WO2018176840A1 - 触控显示单元、触控显示面板及其驱动方法 - Google Patents

触控显示单元、触控显示面板及其驱动方法 Download PDF

Info

Publication number
WO2018176840A1
WO2018176840A1 PCT/CN2017/109723 CN2017109723W WO2018176840A1 WO 2018176840 A1 WO2018176840 A1 WO 2018176840A1 CN 2017109723 W CN2017109723 W CN 2017109723W WO 2018176840 A1 WO2018176840 A1 WO 2018176840A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
signal
display panel
gate
Prior art date
Application number
PCT/CN2017/109723
Other languages
English (en)
French (fr)
Inventor
李艳
谢晓波
时凌云
孙伟
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17870623.0A priority Critical patent/EP3605208A4/en
Priority to US15/777,454 priority patent/US10592045B2/en
Publication of WO2018176840A1 publication Critical patent/WO2018176840A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes

Definitions

  • the embodiments of the present disclosure relate to the field of display technologies, and in particular, to a touch display unit, a touch display panel, and a driving method thereof.
  • the touch electrode is shared with the common electrode. Therefore, the common electrode is divided into a plurality of partitions in the plane. Because the common electrode is closely related to the display, the display and the touch cannot be simultaneously performed. . For example, the first time period is used for touch detection and the second time period is used for display. Since touch detection and display cannot be performed at the same time, not only the charging time is reduced, but also the display effect is affected.
  • the embodiments of the present disclosure provide a touch display unit, a touch display substrate, a touch display panel, and a driving method thereof, and implement synchronous detection of touch detection and display.
  • a first aspect of the present disclosure provides a touch display unit, including: a first electrode and a second electrode; and a touch electrode, the touch electrode is disposed in the same layer as one of the first electrode and the second electrode Insulating each other; and a signal line configured to transmit a signal to the touch electrode.
  • the touch display unit of at least one embodiment of the present disclosure further includes: a thin film transistor, wherein the signal line transmits a signal to the touch electrode through the thin film transistor.
  • a second aspect of the present disclosure provides a touch display panel, including: a plurality of gate lines and a plurality of data lines that cross define a plurality of pixel units; a first electrode and a second electrode disposed in each of the pixel units; a touch electrode in the at least one pixel unit of the plurality of pixel units, the touch electrode is disposed in the same layer and insulated from one of the first electrode and the second electrode; a signal line, the The signal line is configured to transmit a signal to the touch electrode.
  • the touch display panel of at least one embodiment of the present disclosure further includes a first thin film transistor, and the signal line transmits a signal to the touch electrode through the first thin film transistor.
  • the touch display panel of at least one embodiment of the present disclosure further includes a first gate line, wherein the first gate line is connected to the first thin film transistor.
  • the first thin film transistor includes a first gate, a first source, and a first drain, wherein the first gate and the first gate The first source is connected to the signal line, and the first drain is connected to the touch electrode.
  • the touch electrodes and the first electrodes are disposed in the same layer, and a gap is formed between each other.
  • the touch display panel of at least one embodiment of the present disclosure further includes a second thin film transistor disposed in the at least one pixel unit, wherein the second thin film transistor includes a second gate, a second source, and a second a second drain, the second source is connected to the touch electrode, and the second drain is connected to the first electrode.
  • the second thin film transistor includes a second gate, a second source, and a second a second drain, the second source is connected to the touch electrode, and the second drain is connected to the first electrode.
  • the touch display panel of at least one embodiment of the present disclosure further includes a second gate line, wherein the second gate line is connected to the second gate, the second gate line and each of the gate lines It is substantially parallel and is disposed in the gap between the touch electrode and the first electrode.
  • the touch display panel of at least one embodiment of the present disclosure further includes a base substrate, wherein an area of the positive projection of the touch electrode on a plane of the base substrate is smaller than the first electrode in the lining The area of the orthographic projection on the plane of the base substrate.
  • the touch display panel of at least one embodiment of the present disclosure further includes a base substrate, wherein the touch electrode and the second electrode are disposed in the same layer, and the first electrode is located at the base substrate.
  • the touch display panel of at least one embodiment of the present disclosure further includes a substrate substrate, wherein the signal line is substantially parallel to each of the data lines, and the signal lines and the data lines are disposed at different layers And an orthographic projection of the signal line on a plane of the substrate substrate and an orthographic projection of the data line on a plane of the substrate substrate overlap each other.
  • the touch display panel of at least one embodiment of the present disclosure further includes a base substrate, wherein the first gate line is substantially parallel to each gate line, and the first gate line and the gate line are disposed at Different In the layer, and an orthographic projection of the first gate line on a plane of the substrate substrate and an orthographic projection of the gate line on a plane of the substrate substrate overlap each other.
  • a third aspect of the present disclosure provides a driving method of the touch display panel, including: transmitting a touch signal to the touch electrode while transmitting a display signal to the first electrode, wherein the first electrode and The touch electrodes are respectively transmitted through different lines.
  • the touch signal is transmitted to the touch electrode through the signal line
  • the display signal is transmitted to the first electrode through the data line.
  • the method further includes: adjusting the touch signal to the display signal.
  • the method further includes: adjusting a voltage of the touch signal to be greater than or equal to the display signal. Voltage.
  • the driving method of at least one embodiment of the present disclosure further includes: electrically connecting the first electrode and the touch electrode when adjusting a voltage of the touch signal to be greater than or equal to a voltage of the display signal .
  • the transmitting the touch signal to the touch electrode includes: inputting, by the signal line, a touch driving signal for fingerprint recognition to the touch electrode.
  • the method further includes: the touch electrode outputs a touch sensing signal through the signal line .
  • FIG. 1 is a plan view schematically showing a touch display panel according to an embodiment of the present disclosure
  • FIG. 2 is a partially enlarged view schematically showing the pixel unit of FIG. 1;
  • Figure 3 is a cross-sectional view schematically taken along line A-A of Figure 2;
  • Figure 4a is a cross-sectional view schematically taken along line B-B of Figure 2;
  • FIG. 4b schematically illustrates locations of two gate lines in accordance with another embodiment of the present disclosure
  • Figure 5 is a cross-sectional view schematically taken along line C-C of Figure 2;
  • FIG. 6 is a view schematically showing a touch electrode and a pixel electrode according to another embodiment of the present disclosure.
  • FIG. 7 is a plan view schematically showing a touch display panel according to another embodiment of the present disclosure.
  • Figure 8 is a cross-sectional view schematically taken along line A-A of Figure 7;
  • FIG. 9 schematically illustrates a timing diagram of various control signals in accordance with an embodiment of the present disclosure.
  • FIG. 10 schematically shows a timing diagram of respective control signals according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic timing diagram showing respective control signals according to still another embodiment of the present disclosure.
  • FIG. 12 is a simplified schematic diagram schematically showing a pixel unit of a touch display panel according to still another embodiment of the present disclosure.
  • a touch display unit including: a first electrode and a second The electrode; the touch electrode is disposed in the same layer as the first electrode and the second electrode and is insulated from each other; and the signal line, the signal line is configured to transmit a signal to the touch electrode.
  • the touch signal (including the touch driving signal and the touch sensing signal) can be transmitted to the touch electrode through a dedicated signal line for sensing the touch. Or fingerprint recognition without affecting the normal display of the first electrode. Therefore, the simultaneous transmission of the display signal and the touch signal is realized, which not only prolongs the charging time, but also improves the reliability of the high-resolution and high-frequency touch display.
  • the touch display unit further includes: a thin film transistor, wherein the signal line transmits a signal to the touch electrode through the thin film transistor.
  • the touch electrodes can be disposed on any layer of the touch display unit.
  • the touch electrodes may be disposed in the same layer as the first electrodes and insulated from each other, or disposed in the same layer as the second electrodes and insulated from each other.
  • the touch electrode is disposed in the same layer as one of the first electrode and the second electrode and is insulated from each other, which is advantageous for simplifying the manufacturing process of the touch electrode.
  • the touch display unit of the embodiment of the present disclosure can be applied to an organic electroluminescence display device (OLED) or a thin film transistor liquid crystal display (TFT-LCD).
  • TFT-LCD includes, but is not limited to, twisted nematic (TN), vertical alignment (VA), in-plane switching (IPS), fringe field switching (FFS), advanced super-dimensional field conversion (ADS) and other liquid crystals. monitor.
  • the touch electrode when applied to an OLED, one of the anode and the cathode in the OLED serves as the first electrode described above, and the other serves as the second electrode.
  • the touch electrode may be disposed in the same layer as the anode or in the same layer as the cathode.
  • a pixel electrode is used as the first electrode
  • a common electrode is used as the second electrode.
  • the touch electrode, the pixel electrode, and the common electrode are in the same layer, and the three are insulated from each other.
  • the touch electrode when applied to an ADS-LCD, since the pixel electrode and the common electrode are disposed in different layers, the touch electrode may be disposed in the same layer as the pixel electrode or in the same layer as the common electrode.
  • the pixel electrode is the first electrode and the common electrode is the second electrode will be described as an example.
  • a TFT-LCD typically includes an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the two substrates.
  • the common electrode and the pixel electrode may be disposed on the upper and lower substrates, respectively, or may be disposed together on one of the substrates.
  • the upper substrate is a color film substrate
  • the lower substrate is a TFT array substrate.
  • a touch display substrate including: a common electrode and/or Or a pixel electrode disposed in each pixel unit; a touch electrode disposed in the at least one pixel unit, the touch electrode being disposed in the same layer and insulated from one of the pixel electrode and the common electrode;
  • the signal line is configured to transmit a signal to the touch electrode.
  • the touch display substrate further includes: a thin film transistor, wherein the signal line transmits a signal to the touch electrode through the thin film transistor.
  • the touch signal (including the touch driving signal and the touch sensing signal) can be transmitted to the touch electrode through a dedicated signal line for sensing the touch. Or fingerprint recognition without affecting the normal display of the pixel electrode. Therefore, the simultaneous transmission of the display signal and the touch signal is realized, which not only prolongs the charging time, but also improves the reliability of the high-resolution and high-frequency touch display.
  • a touch display panel includes: a plurality of gate lines and a plurality of data lines defining a plurality of pixel units, a common electrode, and pixel electrodes disposed in each of the pixel units.
  • the touch display panel further includes: a touch electrode disposed in the at least one pixel unit, wherein the touch electrode is disposed in the same layer as one of the pixel electrode and the common electrode and insulated from each other.
  • the touch display panel further includes: a signal line configured to transmit a signal to the touch electrode.
  • the touch signal can be transmitted to the touch electrode through a dedicated signal line (including the touch drive).
  • Signal and touch sensing signals for sensing touch or fingerprint recognition without affecting the normal display of the pixel electrodes. Therefore, the simultaneous transmission of the display signal and the touch signal is realized, which not only prolongs the charging time, but also improves the reliability of the high-resolution and high-frequency touch display.
  • the common electrode and the touch electrode are shared, it is easy to cause the voltages of the common electrodes to be inconsistent, and since the touch signal is not positive or negative reversal centered on the voltage of the common electrode, the cause may also be generated. Problems such as flicker and drift caused by residual DC voltage.
  • the touch electrodes are not shared with the common electrodes, not only the problem of voltage inconsistency of the common electrodes but also flicker, drift, and the like can be avoided.
  • the touch electrodes may be disposed in at least one of the pixel units.
  • the touch electrodes are disposed in the partial pixel units of the plurality of pixel units.
  • the partial pixel unit may be a pixel unit spaced at least one row or at least one column apart, or may be at least one pixel unit spaced on the same row or the same column.
  • "at least one” is, for example, one, two, three, or the like.
  • the touch electrodes are disposed in each of the pixel units to improve the accuracy of the touch.
  • the number and distribution of the touch electrodes described in the embodiments of the present disclosure are for illustrative purposes only, and those skilled in the art can select a reasonable number and distribution of touch electrodes in combination with factors such as touch precision and manufacturing process.
  • the number and distribution of signal lines connected to the touch electrodes can also be adjusted reasonably.
  • one signal line can be set for each touch electrode, or one signal line can be shared by one or one column of pixel units. These are all within the scope of protection of the present disclosure.
  • FIG. 1 is a plan view schematically showing a touch display panel according to an embodiment of the present disclosure.
  • FIG. 2 is a partially enlarged view schematically showing the pixel unit of FIG. 1.
  • FIG. Fig. 3 is a cross-sectional view schematically taken along line A-A of Fig. 2.
  • Fig. 4a is a cross-sectional view schematically taken along line B-B of Fig. 2.
  • FIG. 4b schematically illustrates the position of two gate lines in accordance with another embodiment of the present disclosure.
  • Fig. 5 is a cross-sectional view schematically taken along line C-C of Fig. 2.
  • the touch display panel includes: a plurality of gate lines 102 and a plurality of data lines 104 intersecting and defining a plurality of pixel units 10; a pixel electrode 110 disposed in each of the pixel units 10; a common electrode 130.
  • the common electrode 130 is configured to generate an electric field with the pixel electrode 110.
  • the touch display panel further includes: a touch electrode 120 and a thin film transistor TFT 200 disposed in each of the pixel units 10, wherein the touch electrode 120 and the pixel electrode 110 are disposed in the same layer and insulated from each other, and the TFT 200 and the touch electrode 120 connection.
  • the touch display panel further includes a signal line 106 configured to transmit a signal to the touch electrode 120.
  • the touch electrodes 120 and the pixel electrodes 110 disposed in the same layer are spaced apart from each other without physical connection and electrical connection therebetween, so that the two are insulated from each other. While transmitting the touch signal to the touch electrode 120 through the signal line 106, the display signal is transmitted to the pixel electrode 110, thereby realizing the synchronous transmission of the display signal and the touch signal, which not only prolongs the charging time of the touch electrode 120. And improve the reliability of high-resolution and high-frequency touch display.
  • the touch display panel further includes a plurality of gate lines 102a, each of which is connected to the gates 202 of the plurality of TFTs 200 on the same row, and applies electricity to the plurality of TFTs 200. signal.
  • the gate line 102a is substantially parallel to the gate line 102, that is, extends in the y direction.
  • the gate line 102a and the gate line 102 are disposed in the same layer as shown in FIG. 4a.
  • the gate line 102a may not be disposed in the same layer as the gate line 102. For example, as shown in FIG.
  • the two are disposed to overlap each other in the vertical direction (ie, the direction perpendicular to the substrate), that is, the orthographic projection of the gate line 102a and the gate line 102 on the plane of the substrate substrate. Overlapping each other.
  • the gate line 102a is shown in a linear shape, However, in other embodiments, the gate line 102a may be a non-linear shape, such as a curved shape. In this embodiment, the gate line 102a is disposed adjacent to the touch electrode 120, however, the gate line 102a may also be disposed adjacent to the pixel electrode 110.
  • the gate line 102a is disposed, for example, in the black matrix region so as not to affect the aperture ratio.
  • the end of the gate line 102a is connected to the row driver 20, and the row driver 20 is disposed in a peripheral area of the touch display panel for controlling an electrical signal input to the gate line 102a, such as an on voltage (or a high level signal).
  • an electrical signal input to the gate line 102a such as an on voltage (or a high level signal).
  • the TFT 200 is in an on state.
  • the ends of the plurality of gate lines 102 are also connected to the row driver 20. It can be understood that the gate line 102a and the gate line 102 can be respectively connected to two different drivers to reduce the design difficulty of the driver.
  • Signal line 106 is substantially parallel to data line 104, i.e., extends in the x direction.
  • the signal line 106 and the data line 104 are located on the same side (for example, the left side) of the touch electrode 120, and the signal line 106 and the data line 104 are not disposed in the same layer.
  • the signal line 106 overlaps, for example, in the vertical direction with the data line 104 (similar to the structure shown in FIG. 4b, which is not shown in the drawing), that is, the signal line 106 and the data line 104 are on the substrate.
  • the orthographic projections on the plane of the substrate overlap each other.
  • the signal line 106 and the data line 104 are respectively located on opposite sides of the touch electrode 120.
  • the signal line 106 is located on the left side of the touch electrode 120, and the data line 104 is located on the right side of the touch electrode 120.
  • the signal line 106 and the data line 104 may be disposed in the same layer.
  • Signal line 106 is shown as a linear shape, however, in other embodiments, signal line 106 may be a non-linear shape, such as a curved shape.
  • the ends of the plurality of data lines 104 are connected to the column driver 30, and the column drivers 30 are disposed in the peripheral area of the touch display panel. The end of the signal line 106 is connected to the touch sensing circuit portion 40.
  • the fingerprint of the human is uneven, and a capacitance is formed when the finger is in contact with the touch display screen, and the size of the capacitor can be sensed by the touch electrode 120, because a high-density touch electrode is disposed on the touch display screen. 120, can detect the groove and the protrusion of the fingerprint, thereby performing fingerprint recognition.
  • the fingerprint recognition provided by the embodiment of the present disclosure utilizes the principle of self-capacitance.
  • the signal line 106 first transmits a touch driving signal to the touch electrode 120.
  • the touch sensor 120 When the finger touches the touch display screen, the touch sensor 120 generates touch sensing.
  • the signal is transmitted to the touch sensing circuit unit 40 through the signal line 106.
  • fingerprint recognition and display scanning are performed in a time-phased manner, for example, at the first time
  • the segment performs fingerprint recognition and performs display scanning in the second time period.
  • the fingerprint recognition process can be performed simultaneously with the display scan, which not only prolongs the charging time of the touch electrode 120, but also improves the high-resolution and high-frequency touch display. Trustworthiness.
  • the touch display panel includes: a gate 202 formed on the base substrate 201 , a gate insulating layer 204 , an active layer 206 , a source 208 and a drain 209 , a common electrode 130 , and a touch electrode 120 . a first protective layer 212, a second protective layer 214, and a third protective layer 216.
  • the gate 202 is connected to the gate line 102a, and the voltage signal supplied from the gate line 102a is input to the gate 202. When the voltage signal is higher than the threshold voltage of the TFT 200, the TFT 200 is in an on state.
  • the source 208 is connected to the signal line 106 through the via T1 disposed in the first protective layer 212, and the drain 209 passes through the via T2 and the touch electrode penetrating through the first, second, and third protective layers 212, 214, and 216. 120 connections.
  • the gate line 102a applies a high level to the gate 202
  • the TFT 200 is in an on state, and the touch signal transmitted by the signal line 106 is transmitted to the touch electrode 120 through the source 208 and the drain 209, thereby implementing touch control.
  • the charging operation of the electrode 120 is performed by the gate line 106 through the via T1 disposed in the first protective layer 212, and the drain 209, and the drain 209.
  • the area projected by the touch electrode 120 on the plane of the base substrate 201 is smaller than the projected area of the pixel electrode 110 on the plane of the base substrate 201, that is, the touch area is smaller than the display area.
  • the length L2 of the touch electrode 120 is smaller than the length L1 of the pixel electrode 110; in the y direction, the width of the pixel electrode 110 is equal to the width of the touch electrode 120, wherein the x direction and the y direction are perpendicular to each other.
  • the pattern of the touch electrode 120 and the pattern of the pixel electrode 110 are identical to each other.
  • the touch electrode 120 and the pixel electrode 110 are strip-shaped.
  • the two have different patterns.
  • the touch electrode 120 has a flat shape
  • the pixel electrode 110 has a strip shape, and vice versa.
  • the touch electrodes 120 and the pixel electrodes 110 have the same slit width and both extend in the x direction.
  • the slit width, length, and extension direction of the two may be different from each other. For example, as shown in FIG.
  • the slit width in the touch electrode 120 is larger than the slit width of the pixel electrode 110, and the slits of the two extend in different directions.
  • the slit of the touch electrode 120 is inclined, and the extending direction thereof forms an angle ⁇ 1 with the y direction; the slit of the pixel electrode 110 is also inclined, and the extending direction forms an angle ⁇ 2 with the y direction, and the angle ⁇ 1 is smaller than the clip.
  • Angle ⁇ 2 It can be understood that those skilled in the art can make various changes and combinations of the respective patterns of the touch electrodes 120 and the pixel electrodes 110, the size and the extending direction of the slits, and details are not described herein again.
  • the distance between the touch electrode 120 and the pixel electrode 110 is set to avoid mutual interference.
  • the distance d between the lower edge of the touch electrode 120 and the upper edge of the pixel electrode 110 ranges from about 1 micrometer to 5 micrometers.
  • the touch electrode 120 is made of a conductive material, such as a transparent conductive material. In this way, after the touch detection, the display signal can be input to the touch electrode 120. At this time, the touch electrode 120 can still function as the pixel electrode 110.
  • the touch electrode 120 is made of the same material as the pixel electrode 110, for example, a transparent conductive material such as ITO, IZO, or the like.
  • the touch electrode 120 and the pixel electrode 110 can be simultaneously formed by a patterning process.
  • the patterning process includes, but is not limited to, screen printing, spray coating, 3D printing technology, and photolithography.
  • the photolithography process includes the steps of coating a photoresist, exposing, developing, etching, and stripping the remaining photoresist using a mask to finally obtain a desired electrode pattern.
  • signal line 106 and gate line 102a are each made of a conductive material, such as a metal, examples of which include, but are not limited to, Mo, Al, Cu, and alloys thereof.
  • FIG. 1 shows only two common electrodes 130, and each common electrode 130 is shared by nine pixel electrodes 110, and functions to generate an electric field with each of the pixel electrodes 110.
  • the common electrode 130 can be disposed to correspond to any number of pixel electrodes 110, such as one pixel electrode or two pixel electrodes.
  • the common electrode 130 has a flat shape
  • the pixel electrode 110 has a strip shape.
  • the pixel electrode 110 may have a flat shape and the common electrode has a strip shape.
  • the common electrode 130 shown in FIG. 5 is located under the pixel electrode 110, it can be understood that the positions of the two electrodes are interchangeable, that is, the common electrode 130 is located above the pixel electrode 110, and the two can still be generated therebetween. electric field.
  • the touch display panel further includes a TFT 400 for controlling the opening or closing of the pixel electrode 110.
  • the TFT 400 includes a gate 402, a source 408, and a drain 409.
  • the gate 402 is connected to the gate line 102
  • the source 408 is connected to the data line 104
  • the drain 409 is connected to the pixel electrode 110.
  • Signal lines 106 are disposed on different layers of data lines 104.
  • the gate line 102 supplies a high level to the gate (ie, higher than the threshold voltage of the TFT 400)
  • the second TFT 400 is in an on state, and at this time, the display signal transmitted through the data line 104 passes through the source 408 and the drain 409. Transfer to the pixel electrode 110.
  • the touch display panel of the embodiment realizes the synchronous transmission of the display signal and the touch signal, not only prolongs the charging time, but also reduces the power consumption, and improves the reliability of the high-resolution and high-frequency touch display.
  • FIG. 7 is a plan view schematically showing a touch display panel according to another embodiment of the present disclosure.
  • Fig. 8 is a cross-sectional view schematically taken along line A-A of Fig. 7.
  • the touch display panel further includes a TFT 300 disposed in each pixel unit.
  • the TFT 300 includes a gate 302, a source 308, and a drain 309.
  • the source 308 is connected to the touch electrode 120
  • the drain 309 is connected to the pixel electrode 110.
  • the touch electrode 120 is connected to the source 308 through a via
  • the pixel electrode 110 is connected to the drain 309 through another via.
  • the touch display panel further includes a gate line 102b disposed in a gap between the touch electrode 120 and the pixel electrode 110.
  • the gate line 102b is connected to the gate 302.
  • the gate line 102b is substantially parallel to the gate line 102, for example extending in the y direction.
  • the gate line 102b is illustrated as a linear shape, however, in other embodiments, the gate line 102b may be a non-linear shape, such as a curved shape.
  • the gate line 102b is made of, for example, a light transmissive material such as a transparent conductive material.
  • the gate line 102b can be used as the gate 302, so that the gate 302 need not be fabricated separately.
  • the TFT 300 is disposed on the side of the pixel unit close to the data line 104 (the left side of the pixel unit). It can be understood that the position of the TFT 300 is variable, and it can also be disposed on the right or middle of the pixel unit. In one example, the width of the active layer 306 is equal to the width of the pixel electrode 110 or the touch electrode 120 in the y-direction.
  • the TFT 300 When the voltage supplied from the gate line 102b to the TFT 300 is higher than the threshold voltage of the TFT 300, the TFT 300 is in an on state. At this time, the source 308 and the drain 309 are turned on, so that the touch electrode 120 and the pixel electrode 110 are electrically connected to each other. . If the voltage of the touch electrode 120 is higher than the voltage of the pixel electrode 110, after the two are electrically connected, the voltage of the touch electrode 120 decreases, and the voltage of the pixel electrode 110 rises, and finally both reach an average voltage. The touch electrode 120 and the pixel electrode 110 together implement a display function. In other words, if the voltage on the pixel electrode 110 is insufficient for display, the touch electrode 120 has a compensation function, which can provide voltage compensation to the pixel electrode 110.
  • the embodiment further provides a method for driving the touch display panel, including:
  • the pixel electrode 110 and the touch electrode 120 are respectively transmitted through different lines.
  • a display signal is transmitted to the pixel electrode 110 through the data line 104
  • a touch signal is transmitted to the touch electrode 120 through the signal line 106.
  • the touch signal is a pulse voltage
  • the display signal is a driving voltage, such as a high and low level voltage.
  • transmitting the touch signal to the touch electrode includes: inputting a touch drive signal for fingerprint recognition to the touch electrode through the signal line.
  • the method further includes: the touch electrode outputs the touch sensing signal through the signal line.
  • FIG. 9 schematically illustrates a timing diagram of various control signals in accordance with an embodiment of the present disclosure.
  • the driving voltage V1 is input to the pixel electrode 110 through the data line 104 while a high level is input to the gate line 102.
  • the pulse voltage V2 is input to the touch electrode 120 through the signal line 106 while a high level is input to the gate line 102a. It can be seen from the figure that the driving voltage V1 and the pulse voltage V2 are respectively input to the pixel electrode 110 and the touch electrode 120 from the time t1, thereby realizing the synchronous transmission of the display signal and the touch signal, thereby simultaneously realizing display scanning and touch. Control detection.
  • the method further includes: adjusting the touch signal to be greater than or equal to the driving voltage.
  • FIG. 10 schematically shows a timing diagram of various control signals in accordance with another embodiment of the present disclosure. As shown in FIG. 10, after the pulse voltage V2 is input to the touch electrode 120, the pulse voltage in the signal line 106 is adjusted to the voltage V1. At this time, the touch electrode 120 and the pixel electrode 110 together perform a display function.
  • the method further includes: adjusting the pulse voltage to be greater than or equal to the driving voltage, and electrically connecting the pixel electrode and the touch electrode.
  • FIG. 11 schematically shows a timing diagram of various control signals in accordance with still another embodiment of the present disclosure.
  • the pulse voltage V2 is adjusted to be greater than the voltage V3 of the driving voltage V1, and the gate line 102b is outputted with a high level to make the touch electrode 120 and the pixel.
  • Electrode 110 is in electrical communication. Since the voltage V3 is higher than the driving voltage V1, when the voltage on the pixel electrode 110 is insufficient, the touch electrode 120 has a compensation function, which can provide voltage compensation to the pixel electrode 110.
  • the driving method can further improve the reliability of the display screen such as LTPS, and improve the display effect of the display screen.
  • FIG. 12 is a simplified plan view schematically showing a pixel unit of a touch display panel according to still another embodiment of the present disclosure.
  • a common electrode 130 is disposed in each pixel unit 10, and the touch electrodes 120 and the common electrode 130 are disposed in the same layer and insulated from each other; and the touch electrodes 120 and The common electrode 130 is in the form of a flat plate. A gap is formed between the touch electrode 120 and the common electrode 130.
  • the touch electrode 120 can be fabricated by the same patterning process as the common electrode.
  • the touch display panel of the present embodiment further includes a TFT 200 for controlling the touch electrode 120, and a gate line 102a and a signal line 106.
  • TFT 200 for controlling the touch electrode 120
  • gate line 102a and a signal line 106 for controlling the touch electrode 120
  • signals line 106 for controlling the touch electrode 120
  • TFT 400 for controlling the touch electrode 120
  • signal line 106 for controlling the touch electrode 120
  • data line 104 for controlling the touch electrode 120
  • gate lines 102, 102a, 102b a signal line 106.
  • the signal lines are re-layout and designed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控显示单元、触控显示面板及其驱动方法。该触控显示单元包括:第一电极(110)和第二电极(130);触控电极(120),所述触控电极(120)设置为与所述第一电极(110)和所述第二电极(130)之一同层且相互绝缘;和信号线(106),所述信号线(106)配置为向所述触控电极(120)传输信号。上述触控显示单元通过专门的信号线(106)向触控电极(120)传输触控信号,因此可与显示信号同步传输。

Description

触控显示单元、触控显示面板及其驱动方法
相关申请的交叉引用
本申请基于并且要求于2017年3月31日递交的中国专利申请第201710209383.7号的优先权,在此全文引用上述中国专利申请公开的内容。
技术领域
本公开实施例涉及显示技术领域,尤其涉及一种触控显示单元、触控显示面板及其驱动方法。
背景技术
在传统触控显示面板的像素单元中,触控电极与公共电极共用,因此,公共电极在面内被分割成多个分区,因为公共电极与显示关系密切,因此不能使显示和触控同时进行。例如,第一个时间段用于触控检测,第二个时间段用于显示。由于触控检测及显示无法同时进行,不仅降低充电时间,而且影响显示效果。
发明内容
本公开实施例提供一种触控显示单元、触控显示基板、触控显示面板及其驱动方法,实现了触控检测及显示的同步扫描。
本公开第一方面提供一种触控显示单元,包括:第一电极和第二电极;触控电极,所述触控电极设置为与所述第一电极和所述第二电极之一同层且相互绝缘;和信号线,所述信号线配置为向所述触控电极传输信号。
例如,本公开至少一个实施例的触控显示单元还包括:薄膜晶体管,所述信号线通过所述薄膜晶体管向所述触控电极传输信号。
本公开第二方面提供一种触控显示面板,包括:交叉限定多个像素单元的多条栅线和多条数据线;设置在每个像素单元中的第一电极和第二电极;设置在所述多个像素单元的至少一个像素单元中的触控电极,所述触控电极设置为与所述第一电极和所述第二电极之一同层且相互绝缘;信号线,所述 信号线配置为向所述触控电极传输信号。
例如,本公开至少一个实施例的触控显示面板,还包括第一薄膜晶体管,所述信号线通过所述第一薄膜晶体管向所述触控电极传输信号。
例如,本公开至少一个实施例的触控显示面板,还包括第一栅线,其中所述第一栅线与所述第一薄膜晶体管连接。
例如,本公开至少一个实施例的触控显示面板中,所述第一薄膜晶体管包括第一栅极、第一源极和第一漏极,其中所述第一栅极与所述第一栅线连接,所述第一源极与所述信号线连接,所述第一漏极与所述触控电极连接。
例如,本公开至少一个实施例的触控显示面板中,所述触控电极与所述第一电极设置为同层,并且彼此之间形成有间隙。
例如,本公开至少一个实施例的触控显示面板,还包括设置在所述至少一个像素单元中的第二薄膜晶体管,其中所述第二薄膜晶体管包括第二栅极、第二源极和第二漏极,所述第二源极与所述触控电极连接,所述第二漏极与所述第一电极连接。
例如,本公开至少一个实施例的触控显示面板,还包括第二栅线,其中所述第二栅线与所述第二栅极连接,所述第二栅线与每个所述栅线基本上平行,并且设置在所述触控电极和所述第一电极之间的所述间隙中。
例如,本公开至少一个实施例的触控显示面板,还包括衬底基板,其中所述触控电极在所述衬底基板所在平面上的正投影的面积小于所述第一电极在所述衬底基板所在平面上的正投影的面积。
例如,本公开至少一个实施例的触控显示面板,还包括衬底基板,其中所述触控电极与所述第二电极设置为同层,并且所述第一电极在所述衬底基板所在平面上的正投影与所述触控电极在所述衬底基板所在平面上的正投影彼此重叠。
例如,本公开至少一个实施例的触控显示面板,还包括衬底基板,其中,所述信号线与每个所述数据线基本上平行,所述信号线与所述数据线设置在不同层中,并且所述信号线在所述衬底基板所在平面上的正投影与所述数据线在所述衬底基板所在平面上的正投影彼此重叠。
例如,本公开至少一个实施例的触控显示面板,还包括衬底基板,其中,所述第一栅线与每个栅线基本上平行,所述第一栅线与所述栅线设置在不同 层中,并且所述第一栅线在所述衬底基板所在平面上的正投影与所述栅线在所述衬底基板所在平面上的正投影彼此重叠。
本公开第三方面提供一种上述触控显示面板的驱动方法,包括:在向所述第一电极传输显示信号的同时,传输触控信号到所述触控电极,其中所述第一电极和所述触控电极分别通过各自不同的线路传输。
例如,本公开至少一个实施例的驱动方法中,所述触控信号通过所述信号线传输到所述触控电极中,所述显示信号通过所述数据线传输到第一电极中。
例如,本公开至少一个实施例的驱动方法中,在传输触控信号到所述触控电极结束后,所述方法还包括:将所述触控信号调整为所述显示信号。
例如,本公开至少一个实施例的驱动方法中,在传输触控信号到所述触控电极结束后,所述方法还包括:将所述触控信号的电压调整为大于或等于所述显示信号的电压。
例如,本公开至少一个实施例的驱动方法,还包括:在将所述触控信号的电压调整为大于或等于所述显示信号的电压时,电连接所述第一电极和所述触控电极。
例如,本公开至少一个实施例的驱动方法中,所述传输触控信号到所述触控电极包括:通过所述信号线向所述触控电极输入用于指纹识别的触控驱动信号。
例如,本公开至少一个实施例的驱动方法中,在向所述触控电极输入所述触控驱动信号后,所述方法还包括:所述触控电极通过所述信号线输出触控感应信号。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是示意性示出根据本公开实施例的触控显示面板的平面图;
图2是示意性示出图1的像素单元的局部放大图;
图3是示意性示出沿图2的线A-A所取的剖面图;
图4a是示意性示出沿图2的线B-B所取的剖面图;
图4b示意性示出根据本公开另一实施例的两条栅线的位置;
图5是示意性示出沿图2的线C-C所取的剖面图;
图6是示意性示出根据本公开另一实施例的触控电极和像素电极;
图7是示意性示出根据本公开另一实施例的触控显示面板的平面图;
图8是示意性示出沿图7的线A-A所取的剖面图;
图9示意性示出根据本公开实施例的各个控制信号的时序示意图;
图10示意性示出根据本公开另一实施例的各个控制信号的时序示意图;
图11示意性示出根据本公开再一实施例的各个控制信号的时序示意图;
图12是示意性示出根据本公开再一实施例的触控显示面板的像素单元的简化示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
根据本公开一实施例,提供一种触控显示单元,包括:第一电极和第二 电极;触控电极,触控电极设置为与第一电极和第二电极之一同层且相互绝缘;和信号线,信号线配置为向触控电极传输信号。
由于在上述触控显示单元中设置了单独的触控电极,这样,可通过专门的信号线向触控电极传输触控信号(包括触控驱动信号和触控感应信号)以用于感测触摸或指纹识别,而不影响第一电极的正常显示。因此,实现了显示信号和触控信号的同时传输,不仅延长了充电时间,而且提高了高分辨率及高频率的触控显示屏的信赖性。
至少一些实施例中,上述触控显示单元还包括:薄膜晶体管,信号线通过薄膜晶体管向触控电极传输信号。
触控电极可设置在触控显示单元中的任一层。例如,触控电极可设置为与第一电极同层且彼此绝缘,或者设置为与第二电极同层且彼此绝缘。在本公开实施例中,触控电极设置为与第一电极和第二电极之一同层且相互绝缘,有利于简化触控电极的制作工艺。
本公开实施例的触控显示单元可应用于有机电致发光显示装置(OLED)或薄膜晶体管液晶显示器(TFT-LCD)。TFT-LCD包括但不限于:扭曲向列型(TN)、垂直取向型(VA)、面内切换型(IPS)、边缘场切换型(FFS)、高级超维场转换型(ADS)等液晶显示器。
例如,在应用于OLED中时,OLED中的阳极和阴极之一作为上述第一电极,另一个作为上述第二电极。在此情况下,触控电极可以与阳极同层设置,也可以与阴极同层设置。例如,在应用于LCD中,像素电极作为上述第一电极,公共电极作为上述第二电极。在应用于IPS-LCD中时,触控电极、像素电极和公共电极三者同层,且三者之间彼此绝缘。再例如,在应用于ADS-LCD中时,由于像素电极与公共电极设置在不同层中,此时,触控电极既可以设置为与像素电极同层,也可以设置为与公共电极同层。在下文中,以像素电极为第一电极、公共电极为第二电极为例进行说明。
典型地,TFT-LCD包括相对设置的上基板和下基板,以及设置在两个基板之间的液晶层。公共电极和像素电极可以分别设置在上、下基板上,也可以一起设置在其中一个基板上。例如,上基板为彩膜基板,下基板为TFT阵列基板。
根据本公开另一实施例,提供一种触控显示基板,包括:公共电极和/ 或设置在每个像素单元中的像素电极;设置在至少一个像素单元中的触控电极,所述触控电极设置为与所述像素电极和所述公共电极之一同层且相互绝缘;信号线,所述信号线配置为向所述触控电极传输信号。
至少一些实施例中,上述触控显示基板还包括:薄膜晶体管,信号线通过薄膜晶体管向触控电极传输信号。
由于在上述触控显示基板中设置了单独的触控电极,这样,可通过专门的信号线向触控电极传输触控信号(包括触控驱动信号和触控感应信号)以用于感测触摸或指纹识别,而不影响像素电极的正常显示。因此,实现了显示信号和触控信号的同时传输,不仅延长了充电时间,而且提高了高分辨率及高频率的触控显示屏的信赖性。
根据本公开再一实施例,提供一种触控显示面板,包括:交叉限定多个像素单元的多条栅线和多条数据线;公共电极和设置在每个像素单元中的像素电极。触控显示面板还包括:设置在至少一个像素单元中的触控电极,触控电极设置为与像素电极和公共电极之一同层且相互绝缘。触控显示面板还包括:配置为向触控电极传输信号的信号线。
与现有触控显示面板相比,由于在上述触控显示面板的像素单元中设置了单独的触控电极,这样,可通过专门的信号线向触控电极传输触控信号(包括触控驱动信号和触控感应信号)以用于感测触摸或指纹识别,而不影响像素电极的正常显示。因此,实现了显示信号和触控信号的同时传输,不仅延长了充电时间,而且提高了高分辨率及高频率的触控显示屏的信赖性。
在现有触控显示面板中,由于公共电极与触控电极共用,容易造成各个公共电极的电压不一致,并且由于触控信号不是以公共电极的电压为中心的正负反转,也会产生因直流电压残留导致的闪烁(Flick)、漂移等问题。然而,在本公开实施例中,由于触控电极不与公共电极共用,不仅能克服公共电极的电压不一致的问题,也可以避免闪烁、漂移等现象。
至少一些实施例中,触控电极可设置在至少一个像素单元中,例如,多个像素单元的部分像素单元中设置有触控电极。该部分像素单元可以是间隔至少一行或间隔至少一列的像素单元,也可以是,在同一行或同一列上,间隔至少一个的像素单元。此处,“至少一个”例如为一个、两个、三个等。至少一些实施例中,触控电极设置在每个像素单元中,以提高触控的精度。 可以理解,本公开实施例中所描述的触控电极的数量和分布仅出于示意性目的,本领域普通技术人员可结合触控精度、制造工艺等因素选择合理的触控电极的数量和分布方式,并且,与触控电极相连的信号线的数量和分布方式也可以做合理调整,例如,可以对每个触控电极设置一条信号线,也可以使一行或一列的像素单元共用一条信号线,这些均属于本公开的保护范围。
根据本公开又一实施例,提供一种触控显示面板。图1是示意性示出根据本公开实施例的触控显示面板的平面图。图2是示意性示出图1的像素单元的局部放大图。图3是示意性示出沿图2的线A-A所取的剖面图。图4a是示意性示出沿图2的线B-B所取的剖面图。图4b示意性示出根据本公开另一实施例的两条栅线的位置。图5是示意性示出沿图2的线C-C所取的剖面图。
如图1至图2所示,触控显示面板包括:交叉限定多个像素单元10的多条栅线102和多条数据线104;设置在每个像素单元10中的像素电极110;公共电极130,公共电极130配置为与像素电极110产生电场。触控显示面板还包括:设置在每个像素单元10中的触控电极120和薄膜晶体管TFT 200,其中触控电极120与像素电极110设置为同层且相互绝缘,TFT 200与触控电极120连接。触控显示面板还包括配置为向触控电极120传输信号的信号线106。
同层设置的触控电极120与像素电极110彼此相互间隔,二者之间没有物理连接和电连接,这样使二者相互绝缘。在通过信号线106为触控电极120传输触控信号的同时,对像素电极110传输显示信号,由此,实现了显示信号和触控信号的同步传输,不仅延长了触控电极120的充电时间,而且提高了高分辨率及高频率的触控显示屏的信赖性。
如图1至图2所示,触控显示面板还包括多个栅线102a,每个栅线102a与同一行上的多个TFT 200的栅极202连接,并向该多个TFT 200施加电信号。栅线102a与栅线102基本上平行,即在y方向延伸。本实施例中,栅线102a与栅线102设置在同一层,如图4a所示。然而,为增大开口率,栅线102a可与栅线102不设置在同一层。例如,如图4b所示,二者设置为在竖直方向上(即,垂直于衬底基板的方向)彼此重叠,即,栅线102a与栅线102在衬底基板所在平面上的正投影彼此重叠。栅线102a被示出为直线形状, 然而,在其他实施例中,栅线102a可以为非直线形状,例如曲线形状。本实施例中,栅线102a设置为与触控电极120相邻,然而,栅线102a还可以设置为与像素电极110相邻。栅线102a例如设置在黑矩阵区域内以不影响开口率。
栅线102a的末端连接到行驱动器20,行驱动器20设置在触控显示面板的周边区域中,用于控制输入到栅线102a上的电信号,例如开启电压(或称高电平信号)。当开启电压大于TFT 200的阈值电压时,TFT 200处于开启状态。本实施例中,多个栅线102的末端也连接到行驱动器20。可以理解的是,栅线102a和栅线102可以分别连接到两个不同的驱动器,以降低驱动器的设计难度。
信号线106与数据线104基本上平行,即在x方向上延伸。例如,如图3所示,信号线106与数据线104位于触控电极120的同一侧(例如左侧),信号线106与数据线104不设置在同一层。为增大开口率,信号线106例如与数据线104在竖直方向上重叠(类似于图4b所示的结构,附图中不再示出),即信号线106与数据线104在衬底基板所在平面上的正投影彼此重叠。信号线106与数据线104还可以分别位于触控电极120相对的两侧,例如信号线106位于触控电极120左侧,数据线104位于触控电极120右侧。在此情况下,信号线106与数据线104可设置于同一层中。信号线106被示出为直线形状,然而,在其他实施例中,信号线106可以为非直线形状,例如曲线形状。多个数据线104的末端连接到列驱动器30,列驱动器30设置在触控显示面板的周边区域中。信号线106的末端连接到触控感应电路部40。
人的指纹是凹凸不平的,当手指与触控显示屏接触时会形成电容,通过触控电极120能够感测出该电容的大小,由于在触控显示屏上布置有高密度的触控电极120,可以感应出指纹的凹槽和凸起,从而进行指纹识别。本公开实施例提供的指纹识别利用自电容的原理,信号线106首先传输触控驱动信号给触控电极120,当手指与触控显示屏触摸时,各触控电极120上会产生触控感应信号,该触控感应信号再通过信号线106传输给触控感应电路部40。通过检测在触摸过程中每个时刻各触控电极120的触控感应信号的差异,就可以检测出手指的指纹,从而实现指纹识别。
在已知技术中,指纹识别和显示扫描为分时段执行,例如,在第一时间 段进行指纹识别,在第二时间段进行显示扫描。然而,在本公开实施例的触控显示面板中,上述指纹识别过程可以与显示扫描同时执行,不仅延长了触控电极120的充电时间,而且提高了高分辨率及高频率的触控显示屏的信赖性。
如图3所示,触控显示面板包括:形成在衬底基板201上的栅极202、栅绝缘层204、有源层206、源极208和漏极209、公共电极130、触控电极120、第一保护层212、第二保护层214和第三保护层216。栅极202与栅线102a连接,由栅线102a提供的电压信号输入到栅极202中,当电压信号高于TFT 200的阈值电压时,TFT 200处于开启状态。源极208通过设置在第一保护层212中的过孔T1与信号线106连接,漏极209通过贯穿第一、第二、第三保护层212、214、216的过孔T2与触控电极120连接。当栅线102a向栅极202施加高电平时,TFT 200处于开启状态,由信号线106传输的触控信号通过源极208和漏极209传输到触控电极120上,由此实现对触控电极120的充电操作。
如图2所示,触控电极120在衬底基板201的平面上投影的面积小于像素电极110在衬底基板201的平面上的投影的面积,也就是,触控面积小于显示面积。例如,在x方向上,触控电极120的长度L2小于像素电极110的长度L1;在y方向上,像素电极110的宽度等于触控电极120的宽度,其中x方向与y方向相互垂直。
本实施例中,触控电极120的图案和像素电极110的图案彼此相同,例如,触控电极120和像素电极110均为条状。其他实施例中,二者具有不同图案。例如,触控电极120为平板状,像素电极110为条状,反之亦可。本实施例中,触控电极120和像素电极110的狭缝宽度相同,且均沿x方向延伸。然而,其他实施例中,二者的狭缝宽度、长度和延伸方向可以彼此不同。例如,如图6所示,触控电极120中的狭缝宽度大于像素电极110的狭缝宽度,并且二者的狭缝在不同方向上延伸。触控电极120的狭缝为倾斜的,且其延伸方向与y方向形成夹角θ1;像素电极110的狭缝也为倾斜的,且延伸方向与y方向形成夹角θ2,夹角θ1小于夹角θ2。可以理解,本领域技术人员能够对触控电极120和像素电极110各自的图案、狭缝的尺寸和延伸方向做各种变化和组合,此处不再赘述。
触控电极120与像素电极110之间的距离设置为避免相互干扰。例如,如图2所示,触控电极120的下边缘到像素电极110的上边缘之间的距离d的取值范围大约为1微米至5微米。
至少一些实施例中,触控电极120由导电材料制成,例如透明导电材料。这样,在触控检测之后,可以给触控电极120输入显示信号,此时,触控电极120仍可以充当像素电极110的作用。在一个示例中,触控电极120采用与像素电极110相同的材料制成,例如,诸如ITO、IZO等的透明导电材料。通过图案化工艺,可以同时制作形成触控电极120和像素电极110。该图案化工艺包括但不限于:丝网印刷、喷涂、3D打印技术、光刻工艺。例如,光刻工艺包括以下步骤:涂覆光刻胶、利用掩模板曝光、显影、刻蚀和剥离剩余光刻胶,最终得到期望的电极图案。
至少一些实施例中,信号线106和栅线102a均采用导电材料制成,例如金属,金属的例子包括但不限于:Mo、Al、Cu及其合金。
本实施例中,图1仅示出两个公共电极130,且每个公共电极130被9个像素电极110共用,其作用是与每个像素电极110产生电场。可以理解,公共电极130可以设置为与任意数量的像素电极110对应,例如1个像素电极或2个像素电极。本实施例中,公共电极130为平板状,像素电极110为条状。在其他实施例中,像素电极110可以为平板状,公共电极为条状。另外,虽然图5示出的公共电极130位于像素电极110之下,但可以理解的是,二者的位置可以互换,即公共电极130位于像素电极110之上,二者之间仍可以产生电场。
至少一些实施例中,触控显示面板还包括TFT 400,用于控制像素电极110的开启或关闭。如图2和图5所示,TFT 400包括栅极402、源极408和漏极409。栅极402与栅线102连接,源极408与数据线104连接,漏极409与像素电极110连接。信号线106设置在于数据线104不同的层上。当栅线102向栅极提供高电平(即高于TFT 400的阈值电压)时,第二TFT 400处于开启状态,此时,通过数据线104传输的显示信号通过源极408、漏极409传输至像素电极110。
在通过数据线向像素电极110提供显示信号时,由于通过专门的信号线106向触控电极120提供触控信号,因此,不会干扰像素电极110的正常显 示。本实施例的触控显示面板实现了显示信号和触控信号的同步传输,不仅延长充电时间,而且降低功耗,提高了高分辨率及高频率的触控显示屏的信赖性。
根据本公开再一实施例,提供一种触控显示面板。图7是示意性示出根据本公开另一实施例的触控显示面板的平面图。图8是示意性示出沿图7的线A-A所取的剖面图。
本实施例与上述图1所示实施例的区别在于,触控显示面板还包括设置在每个像素单元中的TFT 300。TFT 300包括栅极302、源极308和漏极309,源极308与触控电极120连接,漏极309与像素电极110连接。例如,触控电极120通过一过孔与源极308连接,像素电极110通过另一过孔与漏极309连接。
触控显示面板还包括设置在触控电极120和像素电极110之间的间隙中的栅线102b。栅线102b与栅极302连接。栅线102b与栅线102基本上平行,例如在y方向延伸。栅线102b被示出为直线形状,然而,在其他实施例中,栅线102b可以为非直线形状,例如曲线形状。为了降低对显示效果的影响,栅线102b例如采用可透光的材料制成,例如透明导电材料。为了方便制作,栅线102b可用作栅极302,则无需单独制作栅极302。
如图7所示,TFT 300设置在像素单元靠近数据线104的一侧(像素单元的左侧)。可以理解的是,TFT 300的位置是可变的,其还可以设置在像素单元的右侧或中间。在一个示例中,在y方向上,有源层306的宽度等于像素电极110或触控电极120的宽度。
当栅线102b向TFT 300提供的电压高于TFT 300的阈值电压时,TFT 300处于开启状态,此时,源极308和漏极309导通,使得触控电极120与像素电极110彼此电连接。如果触控电极120的电压高于像素电极110的电压,那么在二者电连接后,触控电极120的电压下降,同时像素电极110的电压上升,最终二者均达到一平均电压,此时,触控电极120与像素电极110一起实现显示功能。换言之,如果像素电极110上的电压不足以显示时,触控电极120具有补偿作用,它可以给像素电极110提供电压补偿。
本实施例还提供一种用于驱动上述触控显示面板的方法,包括:
在向像素电极110传输显示信号的同时,传输触控信号到触控电极120, 其中像素电极110和触控电极120分别通过各自不同的线路传输。例如,通过数据线104向像素电极110传输显示信号,通过信号线106向触控电极120传输触控信号。例如,触控信号为脉冲电压,显示信号为驱动电压,例如高低电平电压。
至少一些实施例中,传输触控信号到触控电极,包括:通过信号线向触控电极输入用于指纹识别的触控驱动信号。至少一些实施例中,在向触控电极输入触控驱动信号后,上述方法还包括:触控电极通过信号线输出触控感应信号。有关指纹识别的具体过程可参见以上图1所示实施例中描述,此处不再赘述。
图9示意性示出根据本公开实施例的各个控制信号的时序示意图。在向栅线102输入高电平的同时,通过数据线104给像素电极110输入驱动电压V1。与此同时,在向栅线102a输入高电平的同时,通过信号线106给触控电极120输入脉冲电压V2。从图中可以看出,从t1时刻开始,驱动电压V1与脉冲电压V2分别输入到像素电极110和触控电极120,实现了显示信号和触控信号的同步传输,从而同时实现显示扫描和触控检测。
至少一些实施例中,在传输触控信号到触控电极120结束后,上述方法还包括:将触控信号调整为大于或等于驱动电压。图10示意性示出根据本公开另一实施例的各个控制信号的时序示意图。如图10所示,在向触控电极120输入脉冲电压V2结束后,信号线106中的脉冲电压调整为电压V1,此时,触控电极120和像素电极110一起实现显示功能。
至少一些实施例中,在传输触控信号到触控电极120结束后,上述方法还包括:将脉冲电压调整为大于或等于驱动电压,并且电连接像素电极和触控电极。
图11示意性示出根据本公开再一实施例的各个控制信号的时序示意图。如图11所示,在传输脉冲电压V2到触控电极120结束后,将脉冲电压V2调整为大于驱动电压V1的电压V3,并且给栅线102b输出高电平,使触控电极120和像素电极110电连通。由于电压V3高于驱动电压V1,因此当像素电极110上的电压不足时,触控电极120具有补偿作用,它可以给像素电极110提供电压补偿。该驱动方法可以进一步改善LTPS等显示屏的信赖性等问题,提高显示屏的显示效果。
根据本公开又一实施例,提供一种触控显示面板。图12是示意性示出根据本公开再一实施例的触控显示面板的像素单元的简化平面图。
本实施例与上述图1所示实施例的区别在于,每个像素单元10中设置一个公共电极130,且触控电极120与公共电极130设置为同层且相互绝缘;而且触控电极120和公共电极130均为平板状。触控电极120与公共电极130之间形成有间隙。
可以理解的是,本实施例中,公共电极130与触控电极120之间的位置关系、尺寸和结构与图1所示实施例中像素电极110与触控电极120之间的位置关系、尺寸和结构相似,所以在此不再重复。
由于像素电极110与触控电极120设置在不同层,二者在竖直方向上彼此重叠,像素电极110的面积不必缩小,因此,上述结构不影响触控显示面板的开口率。触控电极120可以与公共电极通过同一图案化工艺制作。
与图1所示实施例相似,本实施例的触控显示面板还包括用于控制触控电极120的TFT 200,以及栅线102a、信号线106,具体描述请参考前面的实施例。可以理解,本领域技术人员在获知本公开构思的情况下,可根据触控电极所在层的不同,对包括TFT 200、TFT400、信号线106、数据线104、栅线102、102a、102b等各个信号线进行重新布局和设计。
在本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种触控显示单元,包括:
    第一电极和第二电极;
    触控电极,所述触控电极设置为与所述第一电极和所述第二电极之一同层且相互绝缘;和
    信号线,所述信号线配置为向所述触控电极传输信号。
  2. 根据权利要求1所述的触控显示单元,还包括:薄膜晶体管,所述信号线通过所述薄膜晶体管向所述触控电极传输信号。
  3. 一种触控显示面板,包括:
    交叉限定多个像素单元的多条栅线和多条数据线;
    设置在每个像素单元中的第一电极和第二电极;
    设置在所述多个像素单元的至少一个像素单元中的触控电极,所述触控电极设置为与所述第一电极和所述第二电极之一同层且相互绝缘;
    信号线,所述信号线配置为向所述触控电极传输信号。
  4. 根据权利要求3所述的触控显示面板,还包括第一薄膜晶体管,所述信号线通过所述第一薄膜晶体管向所述触控电极传输信号。
  5. 根据权利要求4所述的触控显示面板,还包括第一栅线,其中所述第一栅线与所述第一薄膜晶体管连接。
  6. 根据权利要求5所述的触控显示面板,其中,所述第一薄膜晶体管包括第一栅极、第一源极和第一漏极,其中所述第一栅极与所述第一栅线连接,所述第一源极与所述信号线连接,所述第一漏极与所述触控电极连接。
  7. 根据权利要求3至6任一项所述的触控显示面板,其中,所述触控电极与所述第一电极设置为同层,并且彼此之间形成有间隙。
  8. 根据权利要求7所述的触控显示面板,还包括设置在所述至少一个像素单元中的第二薄膜晶体管,其中所述第二薄膜晶体管包括第二栅极、第二源极和第二漏极,所述第二源极与所述触控电极连接,所述第二漏极与所述第一电极连接。
  9. 根据权利要求8所述的触控显示面板,还包括第二栅线,其中所述第二栅线与所述第二栅极连接,所述第二栅线与每个所述栅线基本上平行,并 且设置在所述触控电极和所述第一电极之间的所述间隙中。
  10. 根据权利要求7所述的触控显示面板,还包括衬底基板,其中所述触控电极在所述衬底基板所在平面上的正投影的面积小于所述第一电极在所述衬底基板所在平面上的正投影的面积。
  11. 根据权利要求3至6任一项所述的触控显示面板,还包括衬底基板,其中所述触控电极与所述第二电极设置为同层,并且所述第一电极在所述衬底基板所在平面上的正投影与所述触控电极在所述衬底基板所在平面上的正投影彼此重叠。
  12. 根据权利要求3至11任一项所述的触控显示面板,还包括衬底基板,其中,所述信号线与每个所述数据线基本上平行,所述信号线与所述数据线设置在不同层中,并且所述信号线在所述衬底基板所在平面上的正投影与所述数据线在所述衬底基板所在平面上的正投影彼此重叠。
  13. 根据权利要求5至11任一项所述的触控显示面板,还包括衬底基板,其中,所述第一栅线与每个栅线基本上平行,所述第一栅线与所述栅线设置在不同层中,并且所述第一栅线在所述衬底基板所在平面上的正投影与所述栅线在所述衬底基板所在平面上的正投影彼此重叠。
  14. 一种权利要求3至13任一项所述的触控显示面板的驱动方法,包括:
    在向所述第一电极传输显示信号的同时,传输触控信号到所述触控电极,其中所述第一电极和所述触控电极分别通过各自不同的线路传输。
  15. 根据权利要求14所述的方法,其中,所述触控信号通过所述信号线传输到所述触控电极中,所述显示信号通过所述数据线传输到第一电极中。
  16. 根据权利要求14或15所述的方法,其中,在传输触控信号到所述触控电极结束后,所述方法还包括:将所述触控信号调整为所述显示信号。
  17. 根据权利要求14至15所述的方法,其中,在传输触控信号到所述触控电极结束后,所述方法还包括:将所述触控信号的电压调整为大于或等于所述显示信号的电压。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:在将所述触控信号的电压调整为大于或等于所述显示信号的电压时,电连接所述第一电极和所述触控电极。
  19. 根据权利要求14至18任一项所述的方法,其中,所述传输触控信 号到所述触控电极包括:
    通过所述信号线向所述触控电极输入用于指纹识别的触控驱动信号。
  20. 根据权利要求19所述的方法,其中,在向所述触控电极输入所述触控驱动信号后,所述方法还包括:所述触控电极通过所述信号线输出触控感应信号。
PCT/CN2017/109723 2017-03-31 2017-11-07 触控显示单元、触控显示面板及其驱动方法 WO2018176840A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17870623.0A EP3605208A4 (en) 2017-03-31 2017-11-07 TOUCH DISPLAY UNIT, TOUCH DISPLAY PANEL AND CONTROL PROCEDURE FOR IT
US15/777,454 US10592045B2 (en) 2017-03-31 2017-11-07 Touch display unit, touch display panel and method for driving thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710209383.7 2017-03-31
CN201710209383.7A CN108663837B (zh) 2017-03-31 2017-03-31 触控显示单元、触控显示基板、触控显示面板及其驱动方法

Publications (1)

Publication Number Publication Date
WO2018176840A1 true WO2018176840A1 (zh) 2018-10-04

Family

ID=63674103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109723 WO2018176840A1 (zh) 2017-03-31 2017-11-07 触控显示单元、触控显示面板及其驱动方法

Country Status (4)

Country Link
US (1) US10592045B2 (zh)
EP (1) EP3605208A4 (zh)
CN (1) CN108663837B (zh)
WO (1) WO2018176840A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180323239A1 (en) * 2017-05-03 2018-11-08 Innolux Corporation Display device
KR102385632B1 (ko) * 2017-10-31 2022-04-11 엘지디스플레이 주식회사 터치 디스플레이 장치
CN110647253B (zh) * 2018-06-27 2023-05-26 鸿富锦精密工业(深圳)有限公司 触控显示面板和应用该触控显示面板的电子装置
CN109003991A (zh) * 2018-08-01 2018-12-14 京东方科技集团股份有限公司 阵列基板及其制作方法和显示面板
CN109491543B (zh) * 2018-11-06 2020-12-25 京东方科技集团股份有限公司 一种触控显示面板、制作方法及驱动方法
CN109521593B (zh) * 2018-12-25 2021-07-09 厦门天马微电子有限公司 显示面板和显示装置
TWI686738B (zh) * 2019-04-24 2020-03-01 友達光電股份有限公司 觸控顯示裝置
CN110045875B (zh) * 2019-04-28 2020-04-10 深圳市华星光电半导体显示技术有限公司 Oled触控显示装置及其驱动方法
KR20210051358A (ko) * 2019-10-30 2021-05-10 엘지디스플레이 주식회사 터치 디스플레이 장치 및 디스플레이 패널
CN111028811B (zh) * 2019-12-25 2022-05-10 厦门天马微电子有限公司 一种显示面板及显示装置
KR20220096768A (ko) * 2020-12-31 2022-07-07 엘지디스플레이 주식회사 표시 장치
CN112883903B (zh) * 2021-03-12 2022-09-20 厦门天马微电子有限公司 一种显示面板的驱动方法以及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320185A (zh) * 2008-07-18 2008-12-10 昆山龙腾光电有限公司 触控式液晶显示阵列基板及液晶显示装置
US20120113027A1 (en) * 2010-11-08 2012-05-10 Song Sung-Hoon Liquid crystal display integrated touch screen panel
CN103150073A (zh) * 2013-03-12 2013-06-12 合肥京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN103218076A (zh) * 2013-03-29 2013-07-24 合肥京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN104330935A (zh) * 2014-10-10 2015-02-04 上海天马微电子有限公司 一种阵列基板、显示面板和显示装置
CN104536197A (zh) * 2015-01-22 2015-04-22 京东方科技集团股份有限公司 彩膜基板、阵列基板及显示装置
KR20160093442A (ko) * 2015-01-29 2016-08-08 엘지디스플레이 주식회사 터치패널 및 이를 포함하는 터치표시장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417766B (zh) * 2008-05-23 2013-12-01 Innolux Corp 觸控液晶顯示裝置及其驅動方法
US8411212B2 (en) * 2008-09-09 2013-04-02 Sharp Kabushiki Kaisha Display device
CN103455201B (zh) * 2013-08-27 2017-03-29 北京京东方光电科技有限公司 一种触控显示装置及其驱动方法
EP2866165B1 (en) * 2013-10-28 2018-12-05 LG Electronics Inc. -1- Mobile terminal and controlling method thereof
CN103698949A (zh) * 2013-12-27 2014-04-02 合肥京东方光电科技有限公司 阵列基板、显示装置及其驱动方法
KR101678590B1 (ko) * 2014-12-26 2016-11-23 엘지디스플레이 주식회사 액정표시패널 및 이를 이용한 액정표시장치
CN104731412B (zh) * 2015-04-01 2018-03-13 上海天马微电子有限公司 阵列基板、显示面板及显示装置
CN104699352B (zh) * 2015-04-01 2018-04-13 上海天马微电子有限公司 一种自容式触控显示面板及其阵列基板
CN105139793A (zh) * 2015-08-28 2015-12-09 京东方科技集团股份有限公司 一种阵列基板、其驱动方法、显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320185A (zh) * 2008-07-18 2008-12-10 昆山龙腾光电有限公司 触控式液晶显示阵列基板及液晶显示装置
US20120113027A1 (en) * 2010-11-08 2012-05-10 Song Sung-Hoon Liquid crystal display integrated touch screen panel
CN103150073A (zh) * 2013-03-12 2013-06-12 合肥京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN103218076A (zh) * 2013-03-29 2013-07-24 合肥京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN104330935A (zh) * 2014-10-10 2015-02-04 上海天马微电子有限公司 一种阵列基板、显示面板和显示装置
CN104536197A (zh) * 2015-01-22 2015-04-22 京东方科技集团股份有限公司 彩膜基板、阵列基板及显示装置
KR20160093442A (ko) * 2015-01-29 2016-08-08 엘지디스플레이 주식회사 터치패널 및 이를 포함하는 터치표시장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605208A4 *

Also Published As

Publication number Publication date
US20190278455A1 (en) 2019-09-12
CN108663837B (zh) 2021-01-22
CN108663837A (zh) 2018-10-16
EP3605208A1 (en) 2020-02-05
US10592045B2 (en) 2020-03-17
EP3605208A4 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2018176840A1 (zh) 触控显示单元、触控显示面板及其驱动方法
US10613664B2 (en) Display device with built-in touch screen and method of fabricating the same
US10474262B2 (en) Touch screen-integrated display device and method for fabricating the same
JP6301609B2 (ja) インセル型タッチパネル
US9772723B2 (en) Capacitive in-cell touch panel and display device
US9619066B2 (en) Touch sensor integrated type display device
US9046955B1 (en) Display device integrated with touch screen panel and method for fabricating the same
US11947760B2 (en) Display device with position input function
US9459722B2 (en) Display apparatus and method of manufacturing the same
US10684711B2 (en) Subpixel structure of display device and touch screen-integrated display device having the same
US10739925B2 (en) Touch screen panel-integrated display device and method for fabricating the same
US9291847B2 (en) Pixel unit and TFT-LCD with touch function
US20180300000A1 (en) Display device and method
US11106072B2 (en) Display device
US11366540B2 (en) Display device
KR102040654B1 (ko) 터치센서 일체형 표시장치 및 그 제조방법
US11347340B2 (en) Display device
US11625114B2 (en) Array substrate and display device
JP2022160756A (ja) 配線基板及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017870623

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017870623

Country of ref document: EP

Effective date: 20191031