は、前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量を判定するように構成される。
 一形態に係る情報処理方法は、操作パネルを備える機器に用いられる情報処理方法である。
 前記操作パネルの入力操作による押圧力の検出値が取得される。
 前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量が判定される。
 一形態に係るプログラムは、上記情報処理方法を情報処理装置に実行させるものである。
 以上、本技術によれば、機器の操作パネルの操作性を向上させることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1は、本技術の実施形態1に係る入力装置を持つ電子機器のハードウェアの構成を示すブロック図である。 図2は、電子機器の構造を示す模式的な断面図である。 図3は、電子機器の例の1つとしてスマートフォンを示す図である。 図4A、Bは、感圧センサーのx、y方向における検出対象領域での押し込み量の判定閾値を示す。 図5は、電子機器としてタブレット型コンピュータを示す図である。 図6A、Bは、タブレット型コンピュータの感圧センサーのx、y方向における検出対象領域での押し込み量の判定閾値をそれぞれ示す。 図7A、Bは、感圧センサーのx、y方向における検出対象領域での押し込み量の判定閾値をそれぞれ示す。 図8Aは、電子機器が横向き姿勢(第1の姿勢)にあるときのユーザーの把持状態1を示す。図8Bは、把持状態1においてz方向における加速度センサーの出力値の時間変化の例を示すグラフである。 図9A、Bは、電子機器が横向き姿勢(第1の姿勢)にあるときのユーザーの別の把持状態2、3をそれぞれ示す。図9Cは、把持状態2、3において、z方向における加速度センサーの出力値の時間変化の例を示すグラフである。 図10は、縦向き姿勢(第2の姿勢)にあるときのユーザーの把持状態4を示す。 図11は、机や床の上などの水平面上に置かれた載置姿勢を示す図である。 図12は、電子機器による姿勢検出および押し込み量の判定を含む処理を示すスローチャートである。 図13は、横向き姿勢において把持状態1に適用される判定閾値の例を示すグラフである。 図14は、横向き姿勢において把持状態2、または3に適用される判定閾値の例を示すグラフである。 図15は、載置姿勢に適用される判定閾値の例を示すグラフである。 図16A、Bは、横向き姿勢の把持状態2、3にそれぞれ適用される判定閾値の例を示す。 図17は、縦向き姿勢の把持状態4に適用される検出領域ごとの判定閾値の例を示す。 図18は、横向き姿勢の把持状態1に適用される検出領域ごとの判定閾値の例を示す。 図19は、載置姿勢に適用される検出領域ごとの判定閾値の例を示す。 図20は、他の実施形態に係る姿勢検出および押し込み量の判定の処理を示すフローチャートである。 図21Aは、ユーザーの手振れによって出力される加速度センサーの出力値(加速度値)である。図21Bは、手振れ補正前の押圧力を示し、図21Cは手振れ補正後の押圧力の例を示すグラフである。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 1.電子機器の構成
 図1は、本技術の一実施形態に係る入力装置を持つ電子機器のハードウェアの構成を示すブロック図である。電子機器100は、典型的にはスマートフォンやタブレット型コンピュータに代表されるポータブルなコンピュータ機器である。
 電子機器100は、CPU(Central Processing Unit)10、RAM(Random Access Memory)12、ROM(Read Only Memory)14、ディスプレイ20、操作パネル30、感圧センサー40、加速度センサー50を備える。
 図2は、電子機器100の構造を示す模式的な断面図である。電子機器100は、筐体90内に回路基板80を有している。筐体90の上部の開口には、ディスプレイ構造体が設けられている。例えば感圧センサー40、ディスプレイ20、および操作パネル30が下から順に配置されて、ディスプレイ構造体が構成されている。回路基板80上には、CPU10を含むICチップ、加速度センサー50、電池103等が主に設けられている。
 操作パネル30は、ユーザーによるタッチ操作により入力操作が可能なタッチパネルである。操作パネル30としては、典型的には静電容量式のものが用いられるが、感圧式や抵抗式のものであってもよい。
 感圧センサー40は、操作パネル30へのユーザーの入力操作による押圧力を検出するデバイスである。感圧センサー40としては、例えば圧電式、抵抗式、または静電容量式のものが用いられる。感圧センサー40の面積は、図2に示すように、ディスプレイ20や操作パネル30の面積と実質的に同じである。しかし、ディスプレイ20や操作パネル30の面積いより小さい面積を有する感圧センサーが、ディスプレイ20の面内(x-y面内)に複数設けられていてもよい。
 加速度センサー50は、電子機器100のモーションを検出する「モーション検出部」として機能する。加速度センサー50としては、3軸加速度センサーが用いられることが好ましい。
 ROM14はソフトウェアを記憶している。上記ハードウェアと、RAM12に展開されたソフトウェアとの協働により、本技術における各種機能が実現される。
 この電子機器100の操作パネル30および感圧センサー40では、ユーザーの入力操作による押し込み量を判定するための異なる複数の判定閾値が、操作パネル30の操作領域全体35を構成する各領域に応じて設定されている。これについての具体例を以下に説明する。
 2.操作パネルの各領域の押し込み量の判定閾値
 2.1)例1
 図3は、上記の電子機器100の例の1つとしてスマートフォンを示す図である。スマートフォンの操作パネル30の(あるいはディスプレイ20)の短辺31、長辺32に沿う方向をそれぞれx、y方向と定義する。図2に示したように、操作パネル30上の操作領域全体35、ディスプレイ20のディスプレイ領域全体、および感圧センサー40上の検出領域全体45は、x、y軸上において対応するように設けられている。
 「操作領域全体」とは、操作パネル30上の操作可能な全領域を意味する。「検出領域全体」とは、感圧センサー40上の検出可能な全領域を意味する。以降では、説明をわかりやすくするため、全域を意味する操作領域全体35と、その操作領域全体35が分割されて構成される「操作領域」(複数)とを区別する。同様に、検出領域全体45と、その検出領域全体45が分割されて構成される「検出領域」(複数)とを区別する。
 図3に示すように、操作パネル30の操作領域全体35は、基本的にx方向に3つの操作領域351x、352x、352x、また、y方向に3つの操作領域351y、352y、352yに分割される。全体として、9個の操作領域に分割される。それら各操作領域に対応するように、検出領域全体45も9個の操作領域に分割される。すなわち、z方向に3つの検出領域451x、452x、452x、また、y方向に3つの検出領域451y、452y、452yが設けられる。そして、これら検出領域にそれぞれ判定閾値が予め設定される。
 CPU10は、ユーザーによる入力操作時に、感圧センサー40による押圧力の検出値を取得し、その検出値に基づきその入力操作による押し込み量を判定する。この場合、CPU10およびその判定のためのプログラムは、「取得部」、「押し込み量判定部」として機能し、これらを備える情報処理装置として機能する。
 検出領域全体45は、検出領域として、x方向に端部領域452x、中央領域451x、端部領域452xの3つの領域に分割されて構成される。また、検出領域全体45は、y方向に端部領域452y、中央領域451y、端部領域452yの3つの領域に分割されて構成される。端部領域452x(または452y)は、検出領域全体45において、x方向(またはy方向)のエッジから、そのx方向(またはy方向)における全域の5~20%の範囲として定義され得る。中央領域451x(または451y)は、両方の端部領域452x(または452y)の間に挟まれた領域である。
 図4A、Bは、検出領域全体45における押し込み量の判定閾値を示す。図4Aの横軸は感圧センサー40のx方向における検出領域全体45の位置に対応する。図4Bの横軸は感圧センサー40のy方向における検出領域全体45の位置に対応する。縦軸の判定閾値の量は、図中、下に向かうほど大きくなるものとする。
 図4Aに示すように、x方向において中央領域451xと端部領域452xとで判定閾値が異なる。端部領域452xの判定閾値が、中央領域451xのそれより低く設定されている。検出のダイナミックレンジを100%とすると、例えば中央領域451xの判定閾値は30%(50%)である。端部領域452xの判定閾値は20%(40%)~30%(50%)に設定される。端部領域452x内では、エッジに近づくにしたがって判定閾値が低くなるように設定される。この意味において、端部領域452xは、x方向においてさらに細かい領域に分割されているとも言える。
 図4Bに示すように、y方向においても中央領域451yと2つの端部領域452yとで判定閾値が異なり、端部領域452yの判定閾値が、中央領域451yのそれより低く設定されている。それら領域の判定閾値はx方向と同様の値に設定される。
 ほとんどのユーザーにとって、操作パネル30の端部領域452x(452y)は、中央領域451x(451y)に比べて押しづらく感じる。そのため、ユーザーは同じ押圧力を加えているつもりであっても、中央領域451x(451y)への押圧力に比べ、端部領域452x(452y)の押圧力が低くなる傾向にある。したがって、上記のように中央領域451x(451y)の判定閾値が、端部領域452x(452y)のそれより高く設定される。
 なお、端部領域452x(452y)における判定閾値は一定であってもよい。
 また、感圧センサー40上の各検出領域のうち少なくとも1つの領域ごとに(本実施形態では検出領域全体45にわたって)、段階的な複数の判定閾値(本実施形態では2つの判定閾値)が設定されている。それぞれ、例えば「タップ」(第1範囲)、「弱く押す」(第2範囲)、「強く押す」(第3範囲)の3段階の押圧力の検出が可能とされる。
 図4A、Bに示すように、第1範囲は、端部領域452xにおいて0%を超え20%以下であり、中央領域451x(451y)において0%を超え30%以下である。第2範囲は、端部領域452x(452y)において20%を超え40%以下であり、中央領域451x(451y)において30%を超え50%以下である。第3範囲は、端部領域452x(452y)において40%を超え、中央領域451x(451y)において50%を超える。これらの値は適宜設計の変更が可能である。
 2.2)例2
 図5は、電子機器100としてタブレット型コンピュータを示す図である。タブレット型コンピュータの操作パネル30の長辺32、短辺31に沿う方向をそれぞれx、y方向と定義する。
 図6A、Bは、図4A、Bと同様に、タブレット型コンピュータの感圧センサー40のx、y方向における検出領域全体45での押し込み量の判定閾値をそれぞれ示す。タブレット型コンピュータでは、検出領域全体45がx、y方向に合計16個に分割されて構成されている。検出領域全体45は、x方向(y方向)で、両方の端部領域452x(452y)と、それらの間に挟まれた第1領域454x(454y)および第2領域455x(455y)とで構成される。
 図6Aに示すように、x方向では、両方の端部領域452x(452y)の判定閾値は、例1(図4A)に示した判定閾値と同じである。第1領域454x(454y)および第2領域455x(455y)では、それらの境界位置に近づくにしたがって判定閾値が低くなるように設定されている。当該境界位置では、判定閾値は20%(40%)である。端部領域452x(452y)と第1領域454x(454y)との境界位置の判定閾値は30%(50%)である。端部領域452x(452y)と第2領域455x(455y)との境界位置の判定閾値も同様に30%(50%)である。この例でも、例1と同様に、1つの検出領域で段階的な複数の判定閾値が設定されている。
 図6Bに示すように、y方向における判定閾値もx方向と同様である。
 タブレット型コンピュータの場合、筐体90および操作パネル30がスマートフォンに比べ大きい。このため、操作パネル30の中央で撓みやすい。したがって、操作パネル30の中央位置(第1領域454x(454y)と第2領域455x(455y)との境界位置)に近いほど、判定閾値が小さく設定されている。
 2.3)例3
 図7A、Bは、電子機器100としてスマートウォッチ等のウェアラブル型コンピュータに関する、x、y方向における検出領域全体45の押し込み量の判定閾値を示す。ウェアラブル型コンピュータはここでは図示しないが、操作パネル30や感圧センサー40のx、y方向の長さは異なる。しかしこれらの長さは同じ場合もある。
 検出領域全体45は、スマートフォンと同様に9個の検出領域に分割されて構成されている。ウェアラブル型コンピュータの操作パネルは、スマートフォンのそれに比べて小さいため、ユーザーは押しづらく感じる。したがって、全体的に判定閾値は低く設定される。また、端部領域の判定閾値が中央領域より低く設定され、エッジに近づくほど判定閾値は低くなる。
 以上、例1~3で説明したように、操作パネル30の形態に応じて適切な判定閾値が設定されることにより、操作パネル30の操作性を高めることができる。
 3.ユーザーによる電子機器の把持状態およびそれによる電子機器の姿勢
 次に、ユーザーによる電子機器100の把持状態、それによる電子機器100の姿勢、またその姿勢の検出方法について説明する。電子機器100として、対向する2つの短辺31および対向する2つの長辺32を有する矩形状の操作パネル30(あるいはディスプレイ20)を備えるスマートフォンを例に挙げる。
 姿勢検出ためのセンサーとしては、例えば加速度センサー50が用いられる。この場合、CPU10およびその検出のためのプログラムは、その加速度センサー50の出力値に基づき、電子機器100の姿勢を検出する「姿勢検出部」として機能する。
 3.1)横向き姿勢
 3.1.1)把持状態1
 図8Aは、電子機器100が横向き姿勢(第1の姿勢)にあるときのユーザーの把持状態1を示す。横向きの姿勢は、操作パネル30の長辺32が水平かまたは水平に近い状態で把持されるときの姿勢である。より正確には、横向きの姿勢は、操作パネル30の短辺31に沿う重力成分が、長辺32に沿う重力成分より大きくなるような姿勢である。例えば加速度センサー50によりそれらの重力成分を検出することができる。
 姿勢検出のためには重力成分が検出されればよい。したがって、x、yおよびz軸のうち少なくとも1軸が、斜めに向く場合でも、操作パネル30の短辺31に沿う重力成分が、長辺32に沿う重力成分より大きくなる、という条件を満たすことにより、その姿勢は横向きの姿勢として検出される。
 把持状態1は、電子機器100が横向きの姿勢である状態で、ユーザーが、電子機器100の筐体90の2つの短辺31側である第1短辺側91および第2短辺側92を両手でそれぞれ握る状態である。この状態では、図中、白丸で示すように、少なくともそれら第1短辺側91の2点および第2短辺側92の2点がユーザーの手により固定され、電子機器100の姿勢が安定する。
 図8Bは、把持状態1で把持される場合に、ユーザーにより操作パネル30に押し込み操作が行われた場合の、z方向における加速度センサー50の出力値の時間変化の例を示すグラフである。加速度センサー50の出力値を、以降では「加速度値」と言う場合もある。把持状態を検出するための縦軸の検出閾値は、比較的高めに設定される。具体的には、検出閾値は、少なくとも手振れによる出力波形Pの値より十分に高い値に設定される。この検出閾値は適宜設計の変更が可能である。
 図8Bにおいて、矢印で示す時間位置で、ユーザーにより操作パネル30に対する押し込み操作があったとする。図8Bの例では、押し込み方向の筐体90の加速度、すなわちz軸に沿う方向の筐体90の加速度値は、予め設定された検出閾値を超えない。押し込み操作があっても、ユーザーは両手でしっかりと筐体90を握っている。したがって、この押し込み操作によって筐体90に加えられる加速度はゼロに近く、実質的に手振れなどにより筐体90に加えられる加速度のみが検出される。
 このように、ユーザーによる押し込み操作があったとしても、その押し込み操作の方向に沿う加速度が検出閾値を超えなければ、CPU10は、把持状態1として「横向き/両手持ち状態」にあると判定することができる。
 3.1.2)把持状態2、3
 図9A、Bは、電子機器100が横向き姿勢(第1の姿勢)にあるときのユーザーの別の把持状態2、3をそれぞれ示す。図9Aに示す把持状態2は、ユーザーにより筐体90の第1短辺側91のみ把持される状態である。図9Bに示す把持状態3は、ユーザーにより筐体90の第2短辺側92のみ把持される状態である。
 これらの把持状態2、3では、それぞれの筐体90の短辺側の2点のみが把持される状態であり、電子機器100は不安定な姿勢となる。この把持状態2、3で、ユーザーによりz軸に沿う方向への押し込み操作が行われると、筐体90は第1短辺側91(または第2短辺側92)を軸としてx軸周りに回転し、図8Aに示したような所期の位置からずれるような動きになる。特に、押し込み操作が行われる位置が、当該軸から離れるほど、筐体90は回転しやすい状態になる。
 例えば、「タップ」の押し込み量より大きい次の段階の押し込み量である「押す」(「弱く押す」または「強く押す」)という操作時に、特に筐体90の姿勢が不安定となる。このような「タップ」および「押す」という入力操作は、現在では、カメラ機能のシャッターボタン(オートフォーカスおよび撮影実行の2段階操作)に利用されることがある。
 図9Cは、把持状態2、3で把持される場合に、ユーザーにより操作パネル30に押し込み操作が行われた場合の、z方向における加速度センサー50の出力値の時間変化の例を示すグラフである。把持状態2、3では、押し込み操作があった場合、筐体90が図9A、Bに示したようにずれるので、z方向の加速度センサー50による出力値に、そのずれの動きによる力が加えられる。したがって、その加速度値が検出閾値を超えた場合、CPU10は、ユーザーによる筐体90の把持状態が、把持状態2または3であることを判定することができる。
 そして、CPU10は、y方向の加速度値を取得することにより、その加速度値の符号(プラス、マイナス)に応じて、把持状態2と3を区別することができる。この点から、加速度センサー等のモーションセンサーは、できるだけy方向の中央に近い位置に配置されることが好ましい。
 以上のように、CPU10は、上記把持状態1だけでなく、これら把持状態2、3を区別して、電子機器100の横向き姿勢を検出することができる。
 3.2)縦向き姿勢(把持状態4)
 図10は、縦向き姿勢(第2の姿勢)にあるときのユーザーの把持状態4を示す。縦向きの姿勢は、操作パネル30の短辺31が水平かまたは水平に近い状態で把持されるときの姿勢である。より正確には、縦向きの姿勢は、操作パネル30の長辺32に沿う重力成分が、短辺31に沿う重力成分より大きくなるような姿勢である。例えば加速度センサー50によりそれらの重力成分が検出されることにより、CPU10は縦向き姿勢を検出することができる。
 3.3)載置姿勢
 図11は、机や床の上などの水平面上に置かれた載置姿勢を示す図である。載置姿勢は、基本的にはユーザーにより筐体90が把持されていない状態である。より正確には、載置姿勢は、操作パネル30に垂直な方向の重力成分が、短辺31および長辺32に沿う重力成分の両方より大きくなるような電子機器100の姿勢である。したがって、載置姿勢は、水平面上に限られず、水平面に対して操作パネル30が角度を持つような傾斜するような姿勢であってもよい。例えば加速度センサー50によりそれら重力成分が検出されることにより、CPU10は載置姿勢を検出することができる。
 なお、電子機器100が載置姿勢にあっても、ユーザーによりその筐体90が把持されている場合もある。
 3.4)他の電子機器への適用
 以上の電子機器100の各姿勢および把持状態の検出方法は、スマートフォンに限られず、他の携帯型のコンピュータにも適用可能である。
 4.押し込み量判定方法
 4.1)姿勢検出および押し込み量判定の処理
 次に、上記押し込み量判定部による押し込み量の判定方法について説明する。本実施形態では、上述した電子機器100の姿勢あるいは把持状態ごとに、押し込み量が判定される。図12は、電子機器100による姿勢検出および押し込み量の判定を含む処理を示すスローチャートである。
 ユーザーにより、操作パネル30の入力操作(主に「タップ」、「押す」など)が開始される(ステップ101)。入力操作の開始後、所定時間(例えば数msec~数十msec)以内に、CPU10は、ステップ102以降の電子機器100の姿勢検出処理を開始する。
 CPU10は加速度値を取得し、その加速度値に基づいて、横向き姿勢、縦向き姿勢、および載置姿勢の3つの姿勢を区別して検出する(ステップ102)。また、CPU10は、横向き姿勢を検出した場合には、上述したように加速度の検出閾値を利用した方法により、3種類の把持状態1、2、および3のうち1つを判定する(ステップ103)。
 CPU10は、検出された把持状態1、2、3、縦向き姿勢(把持状態4)、および載置姿勢の5つの状態に応じて、それぞれ判定閾値を可変に制御する(ステップ104~108)。この場合、CPU10およびその制御のためのプログラムは、「判定閾値制御部」として機能する。
 CPU10は、感圧センサー40により、その入力操作による押圧力を検出する(ステップ109)。CPU10は、その押圧力に基づき、ステップ104~108のうちいずれか1つで設定された判定閾値を用いて押し込み量を判定する(ステップ110)。
 4.2)判定閾値の例
 次に、ステップ104~108における判定閾値の設定例について説明する。
 4.2.1)例1
 図13は、横向き姿勢において「把持状態1」に適用される判定閾値の例を示すグラフである。なお、この例では、2つの判定閾値を持つ3段階の押し込み量、すなわち「タップ」、「弱く押す」、「強く押す」の判定が行われる。このことは、把持状態2、3、縦向き姿勢、および載置姿勢についても同様である。
 上述したように、感圧センサー40の検出のダイナミックレンジを100%とする。この場合、「タップ」は30%以下の範囲、「弱く押す」は30%を超え50以下の範囲、「強く押す」は50%を超える範囲である。CPU10は、この判定閾値30%、50%により、3段階の押し込み量の判定を実行する。
 なお、図13の例では、図4A、Bを用いて説明したように、操作パネル30(感圧センサー40)の中央領域451xの判定閾値を例に挙げているが、図13に示す例は、端部領域452xの判定閾値についても同様に適用され得る。このことは、把持状態2、3、縦向き姿勢、および載置姿勢についても同様である。
 図14は、横向き姿勢において「把持状態2」、または「把持状態3」に適用される判定閾値の例を示すグラフである。
 把持状態2、3では、上述したように電子機器100が不安定な状態となる。これらの把持状態2、3に図13の判定閾値を適用してしまうと、ユーザーが操作パネル30を弱く押したつもりでも、実際には「タップ」と判定されるおそれがある。また、操作パネル30を強く押したつもりでも、実際には「弱く押す」と判定されるおそれがある。すなわち、ユーザーが同じ力で操作パネル30を押したとしても、押圧力が異なり誤操作が生じる。したがって、把持状態2、3では、図14に示すように比較的低い判定閾値が適用される。これにより、上記の問題が解消される。
 なお、CPU10は、判定閾値を変更した後、所定時間の間、CPU10はその閾値を保持するようにし、その後、前の判定閾値に戻すようにすればよい。所定時間とは、数秒~数十秒程度、例えば5秒~20秒程度である。CPU10は、図13に示した判定閾値の設定を基本設定として保持し、その基本設定の判定閾値を、図14に示す判定閾値に変更した後、所定時間、変更後の判定閾値を保持し、その後、基本設定に戻せばよい。所定時間はユーザーにより変更可能であってもよい。
 縦向き姿勢の把持状態4では、電子機器100の姿勢は安定するので、例えば図13に示すような判定閾値を適用することができる。
 図15は、載置姿勢に適用される判定閾値の例を示すグラフである。「タップ」は40%以下の範囲、「弱く押す」は40%を超え70以下の範囲、「強く押す」は70%を超える範囲である。このように、載置姿勢では、電子機器100が最も安定した状態にあるので、高い判定閾値が適用される。あるいは、載置姿勢に適用される判定閾値は、図13に示したものでもよい。
 以上のように、本技術によれば、電子機器100の姿勢や把持状態の違いによるユーザーの誤操作を防止できる。
 4.2.2)例2
 次に、判定閾値の別の例について説明する。図16Aは、横向き姿勢の把持状態2に適用される判定閾値の例を示す。図16Bは、横向き姿勢の把持状態3に適用される判定閾値の例を示す。それぞれの横軸は、y方向における感圧センサー40の検出領域全体45を表す(図9A、B参照)。
 この例では、図4A、B等で説明した検出領域ごとに判定閾値が異なる、という思想を、把持状態2、3に応用している。検出領域全体45において高い判定閾値(例えば30%、50%)の検出領域が把持位置の側に対応する。図16Aに示す例での把持位置は第1短辺側91(左手側)であり、図16Bに示す例での把持位置は第2短辺側92(右手側)である。その把持位置からy方向に離れるほど、判定閾値は低くなるように設定されている。検出領域全体45において、最低の判定閾値は例えば10%、20%に設定される。
 把持状態2、3の場合、検出領域全体45が把持位置から遠いほど、筐体90は大きくずれやすい。図16A、Bに示した判定閾値の設定によれば、そのずれによるユーザーの誤操作を効果的に抑制できる。
 なお、把持状態2、3において、検出領域全体45のx方向における判定閾値は、例えば図4Aで示した例に設定されればよい。
 図17は、縦向き姿勢の把持状態4に適用される判定閾値の例を示す。横軸は、例えばy方向における感圧センサー40の検出領域全体45を表す(図10参照)。検出領域全体45において、高い判定閾値(例えば30%、50%)の検出領域が把持位置の側(下部の第2短辺側92)に対応する。y方向において、中央あるいはそれより上部の位置から、第1短辺側91に向かうほど、判定閾値は低くなるように設定されている。検出領域全体45において、最低の判定閾値は例えば20%、30%に設定される。
 把持状態4の場合、検出領域全体45が把持位置から遠いほど、筐体90は大きくずれやすい。図17に示した判定閾値の設定によれば、そのずれによるユーザーの誤操作を効果的に抑制できる。
 なお、把持状態4において、検出領域全体45のx方向における判定閾値は、例えば図4Aで示した例に設定されればよい。
 図18は、横向き姿勢の把持状態1に適用される判定閾値の例を示す。横軸は、例えばy方向における感圧センサー40の検出領域全体45を表す(図8A参照)。
 図19は、載置姿勢に適用される判定閾値の例を示す。横軸は、例えばy方向における感圧センサー40の検出領域全体45を表す(図11A参照)。
 把持状態1および載置姿勢では、筐体90が安定している。したがって、図18、19に示すように、検出領域ごとの判定閾値は一定でもよい。あるいは図4Bに示すように、判定閾値が、y方向において、検出領域全体45の中央領域451yで高く、端部領域452yで低く設定されてもよい。x方向においても同様に、判定閾値は一定でもよいし、図4Aに示すように設定されてもよい。
 4.3)他の実施形態に係る姿勢検出および押し込み量判定の処理
 図20は、他の実施形態に係る姿勢検出および押し込み量の判定の処理を示すフローチャートである。このフローチャートにおいて、図12と異なる点は、ステップ210を追加した点である。
 ステップ210では、CPU10は、ステップ109で検出された押圧力を、加速度値に基づき補正する。この場合、CPU10およびその補正のためのプログラムは、「補正部」として機能する。
 図21Aは、例えばユーザーの手振れによって出力される加速度センサー50の出力値(加速度値)である。この加速度値はz方向、すなわち操作パネル30に垂直な方向に沿う値である。図21Bは、ユーザーによる操作パネル30への押し込みの操作時に、感圧センサー40で検出される押圧力が、その手振れの影響を受ける例を示すグラフである。
 CPU10は、手振れの影響を受けた押圧力から、加速度値に基づく値を差し引く。CPU10は単位時間ごとに逐次この計算を実行する。加速度値に基づく値とは、例えば加速度値に係数を乗算した値である。係数は、適宜設計により決まる値である。これにより、図21Cに示すように、CPU10は、手振れによる加速度値が除去された押圧力の値を取得することができる。その結果、ステップ110における押し込み量の判定精度を高めることができる。
 もちろん、差し引きの対象となる値は、手振れによる加速度値でなくてもよい。例えば電車や自動車等の乗り物の走行時の揺れによるものであってもよい。あるいは、それら手振れと走行時の揺れの合成の加速度であってもよい。
 5.他の種々の実施形態
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 上記実施形態において、電子機器100は、押し込み量の判定閾値をユーザーがカスタマイズすることができるプログラムを保持していてもよい。
 ディスプレイ20に感圧センサー40が備えられる入力装置に限られず、ディスプレイを有しない入力装置(タッチパッド)にも本技術を適用可能である。また、電子機器100として、スマートフォンやタブレットコンピュータに限られず、カメラ機器、ゲーム機器等、その他の電子機器にも本技術を適用可能である。
 上記実施形態では、モーション検出部として加速度センサー50を例に挙げたが、これに加えてジャイロセンサや、その他の公知のセンサーが設けられていてもよい。
 上記実施形態では、押し込み量の判定閾値として、感圧センサー40の検出領域全体45にわたって段階的な複数の判定閾値が設定されていた。しかし、当該全検出領域にわたって1つの判定閾値が設定されていてもよい。あるいは、1以上の検出領域において、1つの判定閾値が設定され、それと異なる別の1以上の検出領域では段階的な複数の判定閾値が設定されていてもよい。
 上記各実施形態では、その段階的な判定閾値は2つであったが、3つ以上であってもよい。
 上記実施形態では、電子機器100の姿勢は加速度センサー50の出力値に基づき検出された。しかし、加速度センサー50等のモーション検出部の出力値に加え、その出力値のヒステリシスに基づき、当該姿勢が検出されるようにしてもよい。
 図20に示した処理において、ステップ109およびこれに続くステップ210は、例えばステップ101以降であれば、いつでも実行可能である。
 以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。
 なお、本技術は以下のような構成もとることができる。
(1)
 操作パネルと、
 前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記操作パネルへの入力操作による押し込み量を判定するように構成された押し込み量判定部と
 を備える入力装置。
(2)
 前記(1)に記載の入力装置であって、
 前記入力装置を有する機器のモーションを検出するように構成されたモーション検出部と、
 前記モーション検出部の出力値に基づき、前記機器の姿勢を検出するように構成された姿勢検出部と、
 前記検出された姿勢に応じて、前記判定閾値を可変に制御するように構成された判定閾値制御部と
 をさらに具備する入力装置。
(3)
 前記(2)に記載の入力装置であって、
 前記操作パネルは、長辺および短辺を有する矩形状に構成され、
 前記姿勢検出部は、少なくとも、前記短辺に沿う重力成分が前記長辺に沿う重力成分より大きくなるような前記機器の第1の姿勢、および、前記第1の姿勢とは異なる前記機器の姿勢を検出するように構成される
 入力装置。
(4)
 前記(3)に記載の入力装置であって、
 前記姿勢検出部は、前記長辺に沿う重力成分が前記短辺に沿う重力成分より大きくなるような前記機器の姿勢を、前記第1の姿勢とは異なる第2の姿勢として検出するように構成される
 入力装置。
(5)
 前記(3)または(4)に記載の入力装置であって、
 前記姿勢検出部は、前記操作パネルに垂直な方向の重力成分が、前記短辺に沿う重力成分および前記長辺に沿う重力成分の両方より大きくなるような前記機器の姿勢を、前記第1の姿勢とは異なる姿勢として検出するように構成される
 入力装置。
(6)
 前記(3)から(5)のうちいずれか1つに記載の入力装置であって、
 前記姿勢検出部は、前記機器の筐体の前記短辺側の1つである第1短辺側がユーザーに把持される状態と、前記筐体の、前記第1短辺側に対向する第2短辺側がユーザーに把持される状態とを少なくとも区別して、前記第1の姿勢を検出するように構成される
 入力装置。
(7)
 前記(6)に記載の入力装置であって、
 前記姿勢検出部は、前記筐体の前記第1短辺側および前記第2短辺側の両方がユーザーに把持される状態をさらに区別して、前記第1の姿勢を検出するように構成される
 入力装置。
(8)
 前記(6)または(7)に記載の入力装置であって、
 前記判定閾値制御部は、前記区別されて判定された把持状態に応じて、前記判定閾値を可変に制御するように構成される
 入力装置。
(9)
 前記(2)から(8)のうちいずれか1つに記載の入力装置であって、
 前記押し込み量判定部は、検出される前記操作パネルへの押圧力を取得し、前記押圧力に基づき前記押し込み量を判定するように構成され、
 前記モーション検出部の出力値に基づき、前記押圧力を補正する補正部をさらに具備する入力装置。
(10)
 前記(1)から(9)のうちいずれか1つに記載の入力装置であって、
 前記押し込み量判定部は、前記操作パネルの前記各領域のうち少なくとも1つの領域ごとに段階的な複数の判定閾値を有する
 入力装置。
(11)
 操作パネルを備える機器に用いられる情報処理装置であって、
 前記操作パネルの入力操作による押圧力の検出値を取得するように構成される取得部と、
 前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量を判定するように構成された押し込み量判定部と
 を備える情報処理装置。
(12)
 操作パネルを備える機器に用いられる情報処理方法であって、
 前記操作パネルの入力操作による押圧力の検出値を取得し、
 前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量を判定する
 情報処理方法。
(13)
 操作パネルを備える機器が実行するプログラムであって、
 前記操作パネルの入力操作による押圧力の検出値を取得し、
 前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量を判定する
 プログラム。
 10…CPU
 30…操作パネル
 31…短辺
 32…長辺
 35…操作領域全体
 40…感圧センサー
 45…検出領域全体
 50…加速度センサー
 91…第1短辺側
 92…第2短辺側
 100…電子機器
 351x、352x、351y、352y…操作領域
 451x、451y…検出領域(中央領域)
 452x、452y…検出領域(端部領域)
 454x、454y…検出領域(第1領域)
 455x、455y…検出領域(第2領域)

Claims (13)

  1.  操作パネルと、
     前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記操作パネルへの入力操作による押し込み量を判定するように構成された押し込み量判定部と
     を備える入力装置。
  2.  請求項1に記載の入力装置であって、
     前記入力装置を有する機器のモーションを検出するように構成されたモーション検出部と、
     前記モーション検出部の出力値に基づき、前記機器の姿勢を検出するように構成された姿勢検出部と、
     前記検出された姿勢に応じて、前記判定閾値を可変に制御するように構成された判定閾値制御部と
     をさらに具備する入力装置。
  3.  請求項2に記載の入力装置であって、
     前記操作パネルは、長辺および短辺を有する矩形状に構成され、
     前記姿勢検出部は、少なくとも、前記短辺に沿う重力成分が前記長辺に沿う重力成分より大きくなるような前記機器の第1の姿勢、および、前記第1の姿勢とは異なる前記機器の姿勢を検出するように構成される
     入力装置。
  4.  請求項3に記載の入力装置であって、
     前記姿勢検出部は、前記長辺に沿う重力成分が前記短辺に沿う重力成分より大きくなるような前記機器の姿勢を、前記第1の姿勢とは異なる第2の姿勢として検出するように構成される
     入力装置。
  5.  請求項3に記載の入力装置であって、
     前記姿勢検出部は、前記操作パネルに垂直な方向の重力成分が、前記短辺に沿う重力成分および前記長辺に沿う重力成分の両方より大きくなるような前記機器の姿勢を、前記第1の姿勢とは異なる姿勢として検出するように構成される
     入力装置。
  6.  請求項3に記載の入力装置であって、
     前記姿勢検出部は、前記機器の筐体の前記短辺側の1つである第1短辺側がユーザーに把持される状態と、前記筐体の、前記第1短辺側に対向する第2短辺側がユーザーに把持される状態とを少なくとも区別して、前記第1の姿勢を検出するように構成される
     入力装置。
  7.  請求項6に記載の入力装置であって、
     前記姿勢検出部は、前記筐体の前記第1短辺側および前記第2短辺側の両方がユーザーに把持される状態をさらに区別して、前記第1の姿勢を検出するように構成される
     入力装置。
  8.  請求項6に記載の入力装置であって、
     前記判定閾値制御部は、前記区別されて判定された把持状態に応じて、前記判定閾値を可変に制御するように構成される
     入力装置。
  9.  請求項2に記載の入力装置であって、
     前記押し込み量判定部は、検出される前記操作パネルへの押圧力を取得し、前記押圧力に基づき前記押し込み量を判定するように構成され、
     前記モーション検出部の出力値に基づき、前記押圧力を補正する補正部をさらに具備する入力装置。
  10.  請求項1に記載の入力装置であって、
     前記押し込み量判定部は、前記操作パネルの前記各領域のうち少なくとも1つの領域ごとに段階的な複数の判定閾値を有する
     入力装置。
  11.  操作パネルを備える機器に用いられる情報処理装置であって、
     前記操作パネルの入力操作による押圧力の検出値を取得するように構成された取得部と、
     前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量を判定するように構成された押し込み量判定部と
     を備える情報処理装置。
  12.  操作パネルを備える機器に用いられる情報処理方法であって、
     前記操作パネルの入力操作による押圧力の検出値を取得し、
     前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量を判定する
     情報処理方法。
  13.  操作パネルを備える機器が実行するプログラムであって、
     前記操作パネルの入力操作による押圧力の検出値を取得し、
     前記押圧力の検出値に基づき、前記操作パネルの各領域に応じた異なる複数の判定閾値により、前記入力操作による押し込み量を判定する
     プログラム。
PCT/JP2018/003164 2017-03-31 2018-01-31 入力装置、情報処理装置、情報処理方法、およびプログラム WO2018179804A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/488,159 US11320936B2 (en) 2017-03-31 2018-01-31 Input device, information processing device and information processing method for determining a pressing amount

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-069942 2017-03-31
JP2017069942A JP2018173712A (ja) 2017-03-31 2017-03-31 入力装置、情報処理装置、情報処理方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2018179804A1 true WO2018179804A1 (ja) 2018-10-04

Family

ID=63674868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003164 WO2018179804A1 (ja) 2017-03-31 2018-01-31 入力装置、情報処理装置、情報処理方法、およびプログラム

Country Status (3)

Country Link
US (1) US11320936B2 (ja)
JP (1) JP2018173712A (ja)
WO (1) WO2018179804A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102444500B1 (ko) * 2018-03-29 2022-09-20 가부시키가이샤 코나미 데지타루 엔타테인멘토 정보 처리 장치, 및 기록 매체에 저장된 컴퓨터 프로그램
WO2020161894A1 (ja) * 2019-02-08 2020-08-13 三菱電機株式会社 タッチパネルの押込検知装置、電子機器、及び、タッチパネルの押込検知方法
JP6995223B2 (ja) * 2019-02-08 2022-01-14 三菱電機株式会社 タッチパネルの押込検知装置、電子機器、及び、タッチパネルの押込検知方法
JP6705033B1 (ja) * 2019-02-19 2020-06-03 レノボ・シンガポール・プライベート・リミテッド 情報処理装置及びその入力制御方法並びにプログラム
JP7463889B2 (ja) 2020-07-13 2024-04-09 コニカミノルタ株式会社 端末装置及びプログラム
JP7216126B2 (ja) * 2021-01-28 2023-01-31 レノボ・シンガポール・プライベート・リミテッド 情報処理装置及びその入力制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146936A (ja) * 2004-11-23 2006-06-08 Microsoft Corp 偶発的なタッチセンシティブ装置の活動化の低減のための入力方法
JP2011059821A (ja) * 2009-09-07 2011-03-24 Sony Corp 入力装置、入力方法及びプログラム
JP2012221310A (ja) * 2011-04-11 2012-11-12 Fujitsu Ten Ltd 操作装置
WO2015053249A1 (ja) * 2013-10-09 2015-04-16 株式会社村田製作所 入力装置及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483145B (zh) * 2009-02-26 2015-05-01 Htc Corp 可攜式電子裝置及避免誤觸其觸控面板之方法
JP2011048669A (ja) * 2009-08-27 2011-03-10 Kyocera Corp 入力装置
JP5496016B2 (ja) * 2010-08-19 2014-05-21 京セラ株式会社 入力装置
US10282046B2 (en) * 2015-12-23 2019-05-07 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
US9870098B1 (en) * 2016-09-27 2018-01-16 International Business Machines Corporation Pressure-sensitive touch screen display and method
US9715307B1 (en) * 2016-10-31 2017-07-25 International Business Machines Corporation Pressure-sensitive touch screen display and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146936A (ja) * 2004-11-23 2006-06-08 Microsoft Corp 偶発的なタッチセンシティブ装置の活動化の低減のための入力方法
JP2011059821A (ja) * 2009-09-07 2011-03-24 Sony Corp 入力装置、入力方法及びプログラム
JP2012221310A (ja) * 2011-04-11 2012-11-12 Fujitsu Ten Ltd 操作装置
WO2015053249A1 (ja) * 2013-10-09 2015-04-16 株式会社村田製作所 入力装置及びプログラム

Also Published As

Publication number Publication date
US11320936B2 (en) 2022-05-03
US20210141484A1 (en) 2021-05-13
JP2018173712A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2018179804A1 (ja) 入力装置、情報処理装置、情報処理方法、およびプログラム
US8686961B2 (en) Electronic apparatus, processing method, and program
US20150301684A1 (en) Apparatus and method for inputting information
JP5865597B2 (ja) 携帯電子機器
US10627947B2 (en) Electronic device
US10496172B2 (en) Method and apparatus for haptic feedback
US20110291981A1 (en) Analog Touchscreen Methods and Apparatus
EP1818755A2 (en) Tapping operation method and mobile electrical apparatus with the tapping operation function
US20110291934A1 (en) Touchscreen Operation Threshold Methods and Apparatus
US20070151772A1 (en) Tapping Operation Method and Mobile Electrical Apparatus with the Tapping Operation Function
US10649555B2 (en) Input interface device, control method and non-transitory computer-readable medium
TWI689864B (zh) 手持裝置、其顯示模式的控制方法與電腦可讀取記錄媒體
JP6753942B2 (ja) 情報処理装置、電子機器、情報処理装置の制御方法および制御プログラム
JP6024250B2 (ja) 補正装置、補正プログラム、及び補正方法
JP5460758B2 (ja) タッチパネルのタッチ位置補正処理方法及びプログラム
US20140366130A1 (en) Electronic device
US9367169B2 (en) Method, circuit, and system for hover and gesture detection with a touch screen
US20190222688A1 (en) Electronic device, protection method and related product
US20120287049A1 (en) Gravity sensing input system, gravity sensing input method and electronic device thereof
WO2017163637A1 (ja) 情報処理装置、電子機器、情報処理装置の制御方法および制御プログラム
US10845914B2 (en) Electronic device
WO2023276300A1 (ja) 入力装置
JP5841023B2 (ja) 情報処理装置、情報処理方法、プログラム及び情報記憶媒体
KR101760526B1 (ko) 가속도 센서를 이용한 휴대기기에서의 터치 세기 추정 방법
WO2013179556A1 (ja) 情報端末、集積回路および信号処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778208

Country of ref document: EP

Kind code of ref document: A1