WO2019128819A1 - 一种用于获取跨域链路的方法及装置 - Google Patents

一种用于获取跨域链路的方法及装置 Download PDF

Info

Publication number
WO2019128819A1
WO2019128819A1 PCT/CN2018/122207 CN2018122207W WO2019128819A1 WO 2019128819 A1 WO2019128819 A1 WO 2019128819A1 CN 2018122207 W CN2018122207 W CN 2018122207W WO 2019128819 A1 WO2019128819 A1 WO 2019128819A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
message
forwarding device
identifier
optical
Prior art date
Application number
PCT/CN2018/122207
Other languages
English (en)
French (fr)
Inventor
夏崇镨
黄石井
赵中超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18897556.9A priority Critical patent/EP3723328B1/en
Publication of WO2019128819A1 publication Critical patent/WO2019128819A1/zh
Priority to US16/910,204 priority patent/US11516110B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for acquiring a cross-domain link.
  • the Internet Protocol (IP) backbone network usually includes an IP domain composed of routers and an optical domain composed of wavelength division devices (also called optical network elements).
  • IP Internet Protocol
  • the deployed services need to be processed by routers in the IP domain and WDM devices in the optical domain.
  • the controller in the IP domain is only able to obtain the first link.
  • the first link is a link in the IP domain related to the deployed service.
  • the controller in the optical domain is only able to obtain the second link.
  • the second link is a link in the optical domain related to the deployed service.
  • the first link and the second link need to be associated by using an inter-domain link between the IP domain and the optical domain.
  • the normal IP domain and the optical domain are sub-domain planning and independent operation and maintenance.
  • the link between the IP domain and the optical domain is obtained through pre-planning, and the information of the planned link is configured in the IP domain.
  • the router and the corresponding optical network element in the optical domain have problems of low resource utilization efficiency and high operation and maintenance cost in planning, deployment, and operation and maintenance.
  • the configuration efficiency is too low.
  • the embodiment of the present invention provides a method and an apparatus for acquiring a cross-domain link, which helps improve service configuration efficiency according to the acquired cross-domain link.
  • the first aspect provides a method for acquiring a cross-domain link, where the method includes: the control device sends a first message to a forwarding device in an IP domain, where the first message is used to indicate that the forwarding device searches a device adjacent to the forwarding device in an optical domain; the control device receives a second message from an optical network element in the optical domain, the second message including a first identifier, a second identifier, and the a media access control (MAC) address of the forwarding device, where the first identifier is used to identify the optical network element, and the second identifier is used to identify that the optical network element communicates with the forwarding device
  • the optical network element is a device adjacent to the forwarding device in the optical domain; the control device obtains the location according to the first identifier, the second identifier, and a MAC address of the forwarding device.
  • a cross-domain link between the forwarding device and the optical network element includes: the control device sends a first message to a forwarding device in an IP domain,
  • the first control device may search for the device adjacent to the forwarding device of the IP domain in the optical domain by using the forwarding device that triggers the IP domain, and determine the forwarding device of the optical network element and the IP domain in the optical domain. There is a connection relationship.
  • the first control device can learn the cross-domain link between the optical network element in the optical domain and the forwarding device in the IP domain by using the foregoing method. In this way, in the process of configuring the inter-domain service, it is not necessary to manually plan and configure the cross-domain link, which helps improve the efficiency of configuring the cross-domain service.
  • the control device obtains, according to the first identifier, the second identifier, and a MAC address of the forwarding device, a cross-domain link between the forwarding device and the optical network element, including
  • the control device obtains a correspondence according to the first identifier, the second identifier, and the MAC address of the forwarding device, where the correspondence is used to indicate a cross between the forwarding device and the optical network element.
  • the domain link, the correspondence includes the first identifier, the second identifier, and a MAC address of the forwarding device.
  • a second aspect provides a method for acquiring a cross-domain link, the method comprising: a forwarding device in an IP domain receiving a first message sent by a control device for acquiring a cross-domain link, the first The message is used to indicate that the forwarding device searches for a device that is adjacent to the forwarding device in the optical domain; the forwarding device generates a second message according to the first message, where the second message includes the forwarding device a MAC address, the second message is used to find a device adjacent to the forwarding device in an optical domain; and the forwarding device broadcasts the second message to the optical domain.
  • the forwarding device in the IP domain may broadcast the second message to the optical domain under the trigger of the control device for acquiring the cross-domain link to automatically search the optical domain and the IP domain. Forward the device adjacent to the device. In this way, in the process of configuring the cross-domain service, it is not necessary to manually plan and configure the cross-domain link, which helps improve the efficiency of the configuration across services.
  • the second message may be a Link Layer Discovery Protocol (LLDP) message, a Neighbor Discovery Protocol (NDP) message, or a Network Topology Discovery Protocol. , NTDP) message.
  • LLDP Link Layer Discovery Protocol
  • NDP Neighbor Discovery Protocol
  • NTDP Network Topology Discovery Protocol
  • the second message may further include an identifier of the forwarding device of the IP domain.
  • a third aspect provides a method for acquiring a cross-domain link, where the method includes: an optical network element in an optical domain receives a first message sent by a forwarding device in an IP domain, where the first message includes The MAC address of the forwarding device, the first message is used to search for a device adjacent to the forwarding device in the optical domain, and the optical network element generates a second message according to the first message.
  • the second message includes a first identifier and a second identifier, where the first identifier is used to identify the optical network element, and the second identifier is used to identify a port on the optical network element that communicates with the forwarding device.
  • the optical network element sends the second message to a control device for acquiring a cross-domain link.
  • the forwarding device in the optical domain may send a second message to the control device for acquiring the cross-domain link after receiving the first message sent by the forwarding device of the IP domain, so that the control device can
  • the second message learns a cross-domain link between the forwarding device in the IP domain and the forwarding device in the optical domain. In this way, in the process of configuring the cross-domain service, it is not necessary to manually plan and configure the cross-domain link, which helps improve the efficiency of the configuration across services.
  • the first message is an LLDP message, an NDP message, or an NTDP message.
  • a fourth aspect provides a control device for acquiring a cross-domain link
  • the control device includes: a sending module, configured to send a first message to a forwarding device in an IP domain, where the first message is used to indicate The forwarding device searches for a device in the optical domain that is adjacent to the forwarding device in the IP domain, and the receiving module is configured to receive a second message from the optical network element in the optical domain, where the second message includes a first identifier, a second identifier, and a MAC address of the forwarding device in the IP domain, where the first identifier is used to identify the optical network element, and the second identifier is used to identify the optical network element a port that is forwarded by the forwarding device, where the optical network element is a device that is adjacent to the forwarding device in the optical domain, and an obtaining module, configured to be used according to the first identifier, the second identifier, and the forwarding device A MAC address is obtained by obtaining an inter-domain link between the optical network element and the forwarding
  • control device for acquiring a cross-domain link may further include a module for implementing the method or the step provided by any of the foregoing possible implementation manners of the first aspect.
  • the fifth aspect provides a forwarding device in an IP domain, where the forwarding device includes: a receiving module, configured to receive a first message sent by a control device for acquiring a cross-domain link, where a message is used to indicate that the forwarding device in the IP domain searches for a device that is adjacent to the forwarding device in the IP domain in the optical domain; and a generating module, configured to generate a second message according to the first message, where The second message includes a MAC address of the forwarding device in the IP domain, the second message is used to search for a device adjacent to the forwarding device in the IP domain in the optical domain, and a sending module is used to The optical domain broadcast transmits the second message.
  • a receiving module configured to receive a first message sent by a control device for acquiring a cross-domain link, where a message is used to indicate that the forwarding device in the IP domain searches for a device that is adjacent to the forwarding device in the IP domain in the optical domain
  • a generating module configured to generate a second message according
  • the forwarding device of the IP domain may further include a module for implementing the method or the step provided by any of the foregoing possible implementation manners of the second aspect.
  • the sixth aspect provides a forwarding device in the optical domain, where the forwarding device includes: a receiving module, configured to receive a first message that is sent by a forwarding device in an IP domain, where the first message includes a MAC address of the forwarding device in the IP domain, the first message is used to search for a device adjacent to the forwarding device in the IP domain in the optical domain, and a generating module is configured to use, according to the first a message, the second message is generated, the second message includes a first identifier and a second identifier, where the first identifier is used to identify a forwarding device in the optical domain, and the second identifier is used to identify the optical domain a port on the forwarding device that communicates with the forwarding device in the IP domain; and a sending module, configured to send the second message to the control device for acquiring the cross-domain link.
  • a receiving module configured to receive a first message that is sent by a forwarding device in an IP domain, where the first message includes a MAC address of the
  • the forwarding device of the optical domain may further include a module for implementing the method or the step provided by any of the foregoing possible implementation manners of the third aspect.
  • a network device comprising a processor and a memory, wherein the memory stores computer program instructions, and when the processor executes the computer program instructions, implementing any one of the first aspect to the third aspect A possible implementation of the method provided.
  • a computer storage medium stored with computer program instructions that, when executed by a network device, implement a method as provided by any of the possible implementations of the first to third aspects.
  • FIG. 1 is a schematic diagram of a network scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for acquiring a cross-domain link according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic flowchart of a method for acquiring a cross-domain link according to Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a control device for acquiring a cross-domain link according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a forwarding device in an IP domain according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a forwarding device in an optical domain according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a control device for acquiring a cross-domain link according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a forwarding device in an IP domain according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a forwarding device in an optical domain according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network scenario provided by an embodiment of the present application.
  • the scenario shown in Figure 1 is a network scenario in which an IP domain and an optical domain are combined.
  • R1 is the first forwarding device in the IP domain.
  • R1 can be the starting point of the first link.
  • R2 is the second forwarding device in the IP domain.
  • R2 may be the end of the first link.
  • the first link is identified by link 1 in FIG.
  • the first link is a link in an IP domain.
  • N1 is the first optical network element in the optical domain.
  • N2 is the second optical network element in the optical domain.
  • N3 is the third optical network element in the optical domain.
  • the optical network element in this embodiment may be specifically a device with a forwarding function in the optical domain.
  • N1 is the starting point of the second link.
  • N3 is the end point of the second link and is the starting point of the third link.
  • N2 is the end point of the third link.
  • the second link is identified by link 2 in FIG.
  • the third link is identified by link 3 in FIG.
  • the second link and the third link are links in the optical domain.
  • a link in the optical domain consisting of the second link and the third link carries the first link in the IP domain mapped to a link in the optical domain.
  • the mapping relationship between the link in the optical domain and the first link in the IP domain may be a correspondence between a link in the optical domain and a first link in the IP domain.
  • the link between R1 and N1 is a cross-domain link.
  • the link between R2 and N2 is a cross-domain link.
  • the cross-domain link helps complete cross-domain services.
  • the cross-domain service may be a service in an inter-IP domain and an optical domain, that is, an IP domain and an optical domain cooperate to complete a certain service.
  • C1, C2, and C3 in Figure 1 can be used to identify separate control devices.
  • C1 is used to manage and control C2 and C3.
  • C1 is used to acquire cross-domain links.
  • C2 is used to manage and control forwarding devices in the IP domain.
  • the forwarding device in the IP domain in this embodiment may be a router, a Layer 3 switch, or a high layer switch.
  • C3 is used to manage and control optical network elements in the optical domain.
  • C2 and C3 cannot communicate, and C2 cannot communicate with switches in the optical domain.
  • C1, C2, and C3 cannot communicate with forwarding devices in the IP domain.
  • C1, C2, and C3 can be integrated into one control device or control module.
  • the integrated control device or control module can interact with the optical network element in the optical domain and the forwarding device in the IP domain to implement management and control of the optical network element and the forwarding device in the IP domain.
  • the control device or the control module may be a network management device or a controller under a software-defined networking (SDN) architecture.
  • SDN software-defined networking
  • FIG. 2 is a schematic flowchart of a method for acquiring a cross-domain link according to Embodiment 1 of the present application.
  • the first control device in FIG. 2 is C1 in FIG.
  • the second control device in FIG. 2 is C2 in FIG.
  • the third control device in FIG. 2 is C3 in FIG.
  • a method for acquiring a cross-domain link provided in Embodiment 1 of the present application is described below with reference to FIG. 1 and FIG.
  • the first control device sends a first message to the second control device, where the first message is used to indicate that the forwarding device in the IP domain searches for a device in the optical domain that is adjacent to the forwarding device in the IP domain.
  • the first control device is configured to acquire a cross-domain link.
  • the cross-domain link helps to complete services that require IP domain and optical domain coordination.
  • the second control device is a control device in the IP domain.
  • the first message may follow a representation state transfer configuration (restconf) protocol.
  • the first control device is capable of communicating with the second control device and is capable of managing and controlling the second control device.
  • the device adjacent to the forwarding device in the IP domain in the optical domain may be a device capable of communicating with and adjacent to the forwarding device in the IP domain in the optical domain.
  • the device in the optical domain that is adjacent to the forwarding device in the IP domain may be a device that is physically connected to the forwarding device in the IP domain.
  • C1 sends the first message to C2.
  • C2 sends the first message to its managed R1 to instruct R1 to look up devices that are adjacent to R1 in the optical domain.
  • C2 sends the second message to its managed R2 to instruct R2 to look up devices that are adjacent to R2 in the optical domain.
  • the forwarding devices managed by C2 include R1 and R2.
  • the second control device sends the first message to the first forwarding device.
  • the second control The device does not need to perform packet format conversion, and directly sends the first message from the first control device to the first forwarding device.
  • a network configuration protocol (netconf) is used between the second control device and the forwarding device managed by the second control device.
  • the second control device may encapsulate and send the received first message according to a communication protocol between the second control device and the managed forwarding device.
  • C2 may send the first message to its managed forwarding device, such as R1 and R2 in FIG.
  • the first forwarding device generates a second message according to the first message, where the second message includes a Media Access Control (MAC) address of the first forwarding device, and the second The message is used to find a device adjacent to the first forwarding device in the optical domain.
  • MAC Media Access Control
  • the second message may be a Link Layer Discovery Protocol (LLDP) message, a Neighbor Discovery Protocol (NDP) message, or a Network Topology Discovery Protocol (NTDP) message.
  • the first forwarding device After receiving the first message, the first forwarding device generates the second message according to the indication of the first message.
  • the MAC address of the first forwarding device may be used to identify a port on the first forwarding device that sends the second message.
  • the second message may further include an identifier of the first forwarding device and/or a port identifier of the first forwarding device.
  • the port identifier of the first forwarding device may be identifier information different from the MAC address of the first forwarding device. In the scenario shown in FIG.
  • R1 generates a first neighbor discovery message according to the first message sent by C2.
  • the first neighbor discovery message includes a MAC address of R1.
  • the MAC address of R1 is used to identify the port on which R1 sends the first neighbor discovery message.
  • R2 generates a second neighbor discovery message according to the first message sent by C2.
  • the second neighbor discovery message includes a MAC address of R2.
  • the MAC address of R2 is used to identify the port on which R2 sends the second neighbor discovery message.
  • the first forwarding device broadcasts the second message to the optical domain.
  • the first forwarding device may broadcast and send the second message to the optical domain by using a port identified by the first forwarding device.
  • R1 broadcasts the first neighbor discovery message through the port identified by the MAC address of R1.
  • the optical network element that is physically connected to R1 in the optical domain can receive the first neighbor discovery message sent by the R1 broadcast.
  • R2 broadcasts and sends the second neighbor discovery message through the port identified by the MAC address of R2.
  • the optical network element that is physically connected to R2 in the optical domain can receive the second neighbor discovery message sent by the R2 broadcast.
  • the first optical network element After receiving the second message, the first optical network element generates a third message, where the third message includes a first identifier and a second identifier, where the first identifier is used to identify the first optical network element.
  • the second identifier is used to identify a port on the first optical network element that communicates with the first forwarding device.
  • the first optical network element obtains the second identifier after receiving the second message.
  • the second identifier may be a combination of a shelf number, a slot number, and a port number. Or the second identifier may be other forms of identifiers, which are not specifically limited herein.
  • the port on the first optical network element that can communicate with the first forwarding device may be a service port on the tributary board of the first optical network element.
  • the third message generated by the first optical network element is consistent with the communication protocol between the first optical network element and the third control device. In the scenario shown in Figure 1, the first neighbor discovery message that R1 broadcasts to the optical domain broadcast is only received by the optical network element that is physically connected to R1. N1 receives the first neighbor discovery message sent by the R1 broadcast.
  • N1 obtains the MAC address of R1 included in the first neighbor discovery message or the first neighbor discovery message. N1 also obtains the identity of N1 and the identity of the port that received the first neighbor discovery message.
  • the second neighbor discovery message sent by R2 to the optical domain broadcast is only received by the optical network element that is physically connected to R2.
  • N2 obtains the MAC address of R2 included in the second neighbor discovery message or the second neighbor discovery message. N2 also obtains the identity of N2 and the identity of the port that received the second neighbor discovery message.
  • the first optical network element sends the third message to a third control device.
  • the third message can be sent according to the netconf.
  • N1 may send the first neighbor discovery message, the identifier of N1, and the identifier of the port that receives the first neighbor discovery message to C3.
  • N1 may send the MAC address of R1, the identifier of N1, and the identifier of the port that received the first neighbor discovery message to C3.
  • N2 may send the second neighbor discovery message, the identifier of N2, and the identifier of the port that receives the second neighbor discovery message to C3.
  • N2 may send the MAC address of R2, the identifier of N2, and the identifier of the port that receives the second neighbor discovery message to C3.
  • S205 and S206 may also be replaced by the third control device listening to the port of the first optical network element, and obtaining the first identifier, the second identifier, and the second message.
  • S205 and S206 may be replaced by the third control device listening to the port of the first optical network element, and obtaining the first identifier, the second identifier, and a MAC address of the first forwarding device.
  • the third control device sends the third message to the first control device.
  • the third control device may send the third message according to the restconf protocol.
  • C3 sends the MAC address of R1 obtained from N1, the identifier of N1, and the identifier of the port that received the first neighbor discovery message to C1.
  • C3 sends the MAC address of R2, the identifier of N2, and the identifier of the port that received the second neighbor discovery message to C1.
  • the first control device obtains a cross-domain between the first forwarding device and the first optical network element according to the MAC address, the first identifier, and the second identifier of the first forwarding device. link.
  • the first control device obtains a correspondence according to the MAC address, the first identifier, and the second identifier of the first forwarding device.
  • the corresponding relationship is used to indicate a cross-domain link between the first forwarding device and the first optical network element.
  • the correspondence includes a MAC address of the first forwarding device, the first identifier, and the second identifier.
  • C1 can know that there is a cross-domain link between N1 and R1 according to the received parameter from C3, and there is a cross-domain link between N2 and R2.
  • C1 obtains a first correspondence according to parameters from C3.
  • the first correspondence includes a MAC address of R1, an identifier of N1, and an identifier of a port on which the first neighbor discovery message is received on N1.
  • the first correspondence is used to represent a cross-domain link between R1 and N1.
  • C1 obtains a second correspondence according to parameters from C3.
  • the second correspondence includes the MAC address of R2, the identifier of N2, and the identifier of the port on which the second neighbor discovery message is received on N2.
  • the second correspondence is used to represent a cross-domain link between R2 and N2.
  • the first control device may send a third message to the optical domain by triggering the first forwarding device to determine that the first optical network element has a connection relationship with the first forwarding device in the optical domain.
  • the first control device can learn the cross-domain link between the optical network element in the optical domain and the forwarding device in the IP domain, such as the identifier of the optical network element, the identifier of the port of the optical network element, and the IP address. The ID of the port of the forwarding device in the domain.
  • the first control device can obtain the inter-domain link between the IP domain and the optical domain by using the method in the first embodiment, without manual planning and configuration, which helps to improve the configuration span. The efficiency of the domain business.
  • FIG. 3 is a schematic flowchart of a method for acquiring a cross-domain link according to Embodiment 2 of the present application.
  • the first control device in FIG. 3 is a device in which C1, C2, and C3 in FIG. 1 are integrated.
  • a method for acquiring a cross-domain link provided in Embodiment 2 of the present application is described below with reference to FIG. 1 and FIG.
  • the first control device sends a first message to the first forwarding device, where the first message is used to instruct the first forwarding device to search for a device that is adjacent to the first forwarding device in an optical domain.
  • the first control device in the second embodiment has the functions of the first control device, the second control device, and the third control device in the first embodiment.
  • the netconf communication protocol is adopted between the first control device and the forwarding device in the IP domain managed by the first control device.
  • the first forwarding device generates a second message according to the first message, where the second message includes a MAC address of the first forwarding device, and the second message is used to search for a location in the optical domain.
  • a device adjacent to the first forwarding device is adjacent to the first forwarding device.
  • the second message may be an LLDP message, an NDP message, or an NTDP message.
  • the method for the first forwarding device to generate the second message refer to S203 in Embodiment 1.
  • the first forwarding device broadcasts the second message to the optical domain.
  • the first optical network element after receiving the second message, the first optical network element generates a third message, where the third message includes a first identifier and a second identifier, where the first identifier is used to identify the first optical network element.
  • the second identifier is used to identify a port on the first optical network element that communicates with the first forwarding device.
  • the first optical network element sends the third message to the first control device.
  • S304 and S305 may also be replaced by the third control device listening to the port of the first optical network element, and obtaining the first identifier, the second identifier, and the second message.
  • S304 and S305 may be replaced by the first control device listening to the port of the first optical network element, and obtaining the first identifier, the second identifier, and a MAC address of the first forwarding device.
  • the first control device obtains a cross-domain chain between the first forwarding device and the first optical network element according to the MAC, the first identifier, and the second identifier of the first forwarding device. road.
  • the first control device can separately manage the optical network element in the optical domain and the forwarding device in the IP domain.
  • the first control device can directly trigger the first forwarding device to broadcast a second message to the optical domain, and can learn the cross-domain link between the optical network element in the optical domain and the forwarding device in the IP domain, such as an optical network element.
  • the identifier of the port of the optical network element and the port of the forwarding device in the IP domain is a process of configuring the inter-domain service.
  • the first control device can obtain the inter-domain link between the IP domain and the optical domain by using the method in the second embodiment, without manual planning and configuration, which helps to improve the configuration span. The efficiency of the domain business.
  • FIG. 4 is a schematic structural diagram of a control device for acquiring a cross-domain link according to an embodiment of the present disclosure.
  • the control device may be the first control device in the second embodiment, or may be the device after the first control device, the second control device, and the third control device in the first embodiment are integrated.
  • the control device may implement the functions of the device after the integration of the first control device, the second control device, and the third control device in the first embodiment, or the control device may implement the functions of the first control device in the second embodiment.
  • the control device may also be a device after integration of C1, C2 and C3 in FIG. The control device provided in the embodiment of the present application will be described below with reference to FIG. 4 .
  • the control device for acquiring the cross-domain link includes: a sending module 401, a receiving module 402, and an obtaining module 403.
  • the sending module 401 is configured to send a first message to a forwarding device in the IP domain, where the first message is used to indicate that the forwarding device searches for a device in the optical domain that is adjacent to the forwarding device in the IP domain.
  • the receiving module 402 is configured to receive a second message from an optical network element in the optical domain, where the second message includes a first identifier, a second identifier, and a MAC address of a forwarding device in the IP domain, where The first identifier is used to identify the optical network element, and the second identifier is used to identify a port on the optical network element that communicates with the forwarding device, where the optical network element is in the optical domain and the forwarding is performed. A device adjacent to the device.
  • the obtaining module 403 is configured to obtain, according to the first identifier, the second identifier, and a MAC address of the forwarding device, a cross-domain chain between the optical network element and the forwarding device in the IP domain. road.
  • the obtaining module 403 is specifically configured to: obtain a correspondence according to the first identifier, the second identifier, and a MAC address of a forwarding device in the IP domain, where the corresponding relationship is used to indicate the A cross-domain link between the optical network elements and the forwarding device in the IP domain, where the correspondence includes the first identifier, the second identifier, and a MAC address of a forwarding device in the IP domain.
  • control device further includes: a control module in the IP domain and a control module in the optical domain.
  • the control module in the IP domain is configured to receive the first message sent by the sending module 401, and forward the first message to a forwarding device in the IP domain.
  • the control module in the optical domain is configured to receive the second message sent by the optical network element, and forward the second message to the receiving module 402.
  • Receiving, by the receiving module 402, the second cancellation from the optical network element in the optical domain the control module in the optical domain receives the second message sent by the optical network element, and sends the second message to the receiving module 402 forwards the second message.
  • FIG. 5 is a schematic structural diagram of a forwarding device in an IP domain according to an embodiment of the present disclosure.
  • the forwarding device in the IP domain may be the first forwarding device in Embodiment 1 or Embodiment 2.
  • the forwarding device in the IP domain may also be R1 or R2 in FIG.
  • the forwarding device in the IP domain can implement the functions of the first forwarding device in Embodiment 1 or Embodiment 2.
  • the forwarding device in the IP domain provided by the embodiment of the present application is described below with reference to FIG.
  • the forwarding device in the IP domain includes: a receiving module 501, a generating module 502, and a sending module 503.
  • the receiving module 501 is configured to receive a first message sent by a control device for acquiring a cross-domain link.
  • the first message is used to indicate that the forwarding device in the IP domain searches for a device in the optical domain that is adjacent to the forwarding device in the IP domain.
  • the generating module 502 is configured to generate a second message according to the first message.
  • the second message includes a MAC address of a forwarding device in the IP domain.
  • the second message is used to find a device in the optical domain that is adjacent to the forwarding device in the IP domain.
  • the sending module 503 is configured to broadcast and send the second message to the optical domain.
  • the second message is an LLDP message, an NDP message, or an NTDP message.
  • FIG. 6 is a schematic structural diagram of a forwarding device in an optical domain according to an embodiment of the present disclosure.
  • the forwarding device in the optical domain may be the first optical network element in the first embodiment or the second embodiment.
  • the forwarding device in the optical domain may also be N1 or N2 in FIG.
  • the forwarding device in the optical domain can implement the function of the first optical network element in the first embodiment or the second embodiment.
  • the forwarding device in the optical domain provided by the embodiment of the present application is described below with reference to FIG.
  • the forwarding device in the optical domain includes: a receiving module 601, a generating module 602, and a sending module 603.
  • the receiving module 601 is configured to receive a first message that is sent by the forwarding device of the IP domain.
  • the first message includes a MAC address of a forwarding device in the IP domain.
  • the first message is used to find a device in the optical domain that is adjacent to the forwarding device in an IP domain.
  • the generating module 602 is configured to generate a second message according to the first message.
  • the second message includes a first identifier and a second identifier.
  • the first identifier is used to identify a forwarding device in the optical domain.
  • the second identifier is used to identify a port on the forwarding device in the optical domain that communicates with the forwarding device of the IP domain.
  • the sending module 603 is configured to send the second message to a control device for acquiring a cross-domain link.
  • the first message is an LLDP message, an NDP message, or an NTDP message.
  • FIG. 7 is a schematic structural diagram of a control device for acquiring a cross-domain link according to an embodiment of the present application.
  • the control device and the control device of Figure 4 may be the same device.
  • the control device may implement the functions of the device after the integration of the first control device, the second control device, and the third control device in the first embodiment, or the control device may implement the functions of the first control device in the second embodiment.
  • the control device provided in the embodiment of the present application will be described below with reference to FIG. 7.
  • the control device in this embodiment includes a processor 701, a memory 702, and a communication interface 703.
  • the processor 701, the memory 702, and the communication interface 703 are connected by a communication bus 704.
  • the memory 702 is used to store programs.
  • the processor 701 executes the method steps performed by the control device in the first embodiment or the second embodiment according to the executable instructions included in the program read from the memory 702.
  • the processor 701 can send and receive messages or messages through the communication interface 703. For details, refer to the corresponding content in the first embodiment and the second embodiment.
  • FIG. 8 is a schematic structural diagram of a forwarding device in an IP domain according to an embodiment of the present disclosure.
  • the forwarding device in the IP domain and the forwarding device in the IP domain of FIG. 5 may be the same device.
  • the forwarding device in the IP domain can implement the functions of the first forwarding device in Embodiment 1 or Embodiment 2.
  • the forwarding device in the IP domain provided by the embodiment of the present application is described below with reference to FIG.
  • the forwarding device in the IP domain in this embodiment includes a processor 801, a memory 802, and a communication interface 803.
  • the processor 801, the memory 802, and the communication interface 803 are connected by a communication bus 804.
  • the memory 802 is used to store programs.
  • the processor 801 performs the method steps performed by the first forwarding device in the first embodiment or the second embodiment according to the executable instructions included in the program read from the memory 802.
  • the processor 801 can send and receive messages or messages through the communication interface 803. For details, refer to the corresponding content in the first embodiment or the second embodiment.
  • FIG. 9 is a schematic structural diagram of a forwarding device in an optical domain according to an embodiment of the present disclosure.
  • the forwarding device in the optical domain may be the same device as the forwarding device in the optical domain of FIG.
  • the forwarding device in the optical domain can implement the function of the first optical network element in the first embodiment or the second embodiment.
  • the forwarding device in the optical domain provided by the embodiment of the present application is described below with reference to FIG.
  • the forwarding device in the optical domain in this embodiment includes a processor 901, a memory 902, and a communication interface 903.
  • the processor 901, the memory 902, and the communication interface 903 are connected by a communication bus 904.
  • the memory 902 is used to store programs.
  • the processor 901 performs the method steps performed by the first optical network element in the first embodiment or the second embodiment according to the executable instructions included in the program read from the memory 902.
  • the processor 901 can send and receive messages or messages through the communication interface 903. For details, refer to the corresponding content in the first embodiment or the second embodiment.
  • the embodiment of the present application also provides a computer storage medium.
  • the computer storage medium stores computer program instructions that, when executed by a network device, implement a method as performed by a control device in either embodiment or embodiment 2.
  • the embodiment of the present application also provides a computer storage medium.
  • the computer storage medium stores computer program instructions that, when executed by the network device, implement a method as performed by the first forwarding device of the first or second embodiment.
  • the embodiment of the present application also provides a computer storage medium.
  • the computer storage medium stores computer program instructions, and when the computer program instructions are executed by the network device, the method performed by the first optical network element in the first embodiment or the second embodiment is implemented.
  • the general purpose processor referred to in the embodiments of the present application may be a microprocessor or the processor may be any conventional processor.
  • the steps of the method disclosed in the embodiment of the present application may be directly implemented as a combination of hardware and software modules in the processor.
  • the code implementing the above functions may be stored in a computer readable medium.
  • Computer readable media includes computer storage media.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may be a random access memory (English full name is random-access memory, abbreviated as RAM in English), read-only memory (English full name is read-only memory, English abbreviation for ROM) , electrically erasable programmable read-only memory (English full name electrically programmable programmable read-only memory, English abbreviation for EEPROM), read-only optical disk (English full name compact disk read-only memory, English abbreviation for CD-ROM) or other Optical disk storage, magnetic disk storage media or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • RAM random access memory
  • read-only memory English full name is read-only memory, English abbreviation for ROM
  • electrically erasable programmable read-only memory English full name electrically programmable programmable read-only memory, English abbreviation for EEPROM
  • read-only optical disk English full name compact
  • the computer readable medium may be a compact disc (English full name compact disk, abbreviated as CD), a laser disc, a digital video disc (English full name digital video disc, abbreviated as DVD), a floppy disk or a Blu-ray disc.

Abstract

本申请公开了一种用于获取跨域链路的方法,所述方法包括:控制设备向互联网协议IP域中的转发设备发送第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述转发设备相邻的设备;所述控制设备接收来自所述光域中的光网元的第二消息,所述第二消息包括第一标识、第二标识和所述转发设备的媒体接入控制MAC地址,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口,所述光网元为在光域中与所述转发设备相邻的设备;所述控制设备根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得所述转发设备和所述光网元间的跨域链路。

Description

一种用于获取跨域链路的方法及装置
本申请要求于2017年12月29日提交中国专利局、申请号为CN 201711479278.1、发明名称为“一种用于获取跨域链路的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种用于获取跨域链路的方法及装置。
背景技术
互联网协议(Internet Protocol,IP)骨干网通常包括由路由器组成的IP域和由波分设备(亦称为光网元)组成的光域。在IP骨干网部署业务的过程中,所部署的业务需经过IP域的路由器以及光域中的波分设备进行处理。在IP骨干网中,IP域中的控制器仅能够获得第一链路。该第一链路为IP域中与所部署的业务相关的链路。光域中的控制器仅能够获得第二链路。该第二链路为光域中与所部署的业务相关的链路。为了实现在IP骨干网中所部署的业务,该第一链路和该第二链路之间需要通过IP域与光域之间的跨域链路进行关联。但是,通常的IP域与光域是分域规划和独立运维,比如该IP域与光域之间的链路是通过预先规划获得的,并将规划的链路的信息配置于IP域中的路由器以及光域中相应的光网元。这样,IP域和光域在规划、部署、运维等方面存在资源利用效率不高和运维成本较高的问题。此外,上述通过预先规划完成业务部署的方法在大规模业务部署的过程中,会存在配置效率过低的问题。
发明内容
本申请实施例提供了一种用于获取跨域链路的方法及装置,有助于根据所获取的跨域链路提高业务配置效率。
第一方面,提供了一种用于获取跨域链路的方法,所述方法包括:控制设备向IP域中的转发设备发送第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述转发设备相邻的设备;所述控制设备接收来自所述光域中的光网元的第二消息,所述第二消息包括第一标识、第二标识和所述转发设备的媒体接入控制(Media Access Control,MAC)地址,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口,所述光网元为在光域中与所述转发设备相邻的设备;所述控制设备根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得所述转发设备和所述光网元间的跨域链路。
上述方法中,第一控制设备可通过触发IP域的转发设备在光域中查找与所述IP域的转发设备相邻的设备,确定在光域中光网元与所述IP域的转发设备存在连接关系。所述第一控制设备通过上述方法,能够获知所述光域中的光网元与所述IP域中的转发设备之间的跨域链路。这样,在配置跨域业务的过程中,无需人工预先规划和配置所述跨域链路,有助于提高配置跨域业务的效率。
在一种实现方式中,所述控制设备根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得所述转发设备和所述光网元间的跨域链路包括:所述控制设备根据所述 第一标识、所述第二标识和所述转发设备的MAC地址,获得对应关系,所述对应关系用于表示所述转发设备和所述光网元间的跨域链路,所述对应关系包括所述第一标识、所述第二标识和所述转发设备的MAC地址。
第二方面,提供了一种用于获取跨域链路的方法,所述方法包括:IP域中的转发设备接收用于获取跨域链路的控制设备发送的第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述转发设备相邻的设备;所述转发设备根据所述第一消息,生成第二消息,所述第二消息包括所述转发设备的MAC地址,所述第二消息用于在光域中查找与所述转发设备相邻的设备;所述转发设备向所述光域广播发送所述第二消息。
上述方法中,IP域中的转发设备可在用于获取跨域链路的控制设备的触发下,向光域中广播发送所述第二消息,以自动查找光域中与所述IP域的转发设备相邻的设备。这样,在配置跨域业务的过程中,无需人工预先规划和配置所述跨域链路,有助于提高配置跨越业务的效率。
在一种实现方式中,所述第二消息可以是链路层发现协议(Link Layer Discovery Protocol,LLDP)消息、邻居发现协议(Neighbor Discovery Protocol,NDP)消息或网络拓扑发现协议(Network Topology Discovery Protocol,NTDP)消息。
可选地,所述第二消息还可包括所述IP域的转发设备的标识。
第三方面,提供了一种用于获取跨域链路的方法,所述方法包括:光域中的光网元接收IP域中的转发设备广播发送的第一消息,所述第一消息包括所述转发设备的MAC地址,所述第一消息用于在所述光域中查找与所述转发设备相邻的设备;所述光网元根据所述第一消息,生成第二消息,所述第二消息包括第一标识和第二标识,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口;所述光网元向用于获取跨域链路的控制设备发送所述第二消息。
上述方法中,光域中的转发设备可在接收到IP域的转发设备广播发送的第一消息后,向用于获取跨域链路的控制设备发送第二消息,以便所述控制设备能够根据所述第二消息获知所述IP域中的转发设备与所述光域中的转发设备间的跨域链路。这样,在配置跨域业务的过程中,无需人工预先规划和配置所述跨域链路,有助于提高配置跨越业务的效率。
在一种实现方式中,所述第一消息为LLDP消息、NDP消息或NTDP消息。
第四方面,提供了一种用于获取跨域链路的控制设备,所述控制设备包括:发送模块,用于向IP域中的转发设备发送第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述IP域中的转发设备相邻的设备;接收模块,用于接收来自所述光域中的光网元的第二消息,所述第二消息包括第一标识、第二标识和所述IP域中的转发设备的MAC地址,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口,所述光网元为在光域中与所述转发设备相邻的设备;获得模块,用于根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得所述光网元和所述IP域中的所述转发设备间的跨域链路。
在一种实现方式中,所述用于获取跨域链路的控制设备还可包括用于实现上述第一方面任一种可能实现方式所提供方法或步骤的模块。
第五方面,提供了一种IP域中的转发设备,所述IP域中的转发设备包括:接收模块,用于接收用于获取跨域链路的控制设备发送的第一消息,所述第一消息用于指示所述IP域中的转发设备查找在光域中与所述IP域中的转发设备相邻的设备;生成模块,用于根据所 述第一消息,生成第二消息,所述第二消息包括所述IP域中的转发设备的MAC地址,所述第二消息用于在光域中查找与所述IP域中的转发设备相邻的设备;发送模块,用于向所述光域广播发送所述第二消息。
在一种实现方式中,所述IP域的转发设备还可包括用于实现上述第二方面任一种可能实现方式所提供方法或步骤的模块。
第六方面,提供了一种光域中的转发设备,所述光域中的转发设备包括:接收模块,用于接收IP域中的转发设备广播发送的第一消息,所述第一消息包括所述IP域中的转发设备的MAC地址,所述第一消息用于在所述光域中查找与IP域中的所述转发设备相邻的设备;生成模块,用于根据所述第一消息,生成第二消息,所述第二消息包括第一标识和第二标识,所述第一标识用于标识所述光域中的转发设备,所述第二标识用于标识所述光域中的转发设备上与所述IP域中的转发设备通信的端口;发送模块,用于向用于获取跨域链路的控制设备发送所述第二消息。
在一种实现方式中,所述光域的转发设备还可包括用于实现上述第三方面任一种可能实现方式所提供方法或步骤的模块。
第七方面,提供了一种网络设备,包括处理器和存储器,所述存储器中存储有计算机程序指令,当所述处理器执行所述计算机程序指令时实现如第一方面至第三方面任一种可能的实现方式所提供的方法。
第八方面,提供了一种计算机存储介质,存储有计算机程序指令,当所述计算机程序指令被网络设备执行时实现如第一方面至第三方面任一种可能的实现方式所提供的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍。
图1为本申请实施例提供的网络场景示意图。
图2为本申请实施例一提供的用于获取跨域链路的方法流程示意图。
图3为本申请实施例二提供的用于获取跨域链路的方法流程示意图。
图4为本申请实施例提供的用于获取跨域链路的控制设备的结构示意图。
图5为本申请实施例提供的IP域中的转发设备的结构示意图。
图6为本申请实施例提供的光域中的转发设备的结构示意图。
图7为申请实施例提供的用于获取跨域链路的控制设备的结构示意图。
图8为本申请实施例提供的IP域中的转发设备的结构示意图。
图9为本申请实施例提供的光域中的转发设备的结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
图1为本申请实施例提供的网络场景示意图。图1所示的场景为IP域与光域相结合的网络场景。在图1所示的场景中,R1为IP域中的第一转发设备。R1可以为第一链路的起点。R2为IP域中的第二转发设备。R2可以为所述第一链路的终点。所述第一链路在图1中用link 1进行标识。所述第一链路为IP域中的链路。N1为光域中的第一光网元。N2为光域中的第二光网元。N3为光域中的第三光网元。本申请实施例中的光网元具体可以是光 域中具有转发功能的设备。N1为第二链路的起点。N3为所述第二链路的终点,且为第三链路的起点。N2为所述第三链路的终点。所述第二链路在图1中用link 2进行标识。所述第三链路在图1中用link 3进行标识。所述第二链路和所述第三链路为所述光域中的链路。由所述第二链路和所述第三链路组成的光域中的链路承载了IP域中的所述第一链路映射到光域中的链路。所述光域中的链路与所述IP域中的第一链路间的映射关系可以是所述光域中的链路与所述IP域中的第一链路间的对应关系。R1与N1间的链路为跨域链路。R2与N2间的链路为跨域链路。所述跨域链路有助于完成跨域业务。所述跨域业务可以是跨IP域和光域中的业务,即IP域与光域协同完成某一业务。在一种实现方式中,图1中的C1、C2和C3可用于标识独立的控制设备。C1用于管理和控制C2和C3。C1用于获取跨域链路。C2用于管理和控制IP域中的转发设备。本申请实施例中IP域中的转发设备可以是路由器、三层交换机或高层交换机。C3用于管理和控制光域中的光网元。C2与C3之间无法通信,且C2无法与光域中的交换机进行通信。C3无法与IP域中的转发设备进行通信。在另一种实现方式中,C1、C2和C3可集成于一台控制设备或控制模块。集成后的控制设备或控制模块能够分别与光域中的光网元以及IP域中的转发设备进行交互,实现对光网元和IP域中的转发设备的管理和控制。在本申请实施例中,控制设备或控制模块可以为网络管理设备或者为软件定义网络(Software-defined networking,SDN)架构下的控制器。
实施例一
图2为本申请实施例一提供的用于获取跨域链路的方法流程示意图。图2中的第一控制设备为图1中的C1。图2中的第二控制设备为图1中的C2。图2中的第三控制设备为图1中的C3。下面结合图1和图2,对本申请实施例一提供的用于获取跨域链路的方法进行说明。
S201,第一控制设备向第二控制设备发送第一消息,所述第一消息用于指示IP域中的转发设备查找在光域中与所述IP域中的转发设备相邻的设备。
举例说明,所述第一控制设备用于获取跨域链路。所述跨域链路有助于完成需要IP域和光域协同的业务。所述第二控制设备为IP域中的控制设备。所述第一消息可遵循代表性状态传输配置(representation state transfer configuration,restconf)协议。所述第一控制设备能够与所述第二控制设备进行通信,且能够管理和控制所述第二控制设备。所述在光域中与所述IP域中的转发设备相邻的设备可以是在光域中能够与所述IP域中的转发设备通信且相邻的设备。换句话说,所述在光域中与所述IP域中的转发设备相邻的设备可以是与所述IP域中的转发设备存在物理连接的设备。在图1所示的场景中,C1向C2发送所述第一消息。C2向其管理的R1发送所述第一消息,以指示R1查找在光域中与R1相邻的设备。C2向其管理的R2发送所述第二消息,以指示R2查找在光域中与R2相邻的设备。C2所管理的转发设备包括R1和R2。
S202,所述第二控制设备向第一转发设备发送所述第一消息。
举例说明,如果所述第二控制设备与其管理的转发设备之间采用的通信协议,与所述第二控制设备和所述第一控制设备之间采用的通信协议相同,则所述第二控制设备无需进行报文格式转换,直接将来自所述第一控制设备的第一消息发送给所述第一转发设备。所述第二控制设备与其管理的转发设备之间采用网络配置协议(network configuration protocol,netconf)。所述第二控制设备在收到所述第一消息后,可根据其与所管理的转发 设备之间的通信协议,对接收到的所述第一消息进行封装并发送。在图1所示的场景中,C2可向其管理的转发设备,比如图1中的R1和R2,发送所述第一消息。
S203,所述第一转发设备根据所述第一消息,生成第二消息,所述第二消息包括所述第一转发设备的媒体接入控制(Media Access Control,MAC)地址,所述第二消息用于在光域中查找与所述第一转发设备相邻的设备。
举例说明,所述第二消息可以是链路层发现协议(Link Layer Discovery Protocol,LLDP)消息、邻居发现协议(Neighbor Discovery Protocol,NDP)消息或网络拓扑发现协议(Network Topology Discovery Protocol,NTDP)消息。所述第一转发设备在接收到所述第第一消息后,根据所述第一消息的指示生成所述第二消息。所述第一转发设备的MAC地址可用于标识所述第一转发设备上发送所述第二消息的端口。可选地,所述第二消息还可包括所述第一转发设备的标识和/或所述第一转发设备的端口标识。所述第一转发设备的端口标识可以是不同于所述第一转发设备的MAC地址的标识信息。在图1所示的场景中,R1根据C2发送的所述第一消息,生成第一邻居发现消息。所述第一邻居发现消息包括R1的MAC地址。R1的MAC地址用于标识R1发送所述第一邻居发现消息的端口。R2根据C2发送的所述第一消息,生成第二邻居发现消息。所述第二邻居发现消息包括R2的MAC地址。R2的MAC地址用于标识R2发送所述第二邻居发现消息的端口。
S204,所述第一转发设备向所述光域广播发送所述第二消息。
举例说明,所述第一转发设备可通过所述第一转设备所标识的端口,向所述光域广播发送所述第二消息。在图1所示的场景中,R1通过R1的MAC地址所标识的端口,广播发送所述第一邻居发现消息。光域中与R1有物理连接的光网元能够收到R1广播发送的所述第一邻居发现消息。R2通过R2的MAC地址所标识的端口,广播发送所述第二邻居发现消息。光域中与R2有物理连接的光网元能够收到R2广播发送的所述第二邻居发现消息。
S205,第一光网元接收到所述第二消息后,生成第三消息,所述第三消息包括第一标识和第二标识,所述第一标识用于标识所述第一光网元,所述第二标识用于标识所述第一光网元上与所述第一转发设备通信的端口。
举例说明,所述第一光网元在接收到所述第二消息后,获得所述第二标识。所述第二标识可以是机架(shelf)号、槽位(slot)号和端口(port)号的组合。或者所述第二标识可以是其他形式的标识,在此不进行具体限定。所述第一光网元上能够与所述第一转发设备通信的端口可以是所述第一光网元的支路板上的业务端口。所述第一光网元所生成的第三消息符合所述第一光网元与所述第三控制设备之间的通信协议。在图1所示的场景中,R1向光域广播发送的第一邻居发现消息只会被物理上与R1有连接关系的光网元接收到。N1接收到R1广播发送的第一邻居发现消息。N1获得所述第一邻居发现消息或所述第一邻居发现消息中包括的R1的MAC地址。N1还获得N1的标识以及接收到所述第一邻居发现消息的端口的标识。R2向光域广播发送的第二邻居发现消息只会被物理上与R2有连接关系的光网元接收到。N2获得所述第二邻居发现消息或所述第二邻居发现消息中包括的R2的MAC地址。N2还获得N2的标识以及接收到所述第二邻居发现消息的端口的标识。
S206,所述第一光网元向第三控制设备发送所述第三消息。
举例说明,所述第三消息可根据netconf进行发送。在图1所示的场景中,N1可将所述第一邻居发现消息、N1的标识以及接收到所述第一邻居发现消息的端口的标识上送至C3。或者N1可将R1的MAC地址、N1的标识以及接收到所述第一邻居发现消息的端口 的标识上送至C3。N2可将所述第二邻居发现消息、N2的标识以及接收到所述第二邻居发现消息的端口的标识上送至C3。N2可将R2的MAC地址、N2的标识以及接收到所述第二邻居发现消息的端口的标识上送至C3。
可选地,S205和S206还可被替换为所述第三控制设备监听所述第一光网元的端口,获得所述第一标识、所述第二标识和所述第二消息。或者S205和S206还可被替换为所述第三控制设备监听所述第一光网元的端口,获得所述第一标识、所述第二标识和所述第一转发设备的MAC地址。
S207,所述第三控制设备向所述第一控制设备发送所述第三消息。
举例说明,所述第三控制设备可根据restconf协议发送所述第三消息。在图1所示的网络场景中,C3将从N1获得的R1的MAC地址、N1的标识以及接收到所述第一邻居发现消息的端口的标识发送至C1。C3将R2的MAC地址、N2的标识以及接收到所述第二邻居发现消息的端口的标识发送至C1。
S208,所述第一控制设备根据所述第一转发设备的MAC地址、所述第一标识和所述第二标识,获得所述第一转发设备和所述第一光网元间的跨域链路。
举例说明,所述第一控制设备根据所述第一转发设备的MAC地址、所述第一标识和所述第二标识,获得对应关系。所述对应关系用于表示所述第一转发设备和所述第一光网元间的跨域链路。所述对应关系包括所述第一转发设备的MAC地址、所述第一标识和所述第二标识。在图1所示的场景中,C1根据接收到的来自C3的参数,可获知N1与R1之间存在跨域链路,且N2与R2之间存在跨域链路。C1根据来自C3的参数获得第一对应关系。所述第一对应关系包括R1的MAC地址、N1的标识以及N1上接收到所述第一邻居发现消息的端口的标识。所述第一对应关系用于表示R1与N1之间的跨域链路。C1根据来自C3的参数获得第二对应关系。所述第二对应关系包括R2的MAC地址、N2的标识以及N2上接收到所述第二邻居发现消息的端口的标识。所述第二对应关系用于表示R2与N2之间的跨域链路。
本申请实施例一提供的方法中,第一控制设备可通过触发第一转发设备向光域广播发送第三消息,确定在光域中第一光网元与所述第一转发设备存在连接关系。所述第一控制设备通过上述方法,能够获知光域中的光网元与IP域中的转发设备之间的跨域链路,比如光网元的标识、光网元的端口的标识以及IP域中的转发设备的端口的标识。这样,在配置跨域业务的过程中,所述第一控制设备可通过实施例一中的方法获取IP域和光域间的跨域链路,无需人工预先规划和配置,有助于提高配置跨域业务的效率。
实施例二
图3为本申请实施例二提供的用于获取跨域链路的方法流程示意图。图3中的第一控制设备为集成有图1中的C1、C2和C3的设备。下面结合图1和图3,对本申请实施例二提供的用于获取跨域链路的方法进行说明。
S301,所述第一控制设备向第一转发设备发送第一消息,所述第一消息用于指示所述第一转发设备查找在光域中与所述第一转发设备相邻的设备。
举例说明,实施例二中的第一控制设备具有实施例一中的第一控制设备、第二控制设备和第三控制设备的功能。所述第一控制设备与其管理的IP域内的转发设备之间采用netconf通信协议。
S302,所述第一转发设备根据所述第一消息,生成第二消息,所述第二消息包括所述 第一转发设备的MAC地址,所述第二消息用于在光域中查找与所述第一转发设备相邻的设备。
举例说明,所述第二消息可以是LLDP消息、NDP消息或NTDP消息。所述第一转发设备生成所述第二消息的方法可参见实施例一中的S203。
S303,所述第一转发设备向所述光域广播发送所述第二消息。
S303的内容可参见实施例一中S204的内容。
S304,第一光网元接收到所述第二消息后,生成第三消息,所述第三消息包括第一标识和第二标识,所述第一标识用于标识所述第一光网元,所述第二标识用于标识所述第一光网元上与所述第一转发设备通信的端口。
S304的内容可参见实施例一中S205的内容。
S305,所述第一光网元向所述第一控制设备发送所述第三消息。
所述第一光网元向所述第一控制设备发送所述第三消息的方法可参见实施例一种S206的相应内容。
可选地,S304和S305还可被替换为所述第三控制设备监听所述第一光网元的端口,获得所述第一标识、所述第二标识和所述第二消息。或者S304和S305还可被替换为所述第一控制设备监听所述第一光网元的端口,获得所述第一标识、所述第二标识和所述第一转发设备的MAC地址。
S306,所述第一控制设备根据所述第一转发设备的MAC、所述第一标识和所述第二标识,获得所述第一转发设备和所述第一光网元间的跨域链路。
S306的内容可参见实施例一中S208的内容。
本申请实施例二提供的方法中,第一控制设备能够分别管理光域内的光网元和IP域内的转发设备。所述第一控制设备可直接触发第一转发设备向光域广播发送第二消息,能够获知光域中的光网元与IP域中的转发设备之间的跨域链路,比如光网元的标识、光网元的端口的标识以及IP域中的转发设备的端口的标识。这样,在配置跨域业务的过程中,所述第一控制设备可通过实施例二中的方法获取IP域和光域间的跨域链路,无需人工预先规划和配置,有助于提高配置跨域业务的效率。
图4为本申请实施例提供的用于获取跨域链路的控制设备的结构示意图。所述控制设备可以是实施例二中的第一控制设备,还可以是实施例一中的第一控制设备、第二控制设备和第三控制设备集成之后的设备。该控制设备可以实现实施例一中的第一控制设备、第二控制设备和第三控制设备集成之后的设备的功能,或该控制设备可以实现实施例二中的第一控制设备的功能。所述控制设备还可以是图1中的C1、C2和C3集成之后的设备。下面结合图4,对本申请实施例提供的控制设备进行说明。
本申请实施例提供的用于获取跨域链路的控制设备包括:发送模块401、接收模块402和获得模块403。
所述发送模块401用于向IP域中的转发设备发送第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述IP域中的转发设备相邻的设备。所述接收模块402用于接收来自所述光域中的光网元的第二消息,所述第二消息包括第一标识、第二标识和所述IP域中的转发设备的MAC地址,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口,所述光网元为在光域中与所述转发设备相邻的设备。所述获得模块403用于根据所述第一标识、所述第二标识和所述转发设备的MAC 地址,获得所述光网元和所述IP域中的所述转发设备间的跨域链路。
举例说明,所述获得模块403具体用于:根据所述第一标识、所述第二标识和所述IP域中的转发设备的MAC地址,获得对应关系,所述对应关系用于表示所述光网元间和所述IP域中的转发设备的跨域链路,所述对应关系包括所述第一标识、所述第二标识和所述IP域中的转发设备的MAC地址。
可选地,所述控制设备还包括:IP域中的控制模块和光域中的控制模块。所述IP域中的控制模块用于接收所述发送模块401发送的所述第一消息,并向所述IP域中的转发设备转发所述第一消息。所述光域中的控制模块用于接收所述光网元发送的所述第二消息,并向所述接收模块402转发所述第二消息。所述发送模块401向IP域中的转发设备发送第一消息包括:所述发送模块401向所述IP域中的控制模块发送所述第一消息,所述IP域中的控制模块向所述IP域中的转发设备转发所述第一消息。所述接收模块402接收来自所述光域中的光网元的第二消包括:所述光域中的控制模块接收所述光网元发送的所述第二消息,并向所述接收模块402转发所述第二消息。
图5为本申请实施例提供的IP域中的转发设备的结构示意图。所述IP域中的转发设备可以是实施例一或实施例二中的第一转发设备。所述IP域中的转发设备还可以是图1中的R1或R2。该IP域中的转发设备可以实现实施例一或实施例二中的第一转发设备的功能。下面结合图5,对本申请实施例提供的IP域中的转发设备进行说明。
本申请实施例提供的IP域中的转发设备包括:接收模块501、生成模块502和发送模块503。所述接收模块501用于接收用于获取跨域链路的控制设备发送的第一消息。所述第一消息用于指示所述IP域中的转发设备查找在光域中与所述IP域中的转发设备相邻的设备。所述生成模块502用于用于根据所述第一消息,生成第二消息。所述第二消息包括所述IP域中的转发设备的MAC地址。所述第二消息用于在光域中查找与所述IP域中的转发设备相邻的设备。所述发送模块503用于向所述光域广播发送所述第二消息。其中,所述第二消息为LLDP消息、NDP消息或NTDP消息。
图6为本申请实施例提供的光域中的转发设备的结构示意图。所述光域中的转发设备可以是实施例一或实施例二中的第一光网元。所述光域中的转发设备还可以是图1中的N1或N2。该光域中的转发设备可以实现实施例一或实施例二中的第一光网元的功能。下面结合图6,对本申请实施例提供的光域中的转发设备进行说明。
本申请实施例提供的光域中的转发设备包括:接收模块601、生成模块602和发送模块603。所述接收模块601用于接收IP域的转发设备广播发送的第一消息。所述第一消息包括所述IP域中的转发设备的MAC地址。所述第一消息用于在所述光域中查找与IP域中的所述转发设备相邻的设备。所述生成模块602用于根据所述第一消息,生成第二消息。所述第二消息包括第一标识和第二标识。所述第一标识用于标识所述光域中的转发设备。所述第二标识用于标识所述光域中的转发设备上与所述IP域的转发设备通信的端口。所述发送模块603用于向用于获取跨域链路的控制设备发送所述第二消息。其中,所述第一消息为LLDP消息、NDP消息或NTDP消息。
图7为申请实施例提供的用于获取跨域链路的控制设备的结构示意图。所述控制设备与图4的控制设备可以是相同的设备。该控制设备可以实现实施例一中的第一控制设备、第二控制设备和第三控制设备集成之后的设备的功能,或该控制设备可以实现实施例二中的第一控制设备的功能。下面结合图7,对本申请实施例提供的控制设备进行说明。该实 施例中的控制设备包括:处理器701、存储器702和通信接口703。所述处理器701、所述存储器702和所述通信接口703通过通信总线704连接。所述存储器702用于存储程序。所述处理器701根据从所述存储器702中读取的程序所包括的可执行指令,执行上述实施例一或实施例二中的控制设备所执行的方法步骤。所述处理器701可通过通信接口703收发消息或报文,具体可参见实施例一和实施例二中的相应内容。
图8为本申请实施例提供的IP域中的转发设备的结构示意图。所述IP域中的转发设备与图5的IP域中的转发设备可以是相同的设备。该IP域中的转发设备可以实现实施例一或实施例二中的第一转发设备的功能。下面结合图8,对本申请实施例提供的IP域中的转发设备进行说明。该实施例中的IP域中的转发设备包括:处理器801、存储器802和通信接口803。所述处理器801、所述存储器802和所述通信接口803通过通信总线804连接。所述存储器802用于存储程序。所述处理器801根据从所述存储器802中读取的程序所包括的可执行指令,执行上述实施例一或实施例二中第一转发设备所执行的方法步骤。所述处理器801可通过通信接口803收发消息或报文,具体可参见实施例一或实施例二的相应内容。
图9为本申请实施例提供的光域中的转发设备的结构示意图。所述光域中的转发设备与图6的光域中的转发设备可以是相同的设备。该光域中的转发设备可以实现实施例一或实施例二中的第一光网元的功能。下面结合图9,对本申请实施例提供的光域中的转发设备进行说明。该实施例中的光域中的转发设备包括:处理器901、存储器902和通信接口903。所述处理器901、所述存储器902和所述通信接口903通过通信总线904连接。所述存储器902用于存储程序。所述处理器901根据从所述存储器902中读取的程序所包括的可执行指令,执行上述实施例一或实施例二中第一光网元所执行的方法步骤。所述处理器901可通过通信接口903收发消息或报文,具体可参见实施例一或实施例二的相应内容。
本申请实施例还提供了一种计算机存储介质。所述计算机存储介质存储有计算机程序指令,当所述计算机程序指令被网络设备执行时实现如实施例一或实施例二中的控制设备所执行的方法。
本申请实施例还提供了一种计算机存储介质。所述计算机存储介质存储有计算机程序指令,当所述计算机程序指令被网络设备执行时实现如实施例一或实施例二中的第一转发设备所执行的方法。
本申请实施例还提供了一种计算机存储介质。所述计算机存储介质存储有计算机程序指令,当所述计算机程序指令被网络设备执行时实现如实施例一或实施例二中的第一光网元所执行的方法。
本申请实施例中所提及的通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器。结合本申请实施例所公开的方法的步骤,可以直接体现为处理器中的硬件及软件模块组合执行完成。当使用软件实现时,可以将实现上述功能的代码存储在计算机可读介质中。计算机可读介质包括计算机存储介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以是随机存取存储器(英文全称为random-access memory,英文缩写为RAM)、只读存储器(英文全称为read-only memory,英文缩写为ROM)、电可擦可编程只读存储器(英文全称为electrically erasable programmable read-only memory,英文缩写为EEPROM)、只读光盘(英文全称为compact disk read-only memory,英文缩写为CD-ROM)或其他光盘存储、磁盘存储介质或者其他 磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。计算机可读介质可以是压缩碟(英文全称为compact disk,英文缩写为CD)、激光碟、数字视频光碟(英文全称为digital video disk,英文缩写为DVD)、软盘或者蓝光碟。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (15)

  1. 一种用于获取跨域链路的方法,其特征在于,所述方法包括:
    控制设备向互联网协议IP域中的转发设备发送第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述转发设备相邻的设备;
    所述控制设备接收来自所述光域中的光网元的第二消息,所述第二消息包括第一标识、第二标识和所述转发设备的媒体接入控制MAC地址,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口,所述光网元为在光域中与所述转发设备相邻的设备;
    所述控制设备根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得所述转发设备和所述光网元间的跨域链路。
  2. 根据权利要求1所述的方法,其特征在于,所述控制设备根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得所述转发设备和所述光网元间的跨域链路包括:
    所述控制设备根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得对应关系,所述对应关系用于表示所述转发设备和所述光网元间的跨域链路,所述对应关系包括所述第一标识、所述第二标识和所述转发设备的MAC地址。
  3. 一种用于获取跨域链路的方法,其特征在于,所述方法包括:
    互联网协议IP域中的转发设备接收用于获取跨域链路的控制设备发送的第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述转发设备相邻的设备;
    所述转发设备根据所述第一消息,生成第二消息,所述第二消息包括所述转发设备的媒体接入控制MAC地址,所述第二消息用于在光域中查找与所述转发设备相邻的设备;
    所述转发设备向所述光域广播发送所述第二消息。
  4. 根据权利要求3所述的方法,其特征在于,所述第二消息为链路层发现协议LLDP消息、邻居发现协议NDP消息或网络拓扑发现协议NTDP消息。
  5. 一种用于获取跨域链路的方法,其特征在于,所述方法包括:
    光域中的光网元接收互联网协议IP域中的转发设备广播发送的第一消息,所述第一消息包括所述转发设备的媒体接入控制MAC地址,所述第一消息用于在所述光域中查找与所述转发设备相邻的设备;
    所述光网元根据所述第一消息,生成第二消息,所述第二消息包括第一标识和第二标识,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口;
    所述光网元向用于获取跨域链路的控制设备发送所述第二消息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一消息为链路层发现协议LLDP消息、邻居发现协议NDP消息或网络拓扑发现协议NTDP消息。
  7. 一种用于获取跨域链路的控制设备,其特征在于,所述控制设备包括:
    发送模块,用于向互联网协议IP域中的转发设备发送第一消息,所述第一消息用于指示所述转发设备查找在光域中与所述IP域中的转发设备相邻的设备;
    接收模块,用于接收来自所述光域中的光网元的第二消息,所述第二消息包括第一标识、第二标识和所述IP域中的转发设备的媒体接入控制MAC地址,所述第一标识用于标识所述光网元,所述第二标识用于标识所述光网元上与所述转发设备通信的端口,所述光 网元为在光域中与所述转发设备相邻的设备;
    获得模块,用于根据所述第一标识、所述第二标识和所述转发设备的MAC地址,获得所述光网元和所述IP域中的所述转发设备间的跨域链路。
  8. 根据权利要求7所述的控制设备,其特征在于,所述获得模块具体用于:根据所述第一标识、所述第二标识和所述IP域中的转发设备的MAC地址,获得对应关系,所述对应关系用于表示所述光网元间和所述IP域中的转发设备的跨域链路,所述对应关系包括所述第一标识、所述第二标识和所述IP域中的转发设备的MAC地址。
  9. 根据权利要求7或8所述的控制设备,其特征在于,所述控制设备还包括:IP域中的控制模块和光域中的控制模块,
    所述IP域中的控制模块,用于接收所述发送模块发送的所述第一消息,并向所述IP域中的转发设备转发所述第一消息;
    所述光域中的控制模块,用于接收所述光网元发送的所述第二消息,并向所述接收模块转发所述第二消息;
    所述发送模块向IP域中的转发设备发送第一消息包括:
    所述发送模块向所述IP域中的控制模块发送所述第一消息,所述IP域中的控制模块向所述IP域中的转发设备转发所述第一消息;
    所述接收模块接收来自所述光域中的光网元的第二消包括:
    所述光域中的控制模块接收所述光网元发送的所述第二消息,并向所述接收模块转发所述第二消息。
  10. 一种互联网协议IP域中的转发设备,其特征在于,所述IP域中的转发设备包括:
    接收模块,用于接收用于获取跨域链路的控制设备发送的第一消息,所述第一消息用于指示所述IP域中的转发设备查找在光域中与所述IP域中的转发设备相邻的设备;
    生成模块,用于根据所述第一消息,生成第二消息,所述第二消息包括所述IP域中的转发设备的媒体接入控制MAC地址,所述第二消息用于在光域中查找与所述IP域中的转发设备相邻的设备;
    发送模块,用于向所述光域广播发送所述第二消息。
  11. 根据权利要求10所述的IP域中的转发设备,其特征在于,所述第二消息为链路层发现协议LLDP消息、邻居发现协议NDP消息或网络拓扑发现协议NTDP消息。
  12. 一种光域中的转发设备,其特征在于,所述光域中的转发设备包括:
    接收模块,用于接收互联网协议IP域中的转发设备广播发送的第一消息,所述第一消息包括所述IP域中的转发设备的媒体接入控制MAC地址,所述第一消息用于在所述光域中查找与IP域中的所述转发设备相邻的设备;
    生成模块,用于根据所述第一消息,生成第二消息,所述第二消息包括第一标识和第二标识,所述第一标识用于标识所述光域中的转发设备,所述第二标识用于标识所述光域中的转发设备上与所述IP域中的转发设备通信的端口;
    发送模块,用于向用于获取跨域链路的控制设备发送所述第二消息。
  13. 根据权利要求12所述的光域中的转发设备,其特征在于,所述第一消息为链路层发现协议LLDP消息、邻居发现协议NDP消息或网络拓扑发现协议NTDP消息。
  14. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器中存储有计算机程序指令,当所述处理器执行所述计算机程序指令时实现如权利要求1至权 利要求6中任一项所述的方法。
  15. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序指令,当所述计算机程序指令被网络设备执行时实现如权利要求1至权利要求6中任一项所述的方法。
PCT/CN2018/122207 2017-12-29 2018-12-20 一种用于获取跨域链路的方法及装置 WO2019128819A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18897556.9A EP3723328B1 (en) 2017-12-29 2018-12-20 Method and device for acquiring cross-domain link
US16/910,204 US11516110B2 (en) 2017-12-29 2020-06-24 Method and apparatus for obtaining cross-domain link

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711479278.1A CN109995649B (zh) 2017-12-29 2017-12-29 一种用于获取跨域链路的方法及装置
CN201711479278.1 2017-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/910,204 Continuation US11516110B2 (en) 2017-12-29 2020-06-24 Method and apparatus for obtaining cross-domain link

Publications (1)

Publication Number Publication Date
WO2019128819A1 true WO2019128819A1 (zh) 2019-07-04

Family

ID=67066544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122207 WO2019128819A1 (zh) 2017-12-29 2018-12-20 一种用于获取跨域链路的方法及装置

Country Status (4)

Country Link
US (1) US11516110B2 (zh)
EP (1) EP3723328B1 (zh)
CN (2) CN114430390B (zh)
WO (1) WO2019128819A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567580B (zh) * 2020-11-27 2023-10-20 华为技术有限公司 一种消息发送方法、消息处理方法、装置及系统
CN114938345B (zh) * 2022-06-07 2023-09-29 中国联合网络通信集团有限公司 一种链路发现方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509548A (zh) * 2001-03-09 2004-06-30 �����Ӣ��֪ʶ��Ȩ���޹�˾ 电信网络中的改进以及与电信网络相关的改进
CN101516045A (zh) * 2003-02-03 2009-08-26 日本电信电话株式会社 光网络、光边缘路由器及其程序、切入方法和边缘路由器
CN105960780A (zh) * 2014-07-18 2016-09-21 华为技术有限公司 一种跨层路径建立方法及装置
WO2017004747A1 (zh) * 2015-07-03 2017-01-12 华为技术有限公司 一种网络中路径计算的方法、装置及系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778541B2 (en) * 2000-12-01 2004-08-17 Nortel Networks Limited Dynamic data tunnelling
US7099580B1 (en) * 2001-11-02 2006-08-29 Ciena Corporation Method and system for communicating network topology in an optical communications network
US7492787B2 (en) * 2002-03-29 2009-02-17 Fujitsu Limited Method, apparatus, and medium for migration across link technologies
US8532087B2 (en) * 2003-02-03 2013-09-10 Nippon Telegraph And Telephone Corporation Optical network, optical edge router, program thereof, cut through method, and edge router
CN1558618A (zh) * 2004-01-20 2004-12-29 北京邮电大学 一种光因特网中光网元支持不同网络模型通道互连的方法
US7433362B2 (en) * 2004-11-05 2008-10-07 Sbc Knowledge Ventures, L.P. System and method for SONET NSAP addressing
US7773539B2 (en) * 2006-06-01 2010-08-10 Cisco Technology, Inc. Method for separation of IP+optical management domains
US8223668B2 (en) * 2006-12-14 2012-07-17 Rockstar Bidco Lp Method and apparatus for exchanging routing information and the establishment of connectivity across multiple network areas
CN101483638A (zh) * 2008-01-10 2009-07-15 华为技术有限公司 一种应用标签的方法、系统和装置
CN101820556A (zh) * 2009-02-26 2010-09-01 华为技术有限公司 路由协议消息发布和路由计算的方法、装置和系统
US8953433B1 (en) * 2012-02-23 2015-02-10 Juniper Networks, Inc. Fast re-route for optical networks
CN103534992B (zh) * 2012-03-14 2017-07-21 华为技术有限公司 发送建立连接请求的方法、交换机、服务器及系统
CN103379032B (zh) * 2012-04-24 2018-02-27 中兴通讯股份有限公司 跨域端到端路由的获取方法及装置、子路由计算实体
US9521138B2 (en) * 2013-06-14 2016-12-13 Go Daddy Operating Company, LLC System for domain control validation
CN104253765B (zh) * 2013-06-28 2017-11-24 华为技术有限公司 一种数据包交换方法、装置以及接入交换机和交换系统
ES2641458T3 (es) * 2013-09-03 2017-11-10 Huawei Technologies Co., Ltd. Método de descubrimiento de enlace y un controlador SDN
ES2701753T3 (es) * 2013-09-26 2019-02-25 Huawei Tech Co Ltd Procedimiento y dispositivo de establecimiento de un camino entre dominios
CN103841186B (zh) * 2014-02-25 2018-05-01 汉柏科技有限公司 一种私有云的分组方法及系统
CN104917849B (zh) * 2014-03-11 2018-09-07 华为技术有限公司 一种消息处理方法、接入控制器及网络节点
US20160150459A1 (en) * 2014-11-19 2016-05-26 Qualcomm Incorporated Techniques to support heterogeneous network data path discovery
CN106302153B (zh) * 2015-05-11 2020-02-07 中兴通讯股份有限公司 多域控制器、单域控制器、软件定义光网络系统及方法
WO2017139924A1 (zh) * 2016-02-16 2017-08-24 华为技术有限公司 一种光路径的分配方法及装置
US20180006894A1 (en) * 2016-06-29 2018-01-04 Microsoft Technology Licensing, Llc Portable device for cabling assistance
CN106534369B (zh) * 2016-12-19 2019-10-18 浙江宇视科技有限公司 通信方法及装置
CN111654438B (zh) * 2017-06-20 2023-09-26 华为技术有限公司 一种网络中建立转发路径的方法、控制器及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509548A (zh) * 2001-03-09 2004-06-30 �����Ӣ��֪ʶ��Ȩ���޹�˾ 电信网络中的改进以及与电信网络相关的改进
CN101516045A (zh) * 2003-02-03 2009-08-26 日本电信电话株式会社 光网络、光边缘路由器及其程序、切入方法和边缘路由器
CN105960780A (zh) * 2014-07-18 2016-09-21 华为技术有限公司 一种跨层路径建立方法及装置
WO2017004747A1 (zh) * 2015-07-03 2017-01-12 华为技术有限公司 一种网络中路径计算的方法、装置及系统

Also Published As

Publication number Publication date
US20200336405A1 (en) 2020-10-22
EP3723328A4 (en) 2020-11-11
CN114430390B (zh) 2023-04-04
CN109995649B (zh) 2022-02-25
CN114430390A (zh) 2022-05-03
EP3723328A1 (en) 2020-10-14
EP3723328B1 (en) 2024-02-07
US11516110B2 (en) 2022-11-29
CN109995649A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US7380025B1 (en) Method and apparatus providing role-based configuration of a port of a network element
US10057116B2 (en) Method and device for configuring and managing network element equipment, and network element equipment
CN111294236B (zh) 基于业务功能链sfc的通信方法和装置
CN108964940B (zh) 消息发送方法及装置、存储介质
CN110391951B (zh) 以太网段标识邻接检测处理方法及装置、存储介质
US20220045944A1 (en) Method for Forwarding Service Data, Network Device, and Network System
CN109561033B (zh) Overlay网络中组播复制的方法及装置
CN110417655B (zh) 一种数据报文转发的方法及装置
US8964749B2 (en) Method, device and system for establishing a pseudo wire
WO2021143279A1 (zh) 段路由业务处理方法和装置、路由设备及存储介质
US20140032782A1 (en) Method and apparatus for route selection of host in multihoming site
CN104852826A (zh) 一种环路检测方法及装置
US20100027555A1 (en) Method for processing link state advertisement and routing device
US9521072B2 (en) Method and network device for distributing multi-protocol label switching labels
WO2019128819A1 (zh) 一种用于获取跨域链路的方法及装置
WO2016192618A1 (zh) 收集访问控制列表的方法、装置及系统
US9935822B2 (en) Method of and apparatus for configuring a link in a label switching communication network
CN107896188B (zh) 数据转发方法及装置
CN107786441B (zh) 一种通信方法、OpenFlow交换机及通信系统
WO2023082779A1 (zh) 报文转发方法、电子设备及存储介质
CN113518104B (zh) 一种数据报文的处理方法、中转设备及系统
CN109921989B (zh) 一种bgp逻辑拓扑生成的方法及设备
US9832100B2 (en) Method, device, and computer storage medium for implementing IP address advertisement
CN114760244B (zh) 一种传输绑定段标识bsid的方法、装置和网络设备
WO2017036162A1 (zh) 一种配置方法、装置及路由器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897556

Country of ref document: EP

Effective date: 20200708