WO2018177256A1 - 一种时延信息的通告方法及装置 - Google Patents

一种时延信息的通告方法及装置 Download PDF

Info

Publication number
WO2018177256A1
WO2018177256A1 PCT/CN2018/080516 CN2018080516W WO2018177256A1 WO 2018177256 A1 WO2018177256 A1 WO 2018177256A1 CN 2018080516 W CN2018080516 W CN 2018080516W WO 2018177256 A1 WO2018177256 A1 WO 2018177256A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
delay
information
node
path
Prior art date
Application number
PCT/CN2018/080516
Other languages
English (en)
French (fr)
Inventor
付志涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018177256A1 publication Critical patent/WO2018177256A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/121Shortest path evaluation by minimising delays

Definitions

  • the present disclosure relates to the field of data network communications, and in particular, to a method and an apparatus for notifying delay information.
  • RSVP-TE Resource Reservation Protocol-Traffic Engineer
  • MPLS Multi-Protocol Label Switching
  • the service traffic is forwarded in a Traffic Engineer (TE) tunnel through four components: information release, path calculation, signaling interaction (RSVP-TE), and traffic forwarding.
  • TE Traffic Engineer
  • the RSVP-TE tunnel is used to carry the L2VPN (Layer 2 Virtual Private Network) and the Layer 3 Virtual Private Network (L3VPN). It also participates in route calculation through static routing and policy routing. RSVP-TE has been increasingly serving various businesses and providing basic pipeline services. As a result, the constraints on the tunnel path are also higher, such as the underlying bandwidth constraints, hop count constraints, link cost, affinity, and delay constraints.
  • OSPF-TE and ISIS-TE flood the link delay information and provide rich database information for RSVP-TE path calculation.
  • the tunnel head node can perform various constraint information based on link flooding link attributes. Calculation.
  • the disclosure provides a method and device for notifying the delay information, because the total delay of the established tunnel path may not meet the service requirement.
  • a method for notifying delay information including:
  • the intermediate node of the tunnel determines that the outbound interface information of the local tunnel exists in the first path signaling packet, the intermediate node in the first path signaling packet is modified according to the link delay information of the outbound interface of the tunnel. Using the delay information to obtain a second path signaling message;
  • the tunnel intermediate node sends the second path signaling packet to the downstream tunnel node, so that the tunnel tail node determines whether the tunnel delay meets the service requirement according to the path signaling packet of the upstream tunnel node.
  • the path signaling message includes delay constraint information, used delay information, and tunnel outbound information;
  • the delay constraint information carried by the path signaling packet corresponding to each tunnel node is the same, and the used delay information is different.
  • the method further includes:
  • the tunnel intermediate node determines that the outbound interface information of the local tunnel does not exist in the first path signaling packet, calculates the tunnel according to the delay constraint information and the used delay information in the first path signaling packet. Remaining delay constraint information of the intermediate node to the tunnel tail node path;
  • the tunnel intermediate node calculates tunnel outbound interface information of the tunnel intermediate node and the downstream tunnel nodes according to the remaining delay constraint information and the link delay information in the topology structure.
  • the tunnel intermediate node modifies the used delay information in the first path signaling message according to the link delay information of the outbound interface of the tunnel, and obtains that the second path signaling packet includes :
  • the tunnel intermediate node obtains the second path signaling packet by adding the link delay information to the used delay information in the path signaling packet.
  • the tunnel tail node determines whether the tunnel delay meets service requirements according to the path signaling packet of the upstream tunnel node, including:
  • the tunnel tail node compares the delay constraint information in the upstream tunnel node path signaling packet with the used delay information
  • the tunnel tail node determines that the tunnel delay meets a service requirement
  • the tunnel tail node determines that the tunnel delay does not meet the service requirement.
  • a notification device for delay information including:
  • the delay information modification module is configured to modify the first path signaling according to the link delay information of the outbound interface of the tunnel when determining that the outbound interface information of the local tunnel exists in the first path signaling packet
  • the used delay information in the packet obtains the second path signaling message
  • the delay information notification module is configured to send the second path signaling message to the downstream tunnel node, so that the tunnel tail node determines whether the tunnel delay meets the service requirement according to the path signaling packet of the upstream tunnel node.
  • the path signaling message includes delay constraint information, used delay information, and tunnel outbound information.
  • the delay constraint information carried by the path signaling message corresponding to each tunnel node is the same, and the used delay information is different.
  • the apparatus further includes:
  • a calculation module configured to: according to the delay constraint information and the used delay information in the first path signaling packet, when the information about the outbound interface of the local tunnel is not included in the first path signaling packet, Calculating the remaining delay constraint information of the tunnel intermediate node to the tunnel tail node path, and calculating tunnel outbound interface information of the tunnel intermediate node and the downstream tunnel nodes according to the remaining delay constraint information and the link delay information in the topology structure .
  • the delay information modification module includes:
  • An acquiring unit configured to acquire used delay information in the first path signaling message and link delay information of the outbound interface of the tunnel
  • the delay information modification unit is configured to obtain the second path signaling message by adding the link delay information to the used delay information in the path signaling message.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the method described above.
  • the tunnel constraint delay information and the delay information that has been used by the upstream path are sent to the downstream node by using RSVP-TE signaling, so that the downstream node is used for the constraint in the path calculation, thereby making the tunnel
  • the entire path satisfies the delay constraint requirements of the head node to meet the business needs.
  • FIG. 1 is a scenario in which a tunnel establishment has a cross-domain calculation
  • FIG. 2 is a flowchart of a method for notifying delay information according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a notification device for delay information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a newly extended TLV according to an embodiment of the present disclosure.
  • FIG. 5 is a topological diagram of a tunnel established in a dynamic manner according to an embodiment of the present disclosure
  • FIG. 6 is a topological diagram of a tunnel established in a loose manner according to an embodiment of the present disclosure
  • FIG. 7 is a topological diagram of an IP network and an optical network interworking scenario according to an embodiment of the present disclosure.
  • the RSVP-TE protocol does not carry the tunnel constraint requirement to the downstream through signaling.
  • the head node R1 establishes an RSVP-TE tunnel with a delay constraint of X microseconds to R4. Since it is to cross another autonomous domain, a loose path is used, that is, the tunnel is at the boundary of the domain R2. Path calculations are performed with R3. Since the tunnel constraint is known at the head node R1, the delay constraint X is used to participate in the constraints of the path computation.
  • the RSVP-TE signaling does not have the delay-constrained signaling. Therefore, when the path calculation is performed on the R2, the path-delay requirement is ignored. As a result, the total delay of the established tunnel path may not meet the requirements of the service.
  • FIG. 2 is a flowchart of a method for advertising delay information according to an embodiment of the present disclosure. As shown in FIG. 2, FIG. 2 includes:
  • Step S201 The tunnel intermediate node modifies the first path signaling packet according to the link delay information of the outbound interface of the tunnel when determining that the outbound interface information of the local tunnel exists in the first path signaling packet.
  • the used delay information in the medium obtains the second path signaling message;
  • Step S202 The tunnel intermediate node sends the second path signaling packet to the downstream tunnel node, so that the tunnel tail node determines whether the tunnel delay meets the service requirement according to the path signaling packet of the upstream tunnel node.
  • the path signaling packet includes the delay constraint information, the used delay information, and the tunnel outbound interface information.
  • the delay signaling information carried by the path signaling packet corresponding to each tunnel node is the same.
  • the used delay information is different.
  • the embodiment of the present disclosure further includes: when the tunnel intermediate node determines that the outbound interface information of the local node does not exist in the first path signaling packet, the delay constraint information in the first path signaling packet is The delay information is used to calculate the remaining delay constraint information of the tunnel intermediate node to the tunnel tail node path; the tunnel intermediate node calculates the tunnel intermediate node according to the remaining delay constraint information and the link delay information in the topology structure. Outbound interface information of tunnel nodes at downstream.
  • the intermediate node of the tunnel modifies the used delay information in the first path signaling packet according to the link delay information of the outbound interface of the tunnel, and obtains the second path signaling packet, including: the middle of the tunnel
  • the node obtains the used delay information in the first path signaling message and the link delay information of the outbound interface of the tunnel; and the tunnel intermediate node adds the link delay information to the path information.
  • the second path signaling message is obtained in the used delay information in the packet.
  • the tunnel tail node determines whether the tunnel delay meets the service requirement according to the path signaling packet of the upstream tunnel node, and includes: the delay constraint information and the used time in the signaling message of the upstream tunnel node path of the tunnel tail node If the delay constraint information is greater than or equal to the used delay information, the tunnel tail node determines that the tunnel delay meets the service requirement; if the delay constraint information is smaller than the used delay information Then, the tunnel tail node determines that the tunnel delay does not meet the service requirement.
  • the tunnel intermediate node in the embodiment of the present disclosure refers to a tunnel node located between a tunnel head node and a tunnel tail node; the downstream tunnel node refers to a next tunnel node in a tunnel downstream path; and the upstream tunnel node refers to The first tunnel node in the upstream path of the tunnel; the first path packet refers to the path packet sent by the upstream tunnel node to each tunnel intermediate node, and the second path packet refers to the intermediate node pair of each tunnel. And determining, by the first path node, the path message that is obtained by modifying the first path node, and determining, by analyzing the received first path packet, whether the local node tunnel exists in the first path signaling packet Outbound interface information.
  • FIG. 3 is a schematic diagram of a device for advertising delay information according to an embodiment of the present disclosure.
  • the method includes: a delay information modification module 301, configured to determine that a tunnel of the node exists in the first path signaling packet.
  • the used delay information in the first path signaling packet is modified according to the link delay information of the outbound interface of the tunnel to obtain the second path signaling packet; the delay information is notified.
  • the module 302 is configured to send the second path signaling packet to the downstream tunnel node, so that the tunnel tail node determines whether the tunnel delay meets the service requirement according to the path signaling packet of the upstream tunnel node.
  • the path signaling packet includes delay constraint information, used delay information, and tunnel outbound interface information.
  • delay constraint information carried by the path signaling packet corresponding to each tunnel node is the same, and the used delay information is different.
  • the embodiment of the present disclosure further includes: a calculation module, configured to: according to the delay constraint in the first path signaling message, when determining that the outbound interface information of the local node does not exist in the first path signaling message
  • the information and the used delay information are used to calculate the remaining delay constraint information of the tunnel intermediate node to the tunnel tail node path, and calculate the tunnel intermediate node and the downstream each according to the remaining delay constraint information and the link delay information in the topology structure.
  • Tunnel outbound interface information of the tunnel node configured to: according to the delay constraint in the first path signaling message, when determining that the outbound interface information of the local node does not exist in the first path signaling message
  • the information and the used delay information are used to calculate the remaining delay constraint information of the tunnel intermediate node to the tunnel tail node path, and calculate the tunnel intermediate node and the downstream each according to the remaining delay constraint information and the link delay information in the topology structure. Tunnel outbound interface information of the tunnel node.
  • the delay information modification module 301 includes: an obtaining unit, configured to acquire the used delay information in the first path signaling message and link delay information of the outbound interface of the tunnel; and modify the delay information. And the unit is configured to obtain the second path signaling message by adding the link delay information to the used delay information in the path signaling message.
  • the extended RSVP-TE object may be in the form of adding a TLV to the existing object, or may add a new object to represent the delay information.
  • the specific Lsp_delay field indicates the entire tunnel delay constraint value; the Used_delay field indicates The delay that the upstream node path has taken.
  • the two field units are in microseconds (us).
  • the downstream node receives the tunnel establishment path message, if the node does not need to perform path calculation, it only needs to calculate the extended TLV value of the downstream node and send it to the downstream node. For example, the link delay information of the outbound interface of the local node is added to the Used_delay field, and the Lsp_delay field remains unchanged. That is, the value of Used_delay sent is equal to the received Delay_delay plus the delay value of the local outbound interface, and Lsp_delay remains unchanged.
  • the downstream node receives the tunnel establishment path message, if the node needs to perform path calculation, the received TLV field participates in the constraint path calculation, calculates the path, and sends the new TLV encapsulation downstream.
  • the received TLV performs path calculation, which is a value obtained by subtracting the value of the used_delay from the Lsp_delay value, and is used for path calculation of the node.
  • Sending a new TLV package downstream means carrying the extended TLV downstream.
  • the tail node checks the value in the extended TLV. If Used_delay is less than or equal to Lsp_delay, the setup request is met, and the resv message is sent upstream. If the above conditions are not met, the path-err message is echoed, and the head node is notified to rebuild the tunnel.
  • the physical link delay information in the network is flooded in the domain through the extension of OSPF-TE/ISIS-TE. After flooding, each node has a delay information base of physical links within the domain. Provide a data source for subsequent path calculations.
  • the tunnel head node sets the delay constraint condition of the entire tunnel path, and the head node tries its best to calculate the nodes that it may reach.
  • the head node sends a path signaling packet established by the tunnel to the downstream, and carries extended TLV information, where the TLV information includes Lsp_delay and Used_delay information.
  • the downstream node receives the path message of the tunnel establishment. If the outbound interface information of the tunnel exists, the received used_delay value plus the delay of the local outbound interface is worthy of the new used_delay information, and the path message established by the tunnel is sent downstream. If the outbound interface information of the tunnel does not exist, the local outbound interface is obtained through the path calculation through the Lsp_delay and Used_delay constraints of the received path. Then, according to the foregoing manner, the path is further sent to the downstream path to establish a path.
  • the Lsp_delay and Used_delay values in the extended TLV are checked. If the former is greater than or equal to the latter, the LSP information is considered to meet the requirements, and the RESV message is sent upstream. Otherwise, the upstream path-Err is notified and the head node rebuilds the tunnel.
  • R1, R2, and R3 nodes there are three R1, R2, and R3 nodes in the network.
  • the delays of the four physical links are 10us, 50us, 50us, and 10us.
  • the delay information is flooded to each node through OSPF-TE/ISIS-TE.
  • the delay information of the four links is available at each node.
  • R1 Establish a tunnel from R1 to R3, with a delay constraint of 30us, and implement dynamic calculation (that is, the destination address of the calculation path is R3). After R1 passes the path calculation, the only path is L1-L4. R1 sends a signaling path message downstream through link L1, and carries extended TLV information, where Lsp_delay is 30 and Used_delay is 10.
  • R2 After receiving the path message, R2 can obtain the interface link as L4 in the path information. Therefore, the path information is sent through the L4 link and the extended TLV information is carried.
  • the Lsp_delay is 30. Used_delay is 20.
  • R3 After receiving the path message, R3 arrives at the tunnel destination. Since the Used_delay value is less than Lsp_delay, the signaling resv message is replied to the upstream until the tunnel head node R1.
  • FIG. 6 there are five nodes R1, R2, R3, R4, and R5 in the network.
  • the delay information of the seven physical links is 10us, 50us, 50us, 10us, and 10us. , 10us, 50us.
  • the delay information of the physical link is flooded in the respective domain.
  • the tunnel delay constraint is 40us.
  • the R1-R2 path is first calculated, and the L1 link is preferred.
  • the value of the extended TLV is Lsp_delay: 40 and Used_delay: 10.
  • the R2 node After receiving the path message, the R2 node does not have the corresponding outbound interface link.
  • the path calculation is performed.
  • the TLV information is extended according to the received path message: Lsp_delay is 40, and Used_delay is 10. When the path is calculated.
  • the delay constraint is 30. There are only two paths from R2 to R3, and L4-L5 is required to meet the delay requirement.
  • R2 sends a path message to R5 along the L4 link.
  • the value of the extended TLV is Lsp_delay: 40 and Used_delay: 20.
  • the R5 node After receiving the path message, the R5 node has the corresponding outgoing interface link L5. The path calculation is not performed. The path message is sent directly to R3 along L5.
  • the extended TLV is Lsp_delay:40 and Used_delay:30.
  • R3 After R3 receives the path message and does not have the corresponding outbound interface link, the path calculation is performed. Like the R2 process, the path that is satisfied is calculated as L6. The path message is sent along L6, and the value of the extended TLV is Lsp_delay: 40, Used_delay: 40.
  • R4 After receiving the path message, R4 checks that the tunnel destination is reached, and checks that Used_delay is equal to Lsp_delay, and the tunnel tail node responds to the upstream resv message until the tunnel head node.
  • the network is divided into an IP layer and an optical layer.
  • the IP layer establishes a path through the TE tunnel through the TE tunnel to serve the IP layer service.
  • a tunnel is established between C1 and C2, traversing the optical network, and the delay value of the tunnel is to be agreed. Since the two layers are isolated, the path calculation module calculates the C1-N1 path at C1, the N1-N2 path on N1, and the N2-C2 path on N2.
  • the delay information of the delay TLV of the tunnel and the delay information that has been used are advertised to the downstream by the extended TLV.
  • the method is similar to that of the third example, and is not described here.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the methods described above.
  • the delay information of the delay TLV of the tunnel and the delay information that has been used are advertised to the downstream by the extended TLV, so that each node of the tunnel path knows the constraint information of the tunnel head node, for the entire tunnel The delay information of the path satisfies the business requirements.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the tunnel constraint delay information and the delay information that has been used by the upstream path are sent to the downstream node by using RSVP-TE signaling, so that the downstream node is used for the constraint in the path calculation, thereby making the tunnel
  • the entire path satisfies the delay constraint requirements of the head node to meet the business needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

公开了一种时延信息的通告方法及装置,所述方法包括:隧道中间节点在确定第一路径信令报文中存在本节点隧道出接口信息的情况下时,根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文;所述隧道中间节点将所述第二路径信令报文发送给下游隧道节点,以便隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求。

Description

一种时延信息的通告方法及装置 技术领域
本公开涉及数据网络通信领域,特别涉及一种时延信息的通告方法及装置。
背景技术
RSVP-TE(Resource Reservation Protocol-Traffic Engineer基于流量工程的资源预留协议)是一种基于MPLS(Multi-Protocol Label Switching,多协议标签交换)的流量工程技术。通过信息发布、路径计算、信令交互(RSVP-TE)、流量的转发四个部件实现业务流量在TE(Traffic Engineer,流量工程)隧道中的转发。
RSVP-TE隧道用于承载L2VPN(Layer 2 Virtual Private Network,二层虚拟专用网络),L3VPN(Layer 3 Virtual Private Network,三层虚拟专用网络),同时通过静态路由、策略路由等形式参与路由计算。RSVP-TE已经越来越多的服务于各个业务,提供基础的管道服务。随之而来的,对隧道路径的约束也越来越高,如基础的带宽约束,跳数约束、链路代价、亲和力、时延约束等。
本文主要涉及的主要是时延约束信息方面,随着RSVP-TE管道的广泛使用,对RSVP-TE建立的管道时延方面有提出了差分的要求,精细化隧道提供的服务能力,时延低的RSVP-TE隧道管道提供给对时延敏感的业务,时延高的RSVP-TE隧道管道提供给对时延不敏感的业务。
关于时延方面的技术研究,在业界提出来一些相关的标准。如RFC6777中,定义如何度量数据在MPLS-TE以及GMPLS(Generalized Multiprotocol Label Switching,通用多协议标志交换协议)网络中的时延;在RFC7471中,定义了OSPF-TE(Open Shortest Path First-Traffic Engineer,基于流量工程的开放式最短路径优先)链路的时延信息的TLV(Threshold Limit Value,阈限值)以及在域内洪泛的规则;在RFC7810中,定义了ISIS-TE(Intermediate  System to Intermediate System Routing Protocol-Traffic Engineer,基于流量工程的中间系统到中间系统的路由选择协议)链路时延信息的TLV以及洪泛的处理规则。
OSPF-TE和ISIS-TE对链路时延信息的洪泛,为RSVP-TE路径计算提供的丰富的数据库信息,隧道头节点可以基于链路洪泛的链路属性,进行各种约束信息的计算。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对在进行路径计算时因忽略路径对时延的要求,导致建立的隧道路径总时延可能不满足业务要求的问题,本公开提供了一种时延信息的通告方法及装置。
根据本公开实施例,提供了一种时延信息的通告方法,包括:
隧道中间节点在确定第一路径信令报文中存在本节点隧道出接口信息的情况下时,根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文;
所述隧道中间节点将所述第二路径信令报文发送给下游隧道节点,使得隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求。
在示例性实施例中,所述路径信令报文包括时延约束信息、已用时延信息以及隧道出接口信息;
其中,每个隧道节点对应的路径信令报文携带的所述时延约束信息相同,所述已用时延信息不同。
在示例性实施例中,所述方法还包括:
隧道中间节点在确定第一路径信令报文中不存在本节点隧道出接口信息的情况下时,根据所述第一路径信令报文中的时延约束信息和已用时延信息,计算隧道中间节点到隧道尾节点路径的剩余时延约束信息;
所述隧道中间节点根据所述剩余时延约束信息和拓扑结构中各链路时延信息,计算隧道中间节点和下游各隧道节点的隧道出接口信息。
在示例性实施例中,所述隧道中间节点根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文包括:
所述隧道中间节点获取所述第一路径信令报文中的已用时延信息和所述隧道出接口的链路时延信息;
所述隧道中间节点通过将所述链路时延信息累加到所述路径信令报文中的已用时延信息中,得到第二路径信令报文。
在示例性实施例中,所述隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求包括:
所述隧道尾节点将上游隧道节点路径信令报文中的时延约束信息与已用时延信息进行比较;
若所述时延约束信息大于或等于所述已用时延信息,则所述隧道尾节点判断隧道时延满足业务要求;
若所述时延约束信息小于所述已用时延信息,则所述隧道尾节点判断隧道时延不满足业务要求。
根据本公开实施例,提供了一种时延信息的通告装置,包括:
时延信息修改模块,设置为在确定第一路径信令报文中存在本节点隧道出接口信息的情况下时,根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文;
时延信息通知模块,设置为将所述第二路径信令报文发送给下游隧道节点,使得隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求。
在示例性实施例中,所述路径信令报文包括时延约束信息、已用时延信息以及隧道出接口信息。
在示例性实施例中,每个隧道节点对应的路径信令报文携带的所述时延约束信息相同,所述已用时延信息不同。
在示例性实施例中,所述装置还包括:
计算模块,设置为在确定第一路径信令报文中不存在本节点隧道出接口信息的情况下时,根据所述第一路径信令报文中的时延约束信息和已用时延信息,计算隧道中间节点到隧道尾节点路径的剩余时延约束信息,并根据所述剩余时延约束信息和拓扑结构中各链路时延信息,计算隧道中间节点和下游各隧道节点的隧道出接口信息。
在示例性实施例中,所述时延信息修改模块包括:
获取单元,设置为获取所述第一路径信令报文中的已用时延信息和所述隧道出接口的链路时延信息;
时延信息修改单元,设置为通过将所述链路时延信息累加到所述路径信令报文中的已用时延信息中,得到第二路径信令报文。
根据本公开实施例,还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现以上描述的方法。
根据本公开实施例提供的方案,通过RSVP-TE信令,将隧道约束时延信息以及上游路径已经使用的时延信息发给下游节点,便于下游节点用于路径计算时的约束,从而使隧道的整个路径满足头节点的时延约束要求,满足业务需要。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是隧道建立存在跨域算路的场景;
图2是本公开实施例提供的一种时延信息的通告方法流程图;
图3是本公开实施例提供的一种时延信息的通告装置示意图;
图4是本公开实施例提供的新扩展的TLV结构示意图;
图5是本公开实施例提供的隧道按照动态的方式建立的拓扑图;
图6是本公开实施例提供的隧道按照松散方式建立的拓扑图;
图7是本公开实施例提供的IP网络和光网络互通场景拓扑图。
具体实施方式
以下结合附图对本公开的示例性实施例进行详细说明,应当理解,以下所说明的示例性实施例仅用于说明和解释本公开,并不用于限定本公开。
通常,在约束计算中,如果下游节点要进行约束计算,特别是对时延约束,RSVP-TE协议并未将隧道约束的要求通过信令携带给下游。如图1所示,头节点R1要建立一条时延约束为X微秒的RSVP-TE隧道至R4,由于要跨过另一个自治域,要采用松散路径,也就是说隧道在域的边界R2和R3都要进行路径计算。由于隧道约束在头节点R1是知道的,时延约束X用于参与路径计算的约束条件。由于RSVP-TE信令不具备对时延约束的信令携带,所以在R2上进行路径计算的时候会忽略路径对时延的要求,导致建立的隧道路径总时延可能满足不了业务的要求。
图2是本公开实施例提供的一种时延信息的通告方法流程图,如图2所示,包括:
步骤S201:隧道中间节点在确定第一路径信令报文中存在本节点隧道出接口信息的情况下时,根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文;
步骤S202:所述隧道中间节点将所述第二路径信令报文发送给下游隧道节点,以便隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求。
其中,所述路径信令报文包括时延约束信息、已用时延信息以及隧道出接口信息;例如,每个隧道节点对应的路径信令报文携带的所述时延约束信息相同,所述已用时延信息不同。
本公开实施例还包括:隧道中间节点在确定第一路径信令报文中不存在本节点隧道出接口信息的情况下时,根据所述第一路径信令报文中的时延约束信息和已用时延信息,计算隧道中间节点到隧道尾节点路径的剩余时延约束信息;所述隧道中间节点根据所述剩余时延约束信息和拓扑结构中各链路时延信息,计算隧道中间节点和下游各隧道节点的隧道出接口信息。
其中,所述隧道中间节点根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文包括:所述隧道中间节点获取所述第一路径信令报文中的已用时延信息和所述隧道出接口的链路时延信息;所述隧道中间节点通过将所述链路时延信息累加到所述路径信令报文中的已用时延信息中,得到第二路径信令报文。
其中,所述隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求包括:所述隧道尾节点将上游隧道节点路径信令报文中的时延约束信息与已用时延信息进行比较;若所述时延约束信息大于或等于所述已用时延信息,则所述隧道尾节点判断隧道时延满足业务要求;若所述时延约束信息小于所述已用时延信息,则所述隧道尾节点判断隧道时延不满足业务要求。
本公开实施例所述的隧道中间节点是指位于隧道头节点与隧道尾节点之间的隧道节点;所述下游隧道节点是指隧道下游路径中的下一个隧道节点;所述上游隧道节点是指隧道上游路径中的上一个隧道节点;所述第一路径报文是指每个隧道中间节点接收到上游隧道节点发送的路径报文,所述第二路径报文是指每个隧道中间节点对所述第一路径节点修改后得到的路径报文;所述隧道中间节点是通过对已收到的第一路径报文进行分析,确定所述第一路径信令报文中是否存在本节点隧道出接口信息。
图3是本公开实施例提供的一种时延信息的通告装置示意图,如图3所示,包括:时延信息修改模块301,设置为在确定第一路径信令报文中存在本节点隧道出接口信息的情况下时,根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文;时延信息通知模块302,设置为将所述第二路径信令报文发送给下游隧道节点,以便隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求。
其中,所述路径信令报文包括时延约束信息、已用时延信息以及隧道出接口信息。例如,每个隧道节点对应的路径信令报文携带的所述时延约束信息相同,所述已用时延信息不同。
本公开实施例还包括:计算模块,设置为在确定第一路径信令报文中不 存在本节点隧道出接口信息的情况下时,根据所述第一路径信令报文中的时延约束信息和已用时延信息,计算隧道中间节点到隧道尾节点路径的剩余时延约束信息,并根据所述剩余时延约束信息和拓扑结构中各链路时延信息,计算隧道中间节点和下游各隧道节点的隧道出接口信息。
其中,所述时延信息修改模块301包括:获取单元,设置为获取所述第一路径信令报文中的已用时延信息和所述隧道出接口的链路时延信息;时延信息修改单元,设置为通过将所述链路时延信息累加到所述路径信令报文中的已用时延信息中,得到第二路径信令报文。
本公开实施例的方案是这样实现的,具体包括如下几个步骤:
1、扩展RSVP-TE对象,用新增对象或者在已有对象中增加TLV,具体格式如图4所示。
所述扩展RSVP-TE对象,可以是现有对象中增加TLV形式,也可以新增一个新的对象,用以表示时延信息,具体的Lsp_delay字段表示整条隧道时延约束值;Used_delay字段表示上游节点路径已经花费的时延。两个字段单位为微秒(us)。
2、下游节点接收到隧道建立path消息时,如果该节点不需要进行路径计算,只需要计算出发往下游节点的扩展的TLV值,并发往下游节点。例如,将本节点出接口链路时延信息增加至Used_delay字段中,Lsp_delay字段保持不变。即发送的Used_delay值等于接收到的Used_delay加上本地出接口的时延值,Lsp_delay维持不变。
3、下游节点接收到隧道建立path消息时,如果该节点需要进行路径计算,将接收到的TLV字段参与约束路径计算,计算出来的路径,再将新的TLV封装发往下游。
例如,接收到的TLV进行路径计算是指将Lsp_delay值减去Used_delay值得出的数值,用于本节点的路径计算。将新的TLV封装发往下游是指将扩展的TLV携带给下游。
4、按照上述步骤直至隧道尾节点。
5、尾节点检查扩展TLV中的数值,如果Used_delay小于或者等于 Lsp_delay,即满足建立要求,向上游回应resv消息。如果不满足上述条件,回应path-err消息,通知头节点对隧道重建。
示例一:
网络中的物理链路时延信息通过OSPF-TE/ISIS-TE的扩展,在域内洪泛。经过洪泛,各个节点具备域内物理链路的延时信息库。为后续路径计算提供数据来源。
隧道头节点设置整条隧道路径的时延约束条件,头节点尽力算出其可能到达的节点。头节点向下游发送隧道建立的path信令报文,携带扩展的TLV信息,TLV信息包含Lsp_delay和Used_delay信息。
下游节点接收到隧道建立的path消息,如果本地存在隧道出接口信息,那么通过接收到的Used_delay值加上本地出接口的时延值得出新的Used_delay信息,向下游发送隧道建立的path报文;如果本地不存在隧道出接口信息,那么通过接收到的path报文的Lsp_delay和Used_delay约束,通过路径计算得出本地出接口。进而按照上述的方式继续向下游发送路径建立path报文。
在隧道尾节点,检查扩展TLV中的Lsp_delay和Used_delay数值,如果前者大于等于后者,认为LSP信息满足要求,向上游回应RESV消息。否则,通知上游path-Err,头节点对隧道重建。
示例二:
图5所示,网络中存在R1、R2、R3三个节点,存在L1、L2、L3、L4四条物理链路,四条物理链路的时延分别为10us、50us、50us、10us。时延信息通过OSPF-TE/ISIS-TE洪泛至各个节点。在各个节点都具备这四条链路的时延信息。
从R1建立一条隧道至R3,时延约束为30us,实施动态算路(即:算路的目的地址为R3)。在R1经过路径计算,得出唯一的路径为L1-L4。R1经过链路L1向下游发送信令path消息,携带扩展的TLV信息,其中 Lsp_delay为30,Used_delay为10。
R2接收到path消息之后,由于路径信息中可以得出出接口链路为L4,所以不用进行路径计算,直接通过L4链路发送信令path报文,携带扩展的TLV信息,其中Lsp_delay为30,Used_delay为20。
R3接收到path消息之后,到达隧道目的地。由于Used_delay值小于Lsp_delay,向上游回复信令resv消息,直至隧道头节点R1。
示例三:
如图6所示,网络中存在R1、R2、R3、R4以及R5五个节点,存在L1-L7七条物理链路,七条物理链路的时延信息分别为10us、50us、50us、10us、10us、10us、50us。拓扑中存在两个区域,Area0和Area1,两个区域所属的接口和链路在图中均有标注。物理链路的时延信息在各自域内洪泛。
从R1建立隧道至R4,要穿越Area1,所以配置松散节点R2、R3。隧道时延约束为40us。在隧道头节点R1,先计算出R1-R2路径,优选L1链路,发送的path消息中,扩展TLV填的值为Lsp_delay:40、Used_delay:10。
R2节点接收到path消息之后,由于该节点没有对应的出接口链路,要进行路径计算,根据接收到的path消息扩展TLV信息:Lsp_delay为40,Used_delay为10,得出本条路径算路的时延约束为30。从R2到R3只有两条路径,满足时延要求的为L4-L5。R2沿着L4链路向R5发送path消息,扩展TLV填的值为Lsp_delay:40、Used_delay:20。
R5节点接收到path消息之后,有对应的出接口链路为L5,则不进行路径计算,直接沿L5向R3发送path消息,扩展TLV填的值为Lsp_delay:40、Used_delay:30。
R3接收到path消息之后,也没有对应的出接口链路,则要进行路径计算,和R2处理一样,计算出满足的路径为L6。沿着L6发送path消息,扩展TLV填的值为Lsp_delay:40,Used_delay:40。
R4接收到path消息之后,检查到达了隧道目的地,同时检查Used_delay等于Lsp_delay满足要求,隧道尾节点向上游回应resv消息,直至隧道头节 点。
示例四:
如图7所示,网络中分为IP层和光层,随着IP网络和光网络的融合,IP层要通过TE隧道穿越光层建立一个通路,为IP层的业务服务。
图中C1和C2之间要建立一条隧道,穿越光网络,并且要约定隧道的时延值。由于两个层之间是隔离的,所以路径计算模块分别要在C1计算C1-N1路径,N1上计算N1-N2路径,N2上计算N2-C2路径。
通过扩展TLV将隧道的时延TLV的时延信息以及已经使用的时延信息通告给下游,方法和示例三相似,这里就不再累述。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现以上描述的方法。
根据本公开实施例提供的方案,通过扩展TLV将隧道的时延TLV的时延信息以及已经使用的时延信息通告给下游,使隧道路径各个节点都知道隧道头节点的约束信息,对于隧道整个路径的时延信息满足业务要求。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁 盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
尽管上文对本公开进行了详细说明,但是本公开不限于此,本技术领域技术人员可以根据本公开的原理进行各种修改。因此,凡按照本公开原理所作的修改,都应当理解为落入本公开的保护范围。
工业实用性
根据本公开实施例提供的方案,通过RSVP-TE信令,将隧道约束时延信息以及上游路径已经使用的时延信息发给下游节点,便于下游节点用于路径计算时的约束,从而使隧道的整个路径满足头节点的时延约束要求,满足业务需要。

Claims (11)

  1. 一种时延信息的通告方法,包括:
    隧道中间节点在确定第一路径信令报文中存在本节点隧道出接口信息的情况下时,根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文(S101);
    所述隧道中间节点将所述第二路径信令报文发送给下游隧道节点,使得隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求(S102)。
  2. 根据权利要求1所述的方法,所述路径信令报文包括时延约束信息、已用时延信息以及隧道出接口信息;
    其中,每个隧道节点对应的路径信令报文携带的所述时延约束信息相同,所述已用时延信息不同。
  3. 根据权利要求1或2所述的方法,还包括:
    隧道中间节点在确定第一路径信令报文中不存在本节点隧道出接口信息的情况下时,根据所述第一路径信令报文中的时延约束信息和已用时延信息,计算隧道中间节点到隧道尾节点路径的剩余时延约束信息;
    所述隧道中间节点根据所述剩余时延约束信息和拓扑结构中各链路时延信息,计算隧道中间节点和下游各隧道节点的隧道出接口信息。
  4. 根据权利要求2所述的方法,所述隧道中间节点根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文包括:
    所述隧道中间节点获取所述第一路径信令报文中的已用时延信息和所述隧道出接口的链路时延信息;
    所述隧道中间节点通过将所述链路时延信息累加到所述路径信令报文中的已用时延信息中,得到第二路径信令报文。
  5. 根据权利要求1-4任一所述的方法,所述隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求包括:
    所述隧道尾节点将上游隧道节点路径信令报文中的时延约束信息与已用时延信息进行比较;
    若所述时延约束信息大于或等于所述已用时延信息,则所述隧道尾节点判断隧道时延满足业务要求;
    若所述时延约束信息小于所述已用时延信息,则所述隧道尾节点判断隧道时延不满足业务要求。
  6. 一种时延信息的通告装置,包括:
    时延信息修改模块(301),设置为在确定第一路径信令报文中存在本节点隧道出接口信息的情况下时,根据所述隧道出接口的链路时延信息修改所述第一路径信令报文中的已用时延信息,得到第二路径信令报文;
    时延信息通知模块(302),设置为将所述第二路径信令报文发送给下游隧道节点,使得隧道尾节点根据上游隧道节点的路径信令报文判断隧道时延是否满足业务要求。
  7. 根据权利要求6所述的装置,所述路径信令报文包括时延约束信息、已用时延信息以及隧道出接口信息。
  8. 根据权利要求7所述的装置,每个隧道节点对应的路径信令报文携带的所述时延约束信息相同,所述已用时延信息不同。
  9. 根据权利要求6-8任一所述的装置,还包括:
    计算模块,设置为在确定第一路径信令报文中不存在本节点隧道出接口信息的情况下时,根据所述第一路径信令报文中的时延约束信息和已用时延信息,计算隧道中间节点到隧道尾节点路径的剩余时延约束信息,并根据所述剩余时延约束信息和拓扑结构中各链路时延信息,计算隧道中间节点和下游各隧道节点的隧道出接口信息。
  10. 根据权利要求9所述的装置,所述时延信息修改模块(301)包括:
    获取单元,设置为获取所述第一路径信令报文中的已用时延信息和所述隧道出接口的链路时延信息;
    时延信息修改单元,设置为通过将所述链路时延信息累加到所述路径信令报文中的已用时延信息中,得到第二路径信令报文。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求1-5中任一项所述的方法。
PCT/CN2018/080516 2017-03-27 2018-03-26 一种时延信息的通告方法及装置 WO2018177256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710186788.3 2017-03-27
CN201710186788.3A CN108667751B (zh) 2017-03-27 2017-03-27 一种时延信息的通告方法及装置

Publications (1)

Publication Number Publication Date
WO2018177256A1 true WO2018177256A1 (zh) 2018-10-04

Family

ID=63674256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080516 WO2018177256A1 (zh) 2017-03-27 2018-03-26 一种时延信息的通告方法及装置

Country Status (2)

Country Link
CN (1) CN108667751B (zh)
WO (1) WO2018177256A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645664A (zh) * 2021-08-25 2021-11-12 烽火通信科技股份有限公司 一种非DetNet域中业务的无损传送方法和系统
WO2024082616A1 (zh) * 2022-10-20 2024-04-25 中兴通讯股份有限公司 确定节点时延的方法、存储介质和电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117527718A (zh) * 2022-07-28 2024-02-06 中兴通讯股份有限公司 时延资源分配方法、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447980A (zh) * 2010-09-30 2012-05-09 中兴通讯股份有限公司 一种路由控制方法、系统及路由计算装置
CN102647340A (zh) * 2012-03-22 2012-08-22 中兴通讯股份有限公司 Rsvp-te隧道中的松散节点及其路径计算方法
US20150098338A1 (en) * 2013-10-07 2015-04-09 Ciena Corporation Energy efficient and energy-managed traffic engineering services in multiprotocol label switching and generalized multiprotocol label switching networks
US20150207724A1 (en) * 2012-12-18 2015-07-23 Juniper Networks, Inc. Dynamic control channel establishment for software-defined networks having centralized control
CN105681190A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种隧道约束信息的发送、接收方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006218B (zh) * 2009-09-03 2014-07-16 中兴通讯股份有限公司 隧道保护方法及装置
EP2888828A1 (en) * 2012-08-22 2015-07-01 Telefonaktiebolaget L M Ericsson (Publ) Distributing path delay data in a connection-oriented communications network
CN105227479B (zh) * 2014-06-03 2018-10-09 新华三技术有限公司 快速重路由处理方法及装置
GB2536079B (en) * 2014-06-25 2021-04-28 Pismo Labs Technology Ltd Methods and systems for transmitting and receiving data through one or more tunnel for packets satisfying one or more conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447980A (zh) * 2010-09-30 2012-05-09 中兴通讯股份有限公司 一种路由控制方法、系统及路由计算装置
CN102647340A (zh) * 2012-03-22 2012-08-22 中兴通讯股份有限公司 Rsvp-te隧道中的松散节点及其路径计算方法
US20150207724A1 (en) * 2012-12-18 2015-07-23 Juniper Networks, Inc. Dynamic control channel establishment for software-defined networks having centralized control
US20150098338A1 (en) * 2013-10-07 2015-04-09 Ciena Corporation Energy efficient and energy-managed traffic engineering services in multiprotocol label switching and generalized multiprotocol label switching networks
CN105681190A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种隧道约束信息的发送、接收方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645664A (zh) * 2021-08-25 2021-11-12 烽火通信科技股份有限公司 一种非DetNet域中业务的无损传送方法和系统
CN113645664B (zh) * 2021-08-25 2023-06-13 烽火通信科技股份有限公司 一种非DetNet域中业务的无损传送方法和系统
WO2024082616A1 (zh) * 2022-10-20 2024-04-25 中兴通讯股份有限公司 确定节点时延的方法、存储介质和电子设备

Also Published As

Publication number Publication date
CN108667751A (zh) 2018-10-16
CN108667751B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
US10187301B2 (en) Establishing label switched paths having refresh interval independent fast reroute facility protection
US10277505B2 (en) Routing inter-AS LSPs with centralized controller
US10880203B2 (en) Centralized segment routing dataplane based backup path validation
CN107547393B (zh) 一种计算转发路径的方法及网络设备
US9491046B2 (en) System and method for switching traffic from sub-optimal primary P2MP to standby P2MP
US10659290B1 (en) RSVP local protection signaling reduction
WO2006001969A2 (en) Avoiding micro-loop upon failure of fast reroute protected links
CN110650090B (zh) 路由方法和路由器
WO2016070670A1 (zh) 一种跨域路径的计算方法及装置
WO2018177256A1 (zh) 一种时延信息的通告方法及装置
US20210176169A1 (en) Source Routing Tunnel Ingress Protection
CN108881017B (zh) 改变多路径标签交换路径中每跳带宽约束的方法及路由器
US20150023150A1 (en) Establishing and Protecting Label Switched Paths Across Topology-Transparent Zones
WO2016078363A1 (zh) 一种隧道约束信息的发送、接收方法及装置
WO2017190675A1 (zh) 链路信息的处理方法、装置及系统
WO2018095438A1 (zh) 等价多路径ecmp处理方法及装置
CN108429688A (zh) 一种基于段路由的单节点故障路由保护方法
WO2018205887A1 (zh) 时延收集方法及装置
CN103023780A (zh) 一种路由计算方法和装置
US20140341016A1 (en) Method and apparatus for enabling efficient resource allocation
CN104283813B (zh) 一种处理rsvp-te信令的方法及系统
WO2017004747A1 (zh) 一种网络中路径计算的方法、装置及系统
WO2016177186A1 (zh) 带宽保护的方法及装置
WO2019080927A1 (zh) 一种报文处理方法和装置、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777552

Country of ref document: EP

Kind code of ref document: A1