WO2018177347A1 - 一种镜头模组及终端 - Google Patents

一种镜头模组及终端 Download PDF

Info

Publication number
WO2018177347A1
WO2018177347A1 PCT/CN2018/081011 CN2018081011W WO2018177347A1 WO 2018177347 A1 WO2018177347 A1 WO 2018177347A1 CN 2018081011 W CN2018081011 W CN 2018081011W WO 2018177347 A1 WO2018177347 A1 WO 2018177347A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
effective
aperture
light
Prior art date
Application number
PCT/CN2018/081011
Other languages
English (en)
French (fr)
Inventor
李安
王庆平
冯晓刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018177347A1 publication Critical patent/WO2018177347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Definitions

  • the present application relates to the field of terminal technologies, and in particular, to a lens module and a terminal.
  • the lens in the thin and light terminals such as mobile phones and tablet computers generally adopts a periscope folding structure, so the thickness of the mobile phone or the tablet limits the height of the lens module, and the height of the lens module is also the lens.
  • the lateral dimension of the module (vertical optical axis direction).
  • the height of the lens module often limits the diameter of the first lens in the module and the diameter of the pupil before the front lens.
  • the so-called first lens refers to the use of the periscope lens module. The lens closest to the subject in the module at the time of shooting.
  • the thickness of the terminal often limits the diameter of the aperture, and the diameter of the aperture before the first lens is the diameter of the lens module, and the diameter of the lens module determines the lens mode.
  • the aperture value of the group (the aperture value is the value obtained by dividing the focal length of the lens module by the diameter of the entrance pupil of the lens module). The larger the diameter of the entrance pupil, the larger the aperture and the smaller the aperture value. Conversely, the smaller the diameter of the entrance pupil is. , the smaller the aperture, the larger the aperture value.
  • the diameter of the pupil before the first lens is often smaller than the effective aperture diameter of the first lens, which makes the diameter of the lens module smaller than the effective light diameter of the first lens.
  • the purpose of the embodiments of the present invention is to provide a periscope lens module and a terminal for solving the problem that the thickness of the terminal limits the aperture value to be small.
  • a periscope lens module including an imaging lens, the imaging lens including a first lens, a second lens, and an aperture, the first lens and the first The two lenses share an optical axis, and the aperture is disposed between the first lens and the second lens.
  • the periscope lens module may further include at least one of a reflection unit, a filter, and an image sensor.
  • the reflecting unit may comprise a reflecting prism or a mirror.
  • the periscope lens module can also be a telephoto lens module.
  • the aperture may be an aperture stop.
  • the first lens may be a convex lens.
  • the first lens may be a front group lens, and the front group lens is a group of lenses in which the light is first contacted, and the number of lenses of the group of lenses is at least one.
  • the effective pass light diameter of the first lens can be well utilized when the pupil is behind the first lens, for example such that the width of the beam of light parallel to the first lens is equal to the effective pass diameter of the first lens. Moreover, in this case, even if the diameter of the pupil may be smaller than the effective light-passing diameter of the first lens, the entrance pupil diameter of the periscope lens module is obtained by the magnifying imaging effect of the first lens on the pupil ( That is, the effective light passing diameter of the image of the pupil may be equal to or greater than the effective light passing diameter of the first lens.
  • the aperture is configured to pass light passing through an effective imaging portion of the first lens and block through the effective imaging portion Part of the light.
  • portion other than the effective imaging portion may include a non-effective imaging portion of the first lens.
  • the diaphragm can also be used to pass all the light passing through the effective imaging portion.
  • the aperture may be used to pass 70% to 100% of all light passing through the effective imaging portion, specifically, 90% to 100%, or 95% to 100%.
  • the effective light passing diameter of the diaphragm determines the above ratio.
  • the entrance pupil diameter of the periscope lens module must be larger than the effective light-pass diameter of the first lens.
  • the optical axis of the first lens is less than the first lens One focal length of a lens.
  • the first lens is a first lens in the imaging lens.
  • the imaging lens further includes a lens barrel, and the lens barrel is used for The first lens, the second lens, and the diaphragm are disposed in the lens barrel.
  • the lens barrel may be configured to fix the first lens, the second lens, and the diaphragm in the lens barrel.
  • a lens module including an imaging lens, the imaging lens including a first lens and an aperture, the pupil surrounding an effective imaging portion of the first lens, the aperture
  • the surface of the effective light-passing opening formed by the circumference is perpendicular to the optical axis of the first lens, and the diaphragm is used to pass light rays directed to the effective imaging portion of the first lens, and is used to block light transmission A non-effective imaging portion of the first lens.
  • the lens module may further include a second lens, the first lens and the second lens being coaxial.
  • the lens module may be a periscope lens module, and the periscope lens module may further include at least one of a reflection unit, a filter, and an image sensor.
  • the reflecting unit may comprise a reflecting prism or a mirror.
  • the lens module may be a telephoto lens module.
  • the effective imaging portion of the aperture surrounding the first lens can also be said that the aperture surrounds the boundary of the effective imaging portion of the first lens, and it can be said that the aperture surrounds the The edge of the effective light-passing surface of the first lens.
  • the effective light passing diameter of the first lens can be well utilized, for example, such that the width of the light beam formed by the light parallel to the first lens is equal to the effective light passing diameter of the first lens.
  • the imaging lens further includes a lens barrel, the lens barrel is configured to set the first lens and the aperture to the mirror Inside the tube.
  • the lens barrel can also be used to dispose the second lens in the lens barrel.
  • the lens barrel may be configured to fix the first lens, the second lens, and the diaphragm in the lens barrel.
  • the aperture is further configured to dispose the first lens in the lens barrel.
  • the aperture and the non-effective imaging portion together constitute a fixing portion of the effective imaging portion, and the fixing portion is configured to fix the effective imaging portion to the Inside the barrel.
  • the aperture may be used to fix the first lens in the lens barrel.
  • the aperture may be fixedly connected to the lens barrel and located before the non-effective imaging portion
  • the outer diameter of the non-effective imaging portion is greater than the effective light passing diameter of the aperture.
  • the first lens is disposed in the lens barrel.
  • the outer diameter of the non-effective imaging portion is the diameter of the outer edge extending perpendicular to the optical axis direction of the first lens.
  • the manner in which the aperture and the lens barrel are fixedly connected may be that the aperture is fixedly connected to the lens barrel by means of dispensing, or a spacer is placed before the aperture, and then the spacer and the lens barrel are dispensed. The connection is fixed, and the aperture is fixed to the barrel by a spacer.
  • the effective light passing diameter of the aperture is equal to the effectiveness of the first lens Passing light diameter.
  • the first lens is the first lens in the imaging lens.
  • the diameter of the entrance pupil of the lens module is the diameter of the aperture, and in this case the diameter of the aperture is equal to the effective aperture diameter of the first lens, so that the diameter of the entrance of the lens module is equal to The effective pass diameter of a lens.
  • a periscope lens module in a third aspect, includes an imaging lens, the imaging lens includes a first lens, and a non-effective imaging portion of the first lens is shaded.
  • the shading process is for blocking light rays that are directed toward the non-effective imaging portion of the first lens.
  • the first lens further comprises an effective imaging portion, and the effective imaging portion is used for concentrating light to achieve imaging.
  • the non-effective imaging portion is an extension of the effective imaging portion perpendicular to the optical axis direction, the non-effective imaging portion is not used for imaging, and the non-effective imaging portion can also be used for the imaging lens with the first lens disposed or fixed to the periscope lens module. In the lens barrel.
  • the first lens may be fixedly disposed in the lens barrel by way of a fixed connection between the non-effective imaging portion and the lens barrel.
  • the periscope lens module may further include at least one of a reflection unit, a filter, and an image sensor.
  • the reflecting unit may comprise a reflecting prism or a mirror.
  • the imaging lens may further include a lens barrel, and the first lens is fixedly disposed in the lens barrel.
  • the periscope lens module can also be a telephoto lens module.
  • the effective light passing diameter of the first lens can be well utilized, for example, such that the width of the light beam formed by the light parallel to the first lens is equal to the effective light passing diameter of the first lens.
  • the shading process comprises a blackening process.
  • the non-effective imaging portion of the first lens is subjected to a shading process, including: the first lens The outer side of the non-effective imaging portion is shaded, and the outer side of the non-effective imaging portion of the first lens is the side facing the subject to be photographed when photographing using the periscope lens module.
  • the first lens is the first lens in the imaging lens.
  • a terminal comprising a lens module of the first aspect, the second aspect or the third aspect disposed in the terminal.
  • the terminal may also be referred to as a terminal device. Specifically, the terminal may be a mobile terminal.
  • the lens module may be a periscope lens module, and further, may be a telephoto lens module.
  • the terminal may further include at least one of a display screen, a processor, and a memory.
  • the display can be a touch display.
  • FIG. 1 is a schematic structural diagram of a photographing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an imaging lens according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another imaging lens according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another imaging lens according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a lens according to an embodiment of the present invention.
  • FIG. 5b is a schematic structural diagram of another lens according to an embodiment of the present invention.
  • FIG. 5c is a schematic structural diagram of another lens according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another lens according to an embodiment of the present invention.
  • FIG. 1 provides a schematic structural diagram of a photographing apparatus 100 .
  • the camera device 100 can be a terminal, such as a mobile terminal such as a mobile phone or a tablet computer, or a digital camera.
  • the camera device 100 can include a periscope lens module 2 and a display unit 3, wherein the periscope lens module 2 is placed transversely.
  • the periscope lens module 2 can be a periscope telephoto lens module
  • the periscope lens module 2 can include a reflective prism 4, an imaging lens 5, a filter 6, and an image sensor 7.
  • the imaging principle is that the light 1 enters the imaging lens 5 through the deflection of the reflective prism 4.
  • the imaging lens 5 has a converging imaging effect on the light 1, and the excess light wave in the light 1 (for example, light waves other than visible light) is filtered through the filter 6.
  • the image sensor 7 may be a CMOS (Complementary Metal-Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • the image sensor is mainly used for
  • the optical signal of the light 1 is subjected to photoelectric conversion and A/D (Analog/Digital) conversion, thereby outputting image data for display by the display unit.
  • the reflective prism 4 can also be replaced with a mirror, and the reflective prism 4 and the mirror have the same function.
  • the light 1 can be used for imaging.
  • the imaging lens 5 generally includes a set of lenses.
  • the set of lenses has a common optical axis, and the number of lenses is greater than 2.
  • the periscope lens is a telephoto lens
  • the first lens in the set of lenses is often effective.
  • the largest diameter of the light When the periscope lens is a short-focus lens, the first lens in the group of lenses tends to have the smallest effective light diameter.
  • the periscope lens module 2 may further include: at least one of a focus motor and an anti-shake motor, the focus motor is used to adjust the position of the imaging lens 5, thereby shooting objects at different distances, of course, the focus motor It may not be located in the periscope lens module 2, for example, in the photographing device 100; the anti-shake motor is used to adjust the position of the imaging lens 5 so that the image is not blurred due to, for example, user hand shake, etc., of course.
  • the anti-shake motor may also not be located in the periscope lens module 2.
  • the photographing apparatus 100 may further include a processing unit, which may be used to implement photographing control, for example, for setting a photographing mode, such as a black and white mode, a high dynamic mode, etc.; the processing unit may also be used for focus control for controlling the focus.
  • the motor realizes autofocus; the processing unit can also be used for anti-shake control to control the anti-shake motor to stably capture images.
  • the focus motor, the anti-shake motor, the processing unit, and the like in the above are similar to those of the prior art terminals, and will not be described in detail herein.
  • FIG. 2 is a schematic structural diagram of an imaging lens 200.
  • the imaging lens 200 may be the imaging lens 5 in the corresponding periscope lens module 2 of FIG. 1. Further, the imaging lens 200 may also be An imaging lens of a telephoto lens or an imaging lens of a short-focus lens, it should be understood that the imaging lens 200 may also be an imaging lens of a lens module other than the periscope lens module, as shown in FIG. The direction (light is shown by an arrow in FIG. 2), the imaging lens 200 may sequentially include a diaphragm 22, a first lens 21, and a second lens 23, wherein the first lens 21 and the second lens 23 share an optical axis.
  • the first lens 21 may be a convex lens
  • the second lens 23 may be a convex lens or a concave lens.
  • the aperture 22 may be an aperture stop, and the effective aperture of the aperture 22 may have a circular shape, and the surface of the effective aperture of the aperture 22 may be perpendicular to the optical axis of the first lens 21, and the aperture 22 The center of the effective light-passing opening may be located on the optical axis of the first lens 21.
  • the imaging lens 200 may further include a lens barrel, and the diaphragm 22, the first lens 21, and the second lens 23 are disposed (specifically, may be fixedly disposed in the lens barrel). The light passes through the filter after passing through the second lens 23 and eventually reaches the image sensor.
  • the first lens 21 may be the first lens located at the forefront.
  • the optical axis of the first lens 21 is formed in addition to the light parallel to the optical axis of the first lens 21.
  • Light of a certain angle e.g., half of a given angle of view
  • the angled light may be irradiated on the effective light-passing surface of the first lens 21 other than the effective light-passing surface, and therefore, the diameter of the diaphragm 22 needs to be smaller than the effective light-passing diameter of the first lens 21.
  • the effective light passing diameter of the first lens 21 is not fully utilized, for example, the width of the light beam formed by the light parallel to the first lens 21 is smaller than the effective light passing diameter of the first lens 21.
  • the diameter of the aperture 22 may also be referred to as the effective aperture diameter of the aperture 22, or may also be referred to as the diameter of the effective aperture of the aperture 22.
  • the effective light-passing port may also be referred to as an effective light-passing hole or a light-passing hole.
  • the diameter of the entrance pupil diameter (EPD) of the lens module in which the imaging lens 200 is located is before the first lens 21, the diameter of the entrance pupil diameter (EPD) is the diameter of the pupil. Therefore, it can be seen that the entrance pupil diameter of the lens module in which the imaging lens 200 is located is smaller than the effective light-passing diameter of the first lens 21. As shown in FIG. 2, the diameter of the aperture 22 is D, and the effective aperture diameter of the first lens 21 is L, and D ⁇ L, thereby causing the effective light passing diameter of the first lens 21 to be insufficiently utilized.
  • the diameter may also be referred to as an aperture or a diameter, and the present invention is not limited thereto.
  • the position is described before and after use. For example, before A is located in B, the relative position of A and B is A and B in the direction of light propagation. Similarly, after B is located after A, the relative position of A and B is A and B after the direction of light propagation.
  • FIG. 3 is a schematic structural diagram of another imaging lens 300 according to an embodiment of the present invention.
  • the imaging lens 300 may be the imaging lens 5 in the corresponding periscope lens module 2 in FIG. 1 . Further, the imaging lens 200 It can also be an imaging lens of a telephoto lens or an imaging lens of a short-focus lens. It should be understood that the imaging lens 300 can also be an imaging lens of a lens module other than the periscope lens module, as shown in FIG.
  • the imaging lens 300 may sequentially include a first lens 31, a diaphragm 32, and a second lens 33, and the first lens 31 and the second lens 33 share a common optical axis.
  • the aperture 32 may be an aperture stop, and the effective aperture of the aperture 32 may have a circular shape, and the surface of the effective aperture of the aperture 32 may be perpendicular to the optical axis of the first lens 31, and the aperture 32 The center of the effective light-passing opening may be located on the optical axis of the first lens 31.
  • the effective light-passing port is a port on the diaphragm 32 for the passage of light with a diameter of effective light-passing diameter.
  • the imaging lens 300 may further include a lens barrel, and the first lens 31, the diaphragm 32, and the second lens 33 are all disposed in (specifically, may be fixedly disposed in) the lens barrel.
  • the first lens 31 may be a convex lens
  • the second lens 33 may be a convex lens or a concave lens.
  • the first lens 31 may be the frontmost lens in the periscope lens module 2, and the front lens group refers to a group of lenses that the light first contacts. In the direction of propagation of the light, the first lens 31 may not be the frontmost lens and may be located after the frontmost lens.
  • the first lens 31 may be at least one lens and the second lens may be at least one lens.
  • the first lens 31 in FIG. 3 may be the first lens in the front
  • the second lens may be four lenses
  • the first lens in the first lens refers to a lens in which the light 1 first contacts the lens barrel.
  • the entrance pupil diameter of the lens module in which the imaging lens 300 is located should be the effective light-passing diameter of the image formed by the aperture 32 on the first lens 31.
  • the image may be a virtual image of the aperture 32. Therefore, the aperture 32 may extend the optical axis of the first lens 31 to the first lens 31 by a distance less than a focal length of the first lens 31.
  • the diaphragm 32 When the diaphragm 32 is positioned behind the first lens 31, the diaphragm 32 can also confine the light and pass light entering through the effective imaging portion of the first lens 31 and block the light beam that is not entered through the effective imaging portion of the first lens 31, Therefore, the diaphragm 32 functions as the diaphragm 22 in FIG.
  • the effective light passing diameter of the first lens 31 can be well utilized, for example, the width of the light beam formed by the light parallel to the first lens 31 is equal to that of the first lens 31. Effective pass diameter.
  • the diameter of the diaphragm 32 is smaller than the effective light-passing diameter of the first lens 31, the magnification imaging of the diaphragm 32 by the first lens 31, the entrance of the lens module in which the imaging lens 300 is located
  • the diameter of the crucible is equal to or greater than the effective passing light diameter of the first lens 31.
  • the diameter of the diaphragm 32 needs to be set so that the light passing through the effective imaging portion of the first lens 31 can pass through the aperture 32 substantially, or the aperture 32 is basically Light rays passing through the effective imaged portion of the first lens 31 are not blocked. It should be understood that the reason is that the manufacturing process of the optical device may cause a certain error. Other rays, such as light that has been projected through the ineffective imaging portion of the first lens 31, cannot pass through the aperture 32.
  • the effective light passing diameter of the image of the diaphragm 32 is greater than or equal to the effective light passing diameter of the first lens 31, and therefore, the entrance pupil diameter EPD of the lens module in which the imaging lens 300 is located is greater than or equal to The effective light passing diameter of the first lens 31, in turn, makes the effective light passing diameter of the first lens 31 or the height of the lens module in which the imaging lens 300 is located is fully utilized.
  • the aperture is larger and the aperture value is smaller.
  • the non-effective imaging portion of the first lens 31 can be understood as an extension of the effective imaging portion of the first lens 31, and the first lens 31 can be fixed to the first lens 31 by fixing the non-effective imaging portion of the first lens 31.
  • the surface of the effective imaging portion of the first lens 31 on the other side of the second lens 33 (that is, the front surface or the light surface of the first lens 31) may be an effective light-passing surface of the first lens 31.
  • the circle formed by the effective light-passing surface of the first lens 31 on the plane passing through the optical center of the first lens 31 may be an effective light-passing of the first lens 31 centering on the optical center of the first lens 31.
  • a circle having a diameter of a diameter, a plane passing through the optical center of the first lens 31 may be perpendicular to an optical axis of the first lens 31.
  • the effective light-passing surface of the first lens 31 may be referred to as the surface of the first lens 31 that is contacted when the light is to be incident on the first lens 31, and is incident on the effective light-passing surface of the first lens 31.
  • the non-effective imaging portion 312 of the first lens 31 is a portion other than the effective light-passing surface of the first lens 31.
  • the focal length of the imaging lens 5 may be, for example, 11.74 mm, and the field of view FOV of the periscope lens module 2 may be, for example, a degree.
  • the related descriptions of the embodiments and the descriptions of the respective components are similar to those of the above embodiments, and are not described herein again.
  • FIG. 4 is a schematic structural diagram of another imaging lens 400 according to an embodiment of the present invention.
  • the imaging lens 400 may be the imaging lens 5 in the corresponding periscope lens module 2 in FIG. 1. Further, the imaging lens 400 It can also be an imaging lens of a telephoto lens or an imaging lens of a short-focus lens. It should be understood that the imaging lens 400 can also be an imaging lens of a lens module other than the periscope lens module, as shown in FIG.
  • the imaging lens 400 may include a first lens 41 and a second lens 43 in sequence, and the first lens 41 and the second lens 43 share a common optical axis.
  • the first lens 41 may be the first lens or may not be located. The first piece of lens.
  • the imaging lens 400 further includes a diaphragm 42 that surrounds the outside of the first lens 41 for passing light rays directed toward the effective imaging portion of the first lens, wherein the pupil surrounds
  • the face of the effective light-passing opening formed may be perpendicular to the optical axis of the first lens and used to block light directed to the non-effective imaging portion of the first lens, or to block light from passing through the first A non-effective imaging portion of a lens.
  • the diaphragm 42 may have an annular shape, and the center of the diaphragm 32 may also be on the optical axis of the first lens 31.
  • the aperture 42 may be an aperture stop, and the effective light-passing opening of the aperture 42 may have a circular shape, and the surface of the effective light-passing opening of the aperture 42 may be perpendicular to the optical axis of the first lens 41, and the aperture 42 The center of the effective light-passing opening may be located on the optical axis of the first lens 41.
  • the aperture 42 may be an invariable aperture, and of course, may be an iris diaphragm.
  • the imaging lens 400 may further include a lens barrel, and the first lens 41, the aperture 42 and the second lens 43 may each be disposed (specifically, may be fixedly disposed in the lens barrel).
  • the first lens 41 may be a convex lens
  • the second lens 43 may be a convex lens or a concave lens.
  • the aperture 42 may surround the edge of the effective light-passing surface of the first lens 41.
  • the shape of the diaphragm 42 may be set so as not to block the light from being incident on the effective light-passing surface of the first lens 41, but block the light from being incident on the ineffective imaging portion 412 of the first lens 41, such that the aperture 42 also acts to constrain the light and block the light beam that does not enter through the effective imaging portion of the first lens 41.
  • the effective light passing diameter of the first lens 41 can be well utilized, for example, such that the width of the light beam formed by the light parallel to the first lens 41 is equal to the effective light passing diameter of the first lens 41.
  • the entrance pupil diameter of the lens module in which the imaging lens 400 is located is the diameter of the aperture 42, and the diameter of the aperture 42 is in this case again equal to the effective light-passing diameter of the first lens 41.
  • the shape of the aperture 42 may be, for example, the light in FIG. 5a. ⁇ 421, the shape of the aperture 42 may also be a shape that can achieve the above purpose.
  • the non-effective imaging portion 412 has a stepped structure with the effective imaging portion 411, and the pupil 421 is located at the front end of the ineffective imaging portion 412.
  • the front end of the so-called non-effective imaging portion 412 refers to the non-effective imaging portion 312.
  • the entrance pupil diameter EPD of the lens module in which the imaging lens 400 is located is equal to the effective light passing diameter of the first lens 41, so that the height of the lens module in which the imaging lens 400 is located or The effective light passing diameter of the first lens 41 is fully utilized.
  • the aperture is larger and the aperture value is smaller.
  • the effective light-passing surface of the first lens 41 may be referred to as the surface of the first lens 41 that is contacted when the light is to be incident on the first lens 41, and the effective light passing through the first lens 41.
  • the non-effective imaging portion 412 in Fig. 5a is a portion other than the effective light-passing surface of the first lens 41, or is the effective imaging portion 411.
  • the surface of the effective imaging portion 411 of the first lens 41 on the other side of the second lens 43 may be an effective light-passing surface of the first lens 41, and therefore, light may also be said.
  • the crucible 42 is set to surround the effective imaging portion 411.
  • the circle formed by the effective light-passing surface of the first lens 41 on the plane passing through the optical center of the first lens 41 may be the center of the optical center of the first lens 41 with the effective light-passing diameter of the first lens.
  • the plane passing through the optical center of the first lens 41 may be perpendicular to the optical axis of the first lens 41.
  • the shape of the non-effective imaging portion 412 may also be the shape in FIGS. 5b and 5c.
  • the aperture 42 in addition to the function of the aperture 42 for realizing the aperture itself, can also serve as a fixed portion of the first lens 41 (or a fixed portion of the effective imaging portion 411).
  • the first lens 41 specifically, it may be fixedly disposed in the lens barrel) (or for fixing the effective imaging portion 411 in the lens barrel).
  • the aperture 42 can be fixedly coupled to the barrel, and prior to the non-effective imaging portion 412, the outer diameter of the ineffective imaging portion 412 is greater than the effective aperture diameter of the aperture 42.
  • the description of the embodiment shown in FIG. 5b can also make the maximum use of the length of the imaging lens (the length of the optical axis direction).
  • the related description of the embodiment and the description of each component are similar to the above embodiments, and details are not described herein again.
  • FIG. 6 is a schematic structural view of a first lens 61 according to an embodiment of the present invention.
  • the left side is a front view of the first lens 61
  • the right side is a side view of the first lens 61.
  • the first lens 61 may be a lens in the imaging lens 5 in the corresponding periscope lens module 2 in FIG. 1. Further, the first lens 61 may also be a lens in a lens of a telephoto lens or an imaging lens of a short-focus lens. In the lens, it should be understood that the first lens 61 may also be a lens in the imaging lens of the lens module except the periscope lens module, wherein the first lens 61 may be the first lens or not.
  • the first lens 61 is taken as the first one lens as an example.
  • the surface of the ineffective imaging portion 614 of the first lens 61 is blackened. Specifically, only the surface of the front end of the ineffective imaging portion 614 may be blackened, and the purpose of blackening is used to isolate the light 1
  • the front end of the non-effective imaging portion 614 can also be used for the process of isolating light into the ineffective imaging portion 614 in addition to blackout.
  • the above treatment of the isolated light is similar to the action of the aperture in Fig. 4, Fig. 5a, Fig. 5b or Fig. 5c, for example, for blocking the passage of light through the first lens 61.
  • the imaging portion 614 or for blocking light rays directed at the ineffective imaging portion 614 of the first lens 61. Therefore, when the first lens 61 shown in FIG. 6 is disposed in the lens module, the entrance pupil diameter EPD of the lens module in which the first lens 61 is located is equal to the effective light passing diameter of the first lens 61, and the first lens is made The height of the lens module in which 61 is located or the effective light passing diameter of the first lens 61 is fully utilized. Thus, compared to the embodiment shown in Fig. 2, the aperture is larger and the aperture value is smaller.
  • the imaging lens in which the first lens 61 is located may have no pupil, thereby saving cost and space for the imaging lens.
  • the spacer when the first lens 61 is disposed in the lens barrel, the spacer may not be disposed before the non-effective imaging portion 614, and the non-effective imaging portion 614 may be directly connected to the lens barrel by dispensing.
  • the related descriptions of the embodiments and the descriptions of the respective components are similar to those of the above embodiments, and are not described herein again.
  • the embodiment of the present application further provides a terminal, where the terminal may include the periscope lens module 2 disposed in the terminal, or may include a lens module disposed in the terminal, where the imaging lens 300 is disposed.
  • the lens module in which the imaging lens 400 disposed in the terminal is located may also be included, and may also include a lens module in which the first lens 61 disposed in the terminal is located.
  • the terminal can be a common mobile terminal such as a mobile phone or a tablet computer, and is not limited herein.
  • the terminal may also include, but is not limited to, a display screen, a processor, a memory, and a bus, which are not limited herein.

Abstract

一种镜头模组(2)包括成像镜头(200),成像镜头包括第一透镜(21)、第二透镜(23)和光阑(22),第一透镜和第二透镜共光轴,光阑设置于第一透镜和第二透镜之间。在光阑位于第一透镜之后时,第一透镜的有效通光直径可以得到很好的利用。在这种情况下,即使光阑的直径可能会小于第一透镜的有效通光直径,但是通过第一透镜对光阑的放大成像作用,镜头模组的入瞳直径可以等于或大于第一透镜的有效通光直径,从而减小镜头模组的光圈值。

Description

一种镜头模组及终端
本申请要求于2017年4月1日提交中国专利局、申请号为201710213964.8、发明名称为“一种镜头模组及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种镜头模组及终端。
背景技术
为了实现轻薄化的目的,当前手机、平板电脑等轻薄的终端中的镜头一般采用潜望式的折叠结构,因此手机或者平板的厚度限制了镜头模组的高度,镜头模组的高度也就是镜头模组的横向尺寸(垂直光轴方向)。镜头模组高度又往往限制了模组中最前的一片透镜的直径的大小以及位于最前的一片透镜之前的光阑的直径,所谓最前的一片透镜指的是在使用所述潜望式镜头模组拍摄时模组中与拍摄实体最近的一片透镜。因此,终端的厚度往往限制了光阑的直径的大小,而位于最前的一片透镜之前的光阑的直径即为镜头模组的入瞳直径,而镜头模组的入瞳直径又决定了镜头模组的光圈值(光圈值为镜头模组的焦距除以镜头模组的入瞳直径得到的值),入瞳直径越大,则光圈越大,光圈值越小;相反,入瞳直径越小,则光圈越小,光圈值越大。然而位于最前的一片透镜之前的光阑的直径往往小于位于最前的一片透镜的有效通光直径,这就使得镜头模组的入瞳直径小于位于最前的一片透镜的有效通光直径。
由于当前消费者对大光圈的需求越来越强烈,但是在手机或者平板的厚度受到限定不能做大时,如何减小镜头光圈值,是潜望式镜头的关键问题。
发明内容
本发明实施例的目的在于提供一种潜望式镜头模组及终端,用于解决终端厚度限制了光圈值不能做小的问题。
上述目标和其它目标将通过独立权利要求中的特征来达成。进一步的实现方式在从属权利要求、说明书和附图中体现。
第一方面,提供一种潜望式镜头模组,所述潜望式镜头模组包括成像镜头,所述成像镜头包括第一透镜、第二透镜和光阑,所述第一透镜和所述第二透镜共光轴,所述光阑设置于所述第一透镜和所述第二透镜之间。
其中,所述潜望式镜头模组还可以包括反射单元、滤光片和图像传感器中至少一项。其中反射单元可以包括反射棱镜或者反射镜。
其中,所述潜望式镜头模组还可以为长焦镜头模组。
其中,所述光阑可以为孔径光阑。
其中,第一透镜可以为凸透镜。
其中,第一透镜可以为最前组透镜,所述最前组透镜为光线最先接触的一组透镜,所述一组透镜的透镜个数为至少一个。
在光阑位于第一透镜之后时,第一透镜的有效通光直径可以得到很好的利用,例如 会使得与第一透镜平行的光线构成的光束的宽度等于第一透镜的有效通光直径。并且,在这种情况下,即使光阑的直径可能会小于第一透镜的有效通光直径,但是通过第一透镜对光阑的放大成像作用,该潜望式镜头模组的入瞳直径(即为光阑的像的有效通光直径)可以等于或大于第一透镜的有效通光直径的。
根据第一方面,在第一方面第一种可能的实现方式中,所述光阑用于使穿过所述第一透镜的有效成像部分的光线通过,并且阻挡穿过所述有效成像部分以外的部分的光线。
其中,所述有效成像部分以外的部分可以包括所述第一透镜的非有效成像部分。
其中,所述光阑还可以用于使所有通过所述有效成像部分的光线通过。其中,也可以是所述光阑用于使占所有通过所述有效成像部分的光线的70%到100%的光线通过,具体而言,可以是90%到100%,或者95%到100%,所述光阑的有效通光直径决定了上述占比。
光阑的有效通光直径越大,则占比越高,在占比等于或者接近100%时,潜望式镜头模组的入瞳直径一定是大于第一透镜的有效通光直径的。
根据第一方面或者第一方面第一种实现方式,在第一方面第二种可能的实现方式中,所述光阑延第一透镜的光轴到所述第一透镜的距离小于所述第一透镜的一倍焦距。
根据第一方面或者第一方面的以上实现方式中的任一种实现方式,在第一方面第三种可能的实现方式中,所述第一透镜为所述成像镜头中位于最前的一片透镜。
根据第一方面或者第一方面的以上实现方式中的任一种实现方式,在第一方面第四种可能的实现方式中,所述成像镜头还包括镜筒,所述镜筒用于将所述第一透镜、所述第二透镜以及所述光阑设置于所述镜筒内。
其中,所述镜筒可以用于将所述第一透镜、所述第二透镜以及所述光阑固定设置于所述镜筒内。
第二方面,提供一种镜头模组,所述镜头模组包括成像镜头,所述成像镜头包括第一透镜和光阑,所述光阑环绕所述第一透镜的有效成像部分,所述光阑的环绕形成的有效通光口的面垂直于所述第一透镜的光轴,所述光阑用于使射向所述第一透镜的有效成像部分的光线通过,并且用于阻挡光线透过所述第一透镜的非有效成像部分。
其中,所述镜头模组还可以包括第二透镜,所述第一透镜和所述第二透镜共光轴。
其中,所述镜头模组可以为潜望式镜头模组,所述潜望式镜头模组还可以包括反射单元、滤光片和图像传感器中至少一项。其中反射单元可以包括反射棱镜或者反射镜。
其中,所述镜头模组该可以为长焦镜头模组。
其中,所述光阑环绕所述第一透镜的有效成像部分也可以说成所述光阑环绕在所述第一透镜的有效成像部分的边界上,也可以说成所述光阑环绕所述第一透镜的有效通光面的边缘。
在这种情况下,第一透镜的有效通光直径可以得到很好的利用,例如会使得与第一透镜平行的光线构成的光束的宽度等于第一透镜的有效通光直径。
根据第二方面,在第二方面的第一种可能的实现方式中,所述成像镜头还包括镜筒,所述镜筒用于将所述第一透镜以及所述光阑设置于所述镜筒内。
其中,所述镜筒还可以用于将所述第二透镜设置于所述镜筒内。
其中,所述镜筒可以用于将所述第一透镜、所述第二透镜以及所述光阑固定设置于所述镜筒内。
根据第二方面或者第二方面第一种实现方式,在第二方面的第二种可能的实现方式中,所述光阑还用于将所述第一透镜设置于所述镜筒内。
或者,在另一种可能的实现方式中,所述光阑与所述非有效成像部分共同组成了所述有效成像部分的固定部,所述固定部用于将所述有效成像部分固定于所述镜筒内。
其中,对于所述光阑将所述第一透镜固定于所述镜筒内的实现方式,所述光阑可以用于将所述第一透镜固定设置于所述镜筒内。
其中,对于所述光阑将所述第一透镜固定于所述镜筒内的实现方式,具体来说可以是所述光阑与所述镜筒固定连接,并且位于所述非有效成像部分之前,所述非有效成像部分的外径大于所述光阑的有效通光直径。从而用于将所述第一透镜设置于所述镜筒内。其中,非有效成像部分的外径为延垂直于第一透镜的光轴方向的外侧边缘的直径。
其中,光阑与镜筒固定连接的方式可以是,通过点胶的方式将光阑与镜筒固定连接,或者,在光阑之前设置垫片,然后通过点胶的方式将垫片与镜筒固定连接,进而通过垫片固定所述光阑与镜筒连接。
根据第二方面或者第二方面的以上实现方式中的任一种实现方式,在第二方面第三种可能的实现方式中,所述光阑的有效通光直径等于所述第一透镜的有效通光直径。
根据第二方面或者第二方面的以上实现方式中的任一种实现方式,在第二方面第四种可能的实现方式中,所述第一透镜为所述成像镜头中位于最前的一片透镜。
在这种情况下,镜头模组的入瞳直径为光阑的直径,而光阑的直径在这种情况下又等于第一透镜的有效通光直径,使得镜头模组的入瞳直径等于第一透镜的有效通光直径。
第三方面,提供一种潜望式镜头模组,所述潜望式镜头模组包括成像镜头,所述成像镜头包括第一透镜,所述第一透镜的非有效成像部分被作遮光处理,所述遮光处理用于阻挡射向所述第一透镜的非有效成像部分的光线。
其中,第一透镜还包括有效成像部分,有效成像部分用于对光线进行汇聚,从而实现成像。非有效成像部分为有效成像部分延垂直于光轴方向的外延,非有效成像部分不用于成像,非有效成像部分还可以用于将第一透镜设置或者固定于潜望式镜头模组的成像镜头的镜筒中。
其中,可以通过非有效成像部分与镜筒固定连接的方式将第一透镜固定设置于所述镜筒内。
其中,所述潜望式镜头模组还可以包括反射单元、滤光片和图像传感器中至少一项。其中反射单元可以包括反射棱镜或者反射镜。
其中,所述成像镜头还可以包括镜筒,所述第一透镜固定设置于所述镜筒中。
其中,所述潜望式镜头模组还可以为长焦镜头模组。
在这种情况下,第一透镜的有效通光直径可以得到很好的利用,例如会使得与第一透镜平行的光线构成的光束的宽度等于第一透镜的有效通光直径。
根据第三方面,在第三方面的第一种可能的实现方式中,所述遮光处理包括涂黑处理。
根据第三方面或者第三方面的第一种实现方式,在第三方面的第二种可能的实现方式中,所述第一透镜的非有效成像部分被作遮光处理包括:所述第一透镜的非有效成像部分的外侧被作遮光处理,所述第一透镜的非有效成像部分的外侧为在使用所述潜望式镜头模组拍摄时朝向被拍摄实体的一侧。
根据第三方面或者第三方面以上任一种实现方式,在第三方面的第三种可能的实现方式中,所述第一透镜为所述成像镜头中位于最前的一片透镜。
第四方面,提供一种终端,所述终端包括设置在所述终端内的第一方面、第二方面或者第三方面的镜头模组。
其中,终端也可以称为终端设备,具体的,终端可以是移动终端。
其中,镜头模组可以是潜望式镜头模组,进一步的,可以是长焦镜头模组。
其中,该终端还可以包括显示屏、处理器和存储器中至少一项。显示屏可以为触摸显示屏。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种拍照设备的结构示意图;
图2为本发明实施例提供的一种成像镜头的结构示意图;
图3为本发明实施例提供的另一种成像镜头的结构示意图;
图4为本发明实施例提供的另一种成像镜头的结构示意图;
图5a为本发明实施例提供的一种透镜的结构示意图;
图5b为本发明实施例提供的另一种透镜的结构示意图;
图5c为本发明实施例提供的另一种透镜的结构示意图;
图6为本发明实施例提供的另一种透镜的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。为了方便理解本实施例中的技术方案,下面结合附图首先对潜望式镜头模组进行说明。
如图1所示,图1提供了一种拍照设备100的结构示意图。该拍照设备100可以是终端,例如手机、平板电脑这种移动终端,或者数码相机,拍照设备100可以包括:潜望式镜头模组2和显示单元3,其中潜望式镜头模组2横置在终端内,潜望式镜头模组2可以为潜望式长焦镜头模组,潜望式镜头模组2可以包括:反射棱镜4、成像镜头5、滤光片6、以及图像传感器7。其成像原理为:光线1经过反射棱镜4的偏转进入成像镜头5,成像镜头5对光线1具有汇聚成像作用,通过滤光片6把光线1中的多余光波(例如除可见光外的光波)滤去,最后汇聚在图像传感器7;图像传感器7可以是CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)图像传感器或者CCD(Charge Coupled Device,电荷耦合元件)图像传感器,图像传感器主要用于对光线1的光信号进行光电转换以及A/D(Analog/Digital,模拟信号/数字信号)转换,从而输出用于显示单元显示的图像数据。在实现过程中,反射棱镜4也可以使用反射镜来替代,反射棱镜4和反射镜具有相同的作用。
其中,在光线1可以用于成像。
其中,成像镜头5中一般包括一组透镜,该一组透镜共光轴,透镜的个数大于2,当潜望式镜头为长焦镜头时,该组透镜中位于最前的一片透镜往往是有效通光直径最大的。当潜望式镜头为短焦镜头时,该组透镜中位于最前的一片透镜往往是有效通光直径最小的。
此外,除了上述硬件外,上述的潜望式镜头模组2还可以包括:对焦马达以及防抖马达至少一项,对焦马达用于调整成像镜头5的位置,从而拍摄不同距离物体,当然对焦马达也可以不位于潜望式镜头模组2中,例如可以在拍照设备100内;防抖马达,用于调整成像镜头5位置,使拍摄物体不会因为例如用户手抖动等原因造成图像模糊,当然防抖马达也可以不位于潜望式镜头模组2中。拍照设备100还可以包括处理单元,该处理单元可以用于实现拍照控制,例如,用于设置拍照模式,例如黑白模式,高动态模式等;该处理单元也可以用于对焦控制,用于控制对焦马达实现自动对焦;该处理单元也可以用于防抖控制,用于控制防抖马达稳定拍摄图像。上述中的对焦马达、防抖马达、处理单元等与现有技术中的终端的功能相近似,在此不再详细赘述。
进一步的,图2提供了一种成像镜头200的结构示意图,该成像镜头200可以为图1中对应的潜望式镜头模组2中的成像镜头5,进一步的,该成像镜头200还可以为长焦镜头的成像镜头或者短焦镜头的成像镜头,应理解,成像镜头200也可以是除非潜望式镜头模组之外的镜头模组的成像镜头,如图2所示,延光线的传播方向(光线在图2中用箭头示出),成像镜头200可以依次包括光阑22、第一透镜21、第二透镜23,其中,第一透镜21与第二透镜23共光轴。
其中,第一透镜21可以是凸透镜,第二透镜23可以是凸透镜,也可以是凹透镜。
其中,光阑22可以是孔径光阑,光阑22的有效通光口的形状可以为圆形,光阑22的有效通光口的面可以垂直于第一透镜21的光轴,光阑22的有效通光口的中心可以位于第一透镜21的光轴上。
成像镜头200还可以包括镜筒,光阑22、第一透镜21、第二透镜23设置于(具体来说,可以是固定设置于)镜筒内。光线在经过第二透镜23后通过滤光片,并最终到达图像传感器。
其中,第一透镜21可以为位于最前的一片透镜,在光阑22设置在第一透镜21之前时,除了与第一透镜21的光轴平行的光线外,与第一透镜21的光轴成一定夹角(例如,给定的视场角的一半)的光线也需要通过光阑22射向第一透镜21,为了约束光线并且使得通过光阑22的与第一透镜21的光轴成一定夹角的光线可以照射在第一透镜21的有效通光面而不是有效通光面之外的部分,因此,光阑22的直径需要小于第一透镜21的有效通光直径。从而导致第一透镜21的有效通光直径没有被充分利用,例如会使得与第一透镜21平行的光线构成的光束的宽度小于第一透镜21的有效通光直径。
其中,光阑22的直径也可以称为光阑22的有效通光直径,或者,也可以称为光阑22的有效通光口的直径。
其中,有效通光口也可以称为有效通光孔或者通光孔。
由于在光阑22位于第一透镜21之前时,成像镜头200所在的镜头模组的入瞳直径(EPD,entrance pupil diameter)为光阑的直径。因此可知成像镜头200所在的镜头模组的入瞳直径小于第一透镜21的有效通光直径,如图2中所示,光阑22的直径为D,第一透镜21的有效通光直径是L,并且D<L,从而导致第一透镜21的有效通光直径没有被充分利用。
需要说明的是,直径也可以称为孔径或者口径,本发明不限于此。还需要说明的是,在本发明中,在会使用前以及后来描述位置,举例来说,A位于B之前指的是,在光线的传播方向上,A与B的相对位置为先A后B,同理,B位于A之后指的是,在光线的传播方向上,A与B的相对位置为先A后B。
图3是本发明实施例提供的另一种成像镜头300的结构示意图,该成像镜头300可以为图1中对应的潜望式镜头模组2中的成像镜头5,进一步的,该成像镜头200还可以为长焦镜头的成像镜头或者短焦镜头的成像镜头,应理解,成像镜头300也可以是除非潜望式镜头模组之外的镜头模组的成像镜头,如图3所示,延光线的传播方向,成像镜头300可以依次包括第一透镜31、光阑32、第二透镜33,第一透镜31与第二透镜33共光轴。
其中,光阑32可以是孔径光阑,光阑32的有效通光口的形状可以为圆形,光阑32的有效通光口的面可以垂直于第一透镜31的光轴,光阑32的有效通光口的中心可以位于第一透镜31的光轴上。其中,有效通光口为光阑32上用于光线通过的直径为有效通光直径的口。
成像镜头300还可以包括镜筒,第一透镜31、光阑32、第二透镜33均设置于(具体来说,可以是固定设置于)镜筒中。
其中,第一透镜31可以是凸透镜,第二透镜33可以是凸透镜,也可以是凹透镜。
其中,第一透镜31可以为潜望式镜头模组2中最前组透镜,最前组透镜指的是光线最先接触的一组透镜。在光线的传播方向,第一透镜31也可以不是最前组透镜,可以位于最前组透镜之后。第一透镜31可以为至少一片透镜,第二透镜可以为至少一片透镜。作为示例,图3中的第一透镜31可以为位于最前的一片透镜,第二透镜可以为4片透镜,位于最前的一片透镜指的是镜筒中光线1最先接触的一片透镜。
在本发明实施例中,由于光阑32位于第一透镜31之后,因此成像镜头300所在的镜头模组的入瞳直径应该为光阑32对第一透镜31所成的像的有效通光直径的大小,或者,孔径光阑经第一透镜在物空间所成的像的有效通光直径的大小。该像可以为光阑32的虚像,因此,光阑32延第一透镜31的光轴到第一透镜31的距离,可以小于第一透镜31的一倍焦距。
在光阑32位于第一透镜31之后时,光阑32同样可以约束光线以及使通过第一透镜31的有效成像部分进入的光线通过并且阻挡不是通过第一透镜31的有效成像部分进入的光束,因此光阑32起到了图2中光阑22的作用。在光阑32位于第一透镜31之后时, 第一透镜31的有效通光直径可以得到很好的利用,例如会使得与第一透镜31平行的光线构成的光束的宽度等于第一透镜31的有效通光直径。并且,在这种情况下,即使光阑32的直径小于第一透镜31的有效通光直径,但是通过第一透镜31对光阑32的放大成像作用,成像镜头300所在的镜头模组的入瞳直径是能够等于或大于第一透镜31的有效通光直径的。
为了使成像镜头300所在的镜头模组的光圈值尽量小,光阑32的直径需要设置为通过第一透镜31的有效成像部分的光线基本都可以通过光阑32,或者说,光阑32基本不阻挡通过第一透镜31的有效成像部分的光线。应理解,之所以说基本,原因在于光学器件的制造工艺可能会造成一定的误差。而其他的光线,例如投射过第一透镜31的非有效成像部分的光线则不能通过光阑32。在这样的情况下,光阑32的像的有效通光直径是大于或者等于第一透镜31的有效通光直径的,因此,使得成像镜头300所在的镜头模组的入瞳直径EPD大于或者等于第一透镜31的有效通光直径,进而使得第一透镜31的有效通光直径或者说成像镜头300所在的镜头模组的高度被充分利用。从而相比于图2所示的实施例,光圈更大,光圈值更小。
其中,所谓第一透镜31的非有效成像部分可以理解成是第一透镜31的有效成像部分的外延,并且可以通过固定第一透镜31的非有效成像部分,来实现将第一透镜31固定于镜筒中。相应的,第一透镜31的有效成像部分的位于第二透镜33一侧的另一侧的面(也就是第一透镜31的前面或者向光面)可以为第一透镜31的有效通光面。或者说,第一透镜31的有效通光面映射在过第一透镜31的光心的平面上所形成的圆可以为以第一透镜31的光心为圆心以第一透镜31的有效通光直径为直径的圆,过第一透镜31的光心的平面可以垂直于第一透镜31的光轴。所谓第一透镜31的有效通光面,可以指的是在光线在将要射入第一透镜31时所接触的第一透镜31的面,并且在光线射在第一透镜31的有效通光面之外的部分时,光线则最终不会被用于成像,例如第一透镜31的非有效成像部分312就是第一透镜31的有效通光面之外的部分。
在实现过程中,成像镜头5的焦距可以例如为11.74mm,潜望式镜头模组2的视场角FOV可以例如为度。该实施例的相关表述以及各个部件的描述与上述实施例类似,在此不再赘述。
图4是本发明实施例提供的另一种成像镜头400的结构示意图,该成像镜头400可以为图1中对应的潜望式镜头模组2中的成像镜头5,进一步的,该成像镜头400还可以为长焦镜头的成像镜头或者短焦镜头的成像镜头,应理解,成像镜头400也可以是除非潜望式镜头模组之外的镜头模组的成像镜头,如图4所示,延光线的传播方向,成像镜头400可以依次包括第一透镜41、第二透镜43,第一透镜41与第二透镜43共光轴,第一透镜41可以为位于最前的一片透镜,也可以不是位于最前的一片透镜。成像镜头400还包括光阑42,光阑42环绕在第一透镜41外侧,所述光阑用于使射向所述第一透镜的有效成像部分的光线通过,其中,所述光阑的环绕形成的有效通光口的面可以垂直于所述第一透镜的光轴,并且用于阻挡射向所述第一透镜的非有效成像部分的光线,或者,用于阻挡光线透过所述第一透镜的非有效成像部分。
其中,光阑42可以呈圆环状,光阑32的中心也可以在第一透镜31的光轴上。
其中,光阑42可以是孔径光阑,光阑42的有效通光口的形状可以为圆形,光阑42的有效通光口的面可以垂直于第一透镜41的光轴,光阑42的有效通光口的中心可以位于第一透镜41的光轴上。其中,光阑42可以为不可变光阑,当然,还可以为可变光阑。
成像镜头400还可以包括镜筒,第一透镜41、光阑42、第二透镜43均可以设置于(具体来说可以是固定设置于)镜筒中。
其中,第一透镜41可以是凸透镜,第二透镜43可以是凸透镜,也可以是凹透镜。
具体的,光阑42可以环绕在第一透镜41的有效通光面的边缘。在实现过程中,光阑42的形状可以设置为不阻挡光线射在第一透镜41的有效通光面上,但却阻挡光线射在第一透镜41的非有效成像部分412,这样,光阑42同样起到了约束光线以及阻挡不是通过第一透镜41的有效成像部分进入的光束的作用。并且在这种情况下,第一透镜41的有效通光直径可以得到很好的利用,例如会使得与第一透镜41平行的光线构成的光束的宽度等于第一透镜41的有效通光直径。并且在这种情况下,成像镜头400所在的镜头模组的入瞳直径为光阑42的直径,而光阑42的直径在这种情况下又等于第一透镜41的有效通光直径。
为达到不阻挡光线射在第一透镜41的有效通光面上,但却阻挡光线射在第一透镜41的非有效成像部分412的目的,光阑42的形状可以例如为图5a中的光阑421,光阑42的形状也可以为可以达到上述目的形状。在图5a中,非有效成像部分412与有效成像部分411呈阶梯状结构,光阑421则位于非有效成像部分412的前端,所谓的非有效成像部分412的前端指的是非有效成像部分312迎着光线1的一侧,这样的设置不会导致第一透镜31与光阑321组合后的形状与现有的镜筒结构冲突,并且契合现有的镜筒结构。在图4所示的成像镜头400的结构中,成像镜头400所在的镜头模组的入瞳直径EPD等于第一透镜41的有效通光直径,使得成像镜头400所在的镜头模组的高度或者说第一透镜41的有效通光直径得到充分利用。从而相比于图2所示的实施例,光圈更大,光圈值更小。
其中,所谓第一透镜41的有效通光面,可以指的是在光线在将要射入第一透镜41时所接触的第一透镜41的面,并且在光线射在第一透镜41的有效通光面之外的部分时,光线则最终不会被用于成像,例如图5a中的非有效成像部分412就是第一透镜41的有效通光面之外的部分,或者是有效成像部分411的外延。相应的,如图5a所示,第一透镜41的有效成像部分411的位于第二透镜43一侧的另一侧的面可以为第一透镜41的有效通光面,因此,也可以说光阑42设置为环绕有效成像部分411。或者说,第一透镜41的有效通光面映射在过第一透镜41的光心的平面上所形成的圆可以为以第一透镜41的光心为圆心以第一透镜的有效通光直径为直径的圆,过第一透镜41的光心的平面可以垂直于第一透镜41的光轴。关于非有效成像部分412的形状还可以为图5b以及图5c中的形状。
并且,如图5a、图5b或者图5c所示,光阑42除了用于实现光阑本身的功能外,光阑42还可以作为第一透镜41的固定部(或者为有效成像部分411的固定部),用于将 第一透镜41设置于(具体来说可以是固定设置于)镜筒(或者用于将有效成像部分411固定设置与镜筒中)中。具体来说,光阑42可以与所述镜筒固定连接,并且位于非有效成像部分412之前,非有效成像部分412的外径大于光阑42的有效通光直径。
其中,图5b所示的方案还可以最大限度的利用成像镜头的长度(延光轴方向的长度)该实施例的相关表述以及各个部件的描述与上述实施例类似,在此不再赘述。
图6是本发明实施例提供的一种第一透镜61的结构示意图,在图6中,左侧为第一透镜61的正视图,右侧为第一透镜61的侧视图,该第一透镜61可以为图1中对应的潜望式镜头模组2中的成像镜头5中透镜,进一步的,该第一透镜61还可以为长焦镜头的成像镜头中的透镜或者短焦镜头的成像镜头中的透镜,应理解,第一透镜61也可以是除非潜望式镜头模组之外的镜头模组的成像镜头中的透镜,其中,第一透镜61可以为位于最前的一片透镜或者不是。
在本实施例中,以第一透镜61为位于最前的一片透镜作为示例。如图6所示,第一透镜61的非有效成像部分614的表面被涂黑,具体的,也可以仅仅将非有效成像部分614的前端的表面涂黑,涂黑的目的用于隔绝光线1的进入,当然,非有效成像部分614的前端也可以作除涂黑之外的用于隔绝光线进入非有效成像部分614的处理。以上隔绝光线的处理(包括涂黑处理)的作用与图4、图5a、图5b或者图5c中的光阑的作用相似,比如,用于阻挡光线透过所述第一透镜61的非有效成像部分614,或者用于阻挡射向所述第一透镜61的非有效成像部分614的光线。因此,在图6所示的第一透镜61设置于镜头模组中时,第一透镜61所在的镜头模组的入瞳直径EPD等于第一透镜61的有效通光直径,并且使得第一透镜61所在的镜头模组的高度或者说第一透镜61的有效通光直径得到充分利用。从而相比于图2所示的实施例,光圈更大,光圈值更小。
并且,由于隔绝光线的处理等效于光阑的作用,因此,第一镜头61所在的成像镜头中可以没有光阑,因此节约了成本以及成像镜头的空间。
并且,在本实施例中,在将第一镜头61设置于镜筒中时,可以不在非有效成像部分614之前设置垫片,可以直接通过点胶将非有效成像部分614与镜筒连接。该实施例的相关表述以及各个部件的描述与上述实施例类似,在此不再赘述。
此外,本申请实施例还提供了一种终端,该终端可以包括设置在所述终端内的上述潜望式镜头模组2,也可以包括设置在终端内的成像镜头300所在的镜头模组,也可以包括设置在终端内的成像镜头400所在的镜头模组,也可以包括设置在终端内的第一透镜61所在的镜头模组。
该终端可以为手机、平板电脑等常见的移动终端,在此不进行限定。
应理解,该终端还可以包括但不限于显示屏、处理器、存储器以及总线,在此不进行限定。
本文中应用了具体个例对本发明的原理进行了阐述,以上实施例的说明只是用于帮 助理解本发明的方法及其思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种潜望式镜头模组,其特征在于,所述潜望式镜头模组包括成像镜头,所述成像镜头包括第一透镜、第二透镜和光阑,所述第一透镜和所述第二透镜共光轴,所述光阑设置于所述第一透镜和所述第二透镜之间。
  2. 根据权利要求1所述的潜望式镜头模组,其特征在于,所述第一透镜为所述成像镜头中最前的一片透镜。
  3. 根据权利要求1或2所述的潜望式镜头模组,其特征在于,所述成像镜头还包括镜筒,所述镜筒用于设置所述第一透镜、所述第二透镜以及所述光阑。
  4. 一种镜头模组,其特征在于,所述镜头模组包括成像镜头,所述成像镜头包括第一透镜和光阑,所述光阑环绕所述第一透镜的有效成像部分,所述光阑的环绕形成的有效通光口的面垂直于所述第一透镜的光轴,所述光阑用于使射向所述第一透镜的有效成像部分的光线通过,并且用于阻挡光线透过所述第一透镜的非有效成像部分。
  5. 根据权利要求4所述的潜望式镜头模组,其特征在于,所述成像镜头还包括镜筒,所述镜筒用于设置所述第一透镜以及所述光阑。
  6. 根据权利要求5所述的潜望式镜头模组,其特征在于,所述光阑与所述镜筒固定连接,并且位于所述非有效成像部分之前,所述非有效成像部分的外径大于所述光阑的有效通光直径。
  7. 根据权利要求4至6任一项所述的潜望式镜头模组,其特征在于,所述光阑的有效通光直径等于所述第一透镜的有效通光直径。
  8. 根据权利要求4至7任一项所述的潜望式镜头模组,其特征在于,所述第一透镜为所述成像镜头中位于最前的一片透镜。
  9. 一种潜望式镜头模组,其特征在于,所述潜望式镜头模组包括成像镜头,所述成像镜头包括第一透镜,所述第一透镜的非有效成像部分被作遮光处理,所述遮光处理后的非有效成像部分不能透过光线。
  10. 根据权利要求9所述的潜望式镜头模组,其特征在于,所述遮光处理包括涂黑处理。
  11. 根据权利要求9或10所述的潜望式镜头模组,其特征在于,所述第一透镜的非有效成像部分的外侧被作遮光处理,所述第一透镜的非有效成像部分的外侧为在使用所述潜望式镜头模组拍摄时与拍摄实体更近的一侧。
  12. 根据权利要求9至11任一项所述的潜望式镜头模组,其特征在于,所述第一透镜为所述成像镜头中位于最前的一片透镜。
  13. 一种终端,其特征在于,所述终端包括设置在所述终端内的权利要求1至12任一项所述的镜头模组。
PCT/CN2018/081011 2017-04-01 2018-03-29 一种镜头模组及终端 WO2018177347A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710213964.8 2017-04-01
CN201710213964.8A CN108663775A (zh) 2017-04-01 2017-04-01 一种镜头模组及终端

Publications (1)

Publication Number Publication Date
WO2018177347A1 true WO2018177347A1 (zh) 2018-10-04

Family

ID=63675246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081011 WO2018177347A1 (zh) 2017-04-01 2018-03-29 一种镜头模组及终端

Country Status (2)

Country Link
CN (1) CN108663775A (zh)
WO (1) WO2018177347A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115428429A (zh) * 2020-04-24 2022-12-02 宁波舜宇光电信息有限公司 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111258166B (zh) * 2018-12-03 2021-11-05 宁波舜宇光电信息有限公司 摄像模组及其潜望式摄像模组和图像获取方法及工作方法
CN110191272A (zh) * 2019-06-28 2019-08-30 Oppo广东移动通信有限公司 摄像头组件及电子设备
CN112532814B (zh) * 2019-09-18 2022-08-16 宁波舜宇光电信息有限公司 潜望式摄像模组及电子设备
CN112995445A (zh) * 2019-12-13 2021-06-18 宁波舜宇光电信息有限公司 潜望式摄像模组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201514511U (zh) * 2009-09-08 2010-06-23 华晶科技股份有限公司 潜望式镜头结构
CN204028442U (zh) * 2014-08-20 2014-12-17 青岛歌尔声学科技有限公司 一种大光圈镜头
CN104503067A (zh) * 2014-09-22 2015-04-08 青岛歌尔声学科技有限公司 一种取像镜头
CN205176366U (zh) * 2015-11-23 2016-04-20 广东旭业光电科技股份有限公司 光学成像镜头和应用该光学成像镜头的电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369045A (zh) * 2007-08-17 2009-02-18 鸿富锦精密工业(深圳)有限公司 镜头系统
CN201226044Y (zh) * 2008-05-21 2009-04-22 凤凰光学(广东)有限公司 一种微型高像素光学镜头
CN205157871U (zh) * 2015-11-25 2016-04-13 中山联合光电科技股份有限公司 一种大光圈广角小型成像系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201514511U (zh) * 2009-09-08 2010-06-23 华晶科技股份有限公司 潜望式镜头结构
CN204028442U (zh) * 2014-08-20 2014-12-17 青岛歌尔声学科技有限公司 一种大光圈镜头
CN104503067A (zh) * 2014-09-22 2015-04-08 青岛歌尔声学科技有限公司 一种取像镜头
CN205176366U (zh) * 2015-11-23 2016-04-20 广东旭业光电科技股份有限公司 光学成像镜头和应用该光学成像镜头的电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115428429A (zh) * 2020-04-24 2022-12-02 宁波舜宇光电信息有限公司 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法

Also Published As

Publication number Publication date
CN108663775A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018177347A1 (zh) 一种镜头模组及终端
TWI644141B (zh) 光學取像系統組、取像裝置及電子裝置
TWI629535B (zh) 影像擷取光學系統、取像裝置及電子裝置
CN210572980U (zh) 相机模块与电子装置
US8953084B2 (en) Plural focal-plane imaging
TWI659239B (zh) 成像光學透鏡組、取像裝置及電子裝置
JP5896061B1 (ja) 光学系および撮像システム
TW201831944A (zh) 影像擷取光學透鏡組、取像裝置及電子裝置
KR20170011847A (ko) 촬상 광학계 및 서로 다른 화각을 가진 복수의 촬상 광학계가 장착된 모바일 기기
TWI594039B (zh) 影像擷取光學鏡片系統、取像裝置及電子裝置
KR20230170153A (ko) 광-흡수 플랜지 렌즈들
TW201913156A (zh) 攝影系統鏡片組、取像裝置及電子裝置
KR20180012688A (ko) 카메라 모듈 및 이를 포함하는 휴대용 전자 기기
TW201833617A (zh) 光學影像透鏡系統組、取像裝置及電子裝置
TW201913162A (zh) 影像鏡片系統組、取像裝置及電子裝置
US20230418147A1 (en) Lens apparatus and image pickup apparatus
CN205405057U (zh) 一种引导反射到孔径的全平反射镜及其全景光学装置
EP3991208A1 (en) Systems and methods for high-magnification high-resolution photography using a small imaging system
WO2023066339A1 (zh) 光学镜头、摄像模组及电子设备
JP6569296B2 (ja) レンズユニットおよび撮像装置
WO2017047239A1 (ja) フォーカス装置,撮像システムおよびフォーカス駆動信号出力方法
KR20230003582A (ko) 광학 렌즈, 렌즈 모듈 및 단말
CN212588392U (zh) 摄像模组及电子设备
JP2018189864A (ja) コンバーターレンズ及びそれを有する撮像装置
CN116974037A (zh) 摄影光学系统镜组、取像装置及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777831

Country of ref document: EP

Kind code of ref document: A1