WO2017004747A1 - 一种网络中路径计算的方法、装置及系统 - Google Patents

一种网络中路径计算的方法、装置及系统 Download PDF

Info

Publication number
WO2017004747A1
WO2017004747A1 PCT/CN2015/083290 CN2015083290W WO2017004747A1 WO 2017004747 A1 WO2017004747 A1 WO 2017004747A1 CN 2015083290 W CN2015083290 W CN 2015083290W WO 2017004747 A1 WO2017004747 A1 WO 2017004747A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
optical layer
pce
network
calculation
Prior art date
Application number
PCT/CN2015/083290
Other languages
English (en)
French (fr)
Inventor
石礌
郑好棉
董继雄
王宇飞
曾峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/083290 priority Critical patent/WO2017004747A1/zh
Priority to CN201580080149.8A priority patent/CN107615719B/zh
Priority to EP15897403.0A priority patent/EP3249858B1/en
Priority to ES15897403T priority patent/ES2720277T3/es
Publication of WO2017004747A1 publication Critical patent/WO2017004747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/645Splitting route computation layer and forwarding layer, e.g. routing according to path computational element [PCE] or based on OpenFlow functionality

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, and a system for path calculation in a network.
  • the network networking in the backbone network mainly includes an IP (Internet Protocol) protocol and an optical layer cross-layer networking.
  • IP Internet Protocol
  • optical layer networking is used for data transmission.
  • the IP layer and the optical layer network are two separate networks, which are managed by different O&M personnel.
  • the carrier needs to be transported by the IP layer or the optical layer network when new services are deployed or link faults occur. It takes a long time for the personnel to coordinate and establish a new business.
  • a new optical path needs to be opened, and it takes a long time to open a new optical path.
  • VNTM Virtual Network Topology Manager
  • SDN Software Defined Network
  • An optical layer link may be shared by multiple IP layer links at the same time because of the shared optical layer reserved resources between the IP layer and the optical layer. Therefore, when the IP layer creates multiple links at the same time, due to the resource sharing between the IP layer links, it is easy to cause a path failure.
  • the path calculation is performed by the IP PCE (Path Computation Element). After the IP PCE fails, the optical layer PCE is combined with the optical layer PCE to perform the path calculation again. If the calculation fails, the failure information is returned and the calculation is stopped. Therefore, it is easy to cause a calculation failure when calculating the road using the prior art. Even in the network When there is a path available, there is also a situation in which the available path cannot be calculated, thereby reducing the resource utilization of the entire network.
  • the network computing method and device provided by the embodiments of the present invention can improve network resource utilization.
  • an embodiment of the present invention provides a method for path calculation in a network, including:
  • the trigger optical layer PCE calculates the path in the optical layer network
  • the optical layer PCE fails to calculate a path in the optical layer network, the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE;
  • the IP PCE recalculates the path from the source node to the destination node according to the optical layer network conflicting resource group information.
  • the optical layer network conflicting resource group information includes: a source node label switching router identity identifier number LSR ID, a destination node LSR ID, and a shared resource. At least one of the conflict group information SRcLG.
  • the recalculating the path of the source node to the destination node further includes:
  • the number of times of recalculating the path is recorded, and when the number of times of recalculating the path is greater than the second preset value, the calculation fails.
  • the trigger optical layer PCE calculates the path in the optical layer network, Also includes:
  • the IP PCE establishes a correspondence between an IP layer link and an optical layer link according to the path calculation success message, and establishes a path between the source node and the destination node.
  • the triggering optical layer calculates a path in the optical layer network, and further includes:
  • the IP PCE triggers the optical layer PCE to calculate a path in the optical layer network by using a virtual network topology manager VNTM;
  • the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE through the VNTM.
  • an embodiment of the present invention provides an apparatus for path calculation in a network, including:
  • a second calculating unit configured to: when the first computing unit fails to calculate a path in the IP layer network, the second computing unit calculates a path in the optical layer network;
  • a first sending unit configured to: when the second computing unit fails to calculate a path in the optical layer network, the second calculating unit returns the optical layer network conflicting resource group information to the first computing unit;
  • the first calculating unit is further configured to recalculate a path from the source node to the destination node according to the optical layer network conflicting resource group information.
  • the optical layer network conflicting resource group information includes: a source node label switching router identity identifier number LSR ID, a destination node LSR ID, and a shared resource. At least one of the conflict group information SRcLG.
  • the method further includes:
  • a recording unit configured to record a duration of the recalculation path, where the calculation fails when the duration of the recalculation path is greater than a first preset value
  • the recording unit is configured to record the number of times of recalculating the path, and when the number of times of recalculating the path is greater than the second preset value, the calculation fails.
  • the device further includes:
  • a second sending unit configured to return a path calculation success message to the first computing unit if the second computing unit calculates that the path is successful
  • a path establishing unit configured to establish a correspondence between the IP layer link and the optical layer link according to the path calculation success message, and establish a path between the source node and the destination node.
  • the first computing unit triggers the second computing unit to calculate a path in the optical layer network by using a virtual network topology manager VNTM;
  • the second computing unit returns the optical layer network conflicting resource group information to the first computing unit by using the VNTM.
  • an embodiment of the present invention provides a system for path calculation in a network, where the system includes at least: a network protocol layer path calculation unit IP PCE and an optical layer PCE;
  • the optical layer PCE is configured to calculate a path in the optical layer network if the network protocol layer path calculation unit IP PCE fails to calculate the path in the IP layer network;
  • the optical layer PCE is further configured to: when the optical layer PCE fails to calculate a path in the optical layer network, return the optical layer network conflicting resource group information to the IP PCE;
  • the IP PCE is configured to recalculate a path from the source node to the destination node according to the optical layer network conflicting resource group information.
  • the optical layer network conflicting resource group information returned by the optical layer PCE to the IP PCE includes at least: a source node LSR ID and a destination node. LSR ID, SRcLG.
  • the number of times of recalculating the path is recorded, and when the number of times of recalculating the path is greater than the second preset value, the calculation fails.
  • the optical layer PCE is further configured to: when the calculation path succeeds, return a path calculation success message to the IP PCE;
  • the IP PCE is further configured to establish a correspondence between an IP layer link and an optical layer link according to the path calculation success message, and establish a path between the source node and the destination node.
  • system further includes: a virtual network topology manager VNTM;
  • the VNTM is used by the IP PCE to trigger the optical layer PCE to calculate a path in the optical layer network
  • the VNTM is further used by the optical layer PCE to return optical layer network conflicting resource group information to the IP PCE.
  • the embodiment of the invention provides a method, a device and a system for calculating a path in a network.
  • the IP PCE first calculates the path from the source node to the destination node in the IP layer network.
  • the optical layer PCE Calculating the path in the optical layer network;
  • the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE;
  • the IP PCE recalculates the source according to the optical layer network conflicting resource group information The path from the node to the destination node.
  • the technical solution of the present invention may fail after the optical layer network fails. Returning the optical layer network conflicting resource group information to the IP PCE of the IP layer network, and recalculating the data by the IP PCE in combination with the optical layer network conflicting resource group information, and ensuring the IP layer service when there are sufficient optical layer resources Calculate the road successfully and improve the resource utilization of the network.
  • FIG. 1 is a schematic diagram of a network topology scenario according to an embodiment of the present invention
  • Figure 1b is a schematic diagram of another network topology scenario according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a network computing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic topological diagram of an embodiment of the present invention.
  • 4a is a schematic diagram of a correspondence between an IP network and an optical network according to an embodiment of the present invention.
  • FIG. 4b is a schematic diagram of another correspondence between an IP network and an optical network according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of another network computing method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another network computing method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of another network computing method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network computing device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another network computing device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another network computing device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another network computing device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a network computing system according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for calculating a path in a network, which is applied to a network architecture of an IP layer and an optical layer across a layer.
  • the method includes an IP layer network, an optical layer network, an IPPCE, and an optical PCE.
  • the optical layer network includes physical resources such as optical fibers and optical network devices, and provides statically configured physical link resources for the 1P layer.
  • the IP layer network includes an IP link and multiple nodes for carrying upper layer services.
  • PCE is a functional entity in the network that is responsible for path computation. It can be located anywhere in the network, can be integrated inside a network device, or it can be a standalone device.
  • the PCE at the IP layer is IP PCE
  • the PCE at the optical layer is optical PCE.
  • the PCE calculates an optimal path that satisfies the constraint based on the existing path and path calculation request.
  • the constraint includes static constraints, such as distance between router nodes, bandwidth, line capacity of optical network equipment, and dynamic constraints, such as network fault status and network congestion information.
  • the IP layer and the optical layer have their own PCEs. If the path of the IP layer from H1 to H4 is to be established, the following process is performed:
  • step 1 H1 sends a path calculation request from H1 to H4 to the IP PCE.
  • step 2 the IP PCE selects H2 and H3 as the gateways for entering and leaving the optical layer network.
  • step 3 the IP PCE requests the optical PCE to calculate the path from H2 to H3.
  • step 4 the optical PCE returns the path of H2-L1-L2-H3 to the IP PCE.
  • step 5 the IP PCE returns the path of H1-H2-L1-L2-H3-H4 to H1.
  • IP PCE and optical PCE can also be collaboratively managed through VNTM, as shown in Figure 2b.
  • the optical layer PCE feeds back the optical layer network conflicting resource group information to the VNTM.
  • the optical layer network conflict resource group information is sent to the IP PCE by the VNTM, and the IP PCE re-calculates the path according to the optical layer network conflict resource group information.
  • the network architecture corresponding to FIG. 1a will be used as an example to describe the network architecture based on FIG. 1a. How to implement the method of the present invention is as shown in FIG. 2, including:
  • the source node sends a calculation path request to the IP PCE.
  • the source node Before the service connection is established between the source node and the destination node, the source node sends a calculation path request to the IP PCE, requesting the IP PCE to calculate a connection path between the source node and the destination node, so that the source node establishes a connection with the destination node.
  • the calculation path request sent by the source node to the IP PCE includes an LSR (Label Switching Router) ID (Identity) of the destination node, and the LSR ID of the destination node is used to identify the destination node. It can also contain the LSR ID of the source node. The LSR ID of the source node is used to identify the source node.
  • the IP PCE calculates a path of the source node to a destination node in an IP layer network according to the calculation path request.
  • the network includes six network nodes R1, R2, R3, R4, R5, and R6. If the source node is R1, and the source node needs to establish a connection with the destination node R5, the IP PCE is based on The calculation path request sent by the source node begins to calculate the path.
  • the path calculated by the IP PCE may be R1 to R3 to R5, R1 to R4 to R5, or a path through other intermediate nodes to reach R5, which is not illustrated here.
  • the triggering optical layer PCE calculates a path in the optical layer network.
  • IP PCE when the IP PCE fails to calculate a path in the IP layer network, when two or more services need to establish a service connection between R1 and R2, for example, the service 1 and the service are included. 2. IP PCE will first calculate the path from R1 to R2 to R1 to R2. However, when R1 to R2 can only provide 5G bandwidth, and service 1 needs 5G bandwidth for data transmission, since there is no remaining bandwidth between R1 and R2, service 2 cannot continue to use R1 directly to R2. This path carries data, so for Service 2, When IP PCE performs path calculation between R1 and R2, there is a case where the calculation fails.
  • the triggering optical layer PCE calculates the path from R1 to R2 in the optical layer network.
  • links of the same number indicate that the link uses the same optical layer network resources.
  • the existing network services are: Service 1: R1 to R3, 5G; Service 2: R1 to R6, 6G.
  • the link bandwidth of the IP layer R1 to R3 is 10 G.
  • the IP layer R1 to R3 has insufficient resources to carry the bandwidth usage requirements of service 1 and service 2, and needs to add an underlying optical path.
  • the existing network topology resources are: the same underlying optical path resources are used at the same time, that is, R1 to R3 and R5 to R6 use the same underlying optical path resources, R1 to R4, R3 to R5, and R4 to R6 use the same underlying optical path resources.
  • the IP PCE calculation service 1 path is R1 to R3 and the service 2 path is R1 to R3 to R5 to R6, since the service 2 also uses the same path R1 to R3 as the service 1, and R1 to R3 can only provide 10G link bandwidth.
  • R1 to R3 cannot meet the requirements of service 1 and service 2 at the same time, and the calculation failure will occur. If the service 1 path is R1 to R3 and the service 2 path is R1 to R2 to R4 to R6, the path can be considered successful.
  • the optical layer PCE fails to calculate a path in the optical layer network, the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE.
  • the information about the optical layer network conflicting resource group includes the information of the optical layer network link, such as the bandwidth, the maximum transmission unit (mtu), the link cost information, the delay, the hop count, and the SRLG (Shared Risk Link Groups, Sharing the risk link group), and SRcLG, etc., so that when calculating the path, the IP PCE can not only obtain the bandwidth occupied by the path of the underlying optical path resources, the link cost information, the hop count, the SRLG and other conventional information, but also the SRcLG information. , to understand the conflict information between the paths. Take FIG.
  • SRcLG is a shared resource conflict group information, such as an optical network relay or wavelength conflict information.
  • the failure of the optical layer network calculation generally means that the existing optical path has already carried multiple services and cannot carry new services.
  • Information about each optical layer network link will follow the service Changes and changes, such as R1 to R3 in Figure 3, R5 to R6 use the same underlying optical path, when the traffic of R1 to R3 increases, it will also affect the services of R5 to R6, and the bandwidth will decrease and the delay will increase.
  • the optical layer network will fail. As shown in FIG. 4a, in FIG.
  • the upper layer dotted line is connected to the IP layer network, and the lower layer solid line is connected to the optical layer network, when the routers in the IP network have one free port remaining (such as the black square in FIG. 4a). ), the optical layer link can be reached, as shown by the solid line connection in Figure 4a.
  • the upper layer dotted line is connected to the IP layer network, and the lower layer solid line is connected to the optical layer network.
  • the idle port of the router in the IP layer network (such as the black square in FIG. 4b) is When occupied (such as the solid line with an arrow in Figure 4b)
  • the optical layer links as shown in Figure 4b are unreachable. At this point, the optical layer PCE calculation fails.
  • the IP PCE recalculates a path of the source node to the destination node according to the optical layer network conflicting resource group information.
  • the process of recalculating the IP PCE refer to the conflicting resource group information returned by the optical layer PCE to avoid reusing the critical link resources.
  • the method of recalculating may be performed by using a completely separate algorithm. For example, the existing service 1 and the service 2 need to calculate the path, and the service 1 calculates the path in the original topology, and deletes the route that the path established by the service 1 passes. After the new topology is formed, the second path is calculated for the service 2 on the new topology. Another method of recalculating may also be to ban the path calculated by the service 1, and then calculate the path of the service 2.
  • the embodiment of the invention provides a method for calculating a path in a network.
  • the IP PCE first calculates the path from the source node to the destination node in the IP layer network.
  • the optical layer PCE is in the optical layer.
  • the optical layer PCE fails to calculate the path in the optical layer network
  • the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE; the IP PCE recalculates the source node to the destination according to the optical layer network conflicting resource group information.
  • the path to the node After the optical layer network fails to calculate the path, the technical solution of the present invention also returns the optical layer network to the IP PCE of the IP layer network.
  • the conflicting resource group information is recalculated by the IP PCE in combination with the optical layer network conflicting resource group information. When sufficient optical layer resources are available, the IP layer service can be successfully calculated and the network resource utilization rate can be improved.
  • the optical layer network conflicting resource group information content returned by the optical layer PCE to the IPPCE is described in detail.
  • the optical layer network conflicting resource group information may include: a source switch LSR (Label Switching Router) ID (Identity), a destination node LSR ID, and an SRcLG.
  • one or more paths from the source node to the destination node may be determined by the source node LSR ID and the destination node LSR ID.
  • the SRcLG includes an optical layer relay that passes through one calculation before the calculation, or wavelength collision information, or both.
  • an OSNR Optical Signal Noise Ratio
  • the IP PCE can obtain more optical path resource information as much as possible, so that the IP PCE can avoid re-use of critical link resources when recalculating the path. Increase the probability of IP PCE computing success.
  • an exit condition is set, and after the exit condition is satisfied, Stop the calculation.
  • the step 105 when the optical layer PCE also fails to calculate the path, the conflicting resource group information is returned to the IP PCE, so that the IP PCE recalculates the path according to the optical layer PCE, because the execution process is calculated. If the road is successful, it will be suspended. Therefore, if there is no successful road calculation process, it will enter the process of infinite loop and occupy PCE resources. Therefore, it is necessary to set an exit condition to avoid the above situation. Specifically include:
  • the statistical recalculation duration can be implemented by using a timer. After the recalculation is completed, it is determined whether the duration recorded by the timer is greater than the first preset value.
  • the number of statistical recalculations can be implemented by using a counter. The counter is incremented by one each time it is recalculated. After the recalculation is completed, it is determined whether the number of times recorded by the counter is greater than a second preset value.
  • the specific values of the above two types of stop conditions may be set according to actual conditions, which is not limited by the embodiment of the present invention.
  • a process of establishing a path between the source node and the destination node in the IP layer network after the IP PCE calculation path is successful is also described, as shown in FIG. 6. Show, specifically including:
  • IP PCE calculation path When the IP PCE calculation path is successful, send a setup path message to the source node, and trigger the source node to establish a path with the destination node.
  • the information required for each path includes a path attribute and an IP service attribute, where the path attribute includes: a source node LSR ID, a destination node LSR ID, a tunnel (tunnel) ID, a bandwidth (Bps), and a VNTM path type (service path). Or protection path) and so on.
  • the IP attributes include: source node IP+mask of the VNTM path, destination node IP+mask, bandwidth, mtu, link cost information, and so on.
  • a process of establishing a source node to a target node after the optical layer PCE calculates a path is successfully described. As shown in FIG. 7, the method specifically includes:
  • the path calculation success message is returned, and the path calculation success message includes specific link information.
  • the specific link information is optical layer physical link information, and includes at least: a source node LSR ID, a destination node LSR ID, link cost information of an optical layer link, SRLG information, and the like.
  • IP traffic is carried on the core router.
  • the router can implement traffic convergence through statistical multiplexing.
  • core routers face pressure to expand.
  • IP traffic of the core router 50% to 60% of the traffic only needs to be transited without IP layer processing, thus wasting a lot of router resources.
  • This traffic is forwarded by multiple routers and consumes a large number of router ports.
  • IP PCE will fail. happening.
  • OTN Optical Transport Network
  • the IP PCE establishes a correspondence between the IP layer link and an optical layer link according to the path calculation success message, and triggers the source node to establish a path with the destination node.
  • the IP PCE After receiving the optical PCE path calculation success message, the IP PCE sets the corresponding binding interface, that is, establishes the correspondence between the optical layer link and the IP layer link, and finally passes the IGP (Interior Gateway Protocol, The Internal Gateway Protocol) floods this link to the IP PCE.
  • the IP PCE updates the TEDB (Traffic Engineering Database) information through the IGP flooding to determine that the corresponding optical layer link has been established, and then returns the path calculation success information to the source node.
  • the source node After receiving the path calculation success information, the source node establishes a link with the destination node. It should be noted that the source node and the destination node are nodes in the IP layer network.
  • steps 101 to 402 can also be performed in a network architecture with VNTM, as shown in FIG. 1b, in which the IP PCE sends a request for calculating a path in the optical layer to the optical layer PCE through the VNTM.
  • the optical layer PCE returns the optical layer network conflict resource group information to the IP PCE through the VNTM.
  • the IP PCE and the optical layer PCE perform information exchange through the VNTM.
  • the specific implementation method may follow the steps in the foregoing embodiments of the present invention, and the repeated description thereof will not be repeated here.
  • the embodiment of the invention provides a method for calculating a path in a network.
  • the IP PCE first calculates the path from the source node to the destination node in the IP layer network.
  • the optical layer PCE is in the optical layer.
  • the optical layer PCE fails to calculate the path in the optical layer network
  • the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE; the IP PCE recalculates the source node to the destination according to the optical layer network conflicting resource group information.
  • the path to the node is a method for calculating a path in a network.
  • the technical solution of the present invention returns the optical layer network conflict resource group information to the IP PCE of the IP layer network, and the IP PCE recalculates the optical layer network in conflict with the resource group information.
  • the road can ensure the success of the IP layer service calculation and improve the resource utilization of the network when there are enough optical layer resources.
  • An embodiment of the present invention provides a device for calculating a path in a network, as shown in FIG. Set includes:
  • a second calculating unit 73 configured to: when the first calculating unit 71 fails to calculate a path in the IP layer network, the second calculating unit 73 calculates a path in the optical layer network;
  • the first sending unit 72 is configured to: when the second calculating unit 73 fails to calculate a path in the optical layer network, the second calculating unit 73 returns the optical layer network conflicting resource group information to the first calculating unit 71;
  • the first calculating unit 71 is further configured to recalculate a path from the source node to the destination node according to the optical layer network conflicting resource group information.
  • the optical layer network conflicting resource group information returned by the second calculating unit to the first calculating unit includes at least: a source node LSR ID, a destination node LSR ID, and an SRcLG.
  • the device further includes:
  • a recording unit 81 configured to record a duration of the recalculation path, where the calculation fails when the duration of the recalculation path is greater than a first preset value
  • the recording unit 81 is configured to record the number of times of recalculating the path, and when the number of times of recalculating the path is greater than the second preset value, the calculation fails. .
  • the device further includes:
  • a second sending unit 91 configured to return a path calculation success message to the first calculating unit 71 if the second calculating unit 73 calculates that the path is successful;
  • the path establishing unit 92 is configured to establish a correspondence between the IP layer link and the optical layer link according to the path calculation success message, and establish a path between the source node and the destination node.
  • the device further includes: VNTM 74
  • the first calculating unit 71 triggers the second calculating unit 72 to calculate a path in the optical layer network by using the VNTM 73;
  • the second computing unit returns the optical layer network conflicting resource group information to the first computing unit by using the VNTM.
  • the embodiment of the invention provides a device for calculating a path in a network.
  • the IP PCE first calculates the path from the source node to the destination node in the IP layer network; when the IP PCE fails to calculate the path in the IP layer network.
  • the optical layer PCE calculates the path in the optical layer network; when the optical layer PCE fails to calculate the path in the optical layer network, the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE; the IP PCE collides resources according to the optical layer network. Group information, recalculate the path from the source node to the destination node.
  • the technical solution of the present invention may fail after the optical layer network fails. Returning the optical layer network conflicting resource group information to the IP PCE of the IP layer network, and recalculating the data by the IP PCE in combination with the optical layer network conflicting resource group information, and ensuring the IP layer service when there are sufficient optical layer resources Calculate the road successfully and improve the resource utilization of the network.
  • a system for path calculation in a network includes at least: a network protocol layer path calculation unit IP PCE 1001, an optical layer PCE 1002;
  • the optical layer PCE 1002 is configured to calculate a path in the optical layer network if the IP PCE 1001 fails to calculate a path in the IP layer network;
  • the optical layer PCE 1002 is further configured to: when the optical layer PCE 1002 fails to calculate a path in the optical layer network, return the optical layer network conflicting resource group information to the IP PCE 1001;
  • the IP PCE 1001 is configured to recalculate a path from the source node to the destination node according to the optical layer network conflicting resource group information.
  • the optical layer network conflicting resource group information returned by the optical layer PCE to the IP PCE includes at least: a source node LSR ID, a destination node LSR ID, and an SRcLG.
  • the number of times of recalculating the path is recorded, and when the number of times of recalculating the path is greater than the second preset value, the calculation fails.
  • the optical layer PCE 1002 is further configured to: when the calculation path is successful, return a path calculation success message to the IP PCE 1001;
  • the IP PCE 1001 is further configured to establish a correspondence between an IP layer link and an optical layer link according to the path calculation success message, and establish a path from the source node to the destination node. path.
  • the system further includes: VNTM 1003;
  • the VNTM 1003 is used by the IP PCE 1001 to trigger the optical layer PCE to calculate a path in the optical layer network;
  • the VNTM 1003 is further used by the optical layer PCE 1002 to return optical layer network conflicting resource group information to the IP PCE 1001.
  • the embodiment of the invention provides a system for calculating a path in a network.
  • the IP PCE first calculates the path from the source node to the destination node in the IP layer network.
  • the optical layer PCE is in the optical layer.
  • the optical layer PCE fails to calculate the path in the optical layer network
  • the optical layer PCE returns the optical layer network conflicting resource group information to the IP PCE; the IP PCE recalculates the source node to the destination according to the optical layer network conflicting resource group information.
  • the path to the node is a system for calculating a path in a network.
  • the technical solution of the present invention may fail after the optical layer network fails. Returning the optical layer network conflicting resource group information to the IP PCE of the IP layer network, and recalculating the data by the IP PCE in combination with the optical layer network conflicting resource group information, and ensuring the IP layer service when there are sufficient optical layer resources Calculate the road successfully and improve the resource utilization of the network.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种网络中路径计算的方法、装置及系统,涉及通信技术领域,能够提高网络的资源利用率。本发明实施例的方法包括:若网络协议层路径计算单元IP PCE在IP层网络计算路径失败时,触发光层PCE在光层网络中计算路径;若所述光层PCE在光层网络计算路径失败时,所述光层PCE向所述IP PCE返回光层网络冲突资源组信息;所述IP PCE根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。本发明适用于网络算路场景中。

Description

一种网络中路径计算的方法、装置及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种网络中路径计算的方法、装置及系统。
背景技术
目前,骨干网中的网络组网,主要包括IP(Internet Protocol,网络之间互连的协议)层和光层跨层组网。上层业务直接由IP网络承载,包括业务封装,多业务汇聚以及业务路由选择。同时,采用光层组网进行数据传输。一般情况下,IP层、光层组网是两张独立的网络,分开由不同运维人员管理,导致运营商在新业务发放或者出现链路故障等情况时,需要IP层、光层网络运维人员进行协调,建立一条新业务需要花费较长时间。当现有的光层网络无法满足IP层网络的业务需求时,则需要新开通一条光路,而开通一条新的光路会耗费相当长的一段时间。当光层网络发生链路故障时,也无法很快定位故障。因此,为解决上述问题,现有技术中提出了VNTM(Virtual Network Topology Manager,虚拟网络拓扑管理器)概念,通过IP层和光层的协同管理,同时结合SDN(Software Defined Network,软件定义网络)网络架构,利用在线自动运维特性,提高新业务的开通效率,加快网络协同恢复,提升整网的利用率。
由于IP层和光层组网中,IP层链路间存在共享光层预留资源的情况,一条光层链路可能同时被多条IP层链路共享。因此,当IP层同时创建多条链路时,由于IP层链路间存在资源共享情况,容易出现算路失败的情况。现有方案进行多条路径计算时,首先由IP PCE(Path Computation Element,路径计算单元)进行一次路径计算,当IP PCE算路失败后,结合光层PCE再进行一次路算,光层PCE再算路失败,则返回失败信息,停止算路。因此,使用现有技术进行算路时容易出现算路失败。即使网络中 还有可用路径时,也会存在无法算出可用路径的情况,从而降低了全网的资源利用率。
发明内容
本发明实施例提供的一种网络算路方法及装置,可提高网络资源利用率。
第一方面,本发明实施例提供一种网络中路径计算的方法,包括:
若网络协议层路径计算单元IP PCE在IP层网络计算路径失败时,触发光层PCE在光层网络中计算路径;
若所述光层PCE在光层网络计算路径失败时,所述光层PCE向所述IP PCE返回光层网络冲突资源组信息;
所述IP PCE根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。
结合第一方面的实现方式,在第一方面第一种可能的实现方式中,所述光层网络冲突资源组信息包括:源节点标记交换路由器身份标识号码LSR ID、目的节点LSR ID、共享资源冲突组信息SRcLG中至少任意一种。
结合第一方面、或第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述重新计算所述源节点到所述目的节点的路径,还包括:
记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
结合第一方面、或第一方面第一种至第二种任一可能的实现方式,在第一方面第三种可能的实现方式中,在触发光层PCE在光层网络中计算路径之后,还包括:
若所述光层PCE计算路径成功时,则向所述IP PCE返回路径计算成功消息;
所述IP PCE根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路径。
结合第一方面、或第一方面第一种至第三种任一可能的实现方式,在 第一方面第四种可能的实现方式中,所述触发光层PCE在光层网络中计算路径,还包括:
所述IP PCE通过虚拟网络拓扑管理器VNTM触发所述光层PCE在光层网络中计算路径;
所述光层PCE通过VNTM向所述IP PCE返回光层网络冲突资源组信息。
第二方面,本发明实施例提供了一种网络中路径计算的装置,包括:
第二计算单元,用于若第一计算单元在IP层网络计算路径失败时,所述第二计算单元在光层网络中计算路径;
第一发送单元,用于若所述第二计算单元在光层网络计算路径失败时,所述第二计算单元向所述第一计算单元返回光层网络冲突资源组信息;
所述第一计算单元,还用于根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。
结合第二方面的实现方式,在第二方面第一种可能的实现方式中,所述光层网络冲突资源组信息包括:源节点标记交换路由器身份标识号码LSR ID、目的节点LSR ID、共享资源冲突组信息SRcLG中至少任意一种。
结合第二方面、或第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,还包括:
记录单元,用于记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
所述记录单元,用于记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
结合第二方面、或第二方面第一种至第二种任一可能的实现方式,在第二方面第三种可能的实现方式中,所述装置还包括:
第二发送单元,用于若所述第二计算单元计算路径成功时,则向所述第一计算单元返回路径计算成功消息;
路径建立单元,用于根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路径。
结合第二方面、或第二方面第一种至第三种任一可能的实现方式,在第二方面第四种可能的实现方式中,
所述第一计算单元通过虚拟网络拓扑管理器VNTM触发所述第二计算单元在光层网络中计算路径;
所述第二计算单元通过VNTM向所述第一计算单元返回光层网络冲突资源组信息。
第三方面,本发明实施例提供了一种网络中路径计算的系统,所述系统至少包括:网络协议层路径计算单元IP PCE、光层PCE;
所述光层PCE,用于若网络协议层路径计算单元IP PCE在IP层网络计算路径失败时,在光层网络中计算路径;
所述光层PCE,还用于若所述光层PCE在光层网络计算路径失败时,向所述IP PCE返回光层网络冲突资源组信息;
所述IP PCE,用于根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。
结合第三方面的实现方式,在第三方面第一种可能的实现方式中,所述光层PCE向所述IP PCE返回的光层网络冲突资源组信息至少包括:源节点LSR ID、目的节点LSR ID、SRcLG。
结合第三方面、或第三方面第一种可能的实现方式,在第三方面第二种可能的实现方式中,
记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
结合第三方面、或第三方面第一种至第二种任一可能的实现方式,在第三方面第三种可能的实现方式中,
所述光层PCE,还用于若计算路径成功时,则向所述IP PCE返回路径计算成功消息;
所述IP PCE,还用于根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路径。
结合第三方面、或第三方面第一种至第三种任一可能的实现方式,在第三方面第四种可能的实现方式中,所述系统还包括:虚拟网络拓扑管理器VNTM;
所述VNTM,用于所述IP PCE触发所述光层PCE在光层网络中计算路径;
所述VNTM,还用于所述光层PCE向所述IP PCE返回光层网络冲突资源组信息。
本发明实施例提供一种网络中路径计算的方法、装置及系统,IP PCE先在IP层网络计算源节点到目的节点的路径;当IP PCE在IP层网络计算路径失败时,由光层PCE在光层网络中计算路径;当光层PCE在光层网络计算路径失败时,光层PCE向IP PCE返回光层网络冲突资源组信息;IP PCE根据光层网络冲突资源组信息,重新计算源节点到目的节点的路径。相比与现有技术中只在IP层网络和光层网络进行一次算路,容易出现源节点到目的节点算路失败的方法来说,本发明技术方案在光层网络算路失败后,还会向IP层网络的IP PCE返回光层网络冲突资源组信息,并由IP PCE在结合光层网络冲突资源组信息的情况下重新进行算路,可以在有足够光层资源时,保证IP层业务算路成功,提高网络的资源利用率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1a为本发明实施例提供的一种网络拓扑场景示意图;
图1b为本发明实施例提供的另一种网络拓扑场景示意图;
图2为本发明实施例提供的一种网络算路方法流程图;
图3为本发明实施例提供的一种拓扑示意图;
图4a为本发明实施例提供的一种IP网络与光网络的对应关系示意图;
图4b为本发明实施例提供的另一种IP网络与光网络的对应关系示意图;
图5为本发明实施例提供的另一种网络算路方法流程图;
图6为本发明实施例提供的另一种网络算路方法流程图;
图7为本发明实施例提供的另一种网络算路方法流程图;
图8为本发明实施例提供的一种网络算路装置组成示意图;
图9为本发明实施例提供的另一种网络算路装置组成示意图;
图10为本发明实施例提供的另一种网络算路装置组成示意图;
图11为本发明实施例提供的另一种网络算路装置组成示意图;
图12为本发明实施例提供的一种网络算路系统组成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供了一种网络中路径计算的方法,应用于IP层和光层跨层组网的网络架构中,如图1a所示,包括IP层网络、光层网络、IPPCE、光PCE。其中,光层网络包括光纤、光网络设备等物理资源,为1P层提供静态配置的物理链路资源。IP层网络包括IP链路和多个节点,用于承载上层业务。PCE是网络中专门负责路径计算的功能实体,它可以位于网络中的任何地方,可以集成在网络设备内部,也可以是一个独立的设备。位于IP层的PCE为IP PCE,位于光层的PCE为光PCE。PCE基于已知的网络结构和约束条件,根据已有路径和路径计算请求计算出一条满足约束条件的最佳路径。其中,约束条件包含静态的约束条件,如路由器节点间的距离、带宽、光网络设备的线路容量等,还包括动态的约束条件,如网络故障状态、网络拥塞信息等。
结合图1a所示的网络架构进行说明IP层和光层有各自的PCE,如果要建立IP层从H1到H4的路径,将按照如下流程进行:
步骤1,H1向IP PCE发送从H1到H4的路径计算请求。
步骤2,IP PCE选择H2和H3作为进出光层网络的出入口。
步骤3,IP PCE请求光PCE计算从H2到H3的路径。
步骤4,光PCE向IP PCE返回H2-L1-L2-H3的路径。
步骤5,IP PCE向H1返回H1-H2-L1-L2-H3-H4的路径。
IP PCE和光PCE还可以通过VNTM进行协同管理,如图2b所示。例如,光PCE在光层网络计算路径失败时,光层PCE将光层网络冲突资源组信息反馈给VNTM。由VNTM将光层网络冲突资源组信息发送给IP PCE,IP PCE根据光层网络冲突资源组信息重新进行路径计算。
下面将以图1a对应的网络架构为例详细说明基于图1a的网络架构,本发明方法如何具体实施,如图2所示,包括:
101、源节点向IP PCE发送计算路径请求。
其中,源节点和目的节点之间建立业务连接之前,源节点会向IP PCE发送的计算路径请求,请求IP PCE计算源节点与目的节点之间的连接路径,以便源节点与目的节点建立连接。其中,源节点向IP PCE发送的计算路径请求中包含目的节点的LSR(Label Switching Router,标签交换路由器)ID(Identity,身份标识号),目的节点的LSR ID用于标识目的节点。还可以包含源节点的LSR ID,源节点的LSR ID用于标识源节点。
102、所述IP PCE根据所述计算路径请求,在IP层网络计算所述源节点到目的节点的路径。
其中,如图3所示,该网络中包含R1、R2、R3、R4、R5、R6六个网络节点,如果源节点为R1,此时源节点需要与目的节点R5建立连接,则IP PCE根据源节点发送的计算路径请求,开始计算路径。IP PCE计算出的路径可以是R1至R3至R5,也可以是R1至R4至R5,或者是经过其他中间节点达到R5的路径,在此不一一举例说明。
103、当所述IP PCE在IP层网络计算路径失败时,触发光层PCE在光层网络中计算路径。
其中,如图3所示,IP PCE在IP层网络出现计算路径失败的情况,当同时有两个或者两个以上的业务需要在R1至R2之间建立业务连接时,例如包括业务1和业务2。IP PCE会首先计算出R1至R2的路径为R1至R2。然而,当R1至R2之间只能提供5G的带宽,而业务1就需要5G的带宽进行数据传输时,由于R1至R2之间已经没有剩余带宽,业务2就无法继续使用R1直接至R2的这条路径进行数据传输,因此,对于业务2来说, 当IP PCE在R1至R2之间进行路径计算时,就会出现算路失败的情况。此时,业务2需求建立R1至R2的路径时,触发光层PCE在光层网络中计算由R1至R2的路径。如图3所示,相同标号的链路表示该链路使用相同的光层网络资源。假设现网业务为:业务1:R1至R3,5G;业务2:R1至R6,6G。IP层R1至R3的链路带宽为10G,由于业务1和业务2总共需要占用11G的链路带宽,因此当业务2通过R1至R3至R5至R6这条路径实现R1至R6的连接时,IP层R1至R3这条链路的资源不足,无法同时承载业务1和业务2的带宽使用需求,需要新增底层光路;现网拓扑资源为:同时存在使用相同的底层光路资源的情况,即,R1至R3与R5至R6使用相同的底层光路资源,R1至R4、R3至R5,R4至R6使用相同的底层光路资源。因此,当IP PCE计算业务1路径为R1至R3,业务2路径为R1至R3至R5至R6时,由于业务2也使用了与业务1相同的路径R1至R3,而R1至R3只能提供10G的链路带宽,对于5G的业务1和6G的业务2来说,R1至R3提供的带宽无法同时满足业务1和业务2的需求,则会出现算路失败情况。而如果业务1路径为R1至R3,业务2路径为R1至R2至R4至R6,则可以算路成功。
104、当所述光层PCE在光层网络计算路径失败时,所述光层PCE向所述IP PCE返回光层网络冲突资源组信息。
其中,光层网络冲突资源组信息包含光层网络链路的信息,如带宽、mtu(Maximum Transmission Unit,最大传输单元)、链路代价信息、时延、跳数、SRLG(Shared Risk Link Groups,共享风险链路组)、以及SRcLG等,这样IP PCE在算路时,不仅可以获取路径在底层光路资源占用的带宽,链路代价信息,跳数,SRLG等常规信息外,还可以通过SRcLG信息,了解到路径之间的冲突信息。以图3为例,其中,当业务1通过R1至R3至R5进行数据传输,而业务2通过R1至R4进行业务传输,因为R3与R5和R1与R4之间使用的是相同的光层网络资源,因此R1至R4与R3至R5为共享风险链路组。同时,SRcLG为共享资源冲突组信息,比如光网络的中继或者波长冲突信息。
需要说明是,光层网络算路失败一般是指已有过个这条光路已经承载了多个业务,无法再承载新的业务。每条光层网络链路的信息会随着业务 的变化和发生变化,如图3中的R1至R3,R5至R6使用相同的底层光路,则R1至R3的业务增加时,也会影响R5至R6的业务,会出现带宽降低,时延增高,跳数增加等情况,当这些信息无法满足新业务的需求时,则会导致光层网络算路失败。如图4a所示,在图4a中,上层虚线连接的是IP层网络,下层实线连接的是光层网络,当IP网络中的路由器都剩余一个空闲端口时(如图4a中的黑色方块),则光层链路均可达,如图4a中实线连接部分。如图4b所示,在图4b中,上层虚线连接的是IP层网络,下层实线连接的是光层网络,当IP层网络中的路由器的空闲端口(如图4b中的黑色方块)被占用时(如图4b中带箭头的实线),则如图4b所示的光层链路均不可达。此时就会出现光层PCE算路失败的情况。
105、所述IP PCE根据所述光层网络冲突资源组信息,重新计算所述源节点到所述目的节点的路径。
其中,在IP PCE重新算路的过程中,参考光层PCE返回的冲突资源组信息,避免重复使用关键链路资源。具体重新计算的方法可以为,采用完全分离算法进行计算,比如:现有业务1、业务2需要算路,对业务1在原有的拓扑上计算路径,将业务1建立的路径经过的路由删除掉后形成新的拓扑,对业务2在新的拓扑上计算第二条路径。另一种重新算路的方法还可以为,将业务1计算的路径禁忌,然后再计算业务2的路径。
还需说明的是,在IP PCE考虑光层网络冲突资源组信息进行重新算路的过程中,如果在该信息中反馈的结果是某条链路的带宽相对其他链路的带宽较窄,或者时延过高等信息,则在重新算路的过程中,符合上述情况的链路将不会被作为新的链路进行算路,也就是说根据光层网络冲突资源组信息,当IP PCE重新算路时,会排除一些出现算路失败几率高的路径,从而提高了重新算路成功的概率。
本发明实施例提供了一种网络中路径计算的方法,IP PCE先在IP层网络计算源节点到目的节点的路径;当IP PCE在IP层网络计算路径失败时,由光层PCE在光层网络中计算路径;当光层PCE在光层网络计算路径失败时,光层PCE向IP PCE返回光层网络冲突资源组信息;IP PCE根据光层网络冲突资源组信息,重新计算源节点到目的节点的路径。本发明技术方案在光层网络算路失败后,还会向IP层网络的IP PCE返回光层网络 冲突资源组信息,并由IP PCE在结合光层网络冲突资源组信息的情况下重新进行算路,可以在有足够光层资源时,保证IP层业务算路成功,提高网络的资源利用率。
在本发明提供的另一实施例中,详细描述了所述光层PCE向所述IPPCE返回的光层网络冲突资源组信息内容。所述光层网络冲突资源组信息可以包括:源节点LSR(Label Switching Router,标签交换路由器)ID(Identity,身份标识号)、目的节点LSR ID、SRcLG。
其中,通过源节点LSR ID和目的节点LSR ID可以确定一条或多条从源节点到目的节点的路径。SRcLG中包含在本次算路之前的一次算路时通过的光层中继,或者波长冲突信息,或者两种都包含。除上述信息之外,还可以包括OSNR(Optical Signal Noise Ratio,光信噪比)值。由于IP PCE在重新进行算路是会参考光层PCE返回的冲突资源组信息,所以尽量使IP PCE获得更多的光路资源信息,可以使IP PCE重新算路时避免重复使用关键链路资源,增加IP PCE算路成功的概率。
在本发明提供的另一实施例中,如图5所示,为避免IP PCE无法算路成功时不断反复地计算,出现无限循环的情况,设置了退出条件,在满足所述退出条件后,停止进行算路。该步骤执行步骤105之后,其中,当光层PCE也出现算路失败的时候,会向IP PCE返回冲突资源组信息,使IP PCE根据光层PCE重新进行路算,由于该执行过程之后在算路成功的情况下才会中止,因此在算路过程中一直没有算路成功,则会进入无限循环的过程,占用PCE资源,因此有必要设置一个退出条件,以避免发生上述情况。具体包括:
201a、记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败。
比如:当重新计算路径的持续时间达到1分钟时,还没有算路成功,则再完成当前这次算路后,停止循环,视为该次算路失败,并返回算路失败信息。具体对统计重新计算时长,可以采用计时器来实现。当重新计算完成后,判断计时器记录的时长是否大于第一预设值。
201b、记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
比如:当重新计算次数达到5次时,还没有算路成功,则停止循环,视为该次算路失败,并返回算路失败信息。具体对统计重新计算次数可以采用计数器来实现。每重新计算一次,计数器加1。当重新计算完成后,判断计数器记录的次数是否大于第二预设值。
其中,对于上述两种停止情况的具体数值,可根据实际情况进行设置,本发明实施例对此不做限定。
在本发明提供的另一实施例中,还描述当所述IP PCE计算路径成功之后,在所述IP层网络建立所述源节点和所述目的节点之间的路径的过程,如图6所示,具体包括:
301、当所述IP PCE计算路径成功时,向所述源节点发送建立路径消息,触发所述源节点建立与所述目的节点之间的路径。
其中,具体每条路径需要的信息包括路径属性和IP业务属性,其中,路径属性包括:源节点LSR ID、目的节点LSR ID、tunnel(隧道)ID、带宽(Bps)、VNTM路径类型(业务路径或保护路径)等。IP属性包括:VNTM路径的源节点IP+掩码、目的节点IP+掩码、带宽、mtu、链路代价信息等。
在本发明提供的另一实施例中,还描述了当所述光层PCE计算路径成功之后建立源节点到目标节点的过程,如图7所示,具体包括:
401、若所述光层PCE计算路径成功时,则向所述IP PCE返回路径计算成功消息。
其中,当光层PCE计算路径成功后,会返回路径计算成功消息,该路径计算成功消息中包含具体链路信息。所述具体链路信息为光层物理链路信息,其中至少包括:源节点LSR ID、目的节点LSR ID、光层链路的链路代价信息、SRLG信息等。
需要说明的是,传统的骨干网中,IP流量承载在核心路由器上,当网络流量较小的时候,路由器可以通过统计复用的方式,实现流量的收敛。然而随着网络流量的增长,核心路由器面临扩容的压力。而经过核心路由器的IP流量中,50%至60%的流量只需要进行中转而无需IP层处理,因此浪费了大量路由器资源。该流量经过多次路由器转发,消耗了大量的路由器端口。当没有路由器端口可以使用时,则会出现IP PCE算路失败的 情况。在这种情况下,由于光层使用的OTN(Optical Transport Network,光传送网)端口与IP层使用的路由端口并不冲突,因此,当IP PCE在IP层算路失败后,光PCE可以在光层进行算路。
402、所述IP PCE根据所述路径计算成功消息建立所述IP层链路和光层链路的对应关系,并触发所述源节点建立与所述目的节点之间的路径。
其中,所述IP PCE在接收到光PCE路径计算成功消息之后,会同时设置对应的绑定接口,也就是建立光层链路与IP层链路的对应关系,最后通过IGP(Interior Gateway Protocol,内部网关协议)泛洪此链路给IP PCE。IP PCE通过IGP泛洪更新TEDB(Traffic Engineering Database,流量工程数据库)信息,判断对应创建的光层链路已经建立,再向源节点返回路径计算成功信息。源节点收到路径计算成功信息后,建立与目的节点之间的链路。需要说明的是,源节点和目的节点均为IP层网络中的节点。
需要说明的是,上述步骤101至步骤402还可以执行在有VNTM的网络架构中,如图1b所示,在该网络架构中,IP PCE通过VNTM向光层PCE发送在光层计算路径的请求,光层PCE通过VNTM向IP PCE返回光层网络冲突资源组信息。IP PCE和光层PCE通过VNTM进行信息交互,其具体实现方法可沿用本发明上述实施例中的步骤,在此不做重复说明。
本发明实施例提供了一种网络中路径计算的方法,IP PCE先在IP层网络计算源节点到目的节点的路径;当IP PCE在IP层网络计算路径失败时,由光层PCE在光层网络中计算路径;当光层PCE在光层网络计算路径失败时,光层PCE向IP PCE返回光层网络冲突资源组信息;IP PCE根据光层网络冲突资源组信息,重新计算源节点到目的节点的路径。本发明技术方案在光层网络算路失败后,还会向IP层网络的IP PCE返回光层网络冲突资源组信息,并由IP PCE在结合光层网络冲突资源组信息的情况下重新进行算路,可以在有足够光层资源时,保证IP层业务算路成功,提高网络的资源利用率。
本发明实施例提供了一种网络中路径计算的装置,如图8所示,该装 置包括:
第二计算单元73,用于若第一计算单元71在IP层网络计算路径失败时,所述第二计算单元73在光层网络中计算路径;
第一发送单元72,用于若所述第二计算单元73在光层网络计算路径失败时,所述第二计算单元73向所述第一计算单元71返回光层网络冲突资源组信息;
所述第一计算单元71,还用于根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。
在本发明提供的另一实施例中,所述第二计算单元向所述第一计算单元返回的光层网络冲突资源组信息至少包括:源节点LSR ID、目的节点LSR ID、SRcLG。
在该装置的另一种可选的组成方式中,如图9所示,所述装置还包括:
记录单元81,用于记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
所述记录单元81,用于记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。。
在该装置的另一种可选的组成方式中,如图10所示,所述装置还包括:
第二发送单元91,用于若所述第二计算单元73计算路径成功时,则向所述第一计算单元71返回路径计算成功消息;
路径建立单元92,用于根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路径。
在该装置的另一种可选的组成方式中,如图12所示,所述装置还包括:VNTM 74
所述第一计算单元71通过VNTM 73触发所述第二计算单元72在光层网络中计算路径;
所述第二计算单元通过VNTM向所述第一计算单元返回光层网络冲突资源组信息。
本发明实施例提供了一种网络中路径计算的装置,IP PCE先在IP层网络计算源节点到目的节点的路径;当IP PCE在IP层网络计算路径失败 时,由光层PCE在光层网络中计算路径;当光层PCE在光层网络计算路径失败时,光层PCE向IP PCE返回光层网络冲突资源组信息;IP PCE根据光层网络冲突资源组信息,重新计算源节点到目的节点的路径。相比与现有技术中只在IP层网络和光层网络进行一次算路,容易出现源节点到目的节点算路失败的方法来说,本发明技术方案在光层网络算路失败后,还会向IP层网络的IP PCE返回光层网络冲突资源组信息,并由IP PCE在结合光层网络冲突资源组信息的情况下重新进行算路,可以在有足够光层资源时,保证IP层业务算路成功,提高网络的资源利用率。
在本发的另一实施例中,还提供了一种网络中路径计算的系统,如图12所示,所述系统至少包括:网络协议层路径计算单元IP PCE 1001、光层PCE 1002;
所述光层PCE 1002,用于若IP PCE 1001在IP层网络计算路径失败时,在光层网络中计算路径;
所述光层PCE 1002,还用于若所述光层PCE 1002在光层网络计算路径失败时,向所述IP PCE 1001返回光层网络冲突资源组信息;
所述IP PCE 1001,用于根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。
在本发明的另一实施例中,如图10所示,所述光层PCE向所述IP PCE返回的光层网络冲突资源组信息至少包括:源节点LSR ID、目的节点LSR ID、SRcLG。
在本发明的另一实施例中,如图10所示,
记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
在本发明的另一实施例中,如图10所示,
所述光层PCE 1002,还用于若计算路径成功时,则向所述IP PCE 1001返回路径计算成功消息;
所述IP PCE 1001,还用于根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路 径。
在本发明的另一实施例中,如图11所示,所述系统还包括:VNTM 1003;
所述VNTM 1003,用于所述IP PCE 1001触发所述光层PCE在光层网络中计算路径;
所述VNTM 1003,还用于所述光层PCE 1002向所述IP PCE 1001返回光层网络冲突资源组信息。
本发明实施例提供了一种网络中路径计算的系统,IP PCE先在IP层网络计算源节点到目的节点的路径;当IP PCE在IP层网络计算路径失败时,由光层PCE在光层网络中计算路径;当光层PCE在光层网络计算路径失败时,光层PCE向IP PCE返回光层网络冲突资源组信息;IP PCE根据光层网络冲突资源组信息,重新计算源节点到目的节点的路径。相比与现有技术中只在IP层网络和光层网络进行一次算路,容易出现源节点到目的节点算路失败的方法来说,本发明技术方案在光层网络算路失败后,还会向IP层网络的IP PCE返回光层网络冲突资源组信息,并由IP PCE在结合光层网络冲突资源组信息的情况下重新进行算路,可以在有足够光层资源时,保证IP层业务算路成功,提高网络的资源利用率。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可 轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (15)

  1. 一种网络中路径计算的方法,其特征在于,包括:
    若网络协议层路径计算单元IP PCE在IP层网络计算路径失败时,触发光层PCE在光层网络中计算路径;
    若所述光层PCE在光层网络计算路径失败时,所述光层PCE向所述IP PCE返回光层网络冲突资源组信息;
    所述IP PCE根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。
  2. 根据权利要求1所述的方法,其特征在于,所述光层网络冲突资源组信息包括:源节点标记交换路由器身份标识号码LSR ID、目的节点LSR ID、共享资源冲突组信息SRcLG中至少任意一种。
  3. 根据权利要求1或2所述的方法,其特征在于,所述重新计算所述源节点到所述目的节点的路径,还包括:
    记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
    记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
  4. 根据权利要求1所述的方法,其特征在于,在触发光层PCE在光层网络中计算路径之后,还包括:
    若所述光层PCE计算路径成功时,则向所述IP PCE返回路径计算成功消息;
    所述IP PCE根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路径。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述触发光层PCE在光层网络中计算路径,还包括:
    所述IP PCE通过虚拟网络拓扑管理器VNTM触发所述光层PCE在光层网络中计算路径;
    所述光层PCE通过VNTM向所述IP PCE返回光层网络冲突资源组信息。
  6. 一种网络中路径计算的装置,其特征在于,包括:
    第二计算单元,用于若第一计算单元在IP层网络计算路径失败时,所 述第二计算单元在光层网络中计算路径;
    第一发送单元,用于若所述第二计算单元在光层网络计算路径失败时,所述第二计算单元向所述第一计算单元返回光层网络冲突资源组信息;
    所述第一计算单元,还用于根据所述光层网络冲突资源组信息,重新计算从源节点到目的节点的路径。
  7. 根据权利要求6所述的装置,其特征在于,所述光层网络冲突资源组信息包括:源节点标记交换路由器身份标识号码LSR ID、目的节点LSR ID、共享资源冲突组信息SRcLG中至少任意一种。
  8. 根据权利要求6或7所述的装置,其特征在于,还包括:
    记录单元,用于记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
    所述记录单元,用于记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
  9. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    第二发送单元,用于若所述第二计算单元计算路径成功时,则向所述第一计算单元返回路径计算成功消息;
    路径建立单元,用于根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路径。
  10. 根据权利要求6至9任意一种所述的装置,其特征在于,还包括:
    所述第一计算单元通过虚拟网络拓扑管理器VNTM触发所述第二计算单元在光层网络中计算路径;
    所述第二计算单元通过VNTM向所述第一计算单元返回光层网络冲突资源组信息。
  11. 一种网络中路径计算的系统,其特征在于,所述系统至少包括:网络协议层路径计算单元IP PCE、光层PCE;
    所述光层PCE,用于若网络协议层路径计算单元IP PCE在IP层网络计算路径失败时,在光层网络中计算路径;
    所述光层PCE,还用于若所述光层PCE在光层网络计算路径失败时,向所述IP PCE返回光层网络冲突资源组信息;
    所述IP PCE,用于根据所述光层网络冲突资源组信息,重新计算从源 节点到目的节点的路径。
  12. 根据权利要求11所述的系统,其特征在于,所述光层PCE向所述IP PCE返回的光层网络冲突资源组信息至少包括:源节点LSR ID、目的节点LSR ID、SRcLG。
  13. 根据权利要求12所述的系统,其特征在于,
    记录所述重新计算路径的持续时间,当所述重新计算路径的持续时间大于第一预设值时,算路失败;或者,
    记录所述重新计算路径的次数,当所述重新计算路径的次数大于第二预设值时,算路失败。
  14. 根据权利要求11所述的系统,其特征在于,
    所述光层PCE,还用于若计算路径成功时,则向所述IP PCE返回路径计算成功消息;
    所述IP PCE,还用于根据所述路径计算成功消息建立IP层链路和光层链路的对应关系,并建立从所述源节点至所述目的节点之间的路径。
  15. 根据权利要求11所述的系统,其特征在于,所述系统还包括:虚拟网络拓扑管理器VNTM;
    所述VNTM,用于所述IP PCE触发所述光层PCE在光层网络中计算路径;
    所述VNTM,还用于所述光层PCE向所述IP PCE返回光层网络冲突资源组信息。
PCT/CN2015/083290 2015-07-03 2015-07-03 一种网络中路径计算的方法、装置及系统 WO2017004747A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/083290 WO2017004747A1 (zh) 2015-07-03 2015-07-03 一种网络中路径计算的方法、装置及系统
CN201580080149.8A CN107615719B (zh) 2015-07-03 2015-07-03 一种网络中路径计算的方法、装置及系统
EP15897403.0A EP3249858B1 (en) 2015-07-03 2015-07-03 Network path computation method, device and system
ES15897403T ES2720277T3 (es) 2015-07-03 2015-07-03 Método, dispositivo y sistema para cálculo de ruta en red

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083290 WO2017004747A1 (zh) 2015-07-03 2015-07-03 一种网络中路径计算的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017004747A1 true WO2017004747A1 (zh) 2017-01-12

Family

ID=57684621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083290 WO2017004747A1 (zh) 2015-07-03 2015-07-03 一种网络中路径计算的方法、装置及系统

Country Status (4)

Country Link
EP (1) EP3249858B1 (zh)
CN (1) CN107615719B (zh)
ES (1) ES2720277T3 (zh)
WO (1) WO2017004747A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128819A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 一种用于获取跨域链路的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001200A (zh) * 2006-01-13 2007-07-18 华为技术有限公司 一种区域间流量工程全网计算方法及系统
CN101502063A (zh) * 2006-10-16 2009-08-05 华为技术有限公司 多层网络中分布式的基于pce的系统和结构
CN101610432A (zh) * 2009-07-10 2009-12-23 北京邮电大学 一种支持群计算单元协作路径计算的信令实现方法
CN102469009A (zh) * 2010-11-09 2012-05-23 中兴通讯股份有限公司 有状态路径计算单元的处理方法及有状态路径计算单元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002328280A1 (en) * 2002-05-17 2004-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic routing in packet-switching multi-layer communications networks
CN102136940B (zh) * 2010-12-31 2013-10-09 华为技术有限公司 一种网络恢复方法和装置
US9258238B2 (en) * 2013-08-30 2016-02-09 Juniper Networks, Inc. Dynamic end-to-end network path setup across multiple network layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001200A (zh) * 2006-01-13 2007-07-18 华为技术有限公司 一种区域间流量工程全网计算方法及系统
CN101502063A (zh) * 2006-10-16 2009-08-05 华为技术有限公司 多层网络中分布式的基于pce的系统和结构
CN101610432A (zh) * 2009-07-10 2009-12-23 北京邮电大学 一种支持群计算单元协作路径计算的信令实现方法
CN102469009A (zh) * 2010-11-09 2012-05-23 中兴通讯股份有限公司 有状态路径计算单元的处理方法及有状态路径计算单元

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DHODY, D. ET AL.: "Packet Optical Integration (POI) Use Cases for Abstraction and Control of Transport Networks (ACTN)", 16 April 2015 (2015-04-16), pages 8, XP015105850 *
OKI, E. ET AL.: "Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering", NETWORK WORKING GROUP, 30 September 2009 (2009-09-30), pages 10 - 12, XP055108266 *
See also references of EP3249858A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128819A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 一种用于获取跨域链路的方法及装置
US11516110B2 (en) 2017-12-29 2022-11-29 Huawei Technologies Co., Ltd. Method and apparatus for obtaining cross-domain link

Also Published As

Publication number Publication date
CN107615719B (zh) 2020-07-28
CN107615719A (zh) 2018-01-19
ES2720277T3 (es) 2019-07-19
EP3249858A1 (en) 2017-11-29
EP3249858B1 (en) 2019-02-06
EP3249858A4 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US10516478B2 (en) Controller based path estimation and path provisioning using optical impairment data
JP5200170B2 (ja) トラフィック接続および関連監視接続を確立する方法
US8199658B2 (en) OAM tools for meshed tunnels in a computer network
CN100512209C (zh) 分布式路径计算中解决资源冲突的方法
US8750310B2 (en) Signaling co-routed and non co-routed LSPs of a bidirectional packet TE tunnel
US9210075B2 (en) Method and apparatus for managing end-to-end consistency of bi-directional MPLS-TP tunnels via in-band communication channel (G-ACH) protocol
WO2007143904A1 (fr) Procédé et système de calcul de routes vers des domaines multiples
EP2689563B1 (en) Use of sub path maintenance elements (spmes) for multiprotocol label switching (mpls) shared mesh protection
CN111555982B (zh) 一种基于IPv6扩展头的报文智能选路的方法和系统
JP5204308B2 (ja) トラフィック接続および関連監視接続を確立する方法
CN103384220B (zh) 一种流量工程标签交换路径的建立方法、设备和系统
WO2016078363A1 (zh) 一种隧道约束信息的发送、接收方法及装置
WO2017004747A1 (zh) 一种网络中路径计算的方法、装置及系统
Suhaimy et al. Analysis of MPLS-TP network for different applications
Ajiardiawan et al. Performance analysis of segment routing on MPLS L3VPN using PNETLAB
WO2015184862A1 (zh) 一种隧道重优化算路的方法及装置
WO2023103504A1 (zh) 链路检测方法、公网节点和存储介质
Xia Research on signaling mechanism based on convergence network
Adami et al. Design, development and validation of an NS2 module for dynamic LSP rerouting
WO2016177186A1 (zh) 带宽保护的方法及装置
Stojanovic et al. A hybrid method for signalling transport in GMPLS control plane
CN118827515A (zh) 传输方法、装置、设备及可读存储介质
Chaieb et al. Generic architecture for MPLS-TE routing
Nemtur Failure recovery techniques over an MPLS network using OPNET
Bonaventure Information Society Technologies (IST) Program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897403

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015897403

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE