WO2018179292A1 - 情報処理装置と方法とプログラム - Google Patents

情報処理装置と方法とプログラム Download PDF

Info

Publication number
WO2018179292A1
WO2018179292A1 PCT/JP2017/013470 JP2017013470W WO2018179292A1 WO 2018179292 A1 WO2018179292 A1 WO 2018179292A1 JP 2017013470 W JP2017013470 W JP 2017013470W WO 2018179292 A1 WO2018179292 A1 WO 2018179292A1
Authority
WO
WIPO (PCT)
Prior art keywords
intellectual ability
arousal
ability
arousal level
estimation model
Prior art date
Application number
PCT/JP2017/013470
Other languages
English (en)
French (fr)
Inventor
剛範 辻川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2017/013470 priority Critical patent/WO2018179292A1/ja
Priority to JP2019508068A priority patent/JP6791361B2/ja
Publication of WO2018179292A1 publication Critical patent/WO2018179292A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present invention relates to an information processing apparatus, method, and program.
  • Various methods for estimating sleepiness (low arousal state) and stress (high arousal state) from biological information have been proposed. For example, a method for estimating drowsiness calculated by evaluating a facial expression by a plurality of people as a correct answer has been proposed. Furthermore, a technique is also known in which stress is applied step by step in a Stroop test and a stress state is estimated.
  • Patent Document 1 discloses a work arousal level estimation device that enables an appropriate model to be selected according to the state of the person to be estimated, thereby enabling highly accurate estimation in consideration of the individual state.
  • a feature amount indicating heartbeat variability during work of a user who is a measurement target of prior data and information regarding information processing ability during work of the plurality of users are associated with each other at the same time.
  • a pre-database for storing data is provided.
  • a feature amount indicating heart rate variability during the work of the user to be estimated is calculated, and the estimation target is based on the calculated feature amount indicating the heart rate variability and the prior data stored in the prior database. Estimate the information processing capability value of the user.
  • a regression model is created using the feature value indicating heart rate variability during the work of the user to be measured in advance as an explanatory variable, and the user's work performance at the same time as the objective variable, and is calculated in the process of creating the regression model.
  • the regression coefficient is stored in the prior database in association with the feature quantity indicating the heart rate variability as the explanatory variable.
  • the capability estimation means reads out a regression coefficient corresponding to the calculated feature value indicating the heartbeat fluctuation from the prior database, and the estimation target is calculated from the read regression coefficient and the calculated feature value of the heartbeat fluctuation.
  • the estimated value of the information processing ability value of the user is calculated.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an apparatus, a method, and a program that enable estimation of arousal level associated with, for example, a decrease in intellectual ability.
  • a first learning model is generated using biometric information during a test of intellectual ability in a plurality of different arousal states of users to be measured and the result of the intellectual ability test.
  • an information processing apparatus including the above means and second means for estimating the arousal level using the learning model with respect to the biological information acquired from the estimation target user.
  • a method for estimating an arousal level based on biological information by a computer the biological information being tested for intellectual ability in a plurality of different arousal states of users to be measured
  • an arousal level estimation method for generating an arousal level estimation model based on an intellectual ability test result and estimating the arousal level by using the arousal level estimation model for biological information acquired from a user to be estimated Is done.
  • the arousal level estimation model is stored in the computer based on the biological information during the intellectual ability test in the plurality of different arousal states of the measurement target user and the intellectual ability test result. And a second process for estimating the arousal level using the arousal level estimation model for the biological information acquired from the estimation target user is provided. .
  • a computer-readable recording medium for example, a RAM (Random Access Memory), a ROM (Read Only Memory), or an EEPROM (Electrically® Erasable® and Programmable® ROM)) that stores the program according to the above aspect.
  • a computer-readable recording medium for example, a RAM (Random Access Memory), a ROM (Read Only Memory), or an EEPROM (Electrically® Erasable® and Programmable® ROM)
  • other non-transitory computer readable recording media such as HDD (Hard Disk Drive), CD (Compact Disk), DVD (Digital Versatile Disc), etc.
  • FIG. 1 is a diagram for explaining a configuration of a first exemplary embodiment of the present invention.
  • the information processing apparatus 10 according to the first exemplary embodiment generates a wakefulness estimation model as a configuration for estimating a wakefulness with at least a decrease in intellectual ability based on biological information.
  • Means (part) 11 and awakening degree estimation means (part) 12 are provided.
  • the information processing apparatus 10 may be called, for example, “wakefulness estimation apparatus” by using a part of the function.
  • the notation of the arousal level estimation model generation means (unit) 11 is that the “means” of the arousal level estimation model generation means 11 may be configured as a unit, that is, the arousal level estimation model generation unit.
  • the arousal level estimation means (unit) 12 indicates that the arousal level estimation means 12 may be configured as a wakefulness level estimation unit.
  • the arousal level estimation model generating means (unit) 11 estimates the arousal level based on the biological information during the test of the intellectual ability in a plurality of different awake states of the measurement target user and the test result of the intellectual ability.
  • a model 131 is generated and stored in the storage device 13.
  • the arousal level estimation means (unit) 12 estimates the arousal level using the arousal level estimation model 131 stored in the storage device 13 for the biological information acquired from the estimation target user.
  • the storage device 13 can deliver the arousal level estimation model 131 generated by the arousal level estimation model generation unit (unit) 11 to the arousal level estimation unit (unit) 12, the arousal level estimation model generation unit (unit). 11 or arousal level estimation means (unit) 12 may be provided.
  • the arousal level estimation model generation unit (unit) 11 and the arousal level estimation unit (unit) 12 may be realized as separate node devices connected via a communication network, for example.
  • the information processing apparatus 10 may be referred to as an information processing system (or “wakefulness estimation system” or the like).
  • FIG. 2 is a diagram for explaining an exemplary first embodiment of the present invention, in which a biological information sensor worn by a user and a measurement environment are schematically shown.
  • an electroencephalograph 20-1 may be attached to the measurement target user 1 in the arousal level estimation model generation phase. That is, the electroencephalogram of the user 1 is measured by the electroencephalograph 20-1 to monitor the user 1 arousal state, and the user 1 has a plurality of different arousal states (for example, a low arousal state, a high arousal state, an intermediate state, etc.) ) May be determined. For example, in a low arousal state, it is known that brain waves represent arousal levels, such as the absence of continuity of alpha waves in the occipital region or a decrease in frequency and a decrease in amplitude.
  • an electroencephalograph 20-1 configured to pick up an electroencephalogram simply by attaching a sensor band to the user 1's head. It may be an electroencephalogram measurement hat electrode in which the electrodes are arranged.
  • the electroencephalograph 20-1 may be configured to convert the detected electroencephalogram into a digital signal and transmit it to the information processing apparatus 10 by wireless communication such as Bluetooth (registered trademark). Alternatively, the measurement result may be transmitted to the information processing apparatus 10 by wired communication such as USB (UniversalUSBBus), RS232C, or an optical cable.
  • USB UniversalUSBBus
  • RS232C Universal Serial Bus 2.0
  • optical cable optical cable
  • the heart rate sensor 20-2 is exemplified by a wristwatch type, but may be an arm-wrap type.
  • the wristwatch type heart rate sensor 20-2 converts the sensed heart rate data into digital data and transmits the digital data to the information processing apparatus 10 by wireless communication such as Bluetooth (registered trademark).
  • the camera 20-3 on the front surface of the display of the personal computer 30 is used to capture the face image of the user 1, analyze the image data, and detect blinks or the like.
  • a glasses-type sensor 20-4 that can detect the angle of sight line, the blinking speed, and the like may be used.
  • the image data captured by the camera 20-3 may be transmitted from the personal computer 30 to the information processing apparatus 10 by wire or wireless such as USB or Ethernet (registered trademark).
  • the glasses-type sensor 20-4 transmits sensed blink data or the like to the information processing apparatus 10 by wireless communication such as Bluetooth (registered trademark). Note that the camera 20-3 may be used not only to detect blinking but also to monitor the posture and body movement of the user 1.
  • the microwave biological information sensor 20-5 may be arranged at a position separated from the user 1 so as to sense the heartbeat and respiration of the user 1 without contact.
  • a seat-type biological information sensor 20-6 may be provided that senses the heartbeat, breathing, and body movement of the user 1 sitting on the chair.
  • the sensors 20-5 and 20-6 convert the sensed heartbeat data into digital data and transmit the digital data to the information processing apparatus 10 by wired or wireless communication.
  • a pulse signal may be sensed using the ear clip type photoelectric pulse wave sensor 20-7 and transmitted to the information processing apparatus 10 by wireless communication such as Bluetooth (registered trademark).
  • FIG. 2 it may be configured to include any one of the sensors 20-2, 20-5, 20-6, 20-7, the camera 20-3 functioning as a blink sensor, and the sensor 20-4. .
  • the information processing apparatus 10 acquires the electroencephalogram of the measurement target user 1 working on the personal computer 30 using, for example, the electroencephalograph 20-1, and determines the awakening state of the measurement target user 1. May be performed. Further, the awakening state may be determined from the facial expression of the user 1. Further, the arousal state may be determined based on the subjectivity of the user 1. When it is detected that the awake state of the user 1 to be measured is, for example, a low awake state, the user 1 to be measured undergoes an intellectual ability test. At that time, the biological information of the measurement target user 1 who is executing the intellectual ability test is acquired by, for example, a biological information sensor (at least one of 20-2 to 20-7 in FIG. 2).
  • a plurality of different wakefulness states of the user 1 to be measured are discriminated from the body motion sensed by one of the sensors 20-2 to 20-7, for example, instead of the electroencephalograph 20-1. Further, it may be performed on the basis of sensing results such as posture, heart rate and respiration data.
  • the estimation target user 1 acquires biological information, for example, in a state of actually working. For this reason, the electroencephalograph 20-1 that does not burden the estimation target user 1 as a biological information sensor is not used, and the wristwatch-type heart rate sensor 20-2 or the sensor 20-4 can be operated in a natural posture. At least one of ⁇ 20-7 etc. is used.
  • the user 1 to be estimated performs actual work with the electroencephalograph 20-1 of FIG. 2 removed. Note that the measurement target user 1 and the estimation target user 1 may be the same person or different persons.
  • the information processing apparatus 10 is arranged as a separate apparatus from the personal computer 30 for the sake of simplicity of explanation, the information processing apparatus 10 is mounted on the personal computer 30. Also good. Alternatively, wireless communication with the biometric information sensor using Bluetooth (registered trademark) or the like is performed by the personal computer 30, and analysis of the biometric information received by the personal computer 30 is performed by a server (not shown) to which the personal computer 30 is connected. Also good.
  • Bluetooth registered trademark
  • FIG. 3 is a diagram illustrating a configuration example of the arousal level estimation model generation means (unit) 11 of FIG.
  • the arousal level estimation model generation means (unit) 11 includes an arousal state monitor unit 111, an intellectual ability test execution control unit 112, a biological information acquisition unit 113, a normalization unit 114, a feature amount extraction unit 115, and an estimation model learning unit 116. I have.
  • the biological information sensors 20A and 20B include biological information detection units 201A and 201B and communication control units 202A and 202B, respectively.
  • the communication control units 202A and 202B have a wireless communication or wired communication interface as described above, and transmit the biological information sensed by the biological information detection units 201A and 201B to the arousal level estimation model generation unit (unit) 11.
  • the communication control units 202A and 202B have, for example, a wireless antenna (not shown) as a wireless communication interface.
  • the biological information sensor 20A may be any one or more of the electroencephalograph 20-1 of FIG. 2 or the other sensors 20-2 to 20-7.
  • the biological information sensor 20B may be any one or more of the sensors 20-2 to 20-7 in FIG.
  • the biological information sensor 20A and the biological information sensor 20B may be the same, and may be any of the sensors 20-2 to 20-7 in FIG.
  • the communication control unit 110 of the arousal level estimation model generation unit (unit) 11 communicates with the biological information sensors 20A and 20B wirelessly or by wire, and for example, instructs the biological information sensors 20A and 20B to start or stop sensing and Transmission of a command for instructing transmission and sensing data (biological information) transmitted from the biological information sensors 20A and 20B are received.
  • the communication control unit 110 has an interface for wireless communication and / or wired communication.
  • the communication control unit 110 includes, for example, a wireless antenna (not shown) as a wireless communication interface.
  • the arousal state monitoring unit 111 acquires biological information from the biological information sensor 20A attached to the measurement target user 1 (FIG. 2) at the time of generating the arousal level estimation model, and based on the biological information, determines the arousal state of the measurement target user 1. Monitor.
  • the intelligent ability test execution control unit 112 receives an instruction from the wakefulness monitor unit 111, The user 1 to be measured is caused to execute an intellectual ability test.
  • the intellectual ability test execution control unit 112 may instruct the personal computer 30 of FIG. 2 to execute the intellectual ability test.
  • Measured user 1 stops work on personal computer 30 (FIG. 2) and performs an intellectual ability test.
  • the intellectual ability test execution control unit 112 may automatically open the intellectual ability test screen (window) on the display screen of the personal computer 30 and perform the intellectual ability test online.
  • the measurement target user 1 may operate the personal computer 30 to start an application program for the intellectual ability test.
  • Measured user 1 inputs an answer from an input means such as a keyboard or a mouse to a problem displayed on the screen of personal computer 30.
  • the biometric information acquisition unit 113 acquires biometric information (for example, heartbeat data from a heart rate monitor) that is being executed by the measurement target user 1 (FIG. 2).
  • the intellectual ability test execution control unit 112 notifies the measurement target user 1 of the execution of the intellectual ability test via the personal computer 30, and the measurement target user 1 performs a paper test (writing test) prepared in advance.
  • An intellectual ability test may be performed, and the scoring result (time required for answering) may be notified to the intellectual ability test execution control unit 112 via the personal computer 30.
  • the normalization unit 114 sets the low arousal state, the high arousal state (stress state), the intellectual ability test result (score, time required for answering) of the user 1 to be measured in the state between them as the low arousal state. You may make it normalize by the representative point (For example, the highest point, the shortest time required for the reply, etc.) in states other than a high awake state. Alternatively, the average of several percentage points from the highest score of the intellectual ability test result (score) of the user 1 to be measured, the shortest time required for answering the intellectual ability test result (time required for answer) of the user 1 You may normalize by the average of the answer time of some percent.
  • the normalization unit 114 normalizes the distribution of scores that are different for each measurement target user, so that, for example, the degree of depression in a low arousal state can be commonly used.
  • the feature amount extraction unit 115 extracts a feature amount from the biological information (for example, heartbeat data) acquired by the biological information acquisition unit 113. For example, based on the heart rate data from the heart rate sensor (20-2, 20-6, 20-7, etc. in FIG. 2), the timing of the amplitude peak of the heart rate signal is detected, and the interval of each timing of the amplitude peak is detected. Various methods are used, such as converting the data into the frequency domain and calculating the spectral density for fluctuations in the heartbeat interval. Alternatively, the degree of eye opening, the average of eye closure duration, distribution, PERCLOS (Percent of the time eyelids are closed), the number of blinks, and the like may be used as the feature amount.
  • the biological information for example, heartbeat data acquired by the biological information acquisition unit 113. For example, based on the heart rate data from the heart rate sensor (20-2, 20-6, 20-7, etc. in FIG. 2), the timing of the amplitude peak of the heart rate signal is detected, and the interval of each timing
  • the feature amount may be acquired by converting the respiration cycle or the like into the frequency domain, or the feature amount may be extracted from the respiration amplitude or the like.
  • the feature quantity extraction unit 115 causes the biometric information acquisition unit 113 to execute the intellectual ability test while the measurement target user 1 is executing the intellectual ability test (for example, the intellectual ability test is performed for a predetermined time limit such as 5 minutes or 10 minutes) Alternatively, the time until answering all questions may be counted), and the value obtained by statistically processing the time-series data of the feature amount of the biological information acquired from the biological information sensor is used as the feature amount (representative value). ).
  • the estimation model learning unit 116 generates a wakefulness estimation model 131. More specifically, the estimation model learning unit 116 learns the arousal level estimation model 131 based on the normalized value of the intellectual ability test result and the feature amount of the biological information, and stores it in the storage device 13. Although not particularly limited, as the arousal level estimation model 131, the characteristic amount of the biological information (biological information during execution of the intellectual ability test) in each arousal state is used as an explanatory variable, and the normalized value of the intellectual ability test result is used as the purpose. A regression analysis may be performed using variables (explained variables).
  • the arousal level estimation model 131 may be obtained by deriving a coefficient (parameter) that minimizes the residual by linearly or polynomially approximating the objective variable with an explanatory variable.
  • the arousal level estimation model 131 is not limited to a linear regression model, and a nonlinear regression model may be used.
  • estimation model learning unit 116 may individually generate the arousal level estimation model 131 in the low arousal state, the high arousal state, and the state therebetween.
  • the intellectual ability test result (normalized value) of sentence comprehension ability may be weighted with a larger value than the result of other tests (normalized value).
  • FIG. 4 is a diagram illustrating a configuration example of the arousal level estimation means (unit) 12 of FIG.
  • the arousal level estimation means (unit) 12 includes a communication control unit 120, a biological information acquisition unit 121, a feature amount extraction unit 122, an estimation unit 123, and an estimation result output unit 124.
  • the communication control unit 120 communicates with the biological information sensor wirelessly or by wire, instructs the start of sensing biological information, transmits sensing data, and receives sensing data.
  • the biological information acquisition unit 121 receives the biological information from the communication control unit 120 from the biological information sensor 20B of the estimation target user.
  • the biometric information acquired by the biometric information sensor 20B and the biometric information acquisition unit 121, and the feature quantity extracted by the feature amount extraction unit 122 are the biometric information acquisition of the biometric information sensor 20B and the arousal level estimation model generation unit (unit) 11 of FIG.
  • the biometric information acquired by the unit 113 and the feature amount extracted by the feature amount extraction unit 115 are the same.
  • the biological information acquisition unit 113 acquires biological information for five minutes of the measurement target user 1 who is executing the intellectual ability test, and the feature amount extraction unit
  • the feature amount extraction unit 122 extracts the feature amount of the biological information acquired by the biological information sensor 20B from the estimation target user 1 by the biological information acquisition unit 121 for 5 minutes.
  • the biometric information acquisition unit 121 and the feature amount extraction unit 122 in FIG. 4 may be the same as the biometric information acquisition unit 113 and the feature amount extraction unit 115 in FIG. 3.
  • the estimation unit 123 receives the feature amount extracted by the feature amount extraction unit 122 as an input, and estimates the arousal level using the arousal level estimation model 131 (model parameter) stored in the storage device 13.
  • the estimation unit 123 estimates the normalized value of the intellectual ability test result from the feature amount input from the feature amount extraction unit 122 using the arousal level estimation model 131 and estimates the arousal level corresponding to the normalized value. You may make it do.
  • the estimation result output unit 124 outputs the estimation result of the arousal level to a display device or the like.
  • FIG. 5 is a flowchart for explaining the operation of the first exemplary embodiment of the present invention.
  • the biometric information during the intellectual ability test execution is acquired, the feature amount is extracted, and stored in the storage unit corresponding to the arousal state i (S1).
  • the intellectual ability test execution control unit 112 of the arousal level estimation model generation means (part) 11 collects the test results of the intellectual ability test and stores them in correspondence with the arousal state i (S2).
  • the normalization unit 114 of the wakefulness estimation model generation unit (part) 11 obtains the knowledge acquired in a state other than the low wakefulness state and the low wakefulness state, for example.
  • Intellectual ability test in each arousal state of the same user based on the score of the test result of the intellectual ability test (for example, the highest score or representative value (statistics such as the first quartile and median from the highest score))
  • the test result is divided and normalized (S3).
  • the estimation model learning unit 116 of the arousal level estimation model generation unit (unit) 11 includes the feature amount extracted by the feature amount extraction unit 115, the normalized value of the test result of the intellectual ability test from the normalization unit 114, Based on the above, the arousal level estimation model 131 is learned and stored in the storage device 13 (S4).
  • the arousal level estimation means (unit) 12 acquires biological information of the estimation target user and extracts a feature amount (S11).
  • the estimation unit 123 of the arousal level estimation means (unit) 12 receives the feature amount and estimates the arousal level based on the arousal level estimation model 131 stored in the storage device 13 (S12).
  • the estimation result output unit 124 of the arousal level estimation means (unit) 12 outputs the awakening level estimation result to a display device or the like (S13).
  • the estimated arousal value obtained by the information processing apparatus 10 in FIG. Provide information to support health management.
  • FIG. 6 is a diagram illustrating an example of the configuration of the second embodiment.
  • the biological information sensor 20, the arousal level estimation unit (part) 12, the arousal level estimation model 131, and the storage device 13 are, for example, the biological information sensor 20 ⁇ / b> B, the arousal level estimation unit (part) 12, and the arousal level estimation. This can correspond to the model 131.
  • the arousal level estimation model generation means (unit) 11 of FIG. 1 is omitted.
  • the arousal level estimation model 131 is generated by the arousal level estimation model generation means (unit) 11 described in the first embodiment.
  • the management information providing means (unit) 31 When the management information providing means (unit) 31 receives the estimated wakefulness value from the wakefulness estimation means (part) 12, for example, the employee's personal computer (for example, 30 in FIG. 2) stores the current wakefulness level of the employee. You may make it show the screen which displays. Although not particularly limited, for example, when it is determined that the employee is in a low arousal state, the management information providing means (part) 31 displays a caution on the screen of the employee's personal computer (for example, 30 in FIG. 2). Present information (for example, recommend a simple refreshing exercise that can be done on the spot, or take care to ensure sufficient sleeping time at night), or be careful with sound, voice, etc. as long as it does not disturb the neighborhood Arousal may be performed.
  • the management information providing means (unit) 31 stores the estimated wakefulness value of the employee in the storage device 32 in association with estimated time information (or time zone information), employee identification information (ID), and the like. May be recorded in the employee database 321 and used for, for example, employee management or business management (scheduling management, business efficiency management, etc.) in the workplace or remote workplace. Further, the management information providing means (unit) 31 may notify a manager's terminal (not shown) or the like. As described above, according to the second embodiment, it is possible to use the estimated wakefulness value of an employee for employee management or the like in a workplace or a remote workplace.
  • the management information providing means (unit) 31 may be mounted as a single device or may be mounted on a server connected to the information processing apparatus 10 in FIG. 1 via a communication network. Alternatively, the management information providing means (unit) 31 may be a built-in integrated device configuration in the information processing apparatus 10 of FIG.
  • FIG. 7 is a diagram illustrating an example in which the information processing apparatus 10 described with reference to FIG. 1 and the like is realized by a computer program as an exemplary third embodiment.
  • a computer apparatus 300 constituting the information processing apparatus 10 includes a processor (CPU (Central Processing Unit), data processing apparatus) 301, a semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory)). Or a storage device 302 including at least one of EEPROM (Electrically Erasable and Programmable ROM), HDD (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc), and the like, A communication interface 304 is provided.
  • CPU Central Processing Unit
  • data processing apparatus for example, RAM (Random Access Memory), ROM (Read Only Memory)
  • a storage device 302 including at least one of EEPROM (Electrically Erasable and Programmable ROM), HDD (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc), and the like
  • the function of the information processing apparatus 10 described above may be realized by executing the awakening level estimation program stored in the storage device 302 by the processor 301.
  • the storage device 302 may be the same storage device as the storage device 13 that stores the arousal level estimation model. Further, the storage device 302 may be used as a storage device that stores the intellectual ability test execution result and the normalized value thereof, the biological information, and the feature amount extracted from the biological information.
  • the communication interface 304 is connected to any of the biological information sensors (sensors 20-1, 20-2, 20-4 to 20-7, and the camera 20-3 in FIG. 2) together with the processor 301 by wireless or wired communication. You may comprise the communication control apparatus (FIG. 3, FIG. 4) which acquires information.
  • the awakening level estimation program of the computer apparatus 300 may be installed in the personal computer 30 of FIG. 2 so that the personal computer 30 functions as the information processing apparatus 10.
  • Patent Document 1 above is incorporated herein by reference.
  • the embodiments and examples can be changed and adjusted based on the basic technical concept.
  • Various combinations or selections of various disclosed elements including each element of each claim, each element of each embodiment, each element of each drawing, etc. are possible within the scope of the claims of the present invention. . That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
  • An information processing apparatus comprising:
  • the first means includes A feature quantity extraction unit for extracting feature quantities from the biological information under test; A normalization unit for normalizing the test result of the intellectual ability of the measurement target user; An estimation model generation unit that generates a wakefulness estimation model based on a value obtained by normalizing the characteristic amount and the test result of the intellectual ability;
  • the information processing apparatus according to appendix 1, further comprising:
  • the normalization unit normalizes the test results of the intellectual ability in a plurality of different awake states using the test results of the user's intellectual ability when the awake state is in a predetermined state.
  • the information processing apparatus according to attachment 2.
  • Appendix 4 The information processing apparatus according to appendix 2 or 3, wherein the estimation model generation unit separately models a decrease in intellectual ability due to the first awakening state and a decrease in intellectual ability due to the second awakening state.
  • Appendix 5 The information processing apparatus according to any one of appendices 1 to 4, wherein the first means measures at least one of sentence comprehension ability, numerical processing ability, and logical reasoning ability as the intellectual ability test. .
  • Appendix 6 The information processing apparatus according to any one of appendices 1 to 4, wherein the first unit weights the test result of the intellectual ability according to an attribute of the measurement target user.
  • the apparatus is connected to management information providing means for providing predetermined management information relating to the estimation target user based on the estimation result of the arousal level, or includes the management information providing means in the apparatus.
  • the information processing apparatus according to any one of 1 to 6.
  • Appendix 8 A method of estimating arousal level based on biological information by a computer, Using the biological information during the test of intellectual ability in a plurality of wakefulness states different from each other of the user to be measured and the test result of the intellectual ability, generate a wakefulness estimation model, A wakefulness level estimation method, wherein the wakefulness level is estimated using the wakefulness level estimation model for biological information acquired from a user to be estimated.
  • Appendix 10 In normalizing the test result of the intellectual ability, the intellectual ability in a plurality of wakefulness states different from each other using the test result of the intellectual ability of the user when the wakefulness state is in a predetermined state.
  • any one of appendices 8 to 10 that separately models a decrease in intellectual ability due to the first arousal state and a decrease in intellectual ability due to the second arousal state. Awakening level estimation method.
  • the first process includes A feature amount extraction process for extracting feature amounts from the biological information under test; Normalization processing for normalizing the test result of the intellectual ability of the measurement target user; A model generation process for generating a wakefulness estimation model based on a value obtained by normalizing the characteristic amount and the test result of the intellectual ability;
  • Appendix 18 The program according to appendix 16 or 17, wherein the model generation process separately models a decrease in intellectual ability due to a first awake state and a decrease in intellectual ability due to a second awake state.
  • Appendix 19 The program according to any one of appendices 15 to 18, wherein the first process measures at least one of calculation ability, reading ability, and memory ability as the intellectual ability test.
  • Appendix 20 The program according to any one of appendices 15 to 19, wherein the first process weights the test result of the intellectual ability according to the attribute of the measurement target user.
  • Arousal level estimation model generation means (part) 12 Arousal level estimation means (part) 13 Storage devices 20, 20A, 20B Biological information sensor 20-1 EEG 20-20 Heart rate sensor 20-3 Camera 20-4 Glass-type sensor 20-5 Microwave bio-information sensor 20-6 Sheet-type bio-information sensor 20 -7 Ear clip type photoelectric pulse wave sensor 30 Personal computer 31 Management information providing means (part) 32 storage device 321 employee database 110, 120 communication control unit 111 wakefulness monitoring unit 112 intelligent ability test execution control unit 113 biometric information acquisition unit 114 normalization unit 115, 122 feature quantity extraction unit 116 estimation model learning unit 121 biometric information Acquisition unit 123 Estimation unit 124 Estimation result output unit 131 Arousal level estimation models 20A and 20B Biological information sensors 201A and 201B Biological information detection units 202A and 202B Communication control unit 300 Computer device 301 Processor 302 Storage device 303 Display device 304 Interface

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Pathology (AREA)
  • Developmental Disabilities (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Educational Technology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

知的能力の低下等に伴う覚醒度の推定を可能とする。情報処理装置は、測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果とに基づき、覚醒度推定モデルを生成する覚醒度推定モデル生成手段と、推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて覚醒度を推定する覚醒度推定手段とを備える(図1)。

Description

情報処理装置と方法とプログラム
本発明は、情報処理装置と方法とプログラムに関する。
 少子高齢化により生産年齢人口が減少し、労働力不足が進む中、例えばロボットや人口知能(Artificial Intelligence:AI)で置き換え困難な知的生産性の維持、向上の必要性が叫ばれている。しかし、眠気(低覚醒状態)やストレス(高覚醒状態)により、個人が備える知的能力が十分に発揮できず、知的生産性が低下することが知られている。
 企業、官公庁等の各種職場において、知的生産性の低下を防止するように環境制御等を行うためには、知的生産性の低下を伴う覚醒度の推定が必要である。
 生体情報(例えば、瞬き、心拍、脳波等)から眠気(低覚醒状態)、ストレス(高覚醒状態)を推定する手法は各種提案されている。例えば、顔表情を複数人で評価して算出した眠気を正解とし、それを推定する手法が提案されている。さらに、ストループテスト(Stroop test)で段階的にストレスを付加し、ストレス状態を推定する手法も知られている。
 特許文献1には、推定対象者の状態に応じ適切なモデルを選択できるようにし、これにより個人の状態を考慮した精度の高い推定を可能とする作業覚醒度推定装置が開示されている。この装置においては、事前データの測定対象となるユーザの作業中における心拍変動を示す特徴量と、当該複数のユーザの作業中における情報処理能力に関する情報とを時刻が同じもの同士で対応付けた事前データを記憶する事前データベースを備える。推定対象となるユーザの作業中における心拍変動を示す特徴量を算出し、当該算出された心拍変動を示す特徴量と、上記事前データベースに記憶された事前データとに基づいて、上記推定対象となるユーザの情報処理能力値を推定する。事前データ測定対象となるユーザの作業中における心拍変動を示す特徴量を説明変数とし、当該ユーザの同時刻における作業成績を目的変数として回帰モデルを作成し、当該回帰モデルの作成の過程で算出される回帰係数を、上記説明変数としての心拍変動を示す特徴量と対応付けて上記事前データベースに記憶させる。そして能力推定手段により、上記算出された心拍変動を示す特徴量に対応する回帰係数を上記事前データベースから読み出し、当該読み出された回帰係数と上記算出された心拍変動の特徴量とから上記推定対象となるユーザの情報処理能力値の推定値を算出する。
特開2016-137138号公報
 以下に関連技術の分析を与える。
 上記した関連技術では、知的能力の低下を伴う覚醒度の推定を所望の精度で行うことは困難である。その理由は、知的能力と覚醒度との対応関係を提供する手段を欠いているためである。
 本発明は上記課題に鑑みて創案されたものであって、その目的は、例えば知的能力の低下等に伴う覚醒度の推定を可能とする装置、方法、プログラムを提供することにある。
 本発明の一つの形態によれば、測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力試験結果とを用いて学習モデルを生成する第1の手段と、推定対象のユーザから取得した生体情報に対して、前記学習モデルを用いて前記覚醒度を推定する第2の手段と、を備えた情報処理装置が提供される。
 本発明の別の形態によれば、コンピュータにより生体情報に基づき覚醒度を推定する方法であって、測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力試験結果とに基づき、覚醒度推定モデルを生成し、推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて前記覚醒度を推定する覚醒度推定方法が提供される。
 本発明の別の形態によれば、コンピュータに、測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力試験結果とに基づき、覚醒度推定モデルを生成する第1の処理と、推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて前記覚醒度を推定する第2の処理と、を実行させるプログラムが提供される。
 本発明のさらに他の形態によれば、上記形態のプログラムを記憶したコンピュータ読み出し可能な記録媒体(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM))等の半導体ストレージ、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等の非一時的なコンピュータ読み出し可能な記録媒体(non-transitory computer readable recording medium)が提供される。
 本発明によれば、例えば知的能力の低下等に伴う覚醒度の推定を可能としている。
本発明の例示的な第1の実施形態の構成を説明する図である。 本発明の例示的な第1の実施形態を説明する図である。 本発明の例示的な第1の実施形態の構成例を例示する図である。 本発明の例示的な第1の実施形態の構成例を例示する図である。 本発明の例示的な第1の実施形態の動作を説明する流れ図である。 本発明の例示的な第2の実施形態の構成を説明する図である。 本発明の例示的な第3の実施形態の構成を説明する図である。
 本発明の例示的な実施形態について説明する。
<実施形態1>
 図1は、本発明の例示的な第1の実施形態の構成を説明するための図である。図1を参照すると、例示的な第1の実施形態に係る情報処理装置10は、生体情報に基づき少なくとも知的能力の低下を伴う覚醒度の推定を行うための構成として、覚醒度推定モデル生成手段(部)11と、覚醒度推定手段(部)12を備えている。なお、情報処理装置10は、その機能の1部を用いて、例えば「覚醒度推定装置」と称呼してもよい。なお、図1等において、覚醒度推定モデル生成手段(部)11の表記は、覚醒度推定モデル生成手段11の「手段」が、ユニット、すなわち覚醒度推定モデル生成ユニットとして構成してもよいことを表している。同様に、覚醒度推定手段(部)12は、覚醒度推定手段12が覚醒度推定ユニットとして構成してもよいことを表している。
 覚醒度推定モデル生成手段(部)11は、測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果と、に基づき、覚醒度推定モデル131を生成し、記憶装置13に記憶する。
 覚醒度推定手段(部)12は、推定対象のユーザから取得した生体情報に対して、記憶装置13に記憶された覚醒度推定モデル131を用いて覚醒度を推定する。なお、記憶装置13は、覚醒度推定モデル生成手段(部)11で生成した覚醒度推定モデル131を覚醒度推定手段(部)12に受け渡すことができれば、覚醒度推定モデル生成手段(部)11又は覚醒度推定手段(部)12内に備えた構成としてもよい。覚醒度推定モデル生成手段(部)11と覚醒度推定手段(部)12は、例えば通信ネットワークを介して接続する別々のノード装置として実現してもよい。この場合、情報処理装置10は、情報処理システム(あるいは「覚醒度推定システム」等)と称呼されてもよい。
 図2は、本発明の例示的な第1の実施形態を説明する図であり、ユーザに装着される生体情報センサと、測定環境が模式的に示されている。
 図2を参照すると、覚醒度推定モデル生成フェーズでは、測定対象のユーザ1に、脳波計20-1を装着してもよい。すなわち、脳波計20-1でユーザ1の脳波を測定することで、ユーザ1の覚醒状態をモニタし、ユーザ1の互いに異なる複数の覚醒状態(例えば低覚醒状態、高覚醒状態、中間の状態等)を判別してもよい。例えば低覚醒状態では、後頭部のα波の連続性が認められなくなったり、周波数が遅くなり振幅が低下する等、脳波は覚醒度を表すことが知られている。なお、図2には、脳波計20-1として、ユーザ1の頭部にセンサーバンドを装着するだけで脳波をピックアップする構成のものが例示されているが、例えば国際10/20法に従って19個の電極を配置した脳波測定用帽子電極であってもよい。脳波計20―1は検出した脳波をデジタル信号に変換し、例えばBluetooth(登録商標)等の無線通信により、情報処理装置10に送信する構成としてもよい。あるいは、USB(Universal Serial Bus)、RS232C、あるいは光ケーブル等の有線通信によって測定結果を情報処理装置10に送信する構成としてもよい。なお、測定対象のユーザ1の異なる複数の覚醒状態の判別は、脳波計20-1の代わりに、他の生体情報センサを用いてもよい。
 特に制限されないが、心拍センサ20-2は、例えば腕時計(ウォッチ)型のものが例示されているが、腕巻型であってもよい。腕時計型の心拍センサ20-2はセンシングした心拍データをデジタルデータに変換し例えばBluetooth(登録商標)等の無線通信により情報処理装置10に送信する。
 パソコン30のディスプレイの前面のカメラ20-3は、ユーザ1の顔画像を撮像し、画像データを解析して瞬き等を検出するために用いられる。あるいは視線の角度やまばたきの速度などを検出できるメガネ型のセンサ20-4を用いてもよい。カメラ20-3で撮像した画像データは、パソコン30からUSBやEthernet(登録商標)等の有線又は無線で情報処理装置10に送信する構成としてもよい。メガネ型のセンサ20-4はセンシングした瞬きデータ等、Bluetooth(登録商標)等の無線通信により情報処理装置10に送信する。なお、カメラ20-3は、瞬きの検出だけでなく、ユーザ1の姿勢、体動の監視に用いてもよい。
 あるいは、マイクロ波生体情報センサ20-5を、ユーザ1から離間した位置に配置し、非接触で、ユーザ1の心拍、呼吸をセンシングするようにしてもよい。あるいは、椅子に配設しその上に座っているユーザ1の心拍や呼吸、体動をセンシングするシート型の生体情報センサ20-6を備えてもよい。センサ20-5、20-6はセンシングした心拍データをデジタルデータに変換し有線又は無線通信により情報処理装置10に送信する。あるいは、イヤクリップ式の光電脈波センサ20-7を用いて脈拍信号をセンシングして、Bluetooth(登録商標)等の無線通信により情報処理装置10に送信するようにしてもよい。
 図2において、センサ20-2、20―5、20-6、20-7や、瞬きセンサとして機能するカメラ20-3、およびセンサ20-4のうちいずれか一つを備えた構成としてもよい。
 覚醒度推定モデル生成フェーズでは、情報処理装置10は、例えば脳波計20-1を用いて、パソコン30を作業する測定対象のユーザ1の脳波を取得し、測定対象のユーザ1の覚醒状態の判別を行うようにしてもよい。また、ユーザ1の顔表情から覚醒状態を判別してもよい。また、ユーザ1の主観により覚醒状態を判別してもよい。測定対象のユーザ1の覚醒状態が、例えば低覚醒状態であることが検出されると、測定対象のユーザ1は知的能力テストを受ける。その際、知的能力テスト実行中の測定対象のユーザ1の生体情報を、例えば生体情報センサ(図2の20-2~20-7の少なくとも一つ)で取得する。ここで、測定対象のユーザ1の異なる複数の覚醒状態の判別は、前述したように、脳波計20-1の代わりに、例えばセンサ20-2~20-7のいずれかでセンシングされた体動、姿勢、心拍や呼吸データ等のセンシング結果等に基づき行うようにしてもよい。
 覚醒度推定フェーズでは、推定対象のユーザ1は、例えば実際に仕事をしている状態で、生体情報の取得が行われる。このため、生体情報センサとして、推定対象のユーザ1に対して負担の多い脳波計20-1は用いられず、自然な姿勢で作業が行える腕時計型の心拍センサ20-2や、センサ20-4~20-7等の少なくとも1つが用いられる。推定対象のユーザ1は、図2の脳波計20-1が外された状態で、実作業を行う。なお、測定対象のユーザ1と、推定対象のユーザ1は、同一人であっても、異なる人であってもよい。
 なお、図2では、単に説明の簡単のため、情報処理装置10を、パソコン30と別の装置として配設した例が示されているが、情報処理装置10をパソコン30に実装するようにしてもよい。あるいは、生体情報センサとのBluetooth(登録商標)等による無線通信は、パソコン30で行い、パソコン30で受信した生体情報の解析等は、パソコン30が接続するサーバ(不図示)で行うようにしてもよい。
 図3は、図1の覚醒度推定モデル生成手段(部)11の構成例を例示する図である。覚醒度推定モデル生成手段(部)11は、覚醒状態モニタ部111、知的能力テスト実行制御部112、生体情報取得部113、正規化部114、特徴量抽出部115、推定モデル学習部116を備えている。生体情報センサ20A、20Bは、それぞれ、生体情報検出部201A、201Bと、通信制御部202A、202Bを備えている。
 通信制御部202A、202Bは、前述したように無線通信又は有線通信インタフェースを備え、生体情報検出部201A、201Bでセンシングされた生体情報を、覚醒度推定モデル生成手段(部)11に送信する。通信制御部202A、202Bは無線通信のインタフェースとして例えば不図示の無線アンテナを有する。生体情報センサ20Aは、図2の脳波計20-1、あるいは他のセンサ20-2~20-7のいずれか1つ又は複数であってもよい。生体情報センサ20Bは、図2のセンサ20-2~20-7のいずれか1つ又は複数であってもよい。生体情報センサ20Aと生体情報センサ20Bを同一とし、図2のセンサ20-2~20-7のいずれかであってもよい。
 覚醒度推定モデル生成手段(部)11の通信制御部110は、生体情報センサ20A、20Bと無線又は有線で通信し、例えば生体情報センサ20A、20Bに対するセンシングの開始/停止の指示やセンシングデータの送信を指示するコマンドの送信や、生体情報センサ20A、20Bから送信されたセンシングデータ(生体情報)を受信する。通信制御部110は、無線通信及び/又は有線通信のインタフェースを有する。通信制御部110は無線通信のインタフェースとして例えば不図示の無線アンテナを有する。
 覚醒状態モニタ部111は、覚醒度推定モデル生成時に測定対象のユーザ1(図2)に取り付けた生体情報センサ20Aから生体情報を取得し、生体情報に基づき、測定対象のユーザ1の覚醒状態をモニタする。
 覚醒状態モニタ部111で、ユーザ1(図2)の覚醒状態が,低覚醒状態に変化したと判断した場合、覚醒状態モニタ部111からの指示を受け、知的能力テスト実行制御部112は、測定対象のユーザ1に、知的能力テストを実行させる。知的能力テスト実行制御部112は、例えば図2のパソコン30に、知的能力テストの実行を指示するようにしてもよい。
 測定対象のユーザ1は、例えば、それまでのパソコン30(図2)での仕事を停止し、知的能力テストを行う。知的能力テスト実行制御部112は、パソコン30のディスプレイの画面上に、知的能力テストの画面(ウインドウ)を自動的に開き、オンラインで知的能力テストを行うようにしてもよい。あるいは、測定対象のユーザ1が、パソコン30を操作して知的能力テストのアプリケーションプログラムを起動するようにしてもよい。
 測定対象のユーザ1は、パソコン30の画面に表示される問題に対して、キーボード、マウス等の入力手段から答えを入力する。知的能力テスト実行制御部112による一連の知的能力テスト(例えば、文章理解能力、数的処理能力(計算能力)、論理的推理能力等)の開始とともに、知的能力テスト実行制御部112からの指示に基づき、生体情報取得部113は、測定対象のユーザ1(図2)が知的能力テスト実行中の生体情報(例えば心拍計からの心拍データ等)を取得する。なお、知的能力テスト実行制御部112は、パソコン30を介して測定対象のユーザ1に、知的能力テストの実行を通知し、測定対象のユーザ1は予め用意されたペーパーテスト(筆記テスト)で知的能力テストを行い、採点結果(回答に要した時間)を、パソコン30を介して知的能力テスト実行制御部112に通知するようにしてもよい。
 正規化部114は、例えば、低覚醒状態、高覚醒状態(ストレス状態)、その間の状態における測定対象のユーザ1の知的能力テスト結果(得点、回答に要した時間)を、低覚醒状態と高覚醒状態以外の状態における代表点(例えば最高点、回答に要した最短時間等)で正規化するようにしてもよい。あるいは、測定対象のユーザ1の知的能力テスト結果(得点)の最高得点から何%かの得点の平均、ユーザ1の知的能力テスト結果(回答に要した時間)の回答に要した最短時間から何%かの回答時間の平均等で正規化してもよい。
 例えば、測定対象のユーザAの知的能力テストの最高得点が70点で、低覚醒状態では49点である場合、最高点で正規化すると、低覚醒状態は49/70=0.7となる。別の測定対象のユーザBの知的能力テストの最高得点が80点で、低覚醒状態では48点である場合、最高点で正規化すると、低覚醒状態は、48/80=0.6となる。測定対象のユーザAとユーザBの低覚醒状態の知的能力テストの得点はそれぞれ49点、48点と同程度であるが、正規化することで、それぞれ、0.7(70%)、0.6(60%)となり、ユーザBの落ち込みの程度がユーザAよりも大きい。このように、正規化部114で、測定対象のユーザ毎に異なる得点の分布を正規化することで、例えば低覚醒状態での落ち込みの程度の判別を共通化することができる。
 特徴量抽出部115は、生体情報取得部113で取得した生体情報(例えば心拍データ等)から特徴量を抽出する。例えば心拍センサ(図2の20-2、20-6、20-7等)からの心拍データに基づいて心拍信号の振幅ピークのタイミングを検出し振幅ピークの各タイミングの間隔を検出し、心拍間隔データを周波数領域に変換し心拍間隔の変動に対するスペクトル密度を算出する等、各種手法が用いられる。あるいは、瞬きについて開眼度、閉眼継続時間の平均、分布、PERCLOS (Percent of the time eyelids are closed:目を閉じている時間割合)、瞬き回数等を特徴量としてもよい。マイクロ波非接触呼吸センサ(図2の20-5)等の場合、呼吸周期等を周波数領域に変換し特徴量を取得してもよいし、呼吸振幅等から特徴量を抽出してもよい。なお、特徴量抽出部115は、生体情報取得部113が、測定対象のユーザ1が知的能力テスト実行中(知的能力テストは例えば5分あるいは10分等の所定の制限時間で実行するようにしてもよい、あるいは全問回答するまでの時間を計時するようにしてもよい)に、生体情報センサから取得した生体情報の特徴量の時系列データを統計処理した値を特徴量(代表値)としてもよい。
 推定モデル学習部116は、覚醒度推定モデル131を生成する。より詳しくは、推定モデル学習部116は、知的能力テスト結果の正規化された値と、生体情報の特徴量に基づき、覚醒度推定モデル131を学習し、記憶装置13に記憶する。特に制限されないが、覚醒度推定モデル131として、各覚醒状態における生体情報(知的能力テスト実行中の生体情報)の特徴量を説明変数とし、知的能力テスト結果の正規化された値を目的変数(被説明変数)とする回帰分析を行ってもよい。例えば、目的変数を説明変数で1次又は多項式近似し残差を最小化する係数(パラメータ)を導出することで覚醒度推定モデル131を求めるようにしてもよい。なお、覚醒度推定モデル131は、線形回帰モデルに制限されるものでなく、非線形回帰モデルを用いてもよい。
 さらに、推定モデル学習部116は、低覚醒状態、高覚醒状態、その間の状態において、それぞれ、個別に、覚醒度推定モデル131を生成するようにしてもよい。
 また、推定モデル学習部116は、ユーザ1の仕事の内容(職種、役職等)に応じて、知的能力テスト結果を重み付けして覚醒度推定モデル131を生成してもよい。例えば、経理部や税務会計事務等の職務では、計算能力の知的能力テスト結果(正規化値)を、文章理解能力等の他のテストの結果(正規化値)よりも、大きな値で重み付けをしてもよい。
 得点=W1×(文章理解能力の正規化値)+W2×(計算能力の正規化値)+W3×(論理的推理能力の正規化値)、
  W1+W2+W3=1,  0≦W1,W2,W3≦1
 一方、契約、渉外や特許業務等の職務では、文章理解能力の知的能力テスト結果(正規化値)を他のテストの結果(正規化値)よりも、大きな値で重み付けをしてもよい。
 図4は、図1の覚醒度推定手段(部)12の構成例を例示する図である。図4を参照すると、覚醒度推定手段(部)12は、通信制御部120と、生体情報取得部121と、特徴量抽出部122と、推定部123と、推定結果出力部124を備えている。通信制御部120は、生体情報センサと無線又は有線で通信し、生体情報のセンシングの開始、センシングデータの送信等を指示し、センシングデータを受信する。
 生体情報取得部121は、推定対象のユーザの生体情報センサ20Bから生体情報を通信制御部120から受け取る。
 生体情報センサ20B、生体情報取得部121で取得する生体情報、特徴量抽出部122で抽出する特徴量は、図3の生体情報センサ20B、覚醒度推定モデル生成手段(部)11の生体情報取得部113で取得する生体情報、特徴量抽出部115で抽出する特徴量と同一とされる。例えば図3の覚醒度推定モデル生成手段(部)11において、知的能力テストを実行中の測定対象のユーザ1の5分間分の生体情報を生体情報取得部113で取得し、特徴量抽出部115が該生体情報から特徴量を抽出する場合、特徴量抽出部122は、生体情報取得部121で5分間、推定対象のユーザ1から生体情報センサ20Bで取得した生体情報の特徴量を抽出する。図4の生体情報取得部121と特徴量抽出部122は、図3の生体情報取得部113と、特徴量抽出部115と同一であってもよい。
 推定部123は、特徴量抽出部122によって抽出された特徴量を入力として受け、記憶装置13に記憶されている覚醒度推定モデル131(モデルパラメータ)を用いて覚醒度を推定する。
 推定部123は、特徴量抽出部122から入力した特徴量から、覚醒度推定モデル131を用いて、知的能力テスト結果の正規化値を推定し、該正規化値に対応する覚醒度を推定するようにしてもよい。
 推定結果出力部124は、覚醒度の推定結果を、表示装置等に出力する。
 図5は、本発明の例示的な第1の実施形態の動作を説明する流れ図である。図5(A)を参照すると、覚醒度推定モデル生成手段(部)11は、複数の覚醒状態i=1~N(Nは2以上の整数)について、測定対象のユーザ1(図2)が、知的能力テスト実行中の生体情報を取得し特徴量を抽出し、覚醒状態iに対応して記憶部に格納する(S1)。
 覚醒度推定モデル生成手段(部)11の知的能力テスト実行制御部112は、知的能力テストの試験結果を収集し、覚醒状態iに対応して記憶する(S2)。
 覚醒状態i=1~Nについて、ステップS1、S2を実行した結果、覚醒度推定モデル生成手段(部)11の正規化部114は、例えば低覚醒状態と低覚醒状態以外の状態で取得した知的能力テストの試験結果の得点(例えば最高得点又は代表値(最高点からの第1四分位数やメジアン等の統計値))等に基づき、同一ユーザの各覚醒状態での知的能力テストの試験結果を除算して正規化する(S3)。
 覚醒度推定モデル生成手段(部)11の推定モデル学習部116は、特徴量抽出部115で抽出された特徴量と、正規化部114からの知的能力テストの試験結果の正規化値と、に基づき、覚醒度推定モデル131を学習し、記憶装置13に記憶する(S4)。
 図5(B)を参照すると、覚醒度推定手段(部)12は、推定対象のユーザの生体情報を取得し特徴量を抽出する(S11)。
 覚醒度推定手段(部)12の推定部123は、特徴量を受け、記憶装置13に記憶された覚醒度推定モデル131に基づき、覚醒度を推定する(S12)。覚醒度推定手段(部)12の推定結果出力部124は、覚醒度推定結果を表示装置等に出力する(S13)。
<実施形態2>
 次に、本発明の例示的な第2の実施形態として、覚醒度推定結果の利用形態の一例を提示する。第2の実施形態において、覚醒度推定結果を得るための基本構成は、図1等を参照して説明した前記実施形態と同様である。
 第2の実施形態では、例えば官公庁、企業、各種事務所等の職場において、図1の情報処理装置10で得られた覚醒度推定値を、従業員にフィードバックし、従業員自身による時間管理や健康管理を支援する情報を提供する。
 図6は、第2の実施形態の構成の一例を例示する図である。図6において、生体情報センサ20、覚醒度推定手段(部)12、覚醒度推定モデル131、記憶装置13は、例えば図4の生体情報センサ20B、覚醒度推定手段(部)12、覚醒度推定モデル131に対応させることができる。なお、図6において、図1の覚醒度推定モデル生成手段(部)11は省略されている。図6において、覚醒度推定モデル131は、前記第1の実施形態で説明した覚醒度推定モデル生成手段(部)11で生成されているものとする。
 管理情報提供手段(部)31は、覚醒度推定手段(部)12からの覚醒度推定値を受けると、例えば従業員のパソコン(例えば図2の30)に、当該従業員の現在の覚醒度を表示する画面を提示するようにしてもよい。特に制限されないが、例えば、当該従業員が低覚醒状態にあると判断されたとき、管理情報提供手段(部)31は、当該従業員のパソコン(例えば図2の30)の画面上に、注意情報(例えば、その場でできる簡単なリフレッシュ体操を勧めたり、あるいは夜十分な睡眠時間を確保するように注意する等)を提示するか、近隣に迷惑を与えない範囲で音響、音声等による注意喚起を行うようにしてもよい。
 また、管理情報提供手段(部)31は、従業員の覚醒度推定値を、例えば推定時刻情報(あるいは時間帯情報)や従業員の識別情報(ID)等と関連付けて、記憶装置32に格納される従業員データベース321に記録し、例えば、職場やリモート職場での従業員管理や業務管理(スケジューリング管理、業務の効率性管理等)などに利用するようにしてもよい。また管理情報提供手段(部)31は、管理者の端末(不図示)等に通知するようにしてもよい。このように、第2の実施形態によれば、従業員の覚醒度推定値を、職場やリモート職場での従業員管理等に利用することを可能としている。なお、管理情報提供手段(部)31は、単体装置として実装してもよいし、また、図1の情報処理装置10と通信ネットワークを介して接続するサーバ上に実装してもよい。あるいは、管理情報提供手段(部)31を図1の情報処理装置10内の組み込み一体の装置構成としてもよい。
<実施形態3>
 図7は、例示的な第3の実施形態として、図1等を参照して説明した情報処理装置10を、コンピュータプログラムで実現する一例を説明する図である。図7を参照すると、情報処理装置10を構成するコンピュータ装置300は、プロセッサ(CPU(Central Processing Unit)、データ処理装置)301、半導体メモリ(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM)等)、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等の少なくともいずれかを含む記憶装置302と、表示装置303と、通信インタフェース304を備えている。記憶装置302に記憶された覚醒度推定プログラムをプロセッサ301で実行することで、前記した情報処理装置10の機能を実現するようにしてもよい。なお、記憶装置302は、覚醒度推定モデルを記憶する記憶装置13と同一の記憶装置としてもよい。また、記憶装置302は、知的能力テスト実行結果とその正規化値や、生体情報、及び生体情報から抽出した特徴量を記憶する記憶装置として用いてもよい。通信インタフェース304は、プロセッサ301とともに、生体情報センサ(図2のセンサ20-1、20-2、20-4~20-7、カメラ20―3)のいずれかに無線又は有線で接続し、生体情報を取得する通信制御装置(図3、図4)を構成してもよい。なお、コンピュータ装置300の覚醒度推定プログラムを、図2のパソコン30にインストールし、パソコン30を情報処理装置10として機能させる構成としてもよい。
 なお、上記の特許文献1の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 上記実施形態において方法の特徴は例えば以下のように付記される。
(付記1)
 測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果とを用いて覚醒度推定モデルを生成する第1の手段と、
 推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて前記覚醒度を推定する第2の手段と、
 を備えた、ことを特徴とする情報処理装置。
(付記2)
 前記第1の手段は、
 前記試験中の生体情報から特徴量を抽出する特徴量抽出部と、
 前記測定対象のユーザの前記知的能力の試験結果を正規化する正規化部と、
 前記特徴量と前記知的能力の試験結果を正規化した値に基づき覚醒度推定モデルを生成する推定モデル生成部と、
 を備えたことを特徴とする付記1記載の情報処理装置。
(付記3)
 前記正規化部は、覚醒状態が予め定められた状態にあるときの前記ユーザの知的能力の試験結果を用いて、互いに異なる複数の覚醒状態での前記知的能力の試験結果を正規化する、付記2記載の情報処理装置。
(付記4)
 前記推定モデル生成部は、第1の覚醒状態による知的能力の低下と、第2の覚醒状態による知的能力の低下を別々にモデル化する、付記2又は3記載の情報処理装置。
(付記5)
 前記第1の手段は、前記知的能力の試験として、文章理解能力、数的処理能力、論理的推理能力のうち少なくとも一つを測定する、付記1乃至4のいずれかに記載の情報処理装置。
(付記6)
 前記第1の手段は、前記測定対象のユーザの属性に応じて、前記知的能力の試験結果に重み付けする、付記1乃至4のいずれかに記載の情報処理装置。
(付記7)
 前記覚醒度の推定結果に基づき、前記推定対象のユーザに関する、所定の管理情報を提供する管理情報提供手段に接続するか、前記管理情報提供手段を装置内に備えた、ことを特徴とする付記1乃至6のいずれかに記載の情報処理装置。
(付記8)
 コンピュータにより生体情報に基づき覚醒度を推定する方法であって、
 測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果とを用いて覚醒度推定モデルを生成し、
 推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて前記覚醒度を推定する、ことを特徴とする覚醒度推定方法。
(付記9)
 前記覚醒度推定モデルの生成にあたり、
 前記試験中の生体情報から特徴量を抽出し、
 前記測定対象のユーザの前記知的能力の試験結果を正規化し、
 前記特徴量と前記知的能力の試験結果を正規化した値に基づき前記覚醒度推定モデルを生成する、ことを特徴とする付記8記載の覚醒度推定方法。
(付記10)
 前記知的能力の試験結果を正規化するにあたり、覚醒状態が予め定められた状態にあるときの前記ユーザの知的能力の試験結果を用いて、互いに異なる複数の覚醒状態での前記知的能力の試験結果を正規化する、付記9記載の覚醒度推定方法。
(付記11)
 前記覚醒度推定モデルを生成するにあたり、第1の覚醒状態による知的能力の低下と、第2の覚醒状態による知的能力の低下を別々にモデル化する、付記8乃至10のいずれかに記載の覚醒度推定方法。
(付記12)
 前記知的能力の試験として、文章理解能力、数的処理能力、論理的推理能力のうち少なくとも一つを測定する付記8乃至11のいずれかに記載の覚醒度推定方法。
(付記13)
 前記測定対象のユーザの属性に応じて、前記知的能力の試験結果に重み付けする、付記8乃至12のいずれかに記載の覚醒度推定方法。
(付記14)
 前記覚醒度の推定結果に基づき、前記推定対象のユーザに関する、所定の管理情報を提供する、ことを特徴とする付記8乃至13のいずれかに記載の覚醒度推定方法。
(付記15)
 コンピュータに、
 測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果とを用いて覚醒度推定モデルを生成する第1の処理と、
 推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて前記覚醒度を推定する第2の処理と、
 を実行させるプログラム。
(付記16)
 前記第1の処理は、
 前記試験中の生体情報から特徴量を抽出する特徴量抽出処理と、
 前記測定対象のユーザの前記知的能力の試験結果を正規化する正規化処理と、
 前記特徴量と前記知的能力の試験結果を正規化した値に基づき覚醒度推定モデルを生成するモデル生成処理と、
 を実行する付記15記載のプログラム。
(付記17)
 前記正規化処理は、覚醒状態が予め定められた状態にあるときの前記ユーザの知的能力の試験結果を用いて、互いに異なる複数の覚醒状態での前記知的能力の試験結果を正規化する、付記16記載のプログラム。
(付記18)
 前記モデル生成処理は、第1の覚醒状態による知的能力の低下と、第2の覚醒状態による知的能力の低下を別々にモデル化する、付記16又は17記載のプログラム。
(付記19)
 前記第1の処理は、前記知的能力の試験として、計算能力、読解力、記憶力のうち少なくとも一つを測定する、付記15乃至18のいずれかに記載のプログラム。
(付記20)
 前記第1の処理は、前記測定対象のユーザの属性に応じて、前記知的能力の試験結果に重み付けする、付記15乃至19のいずれかに記載のプログラム。
(付記21)
 前記覚醒度の推定結果に基づき、前記推定対象のユーザに関する、所定の管理情報を提供する処理を前記コンピュータに実行させる付記15乃至20のいずれかに記載のプログラム。
1 ユーザ
10 情報処理装置
11 覚醒度推定モデル生成手段(部)
12 覚醒度推定手段(部)
13 記憶装置
20、20A、20B 生体情報センサ
20-1 脳波計
20-2 心拍センサ
20-3 カメラ
20-4 メガネ型のセンサ
20-5 マイクロ波生体情報センサ
20-6 シート型の生体情報センサ
20-7 イヤクリップ式の光電脈波センサ
30 パソコン
31 管理情報提供手段(部)
32 記憶装置
321 従業員データベース
110、120 通信制御部
111 覚醒状態モニタ部
112 知的能力テスト実行制御部
113 生体情報取得部
114 正規化部
115、122 特徴量抽出部
116 推定モデル学習部
121生体情報取得部
123 推定部
124 推定結果出力部
131 覚醒度推定モデル
20A、20B 生体情報センサ
201A、201B 生体情報検出部
202A、202B 通信制御部
300 コンピュータ装置
301 プロセッサ
302 記憶装置
303 表示装置
304 インタフェース

Claims (16)

  1.  測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果とに基づき、覚醒度推定モデルを生成する第1の手段と、
     推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて覚醒度を推定する第2の手段と、
     を備えた、ことを特徴とする情報処理装置。
  2.  前記第1の手段は、
     前記試験中の生体情報から特徴量を抽出する特徴量抽出部と、
     前記測定対象のユーザの前記知的能力の試験結果を正規化する正規化部と、
     前記特徴量と前記知的能力の試験結果を正規化した値に基づき覚醒度推定モデルを生成する推定モデル生成部と、
     を備えた、ことを特徴とする請求項1に記載の情報処理装置。
  3.  前記正規化部は、覚醒状態が予め定められた状態にあるときの前記測定対象のユーザの知的能力の試験結果を用いて、互いに異なる複数の覚醒状態での前記知的能力の試験結果を正規化する、ことを特徴とする請求項2に記載の情報処理装置。
  4.  前記推定モデル生成部は、第1の覚醒状態による知的能力の低下と、第2の覚醒状態による知的能力の低下を、別々にモデル化した覚醒度推定モデルを生成する、ことを特徴とする請求項2又は3に記載の情報処理装置。
  5.  前記第1の手段は、前記知的能力の試験として、文章理解能力、数的処理能力、論理的推理能力のうち少なくとも一つを測定する、ことを特徴とする請求項1乃至4のいずれか1項に記載の情報処理装置。
  6.  前記第1の手段は、前記測定対象のユーザの属性に応じて、前記知的能力の試験結果に重み付けする、ことを特徴とする請求項1乃至5のいずれか1項に記載の情報処理装置。
  7.  前記覚醒度の推定結果に基づき、前記推定対象のユーザに関する、所定の管理情報を提供する管理情報提供手段に接続するか、前記管理情報提供手段を装置内に備えた、ことを特徴とする請求項1乃至6のいずれか1項に記載の情報処理装置。
  8.  コンピュータにより生体情報に基づき覚醒度を推定する方法であって、
     測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果とに基づき、覚醒度推定モデルを生成し、
     推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて前記覚醒度を推定する、ことを特徴とする覚醒度推定方法。
  9.  前記覚醒度推定モデルの生成にあたり、
     前記試験中の生体情報から特徴量を抽出し、
     前記測定対象のユーザの前記知的能力の試験結果を正規化し、
     前記特徴量と前記知的能力の試験結果を正規化した値に基づき前記覚醒度推定モデルを生成する、ことを特徴とする請求項8に記載の覚醒度推定方法。
  10.  前記知的能力の試験結果を正規化するにあたり、覚醒状態が予め定められた状態にあるときの前記測定対象のユーザの知的能力の試験結果を用いて、互いに異なる複数の覚醒状態での前記知的能力の試験結果を正規化する、ことを特徴とする請求項9に記載の覚醒度推定方法。
  11.  前記覚醒度推定モデルを生成するにあたり、第1の覚醒状態による知的能力の低下と、第2の覚醒状態による知的能力の低下を、別々にモデル化した覚醒度推定モデルを生成する、請求項8乃至10のいずれか1項に記載の覚醒度推定方法。
  12.  前記知的能力の試験として、文章理解能力、数的処理能力、論理的推理能力のうち少なくとも一つを測定する、ことを特徴とする請求項8乃至11のいずれか1項に記載の覚醒度推定方法。
  13.  前記測定対象のユーザの属性に応じて、前記知的能力の試験結果に重み付けする、ことを特徴とする請求項8乃至12のいずれか1項に記載の覚醒度推定方法。
  14.  前記覚醒度の推定結果に基づき、前記推定対象のユーザに関する、所定の管理情報を提供する、ことを特徴とする請求項8乃至13のいずれか1項に記載の覚醒度推定方法。
  15.  コンピュータに、
     測定対象のユーザの互いに異なる複数の覚醒状態での知的能力の試験中の生体情報と前記知的能力の試験結果とに基づき、覚醒度推定モデルを生成する第1の処理と、
     推定対象のユーザから取得した生体情報に対して、前記覚醒度推定モデルを用いて覚醒度を推定する第2の処理と、
     を実行させるプログラム。
  16.  前記第1の処理は、
     前記試験中の生体情報から特徴量を抽出する特徴量抽出処理と、
     前記測定対象のユーザの前記知的能力の試験結果を正規化する正規化処理と、
     前記特徴量と前記知的能力の試験結果を正規化した値に基づき覚醒度推定モデルを生成するモデル生成処理と、
     を実行する請求項15記載のプログラム。
PCT/JP2017/013470 2017-03-30 2017-03-30 情報処理装置と方法とプログラム WO2018179292A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/013470 WO2018179292A1 (ja) 2017-03-30 2017-03-30 情報処理装置と方法とプログラム
JP2019508068A JP6791361B2 (ja) 2017-03-30 2017-03-30 情報処理装置と方法とプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013470 WO2018179292A1 (ja) 2017-03-30 2017-03-30 情報処理装置と方法とプログラム

Publications (1)

Publication Number Publication Date
WO2018179292A1 true WO2018179292A1 (ja) 2018-10-04

Family

ID=63674536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013470 WO2018179292A1 (ja) 2017-03-30 2017-03-30 情報処理装置と方法とプログラム

Country Status (2)

Country Link
JP (1) JP6791361B2 (ja)
WO (1) WO2018179292A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034682A1 (ja) * 2020-08-14 2022-02-17 日本電気株式会社 情報処理装置、制御方法及び記憶媒体
WO2022215322A1 (ja) * 2021-04-07 2022-10-13 ソニーグループ株式会社 情報処理システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230717A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 集中度推定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034800B2 (ja) * 2010-12-20 2016-11-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. アルツハイマー病へ進行するリスクのある軽度認知障害患者を識別する方法およびシステム
JP6218336B2 (ja) * 2015-01-28 2017-10-25 日本電信電話株式会社 情報処理能力推定装置、方法及びプログラム
JP6122884B2 (ja) * 2015-02-13 2017-04-26 日本電信電話株式会社 作業覚醒度推定装置、方法およびプログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230717A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 集中度推定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034682A1 (ja) * 2020-08-14 2022-02-17 日本電気株式会社 情報処理装置、制御方法及び記憶媒体
JP7517431B2 (ja) 2020-08-14 2024-07-17 日本電気株式会社 情報処理装置、制御方法及びプログラム
WO2022215322A1 (ja) * 2021-04-07 2022-10-13 ソニーグループ株式会社 情報処理システム

Also Published As

Publication number Publication date
JP6791361B2 (ja) 2020-11-25
JPWO2018179292A1 (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
US7621871B2 (en) Systems and methods for monitoring and evaluating individual performance
US20180330302A1 (en) Method for Dynamic Employee Work Assignment
JP2018142258A (ja) 生産管理装置、方法およびプログラム
Mekruksavanich et al. Exercise activity recognition with surface electromyography sensor using machine learning approach
Sharma et al. EEG signal analysis and detection of stress using classification techniques
JP2004532451A (ja) 人の認知能力を予測する方法およびシステム
JP2018142259A (ja) 作業管理装置、方法およびプログラム
US20120072121A1 (en) Systems and methods for quality control of computer-based tests
US20210020295A1 (en) Physical function independence support device of physical function and method therefor
US20200060546A1 (en) A System and Method for Monitoring Human Performance
JP2021191995A (ja) エリア別環境管理システム及び方法とプログラム
CN108882853A (zh) 使用视觉情境来及时触发测量生理参数
Mahmoudi et al. Sensor-based system for automatic cough detection and classification
WO2018179292A1 (ja) 情報処理装置と方法とプログラム
US20200027369A1 (en) Creativity assessment apparatus and non-transitory computer readable medium
JP2019051129A (ja) 嚥下機能解析システム及びプログラム
Fugini et al. WorkingAge: providing occupational safety through pervasive sensing and data driven behavior modeling
JP7205528B2 (ja) 感情推定システム
JP2020048622A (ja) 生体状態推定装置
Mantri et al. Real time multimodal depression analysis
JP7279812B2 (ja) ストレス推定装置、ストレス推定装置の作動方法、及び、プログラム
JP7385514B2 (ja) 生体情報管理装置、生体情報管理方法、生体情報管理プログラム及び記憶媒体
Suryadevara et al. Smart sensing system for human emotion and behaviour recognition
KR20230122640A (ko) 임상 결과를 결정하기 위한 신호 기반 피처 분석 시스템및 방법
Newcombe et al. Experimental analysis of cost-effective mobile sensing technologies for activity analytics in elderly care

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903319

Country of ref document: EP

Kind code of ref document: A1