WO2018177214A1 - 随机接入物理资源的指示方法及装置、存储介质 - Google Patents

随机接入物理资源的指示方法及装置、存储介质 Download PDF

Info

Publication number
WO2018177214A1
WO2018177214A1 PCT/CN2018/080247 CN2018080247W WO2018177214A1 WO 2018177214 A1 WO2018177214 A1 WO 2018177214A1 CN 2018080247 W CN2018080247 W CN 2018080247W WO 2018177214 A1 WO2018177214 A1 WO 2018177214A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
slot
time slot
internal structure
time
Prior art date
Application number
PCT/CN2018/080247
Other languages
English (en)
French (fr)
Inventor
张峻峰
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2019552848A priority Critical patent/JP7241023B2/ja
Priority to EP18776632.4A priority patent/EP3606232A4/en
Priority to KR1020197031769A priority patent/KR102289798B1/ko
Publication of WO2018177214A1 publication Critical patent/WO2018177214A1/zh
Priority to US16/569,509 priority patent/US11363637B2/en
Priority to US17/660,959 priority patent/US11716768B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0891Non-scheduled access, e.g. ALOHA using a dedicated channel for access for synchronized access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and device for indicating random access physical resources, and a storage medium.
  • the new generation of mobile communication systems will be systematically networked on carrier frequencies higher than those used in 2G, 3G, and 4G systems.
  • the industry has widely recognized and internationally recognized frequency bands are mainly 3GHz to 6GHz, 6GHz to 100GHz.
  • these bands are relatively high, and the loss in propagation is larger.
  • the coverage radius is relatively smaller under the same power, which also determines the beamforming technology in the network of the new generation mobile communication system. Used to increase the coverage radius.
  • the initial access has higher requirements for coverage, and the coverage requirement is greater than the service coverage requirement. Beamforming technology is even more essential.
  • each beam cannot completely cover the entire cell, and multiple beams are needed to cover the entire cell or a sector in the traditional sense. If multiple beams cannot be transmitted simultaneously, a process of beam scanning in the time dimension is required to cover the entire cell or sector.
  • a process of beam scanning in the time dimension is required to cover the entire cell or sector.
  • the multiple beams cannot be simultaneously transmitted. Underneath, a complete beam scanning process must be experienced to enable terminals at all possible locations in the cell to read the corresponding public signals or public information.
  • the terminal may initiate random access according to the random access physical resource notified in the random access configuration message.
  • the base station since the single beam cannot cover the entire cell, if the base station needs to send a message to the terminal, at least it needs to know which beam is a preferred beam that can successfully transmit information to the terminal.
  • a technical solution is not provided in the prior art.
  • the base station randomly selects one beam or transmits a message to a specific terminal in all beams, which causes the base station to select the wrong beam terminal to fail to receive successfully, or uses all beams to transmit to a specific terminal.
  • the message causes a waste of beam resources.
  • the embodiments of the present invention provide a method, a device, and a storage medium for randomly accessing physical resources, and it is desirable to at least partially solve the above problems.
  • an embodiment of the present disclosure provides a method for indicating a random access physical resource, including:
  • the internal structure of the random access slot is semi-statically configured through the broadcast channel.
  • an embodiment of the present disclosure provides a pointing device for randomly accessing a physical resource, including:
  • the first configuration module is configured to semi-statically configure an internal structure of the random access slot through the broadcast channel.
  • an embodiment of the present disclosure provides a pointing device for randomly accessing a physical resource, including: a processor and a memory, where the memory stores computer executable instructions, where the computer executable instructions are executed by the processor
  • the method for indicating any random access physical resource provided by the first aspect may be implemented.
  • an embodiment of the present disclosure provides a method for indicating a random access physical resource, including:
  • an embodiment of the present disclosure provides a pointing device for randomly accessing a physical resource, including:
  • a second receiving module configured to receive an internal structure of a random access slot configured by the base station or the transit node TRP semi-statically configured through the broadcast channel;
  • a second determining module configured to determine, according to a relationship between a downlink synchronization block or a reference signal from the base station or the transmitting node and the first random access slot, the used random access slot;
  • the second sending module is configured to send a random access signal on the determined random access slot or part of the random access slot.
  • an embodiment of the present disclosure provides a pointing device for randomly accessing a physical resource, including: a processor and a memory, where the memory stores computer executable instructions, when the computer executable instructions are executed by the processor A method for indicating any random access physical resource provided by the fourth aspect.
  • an embodiment of the present disclosure further provides a computer readable storage medium storing computer executable instructions; after the computer executable instructions are executed, the first aspect of the claims can be implemented Or the method for indicating a random access physical resource provided by any one of the fourth aspects.
  • the base station configures the internal structure of the random access slot through the broadcast channel, and if the UE knows the internal structure of the random access slot in advance, Then, according to the self-detected beam, the random access request is sent in the corresponding random access slot. After receiving the random access request, the base station knows which beam the terminal detects, so the beam can be successfully used to send information to the terminal. . For example, according to the internal structure of the random access slot, the association relationship between the downlink synchronization block or the reference signal and the first random access slot is notified by a system message.
  • the first random is determined according to the association relationship.
  • a physical resource is accessed, and a random access request is sent on the first random access physical resource, and the base station can determine which beam the terminal can detect according to the random access physical resource where the random access request sent by the current terminal is located. Or the beam with the highest received signal strength is detected; if the beam determined by the method is sent to the terminal, the terminal has a higher probability of being successfully received by the terminal, which obviously solves the problem that the terminal cannot determine which beam sends the information to the specific terminal in the prior art.
  • the problem that the base station determines the beam transmission information in this way can improve the probability that the terminal successfully receives the information sent by the base station.
  • FIG. 1 is a schematic flowchart of a method for indicating a random access physical resource according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a structure of a random access physical resource indication apparatus according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a method for indicating a random access physical resource according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic structural diagram of a structure of a random access physical resource indication apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing an example of correspondence between a synchronization block and a random access physical resource subset according to an embodiment of the present invention
  • FIG. 6 is a diagram showing an example of a synchronization burst set according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a time slot according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a mapping relationship between a downlink synchronization block or a reference signal, an opportunity, and a RACH slot according to Embodiment 1 of the present disclosure
  • FIG. 9 is a schematic diagram of mapping relationship between another downlink synchronization block or a reference signal, an occasion, and an RACH slot according to Embodiment 1 of the present disclosure.
  • FIG. 10 is a schematic diagram of still another mapping relationship between a downlink synchronization block or a reference signal, an occasion, and an RACH slot according to Embodiment 1 of the present disclosure
  • FIG. 11 is a schematic diagram of a mapping relationship between a downlink synchronization block or a reference signal, an occasion, and a RACH slot according to Embodiment 2 of the present disclosure
  • FIG. 12 is a schematic diagram of mapping relationship between another downlink synchronization block or reference signal, an occasion, and a RACH slot according to Embodiment 2 of the present disclosure.
  • random access physical resources are common resources of all beams, and there is no configuration for a specific subset of random access physical resources for a certain beam.
  • the advantage is that the random access physical resource is a large resource pool for all beams, and the resource selection range is larger, and the collision probability of random access can be reduced when the access density is not high, but the disadvantage is also obvious. That is, there is no resource subset for a specific beam direction, and it is difficult for the base station to determine the downlink beam preferred by the terminal through the resources selected by the terminal.
  • the base station informs the internal structure of the random access resource, and after the internal structure is known by the terminal, the terminal sends a random access request according to the internal result of detecting the beam selection random access resource according to the internal result.
  • the terminal will know the association relationship between the downlink synchronization block or the reference signal and the first random access slot, and the downlink synchronization block or the reference signal has a corresponding relationship with the specific beam, so that if the terminal selects the first random access
  • the random access is initiated on the time slot, and the terminal can easily determine the beam that the terminal can successfully detect, so that it can determine which beam to send information to the terminal, thereby improving the success rate of sending information to the terminal.
  • a method for randomly accessing physical resource indications may include:
  • Step 101 Semi-statically configure an internal structure of a random access slot through a broadcast channel.
  • Step 102 The system message is used to notify the terminal of the association relationship between the downlink synchronization block or the reference signal and the first random access slot.
  • the step 101 may include determining an internal structure of the random access slot and broadcasting the internal structure of the random access slot through the broadcast channel semi-static.
  • the terminal can receive the internal structure of the random access slot configured by the base station on the broadcast channel.
  • the base station is an internal structure of a semi-static broadcast random access slot, that is, every other semi-static period corresponding to the semi-static period, the base station broadcasts the internal structure of the random access slot once through the broadcast channel.
  • the step 102 may include: determining, according to an internal structure of the random access slot, an association relationship between the downlink synchronization block and the first random access slot, and/or determining a reference signal and the first random access.
  • the association relationship of the time slots, and the system notifies the terminal of the association relationship determined by the terminal.
  • a plurality of random access slots may be involved in the association between the downlink synchronization block or the reference signal and the random access slot, and the random access slot may be N (as described below).
  • the first random access slot in the example represents the first time slot of multiple random access slots, and the starting point plus the number can fully express the random access slot.
  • N may be separately notified, and the first random access slot may also be separately notified.
  • the internal structure of the random access slot may include at least one of the following:
  • the number of random access opportunities in the uplink portion of the time slot is the number of random access opportunities in the uplink portion of the time slot.
  • the internal structure of the random access slot is a time slot in which a downlink part is dominant or a time slot in which an uplink part is dominant.
  • the internal structure of the random access slot is set according to a random access preamble format.
  • the internal structure of the random access slot is set according to a random access preamble format supported.
  • the association between the downlink synchronization block or the reference signal and the first random access slot may be: the downlink synchronization block or the reference signal after the kth random access slot is The first random access slot is described, and k is a positive integer.
  • the association relationship between the downlink synchronization block or the reference signal and the first random access slot may be: the downlink synchronization block or the reference signal and the first random access slot in the time domain.
  • the association relationship is related to the index of the downlink sync block or the reference signal in the time domain.
  • the random access slot may select the same downlink synchronization block or the index of the reference signal, or may obtain a random access slot by performing function calculation on the index of the downlink synchronization block or the reference signal.
  • the index may be an index number.
  • the method further includes: determining a relationship between the synchronization block or the reference signal and the N random access slots, and notifying the terminal in a display or implicit manner, where N is an integer greater than or equal to 1 or greater than 0. A score less than 1.
  • N is an integer greater than or equal to 1 or greater than 0.
  • the method may include: pre-establishing a correspondence between a message or a signal and an association relationship, and transmitting the message or signal, but not explicitly indicating the association relationship, but the terminal may determine the indication according to the corresponding relationship. Relationship.
  • the N may be determined by at least one of the following configurations or any combination thereof:
  • the length of the random access signal is the length of the random access signal.
  • the semi-static configuration of the internal structure of the random access slot through the broadcast channel includes one of the following:
  • All the synchronization blocks or reference signals in the synchronization burst set have the same association relationship with their respective corresponding first random access slots;
  • Each of the synchronization blocks or reference signals in the synchronization burst set has an associated relationship respectively set.
  • each of the random access slots provides one or more frequency domain resources as random access time-frequency resources.
  • a pointing device for randomly accessing physical resources includes:
  • the first configuration module 21 is configured to semi-statically configure an internal structure of the random access slot through the broadcast channel;
  • the first notification module 22 is configured to notify the terminal of the association between the downlink synchronization block or the reference signal and the first random access slot by using a system message.
  • the first notification module 22 may be configured to notify the terminal of the association relationship between the downlink synchronization block or the reference signal and the first random access slot by using a system message according to an internal structure of the random access slot.
  • the internal structure of the random access slot includes at least one of the following:
  • the internal structure of the random access slot is a time slot in which a downlink part is dominant or a time slot in which an uplink part is dominant.
  • the first configuration module 21 is configured to set an internal structure of the random access slot according to a random access preamble format that needs to be supported.
  • the first configuration module 21 may be further configured to determine, in a time domain, an association relationship between the downlink synchronization block or the reference signal and the first random access slot as: a downlink synchronization block or The kth random access slot after the reference signal is the first random access slot, and k is a positive integer.
  • the first configuration module 21 may be further configured to determine that a synchronization block or a reference signal is associated with N random access slots; the first notification module 22 may also be used to synchronize blocks or The reference signal is associated with the N random access slots to inform the terminal in a display or implicit manner, N being an integer greater than or equal to 1 or a score greater than 0 and less than one.
  • the N is determined by at least one of the following configurations or any combination thereof:
  • the length of the random access signal is the length of the random access signal.
  • the first configuration module 21 may be configured to semi-statically configure an internal structure of the random access slot through a broadcast channel, including one of the following:
  • All the synchronization blocks or reference signals in the synchronization burst set have the same association relationship with their respective corresponding first random access slots;
  • Each of the synchronization blocks or reference signals in the synchronization burst set has an associated relationship respectively set.
  • the first configuration module 21 is further configured to configure each of the random access slots to provide one or more frequency domain resources as random access time-frequency resources.
  • the first configuration module 21 is further configured to determine, in a time domain, an association relationship between the downlink synchronization block or the reference signal and the first random access slot as: the downlink synchronization block Or the association relationship between the reference signal and the first random access slot is related to the index of the downlink synchronization block or the reference signal in the time domain.
  • Yet another indication means for randomly accessing a physical resource comprising: a processor and a memory, the memory storing computer executable instructions, the computer executable instructions being implemented by the processor to implement the following method:
  • the internal structure of the random access slot is semi-statically configured through the broadcast channel
  • the system message is used to notify the terminal of the association relationship between the downlink synchronization block or the reference signal and the first random access slot.
  • the device for randomly accessing physical resources in this embodiment can implement all the details of the method in this embodiment, and can refer to the related description of the method.
  • the apparatus for indicating a random access physical resource in the embodiment may be implemented by using a base station, a transit node, or other similar device to implement the foregoing functions, the method in this embodiment, or the random access physics in this embodiment.
  • the pointing device of the resource may be directly a base station, a transmitting node or the like.
  • the first configuration module 21 and the first notification module 22 can be implemented by software, hardware, or a combination of the two.
  • the first configuration module 21 can be implemented by a base station or a processor of a transmission node or other similar device, and the first notification module 22 can be implemented by a communication unit of a base station or a transmission node or other similar device.
  • the first configuration module 21 can be implemented by a base station or a processor of a transmission node or other similar device, and the first notification module 22 can be implemented by a communication unit and a processor of a base station or a transmission node or other similar device.
  • a method for randomly accessing physical resource indications may include:
  • Step 301 Receive an internal structure of a random access slot configured by a base station or a transit node TRP through a broadcast channel.
  • the internal structure of the random access slot may be used to determine a downlink synchronization block or a reference signal and a first random number.
  • the type of the association relationship of the access slot for example, the association relationship between the downlink synchronization block and the first random access slot, and the association relationship between the reference signal and the first random access slot may be the same or different.
  • Step 302 Determine, according to a relationship between a downlink synchronization block or a reference signal from a base station or a transmission node and a first random access slot, a random access slot used; and in step 302, according to the configured random access slot.
  • the internal structure determines the random access slot used.
  • Step 303 Send a random access signal on the determined random access slot or a partial random access slot.
  • a plurality of random access slots may be involved in the association between the downlink synchronization block or the reference signal and the random access slot, and the random access slot may be N (as described in Embodiment 1).
  • the first random access slot in this embodiment represents the first time slot of multiple random access slots, and the starting point + number can fully express the random access slot.
  • N may be separately notified, and the first random access slot may also be separately notified.
  • the internal structure of the random access slot includes at least one of the following:
  • the number of random access opportunities in the uplink portion of the time slot is the number of random access opportunities in the uplink portion of the time slot.
  • the internal structure of the random access slot may satisfy one of the following conditions:
  • the time slot in which the uplink portion is dominant is dominant.
  • the association between the downlink synchronization block and the first random access slot is in the time domain: the downlink synchronization block or the reference signal, and the kth random access slot is the first random access.
  • the time slot, k is a positive integer.
  • the sending the random access signal on the determined random access slot or part of the random access slot may include: randomly selecting the first random access slot or randomly selecting the first random access Any random access slot after the slot is used as the starting position to transmit a random access signal.
  • the sending the random access signal on the determined random access time slot or the partial random access time slot may include: selecting N random access time slots to send a random access signal, N is an integer greater than or equal to 1 or a fraction greater than 0 and less than 1.
  • the N is determined by at least one of the following configurations or any combination thereof:
  • the length of the random access signal is the length of the random access signal.
  • the sending the random access signal on the determined random access time slot or part of the random access time slot may include: the random access signal is in a random access time slot.
  • the starting position is determined by the index number of the downlink sync block or reference signal and N.
  • the method further includes: selecting one or more frequency domain resources as random access time-frequency resources in each of the random access slots, so that the random access signal is used in the random access Incoming time-frequency resources are sent.
  • the sending the random access signal on the determined random access time slot or the partial random access time slot may include: determining, by using a frequency domain randomization, when the random access signal is sent Frequency domain resource or frequency domain location.
  • the association relationship between the downlink synchronization block or the reference signal and the first random access slot is related to an index of the downlink synchronization block or the reference signal in the time domain;
  • Sending the random access signal on the random access time slot or the partial random access time slot may include: randomly selecting any random access time slot after the first random access time slot or randomly selecting the first random access time slot A random access signal is transmitted as a starting position.
  • the above method of this embodiment can be implemented by a terminal or other similar device.
  • a pointing device for randomly accessing a physical resource may include:
  • the second receiving module 41 is configured to receive an internal structure of a random access slot configured by the base station or the transit node TRP semi-statically configured through the broadcast channel;
  • the second determining module 42 is configured to determine, according to the association between the downlink synchronization block or the reference signal from the base station or the transmission node and the first random access slot, the used random access slot;
  • the second sending module 43 is configured to send a random access signal on the determined random access slot or part of the random access slot.
  • the internal structure of the random access slot includes at least one of the following:
  • the number of random access opportunities in the uplink portion of the time slot is the number of random access opportunities in the uplink portion of the time slot.
  • the internal structure of the random access slot satisfies one of the following conditions:
  • the time slot in which the uplink portion is dominant is dominant.
  • the association relationship between the downlink synchronization block or the reference signal and the first random access slot is in the time domain: the kth random access slot after the downlink synchronization block or the reference signal is the first Random access slot, k is a positive integer.
  • the second sending module 43 may be specifically configured to send random access by using the first random access slot or randomly selecting any random access slot after the first random access slot as a starting location. signal.
  • the second sending module 43 may be configured to select N random access slots to send a random access signal, where N is an integer greater than or equal to 1 or a score greater than 0 and less than 1.
  • N is determined by at least one of the following configurations or any combination thereof: a random access channel preamble format; a random access slot configuration; and a length of the random access signal.
  • the second sending module 43 may be further configured to determine, by the index number of the downlink synchronization block or the reference signal, and N, the start of the random access signal in a random access slot. position.
  • the second determining module 42 may be further configured to select one or more frequency domain resources as random access time-frequency resources in each of the random access slots, so that the random connection The incoming signal is transmitted using the random access time-frequency resource.
  • the second sending module 43 may be further configured to determine a frequency domain resource or a frequency domain location by frequency domain randomization when the random access signal is sent.
  • the association relationship between the downlink synchronization block or the reference signal and the first random access slot is related to an index of the downlink synchronization block or the reference signal in the time domain.
  • the second sending module 43 may be specifically configured to send random access by using the first random access slot or randomly selecting any random access slot after the first random access slot as a starting location. signal.
  • Yet another indication means for randomly accessing a physical resource comprising: a processor and a memory, the memory storing computer executable instructions, the computer executable instructions being implemented by the processor to implement the following method:
  • the device for randomly accessing physical resources in this embodiment can implement all the details of the method in this embodiment, and can refer to the related description of the method.
  • the pointing device for the random access physical resource in the embodiment may be implemented by using the terminal or other similar device to implement the foregoing function, the method in this embodiment, or the indication of the random access physical resource in this embodiment.
  • the device can be directly a terminal or other similar device.
  • the second receiving module 41, the second determining module 42, and the second sending module 43 can be implemented by software, hardware, or a combination of the two.
  • the second determining module 42 can be implemented by a processor of a terminal or other similar device
  • the second receiving module 41 and the second sending module 43 can be implemented by a communication unit of a terminal or other similar device.
  • the second determining module 42 can be implemented by a processor of a terminal or other similar device
  • the second receiving module 41 and the second sending module 43 can be implemented by a communication unit and a processor of a terminal or other similar device.
  • the base station or the TRP semi-statically configures the internal structure of the random access slot through the broadcast channel
  • the base station or the TRP notifies the terminal of the association between the downlink synchronization block or the reference signal and the first random access slot by using a system message;
  • the terminal transmits a random access signal on the determined random access slot or part of the random access slot.
  • These common signals may be various types of synchronization signals, and the common channel may be a broadcast channel, a channel carrying common control information, or a channel carrying a common service, or the like.
  • the simplest uniform correspondence corresponds to the mapping between the downlink signal or channel and a certain subset of the random access physical resource pool.
  • a certain block resource carrying the common signal or channel is referred to as a synchronization block (SS block).
  • the synchronization block is only a possible name here, and does not limit the corresponding downlink signal or A functional feature of the channel, each sync block corresponding to at least one particular beam direction or a downlink signal or channel of the antenna port.
  • the synchronization block has a one-to-one correspondence with a random access physical resource subset. For example, as shown in FIG.
  • the downlink synchronization block 1 or the reference signal 1 and the RACH resource 1 are in one-to-one correspondence
  • the downlink synchronization block 2 or the reference signal 2 and the RACH are respectively
  • the resource 2 has a one-to-one correspondence
  • the downlink synchronization block 3 or the reference signal 3 and the RACH resource 3 are in one-to-one correspondence
  • the downlink synchronization block 4 or the reference signal 4 and the RACH resource 4 are in one-to-one correspondence.
  • the one-to-one correspondence is a relatively simple correspondence, and the terminal needs to obtain the corresponding relationship, so that the corresponding random access physical resource can be obtained, and then the corresponding random signal or channel is determined according to the selected downlink signal or channel. Access physical resources.
  • the synchronization block of the base station is a minimum unit carrying the synchronization signal, and carries a synchronization signal on a beam direction or an antenna port, and the plurality of synchronization blocks are combined into a synchronization burst (SS burst) in the time domain, and more Synchronization bursts are combined into a SS burst set in the time domain.
  • a synchronization burst set contains synchronization signals on all beam directions or antenna ports, and the synchronization signals are repeatedly transmitted in a synchronous burst set period. . As shown in Figure 6, it is an example of a synchronous burst set.
  • a random access opportunity is defined as a time-frequency resource used by a random access signal transmitted in a configured random access preamble format.
  • the terminal receives the downlink signal or channel and detects the quality of the downlink signal or channel, obtains quality information, for example, detects the received signal strength of the sync block, selects a suitable sync block according to the received signal strength, and combines the downlink signal or channel with the random access physical resource.
  • the corresponding relationship of the pool subset determines the time-frequency resource used by the random access opportunity (RACH occasion), and the base station can indirectly know the preferred synchronization block of the terminal by receiving the random access signal.
  • the random access signal transmitted within the random access opportunity corresponds to all possible beam directions or receiving antenna ports received by the uplink.
  • the base station needs to use all receive beam directions or receive antenna ports to detect random access signals.
  • the terminal needs to repeatedly send the random access signal to ensure that the base station can obtain the preferred downlink transmit beam and the preferred uplink receive beam respectively by detecting the random access signal.
  • the terminal may not need to repeatedly send a random access signal.
  • the resource occupied by the random access opportunity that characterizes the random access physical resource pool is a logical resource, and the logical resource ultimately needs to be reflected on the physical resource.
  • the physical resource for transmitting the random access signal is defined as a random access slot.
  • the time slot can be divided into a downlink time slot and an uplink time slot.
  • the downlink time slot or the uplink time slot is not a simple downlink signal, a downlink channel or an uplink signal, an uplink channel, but a downlink time.
  • the ratio of the downlink signal and the downlink channel in the slot is high or the ratio of the uplink signal and the uplink channel in the uplink slot is high.
  • the downlink time slot is a downlink time slot of the TDD mode, and has 14 symbols, wherein a downlink control channel (DLC) and a synchronization signal block (SSB) occupy 10 bits. The symbols are over 50%, and the uplink signal RACH and the uplink control channel (PUCCH) occupy two symbols.
  • the uplink time slot is an uplink time slot of the TDD mode, and has 14 symbols, wherein the downlink control channel (DLC) occupies 2 symbols, and the uplink signals RACH and PUCCH occupy 10 symbols, and the ratio exceeds 50%.
  • Both the downlink time slot and the uplink time slot may be used to carry the uplink RACH signal, and the time slot used to carry the random access signal is called a random access time slot.
  • the internal structure of the downlink time slot and the uplink time slot is not limited to the example of FIG. 7 , and there are various configuration possibilities, that is, when the internal structure of the time slot is dynamically adjusted, the time slots used for transmitting the random access signal in different time slots are used.
  • the size will change dynamically, and the granularity of change time is at least one time slot. When the change is the fastest, the number of resources provided by each different random access time slot may be different.
  • the terminal searches for the physical resource for transmitting the RACH according to the downlink signal or the association relationship between the downlink channel (typically a synchronization block) and a certain subset of the random access physical resource pool (typically RACH occasion), the RACH physical resource needs to be acquired.
  • the downlink control information (DCI) in the downlink control channel in the time slot is read to obtain the allocation of the RACH resources in the internal structure of the time slot, and the specific physical resource location is obtained through indirect calculation, and the DCI information is always read.
  • the power consumption of the terminal is very disadvantageous.
  • due to the dynamic change of the RACH resources in the random access slot it is generally difficult to confirm whether the random access physical resources in a synchronous burst set period are sufficient.
  • the internal structure of the random access slot should remain unchanged, that is, the ratio of internal downlink and uplink, the number of symbols occupied by random access, and the random access physical resources.
  • the length of time should be the same.
  • the internal structure of the random access slot is preferably semi-static. It can be semi-statically configured through broadcast messages.
  • the configuration set can have multiple options, which can be downlink time slots.
  • the uplink slot or the like, the configuration of the random access slot notified in the broadcast message can be marked with the internal structure index of the random access slot.
  • the specific configuration is selected by the base station according to the random access preamble format that the time slot needs to support. In special cases, it is also possible to change the semi-static configuration to a completely static curing configuration.
  • the base station also needs to determine all random access slots available to the system.
  • the density of the random access slot and the location of the resource allocation depend on the following factors: the random access preamble format to be adopted by the base station, the size of the random access slot internal structure provided to the uplink transmission random access area, and whether the base station can Receiving a plurality of different beams simultaneously in the frequency domain, whether the reciprocity of the transmitting and receiving beams of the base station exists, and the like.
  • the resources (time, frequency, and code resource sum) of the random access opportunity provided by the random access slot in an SS burst set period need to satisfy at least the correspondence with the downlink synchronization block or the reference signal.
  • This embodiment details the process of determining the physical resource of the RACH, that is, the random access slot, in the scenario where the base station has no beam reciprocity.
  • FIG. 8 illustrates a mapping relationship between a downlink synchronization block or a reference signal, an occasion, and a RACH slot.
  • Different SS blocks or reference signals correspond to different random access opportunities (occasion), and occasion is logic.
  • the resource number needs to be mapped into a specific physical RACH slot.
  • FIG. 8 is a typical configuration, that is, one synchronization block corresponds to one random access opportunity, and a logical resource of a random access opportunity can be carried by a random access physical time slot.
  • 8 RACH symbols are taken as an example, indicating that the same random access symbol and sequence need to be repeated 8 times, so that the base station performs training and detection on 8 different receiving beams.
  • the cyclic prefix (CP) of the random access signal and the guard time (GP, guard period) of the differentiated time slot downlink uplink may be common resources, and the suffix (GT) of the random access signal may also be shared with the PUCCH.
  • one downlink synchronization block or reference signal corresponds to a random access opportunity occupancy, and a random access opportunity occasion logical resource can be carried by multiple random access physical time slots, in this example It is two.
  • Uplink slot 1 and uplink slot 2 may be continuously transmitted, or may be discontinuously transmitted. If an SS burst set period is long and contains more SS blocks, the corresponding RACH occasion is also longer, and more RACH physical slots are mapped.
  • FIG. 10 is a third typical configuration, that is, one downlink synchronization block or reference signal corresponds to a random access opportunity occupancy, and logical resources of multiple occasions can be carried by the same random access physical time slot.
  • a physical time slot has a total of 8 RACH symbols, and the random access symbols and sequences of the same random access opportunity need to be repeated 4 times, so that the base station can perform training and detection on 4 different receiving beams.
  • the above three typical mapping relationships may cover one-to-one, one-to-many, and many-to-one mapping relationships between RACH occasions and random access physical resources under the condition that the base station does not have beam reciprocity.
  • the base station needs to notify at least the mapping relationship between the terminal synchronization block downlink synchronization block or the reference signal and the initial RACH time slot, for example, to notify that the first RACH time slot can be initially accessed after the downlink synchronization block or the reference signal.
  • the specific starting position may be indirectly confirmed by the index number of the downlink synchronization block or the reference signal and the number of random access signals that can be carried in one physical time slot.
  • the base station can also notify how many RACH slots can be mapped by a downlink synchronization block or a reference signal, that is, how many RACH slots can be used by the random access signal corresponding to the downlink synchronization block or the reference signal to send a random access signal.
  • the relationship is also equivalent to the number of random access signals that can be carried in one RACH slot, which are inversely related to each other.
  • the number of RACH slots here may be not only an integer greater than or equal to 1, but also a fraction greater than 0 and less than 1, such as 0.5, indicating that the random access signal may use only half of the RACH slots, and if it is 0.25, it indicates The random access signal can occupy only 1/4 RACH slot.
  • the random access signal corresponding to the downlink synchronization block or the reference signal may be indirectly calculated by using the number of RACH slots or by the configured physical random access channel format and the length of the random access signal.
  • the above single mapping relationship can be applied to all downlink synchronization blocks or reference signals, and each downlink synchronization block or reference signal can be considered to have independent mapping. relationship.
  • the configuration of the independent mapping relationship requires more signaling overhead. From the perspective of saving signaling overhead, a single mapping relationship is uniformly configured for all downlink synchronization blocks or reference signals. If each downlink synchronization block or reference signal needs to be mapped, the RACH resources are not uniform, and may be in the frequency domain. Or the code domain increases the RACH resources required for each downlink sync block or reference signal.
  • This example describes in detail the process of determining the physical resource of the RACH, that is, the random access slot, in the scenario where the base station has beam reciprocity.
  • FIG. 11 illustrates a mapping relationship between a downlink synchronization block or a reference signal, an occasion, and a RACH slot. Different downlink synchronization blocks or reference signals in the same SS burst set correspond to an occupancy, and the occupancy is a logical resource number.
  • a synchronization block downlink synchronization block or reference signal corresponds to a part of a random access opportunity occasion (corresponding to a base station receiving beam), and a random access opportunity occasion logical resource is multiple
  • the random access physical time slot bearers, and a sync block downlink synchronization block or reference signal corresponds to one of the random access physical time slots.
  • a downlink synchronization block or a reference signal downlink synchronization block or a reference signal corresponds to a part of a random access opportunity occasion (corresponding to a base station reception beam), a random access
  • the logical resource of the opportunity occasion is carried by multiple random access physical time slots, and some downlink synchronization blocks or reference signals correspond to one of the random access physical time slots, that is, one random access physical time slot is mapped with multiple downlinks. Synchronization block or reference signal.
  • a downlink synchronization block or reference signal corresponding to a plurality of random access physical time slots is also a possibility, similar to the configuration shown in FIG. 9 in Example 1, and will not be redundant.
  • the base station has no beam reciprocity or the base station has beam reciprocity, there is a certain commonality in the mapping relationship between the downlink synchronization block or the reference signal and the random access slot.
  • the base station needs to notify at least the mapping relationship between the downlink synchronization block or the reference signal and the initial RACH time slot of the terminal, such as notifying that the first RACH time slot can be initially accessed after the downlink synchronization block or the reference signal.
  • the base station needs to notify at least the mapping relationship between the downlink synchronization block or the reference signal and the initial RACH time slot of the terminal, such as notifying that the first RACH time slot can be initially accessed after the downlink synchronization block or the reference signal.
  • the specific start in the time slot needs to be determined.
  • the location, the specific starting position in the time slot, in addition to the direct notification may also be indirectly confirmed by the index number of the downlink synchronization block or the reference signal and the number of random access signals that can be carried in one physical time slot.
  • the mapping relationship between the downlink synchronization block SS block or the reference signal and the initial RACH time slot of the terminal may also be performed by other specific implementation manners, for example, the association between the downlink synchronization block or the reference signal and the initial RACH time slot is synchronized with the downlink in the time domain.
  • the index of the block or reference signal is related. In short, if the downlink sync block or the reference signal index is i, the RACH slot whose index is i or a functional relationship of i is the associated initial RACH slot.
  • the base station can also notify how many RACH slots can be mapped by a downlink synchronization block or a reference signal, that is, how many RACH slots can be used by the random access signal corresponding to the downlink synchronization block or the reference signal to send a random access signal.
  • the relationship is also equivalent to the number of random access signals that can be carried in one RACH slot, which are inversely related to each other.
  • the number of RACH slots here may be not only an integer greater than or equal to 1, but also a fraction greater than 0 and less than 1, such as 0.5, indicating that the random access signal may use only half of the RACH slots, and if it is 0.25, it indicates The random access signal can occupy only 1/4 RACH slot.
  • the random access signal corresponding to the downlink synchronization block or the reference signal may be indirectly calculated by using the number of RACH slots or by the configured physical random access channel format and the length of the random access signal.
  • each downlink synchronization block or reference signal can be considered to have independent mapping. relationship.
  • the above notification and indication methods are applicable not only to a single end user, but also to multi-user scenarios. If multiple users prefer the same downlink synchronization block or reference signal and initiate random access, multiple users avoid mutual interference by frequency domain or code domain randomization, preferably frequency domain randomization, and the frequency domain location is determined by The terminal decides its choice.
  • an embodiment of the present disclosure further provides a computer readable storage medium storing computer executable instructions, when the computer executable instructions are executed, implementing any of the foregoing methods for indicating random access physical resources, for example, implementing The method shown in Figures 1 and/or Figure 3.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the storage medium is a non-transitory storage medium.
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • Embodiments of the present disclosure are not limited to any specific form of combination of hardware and software.
  • the base station configures an internal structure of the random access slot, and then according to the internal structure of the random access slot, and can notify the terminal of the downlink synchronization block or the reference signal and the first random access by using a system message.
  • the relationship of the gap In this manner, after successfully detecting the corresponding downlink synchronization block or the reference signal, the terminal initiates a random access request on the first random access slot according to the association relationship, and the base station can know which beam can successfully send information to the terminal.
  • the problem that the base station cannot determine the beam for transmitting information to the terminal is solved, and at the same time, the success rate of the base station transmitting information to the terminal is improved, which has a positive industrial effect; and has the characteristics of simple implementation and good application prospect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布了一种随机接入物理资源的指示方法及装置,可以包括:通过广播信道半静态配置随机接入时隙的内部结构。本公开实施例本发明实施例还提供了一种计算机可读存储介质。

Description

随机接入物理资源的指示方法及装置、存储介质
相关申请的交叉引用
本公开实施例基于申请号为201710189324.8、申请日为2017年03月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开实施例作为参考。
技术领域
本发明涉及无线通信领域,具体涉及一种随机接入物理资源的指示方法及装置、存储介质。
背景技术
新一代移动通信系统将会在比2G、3G、4G系统所用频率更高的载波频率上进行系统组网,目前得到业界广泛共识和国际组织认定的频段主要是3GHz~6GHz,6GHz~100GHz,相对于早期通信系统的组网频率,这些频段比较高,在传播上损耗更大,同样的功率下覆盖半径相对更小,这也决定了新一代移动通信系统组网中,需要采用波束赋型技术用于提高覆盖半径。其中初始接入中对覆盖的要求更高,覆盖范围要求大于业务覆盖要求,波束赋型技术更是必不可少。
对于广泛采用波束赋型的新一代移动通信系统来说,每一个波束不能完整地覆盖整个小区,需要有多个波束才可以覆盖整个小区或传统意义上的扇区。如果多个波束不能同时发射,则需要在时间维度上经历波束扫描的过程才能覆盖整个小区或扇区。对于下行的公共信号或信道如同步信号、广播信道、公共控制信道、公共业务信道等因为需保证全小区无缝覆盖,且需通过波束来满足覆盖要求,则在多个波束不能同时发射的情况下,必须经历一个完整的波束扫描过程才能够让小区内所有可能位置的终端读取到相应的公共信号或者公共信息。终端在读取到公共信号或公共信息携带的随机接入配置消息后,可以根据随机接入配置消息中通知的随机 接入物理资源发起随机接入。此时,由于单一波束无法覆盖到整个小区,基站若需要向终端发送消息,至少需要知道哪个波束是可成功向终端发送信息的优选波束。在现有技术中并未给出技术方案,基站随机选择一个波束或者在所有波束向特定终端发送消息,这就导致了基站选择错误了波束终端无法接收成功,或者,利用所有波束向特定终端发送消息导致了波束资源的浪费。
发明内容
本发明实施例提供了一种随机接入物理资源的指示方法及装置、存储介质,期望至少部分解决上述问题。
第一方面,本公开实施例提供了一种随机接入物理资源的指示方法,包括:
通过广播信道半静态配置随机接入时隙的内部结构。
随机接入时隙的内部结构随机接入时隙的内部结构随机接入时隙的内部结构。
第二方面,本公开实施例提供了一种随机接入物理资源的指示装置,包括:
第一配置模块,配置为通过广播信道半静态配置随机接入时隙的内部结构。
随机接入时隙的内部结构随机接入时隙的内部结构随机接入时隙的内部结构。
第三方面,本公开实施例提供了一种随机接入物理资源的指示装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时可实现第一方面提供的任意一个随机接入物理资源的指示方法。
第四方面,本公开实施例提供了一种随机接入物理资源的指示方法,包括:
接收基站或传输节点TRP通过广播信道半静态配置的随机接入时隙的内部结构;
根据来自基站或传输节点的下行同步块或参考信号与第一随机接入时隙的关联关系,确定所使用的随机接入时隙;
在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号。
第五方面,本公开实施例提供了一种随机接入物理资源的指示装置,包括:
第二接收模块,配置为接收基站或传输节点TRP通过广播信道半静态配置的随机接入时隙的内部结构;
第二确定模块,配置为根据来自基站或传输节点的下行同步块或参考信号与第一随机接入时隙的关联关系,确定所使用的随机接入时隙;
第二发送模块,配置为在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号。
第六方面,本公开实施例提供了一种随机接入物理资源的指示装置包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时第四方面提供的任意一个随机接入物理资源的指示方法。
第七方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现权利要求第一方面或第四方面任意一项提供的随机接入物理资源的指示方法。
本发明实施例中的随机接入物理资源的指示方法及装置、存储介质, 基站通过广播信道配置了随机接入时隙的内部结构,若UE提前知道这种随机接入时隙的内部结构,则可以根据自身检测到波束在对应的随机接入时隙发送随机接入请求,如此,基站接收到随机接入请求之后,就知道终端检测到哪个波束,故可以利用该波束成功向终端发送信息。例如,根据所述随机接入时隙的内部结构,通过系统消息通知了下行同步块或参考信号与第一随机接入时隙的关联关系。由于下行同步块或参考信号都是由波束发送的,若终端检测到某一个同步块或参考信号或检测到接收信号质量最好的同步块或参考信号之后,在根据关联关系确定出第一随机接入物理资源,在第一随机接入物理资源上发送随机接入请求,基站就可以根据当前终端发送的随机接入请求所在的随机接入物理资源,从而可以确定出终端可以检测到哪个波束或检测到接收信号强度最大的波束;若利用该方法确定出的波束向终端发送信息,有更大概率被终端成功接收,显然解决了现有技术中终端无法确定出哪个波束向特定终端发送信息的问题,同时基站采用这种方式确定出的波束发送信息,可以提升终端成功接收基站发送信息的概率。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本公开实施例的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例一提供的随机接入物理资源指示方法的流程示意图;
图2为本发明实施例一提供的随机接入物理资源指示装置的组成结构示意图;
图3为本发明实施例二提供的随机接入物理资源指示方法的流程示意 图;
图4为本发明实施例二提供的随机接入物理资源指示装置的组成结构示意图;
图5为本发明实施例的同步块和随机接入物理资源子集之间对应关系示例图;
图6为本发明实施例的同步突发集示例图;
图7为本发明实施例的时隙示例图;
图8为本公开实施例实例1提供的一种下行同步块或参考信号、时机(occasion)以及RACH时隙之间映射关系的示意图;
图9为本公开实施例实例1提供的另一种下行同步块或参考信号、occasion以及RACH时隙之间映射关系的示意图;
图10为本公开实施例实例1提供的又一种下行同步块或参考信号、occasion以及RACH时隙之间映射关系的示意图;
图11为本公开实施例实例2提供的一种下行同步块或参考信号、occasion以及RACH时隙之间映射关系的示意图;
图12为本公开实施例实例2提供的另一种下行同步块或参考信号、occasion以及RACH时隙之间映射关系的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
研究发现,随机接入物理资源是所有波束的公共资源,并不是针对某 一个波束会有一个特定的随机接入物理资源子集的配置。其优点在于随机接入物理资源针对所有波束都是一个大的资源池,在资源的选择范围上更大,在接入密度不高时能够降低随机接入的碰撞概率,但是其缺点也很明显,即没有针对具体波束方向的资源子集,基站难以通过终端选择的资源来确定终端优选的下行波束。故在本实施例中基站会告知配置随机接入资源的内部结构,该内部结构被终端知道后,终端会根据该内部结果根据自身检测到波束选择随机接入资源发送随机接入请求。例如,终端将获知下行同步块或参考信号与第一随机接入时隙的关联关系,而下行同步块或参考信号是与特定的波束具有对应关系,如此,终端若选择在第一随机接入时隙上发起随机接入,终端就可以简便的确定出终端可成功检测到的波束,从而可以确定出在哪个波束上向终端发送信息,从而提升向终端发送信息的成功率。
实施例一
如图1所示,一种随机接入物理资源指示的方法,可以包括:
步骤101,通过广播信道半静态配置随机接入时隙的内部结构;
步骤102,通过系统消息通知终端下行同步块或参考信号与第一随机接入时隙的关联关系。
所述步骤101可包括:确定随机接入时隙的内部结构,并通过广播信道半静态的广播随机接入时隙的内部结构。如此,终端就可以在广播信道上接收到基站配置的随机接入时隙的内部结构。且基站是半静态的广播随机接入时隙的内部结构,即每隔一个半静态所对应的半静态周期,基站就通过广播信道广播一次所述随机接入时隙的内部结构。
所述步骤102可包括:根据随机接入时隙的内部结构,确定出所述下行同步块与第一随机接入时隙的关联关系,和/或,确定出参考信号与第一随机接入时隙的关联关系,并通过系统给消息通知终端确定的关联关系。
实际应用中,下行同步块或参考信号与随机接入时隙的关联关系中会涉及到多个随机接入时隙,该随机接入时隙可以是N个(如下文所述),本实施例中的第一随机接入时隙表示多个随机接入时隙的第一个时隙,有起点加个数可以完整表达随机接入时隙。可选地,N可以单独通知,第一随机接入时隙也可以单独通知。
在一种实现方式中,所述随机接入时隙的内部结构至少可以包括如下之一:
时隙内下行部分和上行部分的比例;
时隙内上行部分的随机接入所占用的符号数量;
时隙内上行部分的随机接入物理资源的时间长度;
时隙内上行部分的随机接入机会的数量。
在一种实现方式中,所述随机接入时隙的内部结构是下行部分为主的时隙或者上行部分为主的时隙。
在一种实现方式中,所述随机接入时隙的内部结构是根据随机接入前导格式设置的,例如,随机接入时隙的内部结构是根据需要支持的随机接入前导格式设置的。
在一种实现方式中,所述下行同步块或参考信号与第一随机接入时隙的关联关系在时域上可以为:下行同步块或参考信号后第k个随机接入时隙为所述第一随机接入时隙,k为正整数。
在另一种实现方式中,所述下行同步块或参考信号与第一随机接入时隙的关联关系在时域上可以为:所述下行同步块或参考信号与第一随机接入时隙的关联关系,在时域上与下行同步块或参考信号的索引有关。例如,随机接入时隙可以选择同样的下行同步块或参考信号的索引,或者可以通过对下行同步块或参考信号的索引进行函数计算获得随机接入时隙。这里,索引具体可以是索引号。
在一种实现方式中,还可以包括:确定同步块或参考信号与N个随机接入时隙关联关系,并以显示或者隐式的方式通知终端,N为大于等于1的整数或为大于0小于1的分数。实际应用中,确定同步块或参考信号与N个随机接入时隙关联并通知终端,与本实施例中通知终端同步块或参考信号与第一接入时隙的关联关系,并不存在明确的先后顺序。此处,显示的方式通知终端,可通过明确的信息指示来通知。隐形的方式通知终端,可包括:预先建立某一个消息或信号与关联关系的对应关系,再发送该消息或信号,但是没有明确指示所述关联关系,终端却可以根据上述对应关系,确定出指示的关联关系。
在一种实现方式中,所述N至少可以由如下配置之一或其任意组合确定:
随机接入信道前导格式;
随机接入时隙配置;
随机接入信号的长度。
在一种实现方式中,所述通过广播信道半静态配置随机接入时隙的内部结构,包括如下之一:
所述同步突发集内的所有同步块或参考信号与其各自对应的所述第一随机接入时隙的关联关系相同;
所述同步突发集内的每个所述同步块或参考信号有分别设置的关联关系。
在一种实现方式中,每一个所述随机接入时隙提供一个或多个频域资源作为随机接入时频资源。
本实施例的上述方法可以通过基站、传输节点(TRP)或其他类似的设备实现。如图2所示,一种随机接入物理资源的指示装置,包括:
第一配置模块21,配置为通过广播信道半静态配置随机接入时隙的内 部结构;
第一通知模块22,配置为通过系统消息通知终端下行同步块或参考信号与第一随机接入时隙的关联关系。例如,第一通知模块22,可配置为根据随机接入时隙的内部结构,通过系统消息通知终端下行同步块或参考信号与第一随机接入时隙的关联关系。
在一种实现方式中,所述随机接入时隙的内部结构至少包括如下之一:
时隙内下行部分和上行部分的比例;
时隙内上行部分的随机接入所占用的符号数量;
时隙内上行部分的随机接入物理资源的时间长度。
在一种实现方式中,所述随机接入时隙的内部结构是下行部分为主的时隙或者上行部分为主的时隙。
在一种实现方式中,所述第一配置模块21,可配置为根据需要支持的随机接入前导格式设置所述随机接入时隙的内部结构。
在一种实现方式中,所述第一配置模块21,还可配置为将所述下行同步块或参考信号与第一随机接入时隙的关联关系在时域上确定为:下行同步块或参考信号后第k个随机接入时隙为所述第一随机接入时隙,k为正整数。
在一种实现方式中,所述第一配置模块21,还可配置为确定同步块或参考信号与N个随机接入时隙关联;所述第一通知模块22,还可用于将同步块或参考信号与N个随机接入时隙关联以显示或者隐式的方式通知终端,N为大于等于1的整数或为大于0小于1的分数。
在一种实现方式中,所述N至少由如下配置之一或其任意组合确定:
随机接入信道前导格式;
随机接入时隙配置;
随机接入信号的长度。
在一种实现方式中,所述第一配置模块21可配置为通过广播信道半静态配置随机接入时隙的内部结构,包括如下之一:
所述同步突发集内的所有同步块或参考信号与其各自对应的所述第一随机接入时隙的关联关系相同;
所述同步突发集内的每个所述同步块或参考信号有分别设置的关联关系。
在一种实现方式中,所述第一配置模块21,还配置为将每一个所述随机接入时隙配置为:提供一个或多个频域资源作为随机接入时频资源。
在一种实现方式中,所述第一配置模块21,还配置为将所述下行同步块或参考信号与第一随机接入时隙的关联关系在时域上确定为:所述下行同步块或参考信号与第一随机接入时隙的关联关系,在时域上与下行同步块或参考信号的索引有关。
又一种随机接入物理资源的指示装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
通过广播信道半静态配置随机接入时隙的内部结构;
通过系统消息通知终端下行同步块或参考信号与第一随机接入时隙的关联关系。
本实施例中随机接入物理资源的指示装置可以实现本实施例方法的所有细节,可参照方法的相关说明。实际应用中,本实施例中的随机接入物理资源的指示装置可以通过设置于基站、传输节点或其他类似设备上来实现上述功能以及本实施例的方法,或者本实施例中的随机接入物理资源的指示装置可以直接为基站、传输节点或其他类似设备。实际应用中,第一配置模块21和第一通知模块22分别可以通过软件、硬件或两者结合的方式实现。例如,第一配置模块21可以通过基站或传输节点或其他类似设备 的处理器实现,第一通知模块22可以通过基站或传输节点或其他类似设备的通信单元实现。再例如,第一配置模块21可以通过基站或传输节点或其他类似设备的处理器实现,第一通知模块22可以通过基站或传输节点或其他类似设备的通信单元和处理器结合实现。对此本文不作限制。实施例二
如图3所示,一种随机接入物理资源指示的方法,可以包括:
步骤301,接收基站或传输节点TRP通过广播信道半静态配置的随机接入时隙的内部结构;其中,该随机接入时隙的内部结构,可用于确定下行同步块或参考信号与第一随机接入时隙的关联关系的类型,例如,下行同步块与第一随机接入时隙的关联关系,和参考信号与第一随机接入时隙的关联关系可相同或不同。
步骤302,根据来自基站或传输节点的下行同步块或参考信号与第一随机接入时隙的关联关系,确定所使用的随机接入时隙;在步骤302中根据配置的随机接入时隙的内部结构,确定所使用的随机接入时隙。
步骤303,在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号。
实际应用中,下行同步块或参考信号与随机接入时隙的关联关系中会涉及到多个随机接入时隙,该随机接入时隙可以是N个(如实施例一所述),本实施例中的第一随机接入时隙表示多个随机接入时隙的第一个时隙,有起点+个数可以完整表达随机接入时隙。可选地,N可以单独通知,第一随机接入时隙也可以单独通知。
在一种实现方式中,所述随机接入时隙的内部结构至少包括如下之一:
时隙内下行部分和上行部分的比例;
时隙内上行部分的随机接入所占用的符号数量;
时隙内上行部分的随机接入物理资源的时间长度;
时隙内上行部分的随机接入机会的数量。
在一种实现方式中,所述随机接入时隙的内部结构可满足如下条件中之一:
下行部分为主的时隙;
上行部分为主的时隙。
在一种实现方式中,所述下行同步块与第一随机接入时隙的关联关系在时域上为:下行同步块或参考信号后第k个随机接入时隙为第一随机接入时隙,k为正整数。此时,所述在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号,可以包括:以所述第一随机接入时隙或者随机选择第一随机接入时隙后的任意随机接入时隙作为起始位置发送随机接入信号。
在一种实现方式中,所述在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号,可以包括:选择N个随机接入时隙发送随机接入信号,N为大于等于1的整数或为大于0小于1的分数。
在一种实现方式中,所述N至少由以下配置之一或其任意组合确定:
随机接入信道前导格式;
随机接入时隙配置;
随机接入信号的长度。
在一种实现方式中,所述在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号,可以包括:所述随机接入信号在随机接入时隙内的起始位置由所述下行同步块或参考信号的索引号以及N确定。
在一种实现方式中,还可以包括:在每一个所述随机接入时隙选择一个或多个频域资源作为随机接入时频资源,以便所述随机接入信号使用在所述随机接入时频资源发送。
在一种实现方式中,在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号,可以包括:发送所述随机接入信号时通过频域随机 化的方式确定频域资源或频域位置。
在一种实现方式中,所述下行同步块或参考信号与第一随机接入时隙的关联关系,在时域上与下行同步块或参考信号的索引有关;此时,在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号,可以包括:以所述第一随机接入时隙或者随机选择第一随机接入时隙后的任意随机接入时隙作为起始位置发送随机接入信号。
本实施例的上述方法可以通过终端或其他类似的设备实现。
如图4所示,一种随机接入物理资源的指示装置,可以包括:
第二接收模块41,配置为接收基站或传输节点TRP通过广播信道半静态配置的随机接入时隙的内部结构;
第二确定模块42,配置为根据来自基站或传输节点的下行同步块或参考信号与第一随机接入时隙的关联关系,确定所使用的随机接入时隙;
第二发送模块43,配置为在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号。
在一种实现方式中,所述随机接入时隙的内部结构至少包括如下之一:
时隙内下行部分和上行部分的比例;
时隙内随机接入所占用的符号数量;
时隙内随机接入物理资源的时间长度;
时隙内上行部分的随机接入机会的数量。
在一种实现方式中,所述随机接入时隙的内部结构满足如下条件中之一:
下行部分为主的时隙;
上行部分为主的时隙。
在一种实现方式中,所述下行同步块或参考信号与第一随机接入时隙的关联关系在时域上为:下行同步块或参考信号后第k个随机接入时隙为 第一随机接入时隙,k为正整数。此时,所述第二发送模块43,具体可用于以所述第一随机接入时隙或者随机选择第一随机接入时隙后的任意随机接入时隙作为起始位置发送随机接入信号。
在一种实现方式中,所述第二发送模块43,可配置为选择N个随机接入时隙发送随机接入信号,N为大于等于1的整数或为大于0小于1的分数。在一种实现方式中,所述N至少由以下配置之一或其任意组合确定:随机接入信道前导格式;随机接入时隙配置;随机接入信号的长度。
在一种实现方式中,所述第二发送模块43,还可以配置为由所述下行同步块或参考信号的索引号以及N确定所述随机接入信号在随机接入时隙内的起始位置。
在一种实现方式中,所述第二确定模块42,还可以配置为在每一个所述随机接入时隙选择一个或多个频域资源作为随机接入时频资源,以便所述随机接入信号使用所述随机接入时频资源发送。
在一种实现方式中,所述第二发送模块43,还可以配置为发送所述随机接入信号时通过频域随机化的方式确定频域资源或频域位置。
在一种实现方式中,所述下行同步块或参考信号与第一随机接入时隙的关联关系,在时域上与下行同步块或参考信号的索引有关。此时,所述第二发送模块43,具体可用于以所述第一随机接入时隙或者随机选择第一随机接入时隙后的任意随机接入时隙作为起始位置发送随机接入信号。
又一种随机接入物理资源的指示装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
接收基站或传输节点TRP通过广播信道半静态配置的随机接入时隙的内部结构;
根据来自基站或传输节点的下行同步块或参考信号与第一随机接入时 隙的关联关系,确定所使用的随机接入时隙;
在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号。
本实施例中随机接入物理资源的指示装置可以实现本实施例方法的所有细节,可参照方法的相关说明。实际应用中,本实施例中的随机接入物理资源的指示装置可以通过设置于终端或其他类似设备上来实现上述功能以及本实施例的方法,或者本实施例中的随机接入物理资源的指示装置可以直接为终端或其他类似设备。
实际应用中,第二接收模块41、第二确定模块42、第二发送模块43分别可以通过软件、硬件或两者结合的方式实现。例如,第二确定模块42可以通过终端或其他类似设备的处理器实现,第二接收模块41、第二发送模块43可以通过终端或其他类似设备的通信单元实现。再例如,第二确定模块42可以通过终端或其他类似设备的处理器实现,第二接收模块41、第二发送模块43可以通过终端或其他类似设备的通信单元和处理器结合实现。对此本文不作限制。
实施例三
本实施例中提供一种随机接入物理资源指示的方法,过程如下:
基站或TRP通过广播信道半静态配置随机接入时隙的内部结构;
终端接收所述基站或TRP通过广播信道半静态配置的随机接入时隙的内部结构;
基站或TRP通过系统消息通知终端下行同步块或参考信号与第一随机接入时隙的关联关系;
终端根据接收的下行信号或信道质量,以及所述下行同步块或参考信号与第一随机接入时隙的关联关系,确定随机接入时隙;
终端在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入 信号。
本实施例的具体实现过程可参照实施例一和实施例二,可参照上文实施例一和实施例二。
要解决基站如何获取终端选择的下行发送波束信息的问题,就需要考虑在终端接收的初始下行信号或信道与随机接入物理资源之间建立可以关联的对应关系。这些公共信号可以是各种类型的同步信号,公共信道可以是广播信道、承载公共控制信息的信道、或者承载公共业务的信道等。
最简单的均匀对应的对应关系就是在下行信号或信道与随机接入物理资源池的某个子集建立一一映射的对应关系。如图5所示,举例来说,将承载上述公共信号或信道的某一块资源称为同步块(SS block),同步块在这里只是一种可能的称呼,并未限制承载相应的下行信号或信道的功能特征,每一个同步块至少对应了一个特定波束方向或者天线端口的下行信号或信道。同步块和某一个随机接入物理资源子集是一一对应关系,比如图5所示,下行同步块1或参考信号1和RACH resource 1一一对应,下行同步块2或参考信号2和RACH resource 2一一对应,下行同步块3或参考信号3和RACH resource3一一对应,下行同步块4或参考信号4和RACH resource 4一一对应。
这里,一一对应的关系是一种比较简单的对应关系,终端需获取这种对应关系,才能够获取对应的随机接入物理资源,进而根据选择好的某下行信号或信道来决定相应的随机接入物理资源。
可选地,基站的同步块是承载同步信号的最小单位,承载了一个波束方向或天线端口上的同步信号,多个同步块在时域上组合成一个同步突发(SS burst),而多个同步突发在时域上组合成一个同步突发集(SS burst set),一个同步突发集包含了所有波束方向或天线端口上的同步信号,同步信号以同步突发集为周期重复发送。如图6所示,为同步突发集的一个 示例。
一个随机接入机会(RACH occasion)定义为用配置的随机接入前导格式发送的随机接入信号所使用的时频资源。终端接收下行信号或信道并检测下行信号或信道的质量,获得质量信息,例如检测同步块的接收信号强度,根据接收信号强度选择合适的同步块,并结合下行信号或信道与随机接入物理资源池子集的对应关系,确定随机接入机会(RACH occasion)所使用的时频资源,基站可以通过接收随机接入信号间接了解终端优选的同步块。
随机接入机会内发送的随机接入信号对应上行接收的所有可能波束方向或者接收天线端口。基站需要使用所有的接收波束方向或者接收天线端口来检测随机接入信号。对于基站不具备波束互易性的场景下,终端需重复发送随机接入信号,以保证基站可以通过检测随机接入信号分别获得优选下行发射波束和优选上行接收波束。对于基站具备波束互易性的场景下,终端可以不用重复发送随机接入信号。
在描述下行信号或信道与随机接入物理资源池子集的对应关系时,表征随机接入物理资源池的随机接入机会所占用的资源是一种逻辑资源,逻辑资源最终需要体现到物理资源上。这里把传输随机接入信号的物理资源定义为随机接入时隙。新一代移动通信系统中,时隙可以分为下行时隙和上行时隙,这里的下行时隙或者上行时隙内不是单纯的下行信号、下行信道或上行信号、上行信道,而是指下行时隙内的下行信号、下行信道的比例较高或者上行时隙内的上行信号、上行信道比例较高。
如图7所示,为包含上行时隙和下行时隙的时隙示例。如图7所示的示例中,下行时隙为TDD模式的下行时隙,有14个符号,其中,下行控制信道(Downlink control channel,DLC)、同步块(synchronization signal block,SSB)所占10个符号,比例超过50%,而上行信号 RACH和上行控制信道(PUCCH)占两个符号。如图7所示的示例中,上行时隙是TDD模式的上行时隙,有14个符号,其中下行控制信道(DLC)占2个符号,而上行信号RACH和PUCCH占10个符号,比例超过50%。
无论是下行时隙还是上行时隙都有可能用来承载上行RACH信号,用来承载随机接入信号的时隙称为随机接入时隙。下行时隙和上行时隙的内部结构组成不限于图7的示例,存在多种配置可能,也就是说在时隙内部结构动态调整的情况下,不同时隙用来传输随机接入信号的区间大小会动态发生变化,变化时间颗粒度最小为一个时隙,变化最快情况下,每个不同的随机接入时隙提供的资源数量就有可能不一样。终端根据下行信号或下行信道(典型为同步块)与随机接入物理资源池的某个子集(典型为RACH occasion)的关联关系去寻找传输RACH的物理资源时,RACH物理资源的获取就需要去读取时隙中下行控制信道中的下行控制信息(DCI),以获取本时隙内部结构组成中的RACH资源的分配情况,再通过间接计算获得具体的物理资源位置,一直读取DCI信息,对于终端的功耗节省非常不利。而且由于随机接入时隙内RACH资源动态变化,总体上难以确认一个同步突发集周期内随机接入物理资源是否够用。
在随机接入时隙类型没有重新配置前,随机接入时隙的内部结构组成应该保持不变,也就是内部下行和上行的比例、随机接入所占用的符号数量、随机接入物理资源的时间长短等应该保持不变。以天、月为单位的长期参数看,随机接入时隙的内部结构组成最好是半静态的,可以通过广播消息进行半静态配置,配置集可以存在多种选择,可以是下行时隙、上行时隙等,在广播消息中通知的随机接入时隙的配置可以用随机接入时隙的内部结构索引来标记。具体选取那种配置,由基站根据时隙需要支持的随机接入前导格式而定。特殊情况下,半静态配置变为完全静态的固化配置也是可以的。
基站还需要确定系统可用的所有随机接入时隙。其中随机接入时隙的密度、资源分布位置取决于以下诸多因素:基站拟采用的随机接入前导格式,随机接入时隙内部结构中提供给上行发送随机接入区域的大小,基站能否在频域上同时接收多个不同的波束,基站的收发波束的互易性是否存在等。一个SS burst set周期内的随机接入时隙提供的随机接入机会的资源(时、频、码资源总和)至少需要满足和下行同步块或参考信号对应关系。
下面从基站的波束互易性角度出发用两个例子分别来阐述当下行信号或下行信道(典型为下行同步块或参考信号)与随机接入物理资源池的某个子集(典型为RACH occasion)存在关联关系时,如何确定传输RACH的物理资源即随机接入时隙。
实例1
本实施例详细说明基站没有波束互易性的场景下,确定传输RACH的物理资源即随机接入时隙的过程。
图8中描述了一种下行同步块或参考信号、occasion以及RACH时隙之间的映射关系,不同的同步块(SS block)或参考信号对应不同的随机接入机会(occasion),occasion是逻辑资源编号,需要映射到具体的物理RACH时隙内。图8是一种典型的配置,即一个同步块对应一个随机接入机会,一个随机接入机会的逻辑资源正好可以被一个随机接入物理时隙承载。物理时隙中以8个RACH符号为例,说明同样的随机接入符号、序列需要重复8次,以便于基站在8个不同的接收波束上进行训练和检测。这里随机接入信号的循环前缀(CP)和区分时隙下行上行的保护时间(GP,guard period)可以公用资源,随机接入信号的后缀(GT)也可以和PUCCH公用资源。
图9是第二种典型配置,即一个下行同步块或参考信号对应一个随机 接入机会occasion,且一个随机接入机会occasion的逻辑资源可以被多个随机接入物理时隙承载,这个例子里是2个。2个物理时隙共有16个RACH符号,同样的随机接入符号、序列需要重复16次,以便于基站在16个不同的接收波束上进行训练和检测。上行时隙1和上行时隙2有可能是连续传输的,也有可能是非连续传输的。如果一个SS burst set周期较长,含有较多的SS block,则相应的RACH occasion也比较长,映射到的RACH物理时隙也较多。
图10是第三种典型配置,即一个下行同步块或参考信号对应一个随机接入机会occasion,且多个occasion的逻辑资源可以被同一个随机接入物理时隙承载。1个物理时隙共有8个RACH符号,同一个随机接入机会的随机接入符号、序列需要重复4次,以便于基站在4个不同的接收波束上进行训练和检测。
显然,上述三种典型的映射关系下,可以涵盖基站不具备波束互易性条件下的RACH occasion与随机接入物理资源之间的一对一、一对多和多对一的映射关系。基站至少需要通知终端同步块下行同步块或参考信号与初始RACH时隙的映射关系,比如通知在下行同步块或参考信号后第几个RACH时隙可以进行初始接入。特别是在RACH occasion与随机接入物理资源之间的多对一情况下,不仅要通知第几个时隙中可以进行初始接入,还需要确定在时隙中的具体起始位置,时隙中的具体起始位置除了直接通知之外,还可以通过下行同步块或参考信号的索引号以及一个物理时隙中可以承载的随机接入信号的数量来间接确认。
基站还可以通知一个下行同步块或参考信号可以与多少个RACH时隙进行映射,也就是下行同步块或参考信号对应的随机接入信号可以使用多少个RACH时隙发送随机接入信号,这个数量关系也等价于一个RACH时隙中可以承载的随机接入信号的数量,两者互为倒数关系。这里的RACH时隙的 个数不仅可以是大于等于1的整数,也可以大于0小于1的小数,比如0.5,就表示随机接入信号可以只用半个RACH时隙,如果是0.25,就表示随机接入信号可以只占用1/4个RACH时隙。下行同步块或参考信号对应的随机接入信号可以使用RACH时隙的数量也可以通过配置的物理随机接入信道格式以及随机接入信号的长度间接推算出。
对于一个SS burst set中的所有下行同步块或参考信号来说,以上的单一的映射关系可以适用于所有的下行同步块或参考信号,也可以考虑每个下行同步块或参考信号有独立的映射关系。独立映射关系的配置需要更多的信令开销。从节省信令开销角度出发,单一映射关系统一配置给所有下行同步块或参考信号更有优势,若每个下行同步块或参考信号需要映射的RACH资源并不均一的情况下,可以在频域或者码域增加每个下行同步块或参考信号需要的RACH资源。
实例2
本实例详细说明基站有波束互易性的场景下,确定传输RACH的物理资源即随机接入时隙的过程。
与基站无波束互易性不同,在基站有波束互易性的情况下,随机接入符号、序列不需要重复多次以满足基站接收波束扫描的需要,但不排除为了增强覆盖时进行的序列或符号重复。如前所述,RACH occasion内发送的随机接入信号对应上行接收的所有可能波束方向或者接收天线端口。波束有互易性下,RACH occasion的表现形式和无互易性条件下有所不同。图11中描述了一种下行同步块或参考信号、occasion以及RACH时隙之间的映射关系,同一个SS burst set内的不同的下行同步块或参考信号对应一个occasion,occasion是逻辑资源编号,需要映射到具体的物理RACH时隙内。图11是一种典型的配置,即一个同步块下行同步块或参考信号对应一个随机接入机会occasion内的部分资源(与基站接收波束对应),一个 随机接入机会occasion的逻辑资源被多个随机接入物理时隙承载,而某个同步块下行同步块或参考信号对应其中一个随机接入物理时隙。
图12中描述另外一种可能的典型的配置,即一个下行同步块或参考信号下行同步块或参考信号对应一个随机接入机会occasion内的部分资源(与基站接收波束对应),一个随机接入机会occasion的逻辑资源被多个随机接入物理时隙承载,而某几个下行同步块或参考信号对应其中一个随机接入物理时隙,也即一个随机接入物理时隙中映射多个下行同步块或参考信号。
一个下行同步块或参考信号对应多个随机接入物理时隙也是一种可能性,类似于实例1中的图9所示的配置,不再冗述。
无论是基站没有波束互易性,还是基站有波束互易性,在下行同步块或参考信号和随机接入时隙映射关系上,都有一定的共性。
同样的,基站至少需要通知终端下行同步块或参考信号与初始RACH时隙的映射关系,比如通知在下行同步块或参考信号后第几个RACH时隙可以进行初始接入。特别是在下行同步块或参考信号与随机接入物理资源之间的多对一情况下,不仅要通知第几个时隙中可以进行初始接入,还需要确定在时隙中的具体起始位置,时隙中的具体起始位置除了直接通知之外,还可以通过下行同步块或参考信号的索引号以及一个物理时隙中可以承载的随机接入信号的数量来间接确认。
基站通知终端下行同步块SS block或参考信号与初始RACH时隙的映射关系还可以通过其他具体实施方式进行,比如下行同步块或参考信号与初始RACH时隙的关联关系在时域上与下行同步块或参考信号的索引有关,简单的说,若下行同步块或参考信号索引为i,则索引为i或者为i的函数关系的RACH时隙就是相关联的初始RACH时隙。
基站还可以通知一个下行同步块或参考信号可以与多少个RACH时隙进 行映射,也就是下行同步块或参考信号对应的随机接入信号可以使用多少个RACH时隙发送随机接入信号,这个数量关系也等价于一个RACH时隙中可以承载的随机接入信号的数量,两者互为倒数关系。这里的RACH时隙的个数不仅可以是大于等于1的整数,也可以大于0小于1的小数,比如0.5,就表示随机接入信号可以只用半个RACH时隙,如果是0.25,就表示随机接入信号可以只占用1/4个RACH时隙。下行同步块或参考信号对应的随机接入信号可以使用RACH时隙的数量也可以通过配置的物理随机接入信道格式以及随机接入信号的长度间接推算出。
对于一个SS burst set中的所有下行同步块或参考信号来说,以上的单一的映射关系可以适用于所有的下行同步块或参考信号,也可以考虑每个下行同步块或参考信号有独立的映射关系。独立映射关系的配置(例如,同步块0的映射关系k=4,而同步块1的映射关系k=3,同步块2的映射关系k=6,k不是一个统一值)需要更多的信令开销。从节省信令开销角度出发,单一映射关系统一配置给所有下行同步块或参考信号更有优势,若每个下行同步块或参考信号需要映射的RACH资源并不均匀的情况下,可以在频域或者码域增加每个下行同步块或参考信号需要的RACH资源。
以上通知和指示方法不仅适用于单个终端用户,同样也适用于多用户场景。多个用户如果都优选了同一个下行同步块或参考信号,并发起随机接入,则多个用户通过频域或码域随机化的方式避免互相干扰,优选频域随机化,频域位置由终端自行决定选择。
此外,本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述的任意一种随机接入物理资源的指示方法,例如,实现图1和/或图3所示的方法。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access  Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,上述存储介质为非瞬间存储介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本公开实施例不限制于任何特定形式的硬件和软件的结合。
以上显示和描述了本公开实施例的基本原理和主要特征和本公开实施例的优点。本公开实施例不受上述实施例的限制,上述实施例和说明书中描述的只是说明本公开实施例的原理,在不脱离本公开实施例精神和范围的前提下,本公开实施例还会有各种变化和改进,这些变化和改进都落入要求保护的本公开实施例范围内。
工业实用性
在本公开实施例中基站会配置随机接入时隙的内部结构,然后根据该随机接入时隙的内部结构,并可通过系统消息告知终端下行同步块或参考信号与第一随机接入时隙的关联关系。如此,终端在成功检测到对应的下行同步块或参考信号之后,在根据该关联关系在第一随机接入时隙上发起 随机接入请求,则基站可以知道哪个波束可以成功向终端发送信息,从而解决了基站无法确定向终端发送信息的波束的问题,且同时提升了基站向终端发送信息的成功率,具有积极的工业效果;且具有实现简单及应用前景好的特点。

Claims (14)

  1. 一种随机接入物理资源的指示方法,包括:
    通过广播信道半静态配置随机接入时隙的内部结构;
    所述随机接入时隙的内部结构至少包括如下之一:
    时隙内下行部分和上行部分的比例;
    时隙内上行部分的随机接入所占用的符号数量;
    时隙内上行部分的随机接入物理资源的时间长度;
    时隙内上行部分的随机接入机会的数量。
  2. 根据权利要求1所述的指示方法,其中,所述随机接入时隙的内部结构根据随机接入前导格式设置。
  3. 根据权利要求1或2所述的指示方法,其中,每一个所述随机接入时隙提供一个或多个频域资源作为随机接入时频资源。
  4. 一种随机接入物理资源的指示装置,包括:
    第一配置模块,配置为通过广播信道半静态配置随机接入时隙的内部结构;
    所述随机接入时隙的内部结构至少包括如下之一:
    时隙内下行部分和上行部分的比例;
    时隙内上行部分的随机接入所占用的符号数量;
    时隙内上行部分的随机接入物理资源的时间长度;
    时隙内上行部分的随机接入机会的数量。
  5. 根据权利要求4所述的指示装置,其中,
    所述第一配置模块,配置为根据随机接入前导格设置所述随机接入时隙的内部结构。
  6. 根据权利要求4或5所述的指示装置,其中,
    所述第一配置模块,还配置为将每一个所述随机接入时隙配置为:提 供一个或多个频域资源作为随机接入时频资源。
  7. 一种随机接入物理资源的指示装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行权利要求1至3或4至6任一项提供的方法随机接入时隙的内部结构。
  8. 一种随机接入物理资源的指示方法,包括:
    接收基站或传输节点TRP通过广播信道半静态配置的随机接入时隙的内部结构;
    根据来自基站或传输节点的下行同步块或参考信号与第一随机接入时隙的关联关系,确定所使用的随机接入时隙;
    在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号。
  9. 根据权利要求8所述的指示方法,其中,
    所述随机接入时隙的内部结构至少包括如下之一:
    时隙内下行部分和上行部分的比例;
    时隙内上行部分的随机接入所占用的符号数量;
    时隙内上行部分的随机接入物理资源的时间长度;
    时隙内上行部分的随机接入机会的数量。
  10. 根据权利要求8所述的指示方法,其中,还包括:
    在每一个所述随机接入时隙选择一个或多个频域资源作为随机接入时频资源,以便所述随机接入信号使用在所述随机接入时频资源发送。
  11. 一种随机接入物理资源的指示装置,其中,包括:
    第二接收模块,配置为接收基站或传输节点TRP通过广播信道半静态配置的随机接入时隙的内部结构;
    第二确定模块,配置为根据来自基站或传输节点的下行同步块或参考信号与第一随机接入时隙的关联关系,确定所使用的随机接入时隙;
    第二发送模块,配置为在所述确定的随机接入时隙或部分随机接入时隙上发送随机接入信号。
  12. 根据权利要求11所述的指示装置,其中,
    所述随机接入时隙的内部结构至少包括如下之一:
    时隙内下行部分和上行部分的比例;
    时隙内随机接入所占用的符号数量;
    时隙内随机接入物理资源的时间长度;
    时隙内上行部分的随机接入机会的数量。
  13. 一种随机接入物理资源的指示装置,包括:处理器和存储器,其中,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现权利要求8至10任一项提供的方法:
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现权利要求1至3、4至6或8至10任一项提供的方法。
PCT/CN2018/080247 2017-03-27 2018-03-23 随机接入物理资源的指示方法及装置、存储介质 WO2018177214A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019552848A JP7241023B2 (ja) 2017-03-27 2018-03-23 ランダムアクセスに用いられる物理資源の指示を提供する方法および装置ならびに記憶媒体
EP18776632.4A EP3606232A4 (en) 2017-03-27 2018-03-23 METHOD AND DEVICE FOR PROVIDING AN INSTRUCTION FOR A PHYSICAL RESOURCE TO USE FOR A DIRECT ACCESS AND STORAGE MEDIUM
KR1020197031769A KR102289798B1 (ko) 2017-03-27 2018-03-23 랜덤 액세스에 사용되는 물리 자원의 표시를 제공하기 위한 방법 및 디바이스, 및 저장 매체
US16/569,509 US11363637B2 (en) 2017-03-27 2019-09-12 Method and device for providing indication of physical resource used for random access, and storage medium
US17/660,959 US11716768B2 (en) 2017-03-27 2022-04-27 Method and device for providing instruction of physical resource used for random access, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710189324.8A CN108668362A (zh) 2017-03-27 2017-03-27 一种随机接入物理资源的指示方法及装置
CN201710189324.8 2017-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/569,509 Continuation US11363637B2 (en) 2017-03-27 2019-09-12 Method and device for providing indication of physical resource used for random access, and storage medium

Publications (1)

Publication Number Publication Date
WO2018177214A1 true WO2018177214A1 (zh) 2018-10-04

Family

ID=63674180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080247 WO2018177214A1 (zh) 2017-03-27 2018-03-23 随机接入物理资源的指示方法及装置、存储介质

Country Status (6)

Country Link
US (2) US11363637B2 (zh)
EP (1) EP3606232A4 (zh)
JP (1) JP7241023B2 (zh)
KR (1) KR102289798B1 (zh)
CN (2) CN108668362A (zh)
WO (1) WO2018177214A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668362A (zh) 2017-03-27 2018-10-16 中兴通讯股份有限公司 一种随机接入物理资源的指示方法及装置
CN110087327A (zh) * 2017-05-05 2019-08-02 华为技术有限公司 资源配置的方法及装置
US10659274B2 (en) * 2017-08-09 2020-05-19 Lenovo (Singapore) Pte. Ltd. Determining transmit power during a random access procedure based on downlink transmit antenna port parameters
CN111294787B (zh) * 2018-12-10 2024-03-12 中兴通讯股份有限公司 一种用户设备ue定位方法及装置
CN111278154A (zh) * 2019-01-28 2020-06-12 维沃移动通信有限公司 一种随机接入方法、终端设备和网络侧设备
CN111757538B (zh) * 2019-03-29 2022-05-13 华为技术有限公司 一种确定随机接入资源的方法及装置
CN111787617B (zh) * 2019-04-04 2022-11-11 中国信息通信研究院 一种移动通信中继节点上行随机接入配置方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378595A (zh) * 2008-09-28 2009-03-04 中兴通讯股份有限公司 确定随机接入信道数量的方法及测量参考信号的发送方法
CN101420265A (zh) * 2007-10-26 2009-04-29 鼎桥通信技术有限公司 一种长期演进系统中的数据传输方法、系统及装置
CN101425845A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 一种时分双工系统的传输方法和装置
US20100135274A1 (en) * 2008-12-03 2010-06-03 Tae Chul Hong Hierarchical random acces method for wireless communication system having significantly large cell
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002301A1 (en) 2008-07-02 2010-01-07 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for automatic tuning of the rach configuration in a wireless communication network
CN101841922B (zh) * 2009-03-16 2015-01-28 中兴通讯股份有限公司 选择随机接入资源的方法及终端
KR101995798B1 (ko) * 2012-07-03 2019-07-03 삼성전자주식회사 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법
US20150382205A1 (en) 2013-01-25 2015-12-31 Interdigital Patent Holdings, Inc. Methods and apparatus for vertical beamforming
TWI488513B (zh) 2013-05-03 2015-06-11 Univ Nat Taiwan Science Tech 動態資源分配方法
KR102026256B1 (ko) * 2013-05-21 2019-11-04 삼성전자주식회사 빔포밍 시스템에서의 rach 신호 송수신 기법
US10034121B2 (en) 2013-08-01 2018-07-24 Kabushiki Kaisha Toshiba RAN overload control for M2M communications in LTE networks
CN104349476B (zh) * 2013-08-09 2019-09-24 中兴通讯股份有限公司 随机接入信道资源配置方法和系统
MY180771A (en) * 2014-03-25 2020-12-09 Ericsson Telefon Ab L M System and method for beam-based physical random-access
US10306632B2 (en) * 2014-09-30 2019-05-28 Qualcomm Incorporated Techniques for transmitting channel usage beacon signals over an unlicensed radio frequency spectrum band
CN107211451B (zh) * 2014-11-26 2022-08-26 Idac控股公司 高频无线系统中的初始接入
US20180020441A1 (en) * 2015-01-25 2018-01-18 Titus Lo Collaborative transmission by mobile devices
EP3048853B1 (en) * 2015-01-26 2021-05-26 ASUSTek Computer Inc. Method and apparatus for handling transmission in a wireless communication system
DK3323269T3 (da) * 2015-07-16 2024-05-13 Zte Corp Målingsbaseret direkte adgangskonfiguration
KR102674427B1 (ko) * 2016-02-26 2024-06-13 삼성전자 주식회사 빔포밍이 적용된 시스템에서의 랜덤 액세스를 수행하는 장치 및 방법
KR20170114911A (ko) * 2016-04-04 2017-10-16 삼성전자주식회사 무선 통신 시스템에서 피드백 송수신 방법 및 장치
KR20220072878A (ko) * 2016-09-28 2022-06-02 아이디에이씨 홀딩스, 인크. 빔포밍 시스템의 새로운 무선 랜 액세스
EP3535911A1 (en) * 2016-11-04 2019-09-11 Telefonaktiebolaget LM Ericsson (publ) Methods, devices and network nodes for performing an access procedure
US10405354B2 (en) 2016-12-09 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for RACH procedure in wireless systems
US11178696B2 (en) * 2017-01-03 2021-11-16 Lg Electronics Inc. Method for performing random access process and user equipment
WO2018127120A1 (en) * 2017-01-05 2018-07-12 Chou Chie Ming Method and apparatus for determining beam direction
JP6913171B2 (ja) * 2017-01-05 2021-08-04 ノキア テクノロジーズ オサケユイチア ハンドオーバのためのビームを選択する方法、コンピュータプログラム、及び装置
JP2020505814A (ja) * 2017-01-06 2020-02-20 コンヴィーダ ワイヤレス, エルエルシー Nrにおける効率的なアクセスと送信の機構
CN110291841B (zh) * 2017-02-02 2023-08-01 夏普株式会社 无线电系统的同步信号传输和接收
US20180220450A1 (en) * 2017-02-02 2018-08-02 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US10194410B2 (en) * 2017-02-16 2019-01-29 Qualcomm Incorporated Synchronization signal blocks
US20200015261A1 (en) * 2017-03-02 2020-01-09 Ntt Docomo, Inc. User terminal and radio communication method
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
KR102131837B1 (ko) * 2017-03-22 2020-07-08 엘지전자 주식회사 빔 회복 과정 수행 방법과 사용자기기
WO2018175705A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Nr (new radio) prach (physical random access channel) configuration and multi-beam operation
CN110463332A (zh) * 2017-03-24 2019-11-15 摩托罗拉移动有限责任公司 用于无线通信网络上的随机接入的方法和装置
US10716014B2 (en) * 2017-03-24 2020-07-14 Mediatek Inc. Apparatuses and methods for beam identification through the physical random access channel (PRACH) and efficient PRACH resource utilization
CN108668362A (zh) 2017-03-27 2018-10-16 中兴通讯股份有限公司 一种随机接入物理资源的指示方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420265A (zh) * 2007-10-26 2009-04-29 鼎桥通信技术有限公司 一种长期演进系统中的数据传输方法、系统及装置
CN101425845A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 一种时分双工系统的传输方法和装置
CN101378595A (zh) * 2008-09-28 2009-03-04 中兴通讯股份有限公司 确定随机接入信道数量的方法及测量参考信号的发送方法
US20100135274A1 (en) * 2008-12-03 2010-06-03 Tae Chul Hong Hierarchical random acces method for wireless communication system having significantly large cell
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606232A4 *

Also Published As

Publication number Publication date
US11716768B2 (en) 2023-08-01
CN108668362A (zh) 2018-10-16
EP3606232A1 (en) 2020-02-05
JP7241023B2 (ja) 2023-03-16
US20200045746A1 (en) 2020-02-06
EP3606232A4 (en) 2020-04-08
JP2020512765A (ja) 2020-04-23
US11363637B2 (en) 2022-06-14
CN114786269A (zh) 2022-07-22
KR102289798B1 (ko) 2021-08-13
US20220256614A1 (en) 2022-08-11
KR20190132465A (ko) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2018177214A1 (zh) 随机接入物理资源的指示方法及装置、存储介质
US10659987B2 (en) Method for using radio interface technology, apparatus, and communications system
US10505690B2 (en) Information transmission method and apparatus
KR20220012958A (ko) Nr 시스템에서 광대역 동작 방법 및 장치
KR20180018350A (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하기 위한 방법 및 장치
US11109348B2 (en) Telecommunications apparatuses and methods
CN108810827B (zh) 获取系统信息的方法和装置
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
CN110831126A (zh) 一种通信方法、装置及系统
US10993267B2 (en) Determination method, access, transmission, processing method and device, base station and terminal
JP2011166711A (ja) 移動局及び無線基地局
WO2019061243A1 (en) SAMPLE REFERENCE SIGNAL TRANSMISSION IN A COMMUNICATION NETWORK
CN115065987B (zh) 空闲信道侦听方法、装置及设备
KR102604254B1 (ko) Nr v2x 시스템을 위한 동기화 절차 수행 방법 및 그 장치
CN108023710B (zh) 一种下行控制信号的传输方法及装置
CN108023707B (zh) 一种下行控制信号的传输方法及装置
KR102493309B1 (ko) Nr v2x 시스템을 위한 동기 신호 및 브로드캐스트 채널에 대한 자원 설정 방법 및 그 장치
KR20210102803A (ko) 무선 통신 시스템에서 단말간 통신을 위한 센싱 대상 자원 결정 방법 및 장치
JP2011166808A (ja) 移動局及び無線基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031769

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018776632

Country of ref document: EP

Effective date: 20191028