WO2018176428A1 - 电池放电控制方法、电池放电控制系统及智能电池 - Google Patents

电池放电控制方法、电池放电控制系统及智能电池 Download PDF

Info

Publication number
WO2018176428A1
WO2018176428A1 PCT/CN2017/079137 CN2017079137W WO2018176428A1 WO 2018176428 A1 WO2018176428 A1 WO 2018176428A1 CN 2017079137 W CN2017079137 W CN 2017079137W WO 2018176428 A1 WO2018176428 A1 WO 2018176428A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge
temperature
current
temperature sensing
Prior art date
Application number
PCT/CN2017/079137
Other languages
English (en)
French (fr)
Inventor
张彩辉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/079137 priority Critical patent/WO2018176428A1/zh
Priority to CN201780018435.0A priority patent/CN109075582A/zh
Publication of WO2018176428A1 publication Critical patent/WO2018176428A1/zh
Priority to US16/576,092 priority patent/US20200014230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of batteries, and in particular, to a battery discharge control method, a battery discharge control system, and a smart battery.
  • lithium batteries are widely used as power source batteries for mobile devices because of their small memory effect and high energy.
  • the lithium battery When the lithium battery is stored for a long period of time, it may cause bulging during the full storage, which may cause a safety hazard. Therefore, it is generally required to add a self-discharging circuit or a self-discharging device to the battery, so that the power of the battery during long-term storage is reduced to about 60%.
  • the self-discharge circuit can drain the battery by consuming the discharge load to dissipate the battery and eventually reach the desired amount.
  • the battery should satisfy a certain self-discharge speed when performing self-discharge, which will generate a large amount of heat; in addition, when a plurality of batteries are stacked, due to poor heat dissipation, more heat may be accumulated, so that It will increase the temperature at which the battery is stored, creating a safety problem.
  • the invention provides a battery discharge control method, a battery discharge control system and a smart battery, which can prevent the battery from being overheated during self-discharge and have a high self-discharge efficiency.
  • the present invention provides a battery discharge control method, including:
  • the present invention provides a battery discharge control system including a temperature sensing unit and a control unit, wherein the control unit and the temperature sensing unit are electrically connected; the temperature sensing unit is configured to detect the temperature of the battery; and the control unit and the battery Discharge loop connection for inspection by temperature sensing unit The measured temperature of the battery adjusts the discharge speed of the battery during self-discharge.
  • the present invention provides a smart battery comprising one or more energy storage units for storing electrical energy and a battery discharge control system as described above, wherein the battery discharge control system is electrically connected to the energy storage unit for Control the discharge rate of the energy storage unit.
  • the battery discharge control method specifically includes detecting the temperature of the battery when the battery is self-discharged; and then adjusting the discharge speed of the battery during self-discharge according to the temperature of the battery. In this way, according to the temperature of the battery, the discharge speed of the battery during self-discharge can be adjusted to avoid the safety hazard caused by the temperature being too high during self-discharge, and the battery can be self-discharged with high efficiency.
  • FIG. 1 is a schematic flow chart of a battery discharge control method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a battery discharge control system according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a temperature sensing unit in a battery discharge control system according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of another battery discharge control system according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a smart battery according to Embodiment 4 of the present invention.
  • 1 temperature sensing unit
  • 2 control unit
  • 3 battery
  • 4 discharge load
  • 11 temperature sensing module
  • 12 PWM module
  • 21 triode
  • 22 MOS tube
  • 100 battery discharge control system
  • - energy storage unit 200 - smart battery
  • b - base b - base
  • c - collector e - emitter
  • D - drain G - gate
  • S - source
  • FIG. 1 is a schematic flow chart of a battery discharge control method according to Embodiment 1 of the present invention. As shown in FIG. 1 , the battery discharge control method provided in this embodiment may specifically include the following steps:
  • the self-discharge battery is usually a lithium battery or the like, and is mainly applied to a mobile device having a high energy density such as a drone or a ground unmanned vehicle. Due to its own characteristics, such as lithium batteries, batteries may need to be self-discharged to require their own power during long-term storage or other conditions.
  • the battery's electrical energy is typically consumed by loading the discharge load on the battery. Since the battery consumes heat during the self-discharge process, it may cause heat release. If the battery is poorly dissipated due to battery stacking, etc., heat accumulation may occur inside the battery. Therefore, in the self-discharge process, the real-time temperature of the battery needs to be detected.
  • various types of contact or non-contact temperature sensors can be used to detect the temperature of the battery, for example, using a thermistor attached to the surface of the battery cell.
  • the discharge speed of the battery during self-discharge can be adjusted according to the real-time temperature of the battery. Specifically, when the battery discharge speed is fast, the battery has a large heat generation due to power consumption, and at this time, the temperature of the battery is also high. Therefore, the discharge speed of the battery at the time of self-discharge can be adjusted according to the real-time temperature of the battery. If the temperature of the battery is too high, the discharge speed of the battery during self-discharge is reduced, so as to reduce the heat generated by the battery during self-discharge, so that the heat accumulated by the battery is dissipated in a timely manner by means of heat dissipation, thereby lowering the temperature of the battery. If the temperature of the battery is low, the discharge speed of the battery during self-discharge can be increased to improve the self-discharge efficiency of the battery and save self-discharge time.
  • the battery when the battery is self-discharged, it is usually required to be maintained in a constant temperature range, so that it can avoid the safety hazard caused by the excessive temperature and ensure a certain self-discharge time.
  • the following specific steps may be included:
  • the battery Since the battery is in the process of self-discharge, when the discharge speed is constant, its own heat generation and heat dissipation speed will usually reach a balance, so that the temperature of the battery during discharge will usually remain within a certain equilibrium value or equilibrium range.
  • the discharge rate of the battery can be adjusted to maintain and maintain it near the equilibrium temperature.
  • the battery can be stabilized at a preset temperature by presetting a temperature and adjusting the discharge speed of the battery, thereby ensuring proper performance and safety of the battery.
  • the preset temperature is the safe operating temperature of the battery. When the battery is operated at this preset temperature, it will not cause a safety hazard or seriously affect its performance because the temperature is too high or too low.
  • the preset temperature is usually a range of values.
  • the preset temperature is 35 ° C to 60 ° C. Within this preset temperature range, the battery is guaranteed to work properly.
  • the battery discharge speed is adjusted according to the relationship between the temperature of the battery and the preset temperature, specifically, when the temperature of the battery is greater than or equal to the preset temperature, the discharge speed is decreased; or when the temperature of the battery is less than the preset At the temperature, the discharge rate is increased.
  • the heat generated by the battery may be increased by increasing the discharge speed of the battery, thereby heating the battery; and if the temperature of the battery is higher than the preset temperature, the temperature may be lowered.
  • the battery discharge speed reduces the battery heat to cool the battery.
  • FIG. 2 is a schematic flow chart of another battery discharge control method according to Embodiment 1 of the present invention.
  • the battery may be included in the self-discharge process according to the temperature of the battery. : changing the magnitude of the discharge current passed through the discharge load or the energization time of the discharge current, wherein the discharge load and the battery are electrically connected and together form a loop.
  • the discharge load and the battery are electrically connected to form a discharge circuit for performing self-discharge of the battery, and the battery can consume its own amount of electricity by the voltage and current loaded across the discharge load.
  • the discharge load is generally a resistive load, so it is only necessary to change the discharge current passed through the discharge load to adjust the power consumption on the discharge load, thereby changing the speed of the battery consumption.
  • the discharge load is related to the magnitude of the discharge current and the power-on time per unit period.
  • the method may specifically include the following method: by pulse width modulation ( Pulse Width Modulation (PWM) is the time to change the discharge current. Pulse width modulation can adjust the pulse interval parameter of the signal, such as duty cycle, etc., thereby affecting the on/off state of the switch circuit and changing the on-time of the current on the discharge load, so that the discharge load can only be turned on when the switch circuit is turned on.
  • Pulse Width Modulation Pulse Width Modulation
  • the discharge load is also disconnected from the battery and cannot be discharged.
  • the discharge current time is changed by the pulse width modulation method, usually one or more pulse wave signals are used in each cycle, and the switch circuit is turned on when the pulse wave signal passes, and when no pulse wave signal passes. It will be disconnected, so that by changing the number of pulse wave signals and the duration of the pulse wave signal in a single cycle, the equivalent size of the discharge current can be controlled to adjust the discharge speed of the battery.
  • the magnitude of the discharging current as the output current in the amplifying circuit is changed.
  • the input end of the amplifying circuit is the control end, and the circuit formed by the discharge load and the battery is located at the output end of the amplifying circuit.
  • the amplifying circuit generally includes an input end and an output end, and the current or voltage between the input end and the output end generally has a certain amplification ratio. Therefore, the voltage or current at the input or output of the amplifying circuit can be adjusted to change the voltage or current at the other end.
  • the input end of the amplifying circuit since the current at the input end of the amplifying circuit is generally smaller than the current at the output end, the input end of the amplifying circuit can be used as a control terminal for control, and a small current is input at the control end to control the output terminal at the output end of the amplifying circuit.
  • a large discharge current in the circuit formed by the battery thus, when the current at the control terminal can be changed according to the temperature of the battery, the magnitude of the discharge current can also change, and affect the discharge speed of the battery.
  • the step of adjusting the magnitude of the input current in the amplifying circuit to change the magnitude of the discharging current as the output current in the amplifying circuit may be specifically The magnitude of the pole current changes the magnitude of the discharge current as the collector current.
  • the triode comprises a base, a collector and an emitter.
  • the current on the collector of the triode is proportional to the current on the base.
  • the magnitude of the current on the base of the transistor changes, the magnitude of the current on the collector of the transistor changes in a predetermined ratio. Therefore, if the magnitude of the base current can vary with the temperature of the battery, the magnitude of the discharge current as the collector current can be changed, so that the power consumption of the discharge load is changed, and the discharge speed of the battery is also changed.
  • the temperature sensing element such as the thermistor can be connected to the base of the triode, and when the voltage at the input end of the triode amplifying circuit is constant, if the resistance value of the thermistor changes with the temperature of the battery, the corresponding The base current also changes and controls the current change at the output of the triode amplifier circuit.
  • the step of changing the magnitude of the input current in the amplifying circuit to change the magnitude of the discharging current as the output current in the amplifying circuit may be specifically The magnitude of the discharge current on the drain of the MOS transistor is changed by adjusting the magnitude of the gate voltage of the MOS transistor.
  • the MOS transistor that is, the metal oxide semiconductor transistor
  • the MOS transistor can convert the change of the input voltage into a change of the output current, thereby achieving the effect of amplifying the current and controlling the on-off of the circuit, and the input voltage and the output current.
  • the gate of the MOS transistor is generally used as an input terminal, and the input voltage can be connected, and the corresponding output current can be generated on the drain.
  • the input voltage changes, the magnitude of the output current on the drain changes accordingly.
  • the specific control method is similar to the foregoing control using the triode amplifying circuit, and details are not described herein again.
  • adjusting the discharge speed when the battery is self-discharged may specifically include the following method: adjusting the discharge speed by adjusting the discharge parameter of the discharge load. Since the discharge load can have a variety of configurations and compositions, the discharge rate can be adjusted by setting a discharge load with a parameter adjustable and by adjusting the discharge parameter of the discharge load.
  • the discharge parameter of the discharge load may include at least one of the following: a discharge time, a discharge frequency, a configuration of the discharge circuit, and a magnitude of the discharge resistance.
  • the discharge time is the time at which both ends of the discharge load and the battery are connected to load the discharge voltage or the discharge current is passed, so that the discharge time of the discharge load can be changed according to the temperature of the battery, thereby adjusting the discharge speed of the battery;
  • a capacitor or an inductor can have a load with a discharge frequency
  • the discharge frequency of the discharge load can be adjusted according to the temperature change of the battery to adjust the discharge speed of the battery; or a discharge circuit having a variable device can be set, and different Under the temperature condition, the discharge speed of the battery is adjusted by changing the composition of the discharge circuit; and the discharge load can also be a resistive load, and the resistance value of the discharge load can be adjusted by the control unit or the like according to the detected change of the battery temperature. And change the battery discharge speed.
  • the battery discharge control method specifically includes: detecting a temperature of the battery when the battery is self-discharged; and then adjusting a discharge speed of the battery when performing self-discharge according to the temperature of the battery. In this way, according to the temperature of the battery, the discharge speed of the battery during self-discharge can be adjusted to avoid the safety hazard caused by the temperature being too high during self-discharge, and the battery can be self-discharged with high efficiency.
  • the battery discharge control method described in the first embodiment can be applied to control the discharge speed of the battery according to the temperature of the battery when the battery is self-discharged.
  • the battery discharge control system of this embodiment specifically includes a temperature sensing unit 1 and a control unit 2, wherein the control unit 2 and the temperature sensing unit 1 are electrically connected; and the temperature sensing unit 1 is used to detect the battery.
  • the temperature of 3; the control unit 2 is connected to the discharge circuit of the battery 3 for adjusting the discharge speed of the battery at the time of self-discharge according to the temperature of the battery 3 detected by the temperature sensing unit 1.
  • the battery 3 when the battery 3 is self-discharged, it is usually required to be electrically connected to an electrical device such as a discharge load to constitute a discharge circuit for discharging, and the battery 3 can perform its own electric quantity by the voltage and current loaded in the discharge circuit. Consumption. Since the battery 3 is self-discharged, a phenomenon such as heat accumulation due to an excessively high discharge rate may occur, so that the battery 3 has a high temperature rise. If the temperature of the battery 3 is too high, it may cause battery leakage or other safety hazards. In order to perform real-time detection of the temperature of the battery 3, the battery discharge control system may include a temperature sensing unit. Yuan 1.
  • the temperature sensing unit 1 can be various types of contact or non-contact temperature sensors, such as heat sensitive components such as thermistors and thermocouples, or sensor components such as infrared temperature sensing probes that can detect heat radiation and temperature.
  • heat sensitive components such as thermistors and thermocouples
  • sensor components such as infrared temperature sensing probes that can detect heat radiation and temperature.
  • the temperature sensor usually needs to be placed close to the battery 3 or in contact with the battery of the battery 3 to obtain the actual temperature of the battery.
  • the control unit 2 can judge whether or not the discharge speed of the battery 3 needs to be adjusted according to the temperature of the battery 3 to ensure safety and achieve a predetermined discharge performance.
  • the discharge speed of the battery 3 is faster, the temperature of the battery 3 is increased, and when the discharge speed of the battery 3 is slow, the battery 3 can maintain a proper temperature by normal heat dissipation, and therefore, when the temperature sensing unit 1
  • the temperature of the battery 3 can be lowered by slowing down the discharge speed of the battery 3; and when the temperature of the battery 3 is detected to be low, the discharge speed of the battery can be increased to ensure the battery 3 Discharge efficiency.
  • the discharge circuit of the battery 3 when self-discharge of the battery 3 is performed by the discharge circuit, the discharge circuit of the battery 3 generally includes the battery 3 and a discharge load 4 connected in series with the positive electrode of the battery 3 and the negative electrode of the battery 3. Since the discharge load 4 is generally a resistive load, generally only the discharge current passed through the discharge load 4 needs to be changed, and the power consumption on the discharge load 4 can be adjusted to adjust the discharge speed of the battery 3 during self-discharge. Further, the power consumption of the discharge load 4 can be controlled to adjust the discharge speed of the battery 3, which is not limited herein.
  • control unit 2 may specifically include a current control circuit, and the input end of the current control circuit is connected to the temperature sensing unit 1, and the current control circuit The output terminal is connected to the discharge circuit of the battery 3 to control the current flowing in the discharge load 4 in accordance with the current flowing through the temperature sensing unit 1.
  • the current control circuit may include a triode 21, the base b of the triode 21 is connected to the temperature sensing unit 1, and the collector c of the triode 21 is connected in series with the first end of the discharge load 4, and the discharge load
  • the second end of the battery 4 is connected to the positive electrode of the battery 3, and the negative electrode of the battery 3 is connected to the emitter e of the transistor 21. Since the magnitude of the current between the base b and the collector c of the transistor 21 has a certain amplification ratio, when the magnitude of the current at one end changes, the magnitude of the current at the other end is forced to change accordingly.
  • the temperature sensing unit 1 Since the temperature sensing unit 1 generates a detection current which is generally small when the temperature is detected, the temperature sensing unit 1 can be connected to the base b of the transistor 21, and the discharge load 4 is connected to the collector of the transistor 21.
  • the connection mode of c makes it possible to control the magnitude of the large discharge current in the discharge circuit by the small current change of the temperature sensing unit 1.
  • the temperature sensing unit 1 can be of many different types.
  • the temperature sensing unit 1 may include a thermistor having heat conduction with the battery 3 and a thermistor connected to the base b of the transistor 21. Since the thermistor changes its own resistance when it is heated, it affects the magnitude of the current connected to the base b of the transistor 21 and passes through the determined current ratio between the base b and the collector c of the transistor 21. The relationship controls the magnitude of the discharge current in the discharge circuit on the side of the collector c.
  • the discharge speed of the battery 3 is lowered, and when the temperature of the battery 3 is lowered, the battery 3 is kept at a relatively fast discharge speed, and the current of the temperature sensing unit 1 should be made to vary with the temperature of the battery 3.
  • the temperature sensing unit 1 includes a thermistor
  • the thermistor is a positive temperature coefficient (PTC) thermistor.
  • the resistance of the PTC thermistor can be increased as the temperature rises and becomes smaller as the temperature decreases.
  • the current on the base b of the transistor 21 is reversely reduced due to the increase in the resistance of the PTC thermistor, and the discharge is caused.
  • the discharge current in the loop is reduced, at which time the discharge speed of the battery 3 is slowed down.
  • the resistance of the PTC thermistor is decreased.
  • the currents on the base b of the transistor 21 and the collector c are increased, so that the discharge speed of the battery 3 is increased, thereby The discharge efficiency of the battery 3 at the time of self-discharge is ensured.
  • FIG. 3 is a schematic structural diagram of a temperature sensing unit in a battery discharge control system according to Embodiment 2 of the present invention.
  • the temperature sensing unit 1 may include a temperature sensing module 11 and is electrically connected to the temperature sensing module 11 for pulse width modulation.
  • PWM module 12 The temperature sensing module 11 is configured to detect the temperature of the battery, and the output of the PWM module 12 is connected to the base b of the transistor 21, and the PWM module 12 is configured to emit a current signal whose duty ratio varies with the temperature of the battery.
  • the current signal sent by the PWM module 12 is not a continuous current but exists in the form of a pulse wave, it is possible to control the pulse wave duty cycle by controlling the number of pulse waves or the duration of the pulse wave in the same period.
  • the PWM module 12 emits a pulse wave
  • the offset of the transistor base or the gate of the MOS transistor can be modulated to change the on-time of the transistor or the MOS transistor, even if the current passing through is the same, but the on-time is The length of the change changes, so the equivalent current will change accordingly.
  • the PWM module 12 can output pulse waves with different duty ratios to control the on-time change of the circuit, and the equivalent current signals of different output sizes .
  • the duty ratio of the current signal is large, it means that the number of pulse waves in the same period is large, and the equivalent current is large, and when the duty ratio in the current signal is small, the number of pulse waves in the same period is small. Therefore, the equivalent current is small.
  • the equivalent current of different magnitudes can be outputted by the modulation of the PWM module 12, and after the synchronous amplification of the transistor 21 in the current amplifying circuit, it is used to control the self-discharge speed of the battery 3.
  • the temperature sensing unit 1 and the control unit 2 can adjust the discharge speed of the battery 3 by changing the magnitude of the discharge current passing through the discharge load 4 or the energization time of the discharge current according to the change of the temperature of the battery 3, it can be adjusted according to The temperature of the battery 3 controls the speed of the battery 3 during self-discharge, and prevents the battery 3 from being overheated due to excessive discharge speed, which causes a safety hazard, and at the same time ensures that the battery 3 has a high self-discharge speed and Self-discharge efficiency.
  • the battery discharge control system specifically includes a temperature sensing unit and a control unit, wherein the control unit and the temperature sensing unit are electrically connected; the temperature sensing unit is configured to detect the temperature of the battery; and the discharge circuit of the control unit and the battery The connection is used to adjust the discharge speed of the battery during self-discharge according to the temperature of the battery detected by the temperature sensing unit.
  • the discharge speed of the battery during self-discharge can be adjusted to avoid the safety hazard caused by the temperature being too high during self-discharge, and the battery can be self-discharged with high efficiency.
  • the current control circuit for controlling the discharge speed of the battery during self-discharge may also be of other different configurations and forms.
  • 4 is a schematic structural diagram of another battery discharge control system according to Embodiment 3 of the present invention.
  • the overall structure of the battery discharge control system in this embodiment is similar to the battery discharge control system in the second embodiment, except that the embodiment is In the battery discharge control system, the current control circuit includes a MOS transistor 22, the gate G of the MOS transistor 22 is connected to the temperature sensing unit 1, and the drain D of the MOS transistor 22 is connected to the first end of the discharge load 4, and the discharge load 4 The second end is connected to the positive electrode of the battery 3, and the negative electrode of the battery 3 is connected to the source S of the MOS transistor 22.
  • the gate G and the drain D of the MOS transistor 22 there is also a certain amplification ratio between the gate G and the drain D of the MOS transistor 22, and thus can be passed through the determined ratio relationship between the gate G and the drain D in the temperature sensing unit 1.
  • a corresponding relationship is established between the voltage or current and the discharge current in the discharge circuit.
  • the difference between the MOS transistor and the triode is that the MOS transistor requires almost no current driving during operation, and the current change of the drain and the source can be controlled as long as the voltage changes. Therefore, the input end of the current control circuit does not need to ensure the passage of current, and as long as the temperature sensing unit 1 can supply the voltage to the gate G, the discharge current in the discharge circuit can be controlled according to the change of the voltage, thereby realizing The magnitude of the discharge current is controlled by the voltage.
  • the temperature sensing unit 1 for detecting the temperature of the battery can also have a variety of different configurations and forms.
  • the temperature sensing unit 1 may include a thermistor having heat conduction with the battery 3, and the thermistor being connected to the gate G of the MOS transistor 22.
  • the specific structure and working principle of the thermistor are similar to those in the foregoing embodiment 2, and details are not described herein again.
  • the thermistor may be a positive temperature coefficient (PTC) thermistor.
  • the resistance of the PTC thermistor can be increased as the temperature rises and becomes smaller as the temperature decreases.
  • the voltage dividing resistor so that the resistance of the PTC thermistor becomes large, the voltage on the gate G of the MOS transistor 22 is reversely reduced, and the discharge current in the discharge circuit is reduced, at this time, the battery The discharge speed of 3 is slowed down.
  • the resistance of the PTC thermistor decreases.
  • the voltage on the gate G of the MOS transistor 22 can be reversely increased by means of a voltage dividing resistor or the like, and is located at the MOS.
  • the current in the discharge loop at one end of the drain D of the tube 22 is increased to speed up the discharge of the battery 3, thereby ensuring the discharge efficiency of the battery 3 at the time of self-discharge.
  • the temperature sensing unit 1 can also have other forms and structures.
  • the structure of the temperature sensing unit 1 can be similar to that of FIG. 4, that is, including the temperature sensing module 11 and the pulse width modulation PWM module 12 electrically connected to the temperature sensing module 11, and the temperature sensing module 11 is used for detecting the battery.
  • the temperature of 3 the output of the PWM module 12 is connected to the gate G of the MOS transistor 22, and the PWM module 12 is used to issue the duty ratio with the battery 3.
  • the temperature of the voltage signal changes.
  • the voltage of the gate G side of the MOS transistor 22 can be controlled by the PWM module 12 by controlling the duty ratio of the pulse wave, and after the synchronous amplification of the current amplifying circuit, the current in the discharge circuit is adjusted, thereby changing The discharge speed of the battery 3.
  • the working mode of the PWM module 12 and the control principle of the voltage level are similar to those in the foregoing Embodiment 2, and details are not described herein again.
  • the battery discharge control system specifically includes a temperature sensing unit and a control unit, wherein the control unit and the temperature sensing unit are electrically connected; the temperature sensing unit is configured to detect the temperature of the battery; and the discharge circuit of the control unit and the battery The connection is used for adjusting the discharge speed of the battery during self-discharge according to the temperature of the battery detected by the temperature sensing unit; and the current control circuit comprises a MOS tube, the gate of the MOS tube is connected with the temperature sensing unit, and the drain of the MOS tube The pole is connected to the first end of the discharge load, the second end of the discharge load is connected to the anode of the battery, and the cathode of the battery is connected to the source of the MOS tube.
  • the discharge current can be controlled by the on-off voltage, thereby adjusting the discharge speed of the battery during self-discharge according to the temperature of the battery, thereby avoiding a safety hazard caused by the temperature being too high during self-discharge, and enabling the battery High efficiency when discharging.
  • FIG. 5 is a schematic structural diagram of a smart battery according to Embodiment 4 of the present invention.
  • the smart battery 200 of the present embodiment includes one or more energy storage units 101 and a battery discharge control system 100 for storing electrical energy.
  • the battery discharge control system 100 is electrically connected to the energy storage unit 101 for control.
  • the battery discharge control system 100 can perform the battery discharge control method in the first embodiment to control the discharge speed of the energy storage unit 101 according to the temperature of the energy storage unit 101 in the smart battery 200.
  • the specific structure, composition, function and working principle of the battery discharge control system 100 have been described in detail in the foregoing embodiments 2 and 3, and are not described herein again.
  • the smart battery 200 has one or more energy storage units 101, which may generally be battery cells or other structures that can be used to store electrical energy.
  • the energy storage unit 101 is plural, the plurality of energy storage units may be assembled and connected together by stacking.
  • the battery discharge control system 100 can detect the temperature of the energy storage unit 101, and control the discharge speed of the energy storage unit 101 according to the detected temperature to prevent the temperature of the energy storage unit 101 from being too high or too low, thereby effectively preventing the smart battery 200 from being The heat accumulation of the energy storage unit 101 is excessive and a safety hazard is generated.
  • the battery itself is an energy storage unit, so it needs to be said It is to be noted that the energy storage unit in this embodiment generally has the same definition and scope as the battery in the foregoing embodiment, and the smart battery in this embodiment includes both the energy storage battery and the battery discharge control system. To form an energy storage system with a certain degree of intelligence and automatic control.
  • the smart battery includes one or more energy storage units for storing electrical energy and a battery discharge control system, and the battery discharge control system is electrically connected to the energy storage unit for controlling the discharge speed of the energy storage unit; wherein, the battery The discharge control system specifically includes a temperature sensing unit and a control unit, wherein the control unit and the temperature sensing unit are electrically connected; the temperature sensing unit is configured to detect the temperature of the battery; and the control unit is connected to the discharge circuit of the battery for The temperature of the battery detected by the sensing unit adjusts the discharge speed of the battery during self-discharge.
  • the discharge speed of the smart battery during self-discharge can be adjusted according to the temperature of the energy storage unit in the smart battery, so as to avoid the safety hazard caused by the excessive temperature of the energy storage unit in the smart battery during self-discharge, and the smart battery can be It is more efficient at self-discharge.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池放电控制方法、电池放电控制系统及智能电池。该电池放电控制方法包括:在电池(3)进行自放电时,检测电池的温度(S11);根据电池的温度,调整电池进行自放电时的放电速度(S12)。该电池放电控制方法、电池放电控制系统及智能电池能够避免电池在自放电时温度过高,同时具有较高的自放电效率。

Description

电池放电控制方法、电池放电控制系统及智能电池 技术领域
本发明涉及电池领域,尤其涉及一种电池放电控制方法、电池放电控制系统及智能电池。
背景技术
随着科技的不断发展,各种移动设备的应用越来越多,而为移动设备提供动力源的电池的性能也越来越重要。
目前,由于锂电池具有记忆效应小、能量比较高等优点,因而广泛用作了移动设备的动力源电池。而锂电池在长期存放时,可能会在满电存放时发生鼓包等现象,从而造成安全隐患。因而,一般需要给电池增加自放电电路或者自放电装置,使电池在长期存放时的电量减少到60%左右。自放电电路可以通过给电池加载放电负载,以消耗电池的电量,并使电池最终达到想要的电量。
然而,为达到放电效果,电池在进行自放电时应满足一定的自放电速度,这样会产生大量热量;此外多个电池在堆叠时,由于散热不佳,也可能会积聚较多的热量,这样会提高电池存放时的温度,产生安全问题。
发明内容
本发明提供一种电池放电控制方法、电池放电控制系统及智能电池,能够避免电池在自放电时温度过高,同时具有较高的自放电效率。
第一方面,本发明提供一种电池放电控制方法,包括:
在电池进行自放电时,检测电池的温度;
根据电池的温度,调整电池进行自放电时的放电速度。
第二方面,本发明提供一种电池放电控制系统,包括温度传感单元和控制单元,控制单元和温度传感单元电性连接;温度传感单元用于检测电池的温度;控制单元与电池的放电回路连接,用于根据温度传感单元所检 测到的电池的温度调整电池在自放电时的放电速度。
第三方面,本发明提供一种智能电池,包括用于存储电能的一个或多个储能单元和如上所述的电池放电控制系统,其中,电池放电控制系统与储能单元电连接,用于控制储能单元的放电速度。
本发明的电池放电控制方法、电池放电控制系统及智能电池,电池放电控制方法具体包括在电池进行自放电时,检测电池的温度;然后根据电池的温度,调整电池进行自放电时的放电速度。这样可以根据电池的温度对电池在自放电时的放电速度进行调整,避免电池在自放电时因温度过高而造成安全隐患,且能使电池自放电时效率较高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的一种电池放电控制方法的流程示意图;
图2是本发明实施例二提供的一种电池放电控制系统的结构示意图;
图3是本发明实施例二提供的电池放电控制系统中温度传感单元的一种结构示意图;
图4是本发明实施例三提供的另一种电池放电控制系统的结构示意图;
图5是本发明实施例四提供的一种智能电池的结构示意图。
附图标记说明:
1—温度传感单元;2—控制单元;3—电池;4—放电负载;11—温度传感模块;12—PWM模块;21—三极管;22—MOS管;100—电池放电控制系统;101—储能单元;200—智能电池;b—基极;c—集电极;e—发射极;D—漏极;G—栅极;S—源极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发 明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例一提供的一种电池放电控制方法的流程示意图。如图1所示,本实施例提供的电池放电控制方法具体可以包括如下步骤:
S11、在电池进行自放电时,检测电池的温度。
具体的,进行自放电的电池通常为锂电池等,且主要应用于无人机或者地面无人车等能量密度要求较高的移动设备上。由于锂电池等的自身特性,电池可能在需要长期存放,或者其它条件下需要进行自放电,以将自身的电量。在电池进行自放电时,一般通过在电池上加载放电负载,以通过放电负载来消耗电池的电能。由于在自放电过程中,电池在电能消耗的同时,会产生放热现象,如果因为电池堆叠等情况造成电池散热不良,则可能会在电池内部造成热量积聚产生危险。所以在自放电过程中,需要对电池的实时温度进行检测。其中,可以采用各类接触式或者非接触式的温度传感器实现电池的温度检测,例如采用贴设在电池电芯表面的热敏电阻等进行检测。
S12、根据电池的温度,调整电池进行自放电时的放电速度。
获得电池的实时温度后,即可根据电池的实时温度,对电池进行自放电时的放电速度进行调整。具体的,当电池放电速度较快时,则因为功耗的原因,电池的发热较大,此时,电池的温度也会较高。因而,可以根据电池的实时温度对电池在自放电时的放电速度进行调整。如果电池的温度过高,则降低电池自放电时的放电速度,以减少电池在自放电时所发出的热量,从而让电池所积聚的热量通过散热手段而及时散去,从而使电池的温度降低;而如果电池的温度较低,则可以提高电池自放电时的放电速度,以提高电池的自放电效率,节省自放电时间。
具体的,电池在自放电时,通常需要维持在一个恒定的温度范围内,使其既能够避免因温度过高而产生的安全隐患,又可以保证一定的自放电时间。例如,在根据电池温度对电池在自放电时的放电速度进行调整时,可以包括如下具体步骤:
根据电池的温度与预设温度之间的大小关系,调整电池的放电速度。
由于电池在自放电过程中,当放电速度一定时,自身的发热和散热速度通常会达到一个平衡,这样,电池在放电时的温度通常也会保持在一定的均衡值或者均衡范围内,而当电池的温度小于或者大于该均衡温度时,可以通过调整电池的放电速度,以将其调节并维持在均衡的温度附近。具体的,可以通过预设一个温度,并通过调整电池的放电速度,以使电池的温度稳定在预设温度附近,从而保证电池具有合适的性能和安全性。
一般的,预设温度为电池的安全工作温度。电池工作在此预设温度下时,不会因为温度过高或者过低而产生安全隐患或者严重影响其性能。
为了便于调整,预设温度通常为一个范围值。例如,预设温度为35℃至60℃。在该预设温度范围内,电池可以保证正常进行工作。
具体的,在根据电池的温度与预设温度之间大小关系进行电池放电速度的调整时,具体包括当电池的温度大于或等于预设温度时,降低放电速度;或者当电池的温度小于预设温度时,提高放电速度。
其中,当进行调整时,如果电池的温度低于预设温度,则可以通过提高电池放电速度加大电池发出的热量,从而使电池升温;而如果电池的温度高于预设温度,则可降低电池放电速度,减少电池热量,以使电池降温。
具体的,可以通过多种方式对电池在自放电过程中的放电速度进行调整。例如,可以通过电池所输出的电流、电压及功率,使电池消耗电量的速度提高或降低。图2是本发明实施例一提供的另一种电池放电控制方法的流程示意图。如图2所示,作为一种可选的实施方式,对电池在自放电过程中的温度进行检测后,在根据电池的温度调整电池在自放电过程中的放电速度时,具体可包括如下步骤:改变放电负载上所通过的放电电流的大小或者放电电流的通电时间,其中,放电负载和电池电连接并共同构成回路。
具体的,放电负载和电池电连接,从而构成了用于进行电池自放电的放电回路,电池可以通过加载在放电负载两端的电压和电流对自身的电量进行消耗。而放电负载一般为电阻型负载,所以只需要改变放电负载上所通过的放电电流,即可对放电负载上的功耗进行调整,从而改变电池消耗电量的速度。具体的,当放电负载的阻值等参数一定的情况下,放电负载 的功耗和放电电流的大小以及单位周期内通电时间有关。当放电电流越大,或者放电电流的通电时间越长,则放电负载所消耗的电量越多,使得电池具有较快的放电速度;而当放电电流越小,或者放电电流不能持续接通,而是保持间歇性接通时,则放电负载所消耗的电量较小,此时,电池放电速度较慢。
其中,在改变放电负载上所通过的放电电流的大小或者放电电流的通电时间,以调整电池放电速度的步骤中,当改变放电电流的通电时间时,具体可以包括如下方法:通过脉冲宽度调制(Pulse Width Modulation,简称PWM)改变放电电流的时间。脉冲宽度调制可以通过调整信号的脉冲间隔参数,例如占空比等,从而影响开关电路的通断状态,并改变放电负载上电流的导通时间,使得放电负载上只能在开关电路接通时才能有放电电流流过,并进行电池电量的消耗,而开关电路断开时,放电负载也和电池断开,无法放电。具体的,通过脉冲宽度调制方式改变放电电流时间时,通常在每一个周期内,具有一个或多个脉冲波信号,开关电路在脉冲波信号通过时才会接通,而无脉冲波信号通过时会断开,这样,通过改变单个周期内脉冲波信号的个数和脉冲波信号的持续时间,即可控制放电电流的等效大小,调整电池放点速度。
而当通过控制放电电流的大小来控制电池的放电时间时,具体可以包括如下步骤:
通过调整放大电路中输入电流的大小,改变作为放大电路中输出电流的放电电流的大小,其中,放大电路的输入端为控制端,放电负载和电池所构成的回路位于放大电路的输出端。
具体的,放大电路一般包括有输入端和输出端,且输入端和输出端之间的电流或者电压一般具有确定的放大比例。因此,可以通过调整放大电路输入端或者输出端的电压或电流,以改变另一端的电压或者电流的大小。其中,由于放大电路输入端的电流一般小于输出端电流,所以可以利用放大电路的输入端作为控制端进行控制,并在控制端输入较小的电流,以控制位于放大电路的输出端的,由放电负载和电池所构成的回路中的较大的放电电流。这样,当控制端的电流可以根据电池的温度而改变时,放电电流的大小也可随之改变,并影响电池的放电速度。
作为其中一种可选的实施方式,当放大电路为三极管放大电路时,通过调整放大电路中输入电流的大小,改变作为放大电路中输出电流的放电电流的大小的步骤,具体可以为通过调整基极电流的大小,改变作为集电极电流的放电电流的大小。
其中,三极管包括有基极、集电极和发射极,当基极上有电流流过时,三极管的集电极上的电流大小会与基极上的电流大小成一预定的比例。因而如果三极管的基极上的电流大小改变,则会使三极管集电极上的电流大小按照预定的比例发生改变。因而,如果基极电流大小可随电池的温度而产生变化,即可改变作为集电极电流的放电电流的大小,从而放电负载的功耗得以改变,电池的放电速度也随之改变。具体的,可以通过将热敏电阻等温度传感元件接入三极管的基极,在三极管放大电路输入端电压一定时,如果热敏电阻的阻值随电池的温度升高而变化,则相应的基极电流也会产生变化,并控制三极管放大电路输出端的电流产生改变。
此外,作为另一种可选的实施方式,当放大电路为MOS管放大电路时,通过调整放大电路中输入电流的大小,改变作为放大电路中输出电流的放电电流的大小的步骤,具体可以是通过调整MOS管的栅极电压的大小,改变MOS管漏极上的放电电流的大小。
具体的,MOS管,也就是金属氧化物场效应晶体管(metal oxide semiconductor)可以把输入电压的变化转化为输出电流的变化,从而达到放大电流以及控制电路通断的效果,而输入电压和输出电流之间通常会呈现出一定的增益,即通过较小的输入电压的变化而产生较大的输出电流变化,从而达到放大的效果。其中,MOS管的栅极一般作为输入端,可以接入输入电压,而相应的在漏极上可以产生输出电流,当输入电压产生变化时,漏极上的输出电流的大小随之变化,并可用于控制电池的放电速度。其具体的控制方式和前述利用三极管放大电路进行控制类似,此处不再赘述。
此外,调整电池进行自放电时的放电速度,具体还可以包括如下方式:通过调节放电负载的放电参数,调整放电速度。由于放电负载可以有多种结构和组成,因而可以通过设置具有参数可调节的放电负载,并通过调节放电负载的放电参数来调整放电速度。
可选的,放电负载的放电参数可以包括如下至少一种:放电时间、放电频率、放电电路的构成、放电电阻的大小。其中,放电时间为放电负载两端和电池接通,以加载放电电压或者有放电电流通过的时间,因而可以根据电池的温度而改变放电负载的放电时间,从而调节电池的放电速度;放电负载为电容和电感等可具有放电频率的负载时,也可以根据电池的温度变化,通过调节放电负载的放电频率,以调整电池的放电速度;或者也可以设置组成器件可变的放电电路,并在不同温度条件下,通过改变放电电路的构成而调整电池放电速度;而放电负载也可以为电阻型负载,且放电负载的阻值可以随着所检测到电池温度的变化而由控制单元等进行调节,并改变电池放电速度。
本实施例中,电池放电控制方法具体包括在电池进行自放电时,检测电池的温度;然后根据电池的温度,调整电池进行自放电时的放电速度。这样可以根据电池的温度对电池在自放电时的放电速度进行调整,避免电池在自放电时因温度过高而造成安全隐患,且能使电池自放电时效率较高。
图2是本发明实施例二提供的一种电池放电控制系统的结构示意图。本实施例中的电池放电控制系统,可以应用前述实施例一中所述的电池放电控制方法,以在电池进行自放电时,根据电池的温度控制电池的放电速度。如图2所示,本实施例的电池放电控制系统具体包括温度传感单元1和控制单元2,其中,控制单元2和温度传感单元1电性连接;温度传感单元1用于检测电池3的温度;控制单元2与电池3的放电回路连接,用于根据温度传感单元1所检测到的电池3的温度调整电池在自放电时的放电速度。
具体的,电池3在进行自放电时,通常需要和放电负载等电学器件电连接,以构成一个用于放电的放电回路,电池3可以通过加载在放电回路中的电压和电流对自身的电量进行消耗。由于电池3在自放电时,可能会由于放电速度过快而产生热量积聚等现象,使得电池3具有较高的温升。如果电池3的温度过高,则可能会引起电池泄漏或者其它安全隐患。为了对电池3的温度进行实时检测,电池放电控制系统中可以包括温度传感单 元1。温度传感单元1可以为各类接触式或者非接触式的温度传感器,例如是热敏电阻、温差电偶等热敏感元件,或者红外温度传感探头等可探测热辐射及温度的传感器件。为了保持温度检测的准确性,温度传感器通常需要靠近电池3设置,或者和电池3的电芯相接触,以得到电池的实际温度。
获得电池3的温度后,控制单元2可以根据电池3的温度判断是否需要对电池3的放电速度进行调整,以确保安全性,并达到预设的放电性能。一般的,由于电池3放电速度较快时,会引起电池3的温度升高,而电池3放电速度较慢时,则电池3可以通过正常散热而保持适宜的温度,因此,当温度传感单元1检测到电池3的温度较高时,可以通过减慢电池3的放电速度,以降低电池3的温度;而检测到电池3的温度较低时,可以提高电池放电速度,来保证电池3的放电效率。
具体的,利用放电回路进行电池3的自放电时,电池3的放电回路一般包括电池3和与串联在电池3的正极和电池3的负极之间的放电负载4。由于放电负载4一般为电阻型负载,所以一般只需要改变放电负载4上所通过的放电电流,即可对放电负载4上的功耗进行调整,从而调整电池3在自放电时的放电速度。此外,也可以通过对放电负载4所消耗的功率进行控制,以调整电池3的放电速度,此处不加以限制。
其中,当通过改变放电负载4上通过的放电电流来调整电池3的放电速度时,控制单元2具体可以包括电流控制电路,电流控制电路的输入端与温度传感单元1连接,电流控制电路的输出端和电池3的放电回路连接,以根据流经温度传感单元1的电流控制放电负载4中流过的电流。
而作为一种可选的实施方式,电流控制电路可包括三极管21,三极管21的基极b和温度传感单元1连接,三极管21的集电极c与放电负载4的第一端串联,放电负载4的第二端和电池3的正极连接,电池3的负极与三极管21的发射极e连接。由于三极管21的基极b和集电极c之间的电流大小具有确定的放大比率,因而其中一端的电流的大小产生变化时,就会迫使另一端的电流大小产生相应的变化。此时,即可通过三极管21的基极b和集电极c之间的这种确定的比率关系,在温度传感单元1中的电流与电池3的放电电路中放电电流之间建立起对应的联系,从而使得温 度传感单元1中电流在电池3温度变化的影响下产生改变时,也会同时影响到放电电路中放电电流的大小。
由于温度传感单元1在进行温度检测时,其产生的检测电流一般较小,因此可通过将温度传感单元1接入三极管21的基极b,而放电负载4连接在三极管21的集电极c的连接方式,使得可以通过温度传感单元1的较小的电流改变,实现对放电回路中较大的放电电流的大小控制。
此时,温度传感单元1可以为多种不同类型。例如,作为其中一种较为简单的实现结构,温度传感单元1可包括热敏电阻,热敏电阻与电池3具有热传导,且热敏电阻与三极管21的基极b连接。由于热敏电阻在受热时,其自身阻值会产生改变,所以会影响到接入三极管21基极b的电流大小,并通过三极管21的基极b和集电极c之间的确定的电流比例关系控制位于集电极c一侧的放电电路中放电电流的大小。
为了使电池3的温度升高时,降低电池3的放电速度,而电池3的温度降低时,保持电池3具有较快的放电速度,应使温度传感单元1的电流大小随电池3的温度的升高与降低而呈反向变化。具体的,当温度传感单元1包括热敏电阻时,热敏电阻为正温度系数(Positive Temperature Coefficient,简称PTC)热敏电阻。PTC热敏电阻的阻值可在温度升高时随之变大,而温度降低时变小。这样,当电流放大电路输入端的电压一定时,根据电阻和电流的反比关系,会由于PTC热敏电阻的阻值的上升而使得三极管21的基极b上的电流反向减小,并导致放电回路中的放电电流减小,此时电池3的放电速度得以减慢。而当电池3的温度降低时,PTC热敏电阻的阻值随之减小,此时,三极管21基极b上和集电极c上的电流均增大,使电池3的放电速度加快,从而保证电池3在自放电时的放电效率。
图3是本发明实施例二提供的电池放电控制系统中温度传感单元的一种结构示意图。如图2和图3所示,作为温度传感单元1的另一种形式,温度传感单元1可包括温度传感模块11和与温度传感模块11电连接,用以进行脉冲宽度调制的PWM模块12。其中,温度传感模块11用于检测电池的温度,而PWM模块12的输出端与三极管21的基极b连接,PWM模块12用于发出占空比随电池的温度而变化的电流信号。
由于PWM模块12发出的电流信号并不是连续的电流,而是以脉冲波的形式存在,因此可以通过控制相同周期内脉冲波的个数或者脉冲波的持续时间,即控制脉冲波的占空比,以输出等效的大小不一的电流。具体的,当PWM模块12发出脉冲波时,可以调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,即使通过的电流大小相同,但由于导通时间的长短发生变化,因而等效的电流大小也会随之产生变化。
此时,当温度传感模块11所检测到的电池温度不同时,PWM模块12即可由此输出占空比不同的脉冲波而控制电路通断时间变化,而等效的输出大小不同的电流信号。如果电流信号中占空比较大,则说明相同周期内脉冲波个数较多,此等效的电流较大,而电流信号中占空比较小时,则说明相同周期内脉冲波的个数较小,因而等效的电流较小。由此,即可通过PWM模块12的调制,输出大小不同的等效电流,并经过电流放大电路中三极管21的同步放大作用后,用于控制电池3的自放电速度。
由于温度传感单元1和控制单元2可以根据电池3温度的改变情况,通过改变放电负载4上所通过的放电电流的大小或者放电电流的通电时间,从而调整电池3的放电速度,因而可以根据电池3的温度而控制电池3在自放电时的快慢程度,避免电池3因放电速度过快而造成温度过高,产生安全隐患,同时可以尽可能地保证电池3具有较高的自放电速度和自放电效率。
本实施例中,电池放电控制系统具体包括温度传感单元和控制单元,其中,控制单元和温度传感单元电性连接;温度传感单元用于检测电池的温度;控制单元与电池的放电回路连接,用于根据温度传感单元所检测到的电池的温度调整电池在自放电时的放电速度。这样可以根据电池的温度对电池在自放电时的放电速度进行调整,避免电池在自放电时因温度过高而造成安全隐患,且能使电池自放电时效率较高。
此外,用于控制电池在自放电时放电速度的电流控制电路,还可以为其它不同的结构和形式。图4是本发明实施例三提供的另一种电池放电控制系统的结构示意图。如图4所示,本实施例中电池放电控制系统的整体结构均与实施例二中的电池放电控制系统类似,不同之处在于,本实施例 的电池放电控制系统中,电流控制电路包括MOS管22,MOS管22的栅极G和温度传感单元1连接,MOS管22的漏极D和放电负载4的第一端连接,放电负载4的第二端和电池3的正极连接,电池3的负极和MOS管22的源极S连接。
具体的,MOS管22的栅极G和漏极D之间同样存在确定的放大比率,因而可以通过栅极G和漏极D之间这种确定的比率关系,在温度传感单元1中的电压或电流与放电电路中的放电电流之间建立起对应的联系。MOS管和三极管的不同之处在于,MOS管在工作时几乎不需要电流驱动,而只要电压发生变化就能控制漏极、源极的电流变化。因此,电流控制电路的输入端并不需要保证有电流通过,而只要温度传感单元1能够为栅极G提供电压,即可根据电压的改变而控制放电电路中的放电电流大小,因而实现了通过电压来对放电电流的大小进行控制。
同样的,用于检测电池温度的温度传感单元1也可以具有多种不同的结构及形式。例如,温度传感单元1可以包括热敏电阻,热敏电阻与电池3具有热传导,且热敏电阻与MOS管22的栅极G连接。热敏电阻的具体结构和工作原理均和前述实施例二中的类似,此处不再赘述。
进一步的,当温度传感单元1包括热敏电阻时,热敏电阻可以为正温度系数(Positive Temperature Coefficient,简称PTC)热敏电阻。PTC热敏电阻的阻值可在温度升高时随之变大,而温度降低时变小。这样,可以通过设置分压电阻,使得PTC热敏电阻的阻值变大时,在MOS管22栅极G上的电压反向减小,并导致放电回路中的放电电流减小,此时电池3的放电速度得以减慢。而当电池3的温度降低时,PTC热敏电阻的阻值随之减小,此时,通过分压电阻等手段,可以让MOS管22栅极G上的电压反向增大,且位于MOS管22漏极D一端的放电回路中的电流增大,使电池3的放电速度加快,从而保证电池3在自放电时的放电效率。
而相应的,当电流放大电路中包括有MOS管22时,温度传感单元1也可以为其它形式和结构。例如,温度传感单元1的结构可以和图4中的类似,即包括温度传感模块11和与温度传感模块11电连接的脉冲宽度调制PWM模块12,温度传感模块11用于检测电池3的温度,PWM模块12的输出端与MOS管22的栅极G连接,PWM模块12用于发出占空比随电池3 的温度而变化的电压信号。其中,通过PWM模块12可通过控制脉冲波的占空比而控制MOS管22栅极G一侧的电压大小,并经过电流放大电路的同步放大作用后,调整放电电路中的电流大小,从而改变电池3的放电速度。其中,PWM模块12的工作方式以及电压大小的控制原理和前述实施例二中的类似,此处不再赘述。
本实施例中,电池放电控制系统具体包括温度传感单元和控制单元,其中,控制单元和温度传感单元电性连接;温度传感单元用于检测电池的温度;控制单元与电池的放电回路连接,用于根据温度传感单元所检测到的电池的温度调整电池在自放电时的放电速度;且电流控制电路包括MOS管,MOS管的栅极和温度传感单元连接,MOS管的漏极和放电负载的第一端连接,放电负载的第二端和电池的正极连接,电池的负极和MOS管的源极连接。这样能够通过通断电压实现对放电电流大小的控制,从而根据电池的温度对电池在自放电时的放电速度进行调整,避免电池在自放电时因温度过高而造成安全隐患,且能使电池放电时效率较高。
图5是本发明实施例四提供的一种智能电池的结构示意图。如图5所示,本实施例的智能电池200包括用于存储电能的一个或多个储能单元101和电池放电控制系统100,电池放电控制系统100与储能单元101电连接,用于控制储能单元101的放电速度。其中,电池放电控制系统100可以执行实施例一中的电池放电控制方法,从而根据智能电池200中储能单元101的温度而控制储能单元101的放电速度。电池放电控制系统100的具体结构、组成、功能和工作原理均已在前述实施例二和三中进行了详细说明,此处不再赘述。
具体的,智能电池200中具有一个或多个储能单元101,储能单元101通常可以为电芯,或者其它可以用于存储电能的结构。当储能单元101为多个时,多个储能单元可以通过堆叠的方式组装并连接在一起。而电池放电控制系统100可以检测储能单元101的温度,并根据检测到的温度控制储能单元101的放电速度,避免储能单元101的温度过高或过低,从而有效防止智能电池200因储能单元101的热量积聚过多而产生安全隐患。
本领域技术人员所知的是,电池本身就是一种储能单元,因此需要说 明的是,本实施例中的储能单元,和前述实施例中的电池一般具有相同的定义和范畴,而本实施例中的智能电池,则同时包括有储能电池和电池放电控制系统,以形成具有一定智能程度和自动控制能力的储能系统。
本实施例中,智能电池包括用于存储电能的一个或多个储能单元和电池放电控制系统,电池放电控制系统与储能单元电连接,用于控制储能单元的放电速度;其中,电池放电控制系统具体包括温度传感单元和控制单元,其中,控制单元和温度传感单元电性连接;温度传感单元用于检测电池的温度;控制单元与电池的放电回路连接,用于根据温度传感单元所检测到的电池的温度调整电池在自放电时的放电速度。这样可以根据智能电池中储能单元的温度对智能电池在自放电时的放电速度进行调整,避免智能电池中的储能单元在自放电时因温度过高而造成安全隐患,且能使智能电池在自放电时效率较高。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (34)

  1. 一种电池放电控制方法,其特征在于,包括:
    在电池进行自放电时,检测所述电池的温度;
    根据所述电池的温度,调整所述电池进行自放电时的放电速度。
  2. 根据权利要求1所述的电池放电控制方法,其特征在于,所述根据所述电池的温度调整所述电池进行自放电时的放电速度,具体包括:
    根据所述电池的温度与预设温度之间的大小关系,调整所述电池的放电速度。
  3. 根据权利要求2所述的电池放电控制方法,其特征在于,所述根据所述电池的温度与预设温度之间的大小关系调整所述电池进行自放电时的放电速度,具体包括:
    当所述电池的温度大于或等于所述预设温度时,降低所述放电速度;或者,
    当所述电池的温度小于所述预设温度时,提高所述放电速度。
  4. 根据权利要求1-3任一项所述的电池放电控制方法,其特征在于,所述调整所述电池进行自放电时的放电速度,具体包括:
    改变放电负载上所通过的放电电流的大小或者所述放电电流的通电时间,其中,所述放电负载和所述电池电连接并共同构成回路。
  5. 根据权利要求4所述的电池放电控制方法,其特征在于,所述改变放电负载上所通过的放电电流的大小或者所述放电电流的通电时间,具体包括:
    通过脉冲宽度调制PWM改变所述放电电流的时间。
  6. 根据权利要求4所述的电池放电控制方法,其特征在于,所述改变放电负载上所通过的放电电流的大小或者所述放电电流的通电时间,具体包括:
    通过调整放大电路中输入电流的大小,改变作为所述放大电路中输出电流的所述放电电流的大小,其中,所述放大电路的输入端为控制端,所述放电负载和所述电池所构成的回路位于所述放大电路的输出端。
  7. 根据权利要求6所述的电池放电控制方法,其特征在于,所述放大电路为三极管放大电路,
    所述通过调整放大电路中输入电流的大小,改变作为所述放大电路中输出电流的所述放电电流的大小,具体包括:
    通过调整基极电流的大小,改变作为集电极电流的所述放电电流的大小。
  8. 根据权利要求6所述的电池放电控制方法,其特征在于,所述放大电路为MOS管放大电路,
    所述通过调整放大电路中输入电流的大小,改变作为所述放大电路中输出电流的所述放电电流的大小,具体包括:
    通过调整所述MOS管的栅极电压的大小,改变所述MOS管漏极上的所述放电电流的大小。
  9. 根据权利要求3所述的电池放电控制方法,其特征在于,所述预设温度为所述电池的安全工作温度。
  10. 根据权利要求9所述的电池放电控制方法,其特征在于,所述电池预设温度为35℃至60℃。
  11. 根据权利要求1-3任一项所述的电池放电控制方法,其特征在于,所述调整所述电池进行自放电时的放电速度,具体包括:
    通过调节放电负载的放电参数,调整所述放电速度。
  12. 根据权利要求11所述的电池放电控制方法,其特征在于,所述放电负载的放电参数包括如下至少一种:放电时间、放电频率、放电电路的构成、放电电阻的大小。
  13. 一种电池放电控制系统,其特征在于,包括:温度传感单元和控制单元,所述控制单元和所述温度传感单元电性连接;
    所述温度传感单元用于检测电池的温度;
    所述控制单元与所述电池的放电回路连接,用于根据所述温度传感单元所检测到的所述电池的温度调整所述电池在自放电时的放电速度。
  14. 根据权利要求13所述的电池放电控制系统,其特征在于,所述电池的放电回路包括电池和与串联在所述电池的正极和所述电池的负极之间的放电负载。
  15. 根据权利要求14所述的电池放电控制系统,其特征在于,所述控制单元包括电流控制电路,所述电流控制电路的输入端与所述温度传感 单元连接,所述电流控制电路的输出端和所述电池的放电回路连接,以根据流经所述温度传感单元的电流控制所述放电负载中流过的电流。
  16. 根据权利要求15所述的电池放电控制系统,其特征在于,所述电流控制电路包括三极管,所述三极管的基极和所述温度传感单元连接,所述三极管的集电极与所述放电负载的第一端串联,所述放电负载的第二端和所述电池的正极连接,所述电池的负极与所述三极管的发射极连接。
  17. 根据权利要求16所述的电池放电控制系统,其特征在于,所述温度传感单元包括热敏电阻,所述热敏电阻与所述电池具有热传导,且所述热敏电阻与所述三极管的基极连接。
  18. 根据权利要求17所述的电池放电控制系统,其特征在于,所述热敏电阻为正温度系数热敏电阻PTC。
  19. 根据权利要求16所述的电池放电控制系统,其特征在于,所述温度传感单元包括温度传感模块和与所述温度传感模块电连接的脉冲宽度调制PWM模块,所述温度传感模块用于检测所述电池的温度,所述PWM模块的输出端与所述三极管的基极连接,所述PWM模块用于发出占空比随所述电池的温度而变化的电流信号。
  20. 根据权利要求15所述的电池放电控制系统,其特征在于,所述电流控制电路包括MOS管,所述MOS管的栅极和所述温度传感单元连接,所述MOS管的漏极和所述放电负载的第一端连接,所述放电负载的第二端和所述电池的正极连接,所述电池的负极和所述MOS管的源极连接。
  21. 根据权利要求20所述的电池放电控制系统,其特征在于,所述温度传感单元包括热敏电阻,所述热敏电阻与所述电池具有热传导,且所述热敏电阻与所述MOS管的栅极连接。
  22. 根据权利要求21所述的电池放电控制系统,其特征在于,所述热敏电阻为正温度系数热敏电阻PTC。
  23. 根据权利要求20所述的电池放电控制系统,其特征在于,所述温度传感单元包括温度传感模块和与所述温度传感模块电连接的脉冲宽度调制PWM模块,所述温度传感模块用于检测所述电池的温度,所述PWM模块的输出端与所述MOS管的栅极连接,所述PWM模块用于发出占空比随所述电池的温度而变化的电压信号。
  24. 一种智能电池,其特征在于,包括用于存储电能的一个或多个储能单元和电池放电控制系统,
    其中,所述电池放电控制系统与所述储能单元电连接,用于控制所述储能单元的放电速度;
    所述电池放电控制系统,包括:温度传感单元和控制单元,所述控制单元和所述温度传感单元电性连接;
    所述温度传感单元用于检测所述储能单元的温度;
    所述控制单元与所述储能单元的放电回路连接,用于根据所述温度传感单元所检测到的所述电池的温度调整所述储能单元在自放电时的放电速度。
    所述储能单元的放电回路包括电池和与串联在所述储能单元的正极和所述储能单元的负极之间的放电负载。
  25. 根据权利要求24所述的智能电池,其特征在于,所述控制单元包括电流控制电路,所述电流控制电路的输入端与所述温度传感单元连接,所述电流控制电路的输出端和所述储能单元的放电回路连接,以根据流经所述温度传感单元的电流控制所述放电负载中流过的电流。
  26. 根据权利要求25所述的智能电池,其特征在于,所述电流控制电路包括三极管,所述三极管的基极和所述温度传感单元连接,所述三极管的集电极与所述放电负载的第一端串联,所述放电负载的第二端和所述储能单元的正极连接,所述储能单元的负极与所述三极管的发射极连接。
  27. 根据权利要求26所述的智能电池,其特征在于,所述温度传感单元包括热敏电阻,所述热敏电阻与所述储能单元具有热传导,且所述热敏电阻与所述三极管的基极连接。
  28. 根据权利要求27所述的智能电池,其特征在于,所述热敏电阻为正温度系数热敏电阻PTC。
  29. 根据权利要求26所述的智能电池,其特征在于,所述温度传感单元包括温度传感模块和与所述温度传感模块电连接的脉冲宽度调制PWM模块,所述温度传感模块用于检测所述储能单元的温度,所述PWM模块的输出端与所述三极管的基极连接,所述PWM模块用于发出占空比随所述储能单元的温度而变化的电流信号。
  30. 根据权利要求25所述的智能电池,其特征在于,所述电流控制电路包括MOS管,所述MOS管的栅极和所述温度传感单元连接,所述MOS管的漏极和所述放电负载的第一端连接,所述放电负载的第二端和所述储能单元的正极连接,所述储能单元的负极和所述MOS管的源极连接。
  31. 根据权利要求30所述的智能电池,其特征在于,所述温度传感单元包括热敏电阻,所述热敏电阻与所述储能单元具有热传导,且所述热敏电阻与所述MOS管的栅极连接。
  32. 根据权利要求31所述的智能电池,其特征在于,所述热敏电阻为正温度系数热敏电阻PTC。
  33. 根据权利要求30所述的智能电池,其特征在于,所述温度传感单元包括温度传感模块和与所述温度传感模块电连接的脉冲宽度调制PWM模块,所述温度传感模块用于检测所述储能单元的温度,所述PWM模块的输出端与所述MOS管的栅极连接,所述PWM模块用于发出占空比随所述储能单元的温度而变化的电压信号。
  34. 根据权利要求24-33任一项所述的智能电池,其特征在于,所述储能单元为电芯。
PCT/CN2017/079137 2017-03-31 2017-03-31 电池放电控制方法、电池放电控制系统及智能电池 WO2018176428A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/079137 WO2018176428A1 (zh) 2017-03-31 2017-03-31 电池放电控制方法、电池放电控制系统及智能电池
CN201780018435.0A CN109075582A (zh) 2017-03-31 2017-03-31 电池放电控制方法、电池放电控制系统及智能电池
US16/576,092 US20200014230A1 (en) 2017-03-31 2019-09-19 Battery discharge control method, battery discharge control system, and smart battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079137 WO2018176428A1 (zh) 2017-03-31 2017-03-31 电池放电控制方法、电池放电控制系统及智能电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/576,092 Continuation US20200014230A1 (en) 2017-03-31 2019-09-19 Battery discharge control method, battery discharge control system, and smart battery

Publications (1)

Publication Number Publication Date
WO2018176428A1 true WO2018176428A1 (zh) 2018-10-04

Family

ID=63673977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079137 WO2018176428A1 (zh) 2017-03-31 2017-03-31 电池放电控制方法、电池放电控制系统及智能电池

Country Status (3)

Country Link
US (1) US20200014230A1 (zh)
CN (1) CN109075582A (zh)
WO (1) WO2018176428A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864486B (zh) * 2021-01-13 2022-04-19 陈妹妹 一种废旧锂离子电池的安全放电方法
KR20220114914A (ko) * 2021-02-09 2022-08-17 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
CN113162180B (zh) * 2021-04-29 2024-07-26 深圳拓邦股份有限公司 锂电池工作控制方法、系统及电动设备
US12044739B2 (en) * 2021-05-28 2024-07-23 International Business Machines Corporation Battery state of charge management for storage
WO2023221055A1 (zh) * 2022-05-19 2023-11-23 宁德时代新能源科技股份有限公司 电池的放电方法和放电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433514B1 (en) * 1999-10-04 2002-08-13 Texas Instruments Incorporated Battery protector
CN101917039A (zh) * 2010-08-05 2010-12-15 惠州Tcl移动通信有限公司 防止电池充电时温度过高的方法及电路及一种电池
CN202225179U (zh) * 2010-04-07 2012-05-23 布莱克和戴克公司 电动工具和电动工具系统
CN106549439A (zh) * 2016-10-31 2017-03-29 北京小米移动软件有限公司 一种电池温度测控装置、方法及移动终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69509117D1 (de) * 1994-11-28 1999-05-20 Chartec Lab As VERFAHREN UND VORRICHTUNG ZUR STEUERUNG DER BATTERIETEMPERATUR WaHREND DES AUF-/ENTLADENS
JP2006090848A (ja) * 2004-09-24 2006-04-06 Yazaki Corp バッテリ状態検出装置
KR101093928B1 (ko) * 2009-11-26 2011-12-13 삼성에스디아이 주식회사 배터리 셀의 고온 스웰링을 방지할 수 있는 배터리 팩 및 그 방법
TWI469416B (zh) * 2012-04-03 2015-01-11 Quanta Comp Inc 充電電池模組、電池供電之電子裝置、以及電池充電方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433514B1 (en) * 1999-10-04 2002-08-13 Texas Instruments Incorporated Battery protector
CN202225179U (zh) * 2010-04-07 2012-05-23 布莱克和戴克公司 电动工具和电动工具系统
CN101917039A (zh) * 2010-08-05 2010-12-15 惠州Tcl移动通信有限公司 防止电池充电时温度过高的方法及电路及一种电池
CN106549439A (zh) * 2016-10-31 2017-03-29 北京小米移动软件有限公司 一种电池温度测控装置、方法及移动终端

Also Published As

Publication number Publication date
US20200014230A1 (en) 2020-01-09
CN109075582A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2018176428A1 (zh) 电池放电控制方法、电池放电控制系统及智能电池
WO2014194810A1 (en) Portable device capable of controlling output characteristics of adaptor, and corresponding method
US20070160900A1 (en) Battery, electrical equipment, and a powering method implementing means for short-circuiting the battery
TWI375380B (en) Power system with temperature compensation control
WO2024093118A1 (zh) 功率器件的保护控制方法、装置、变频控制器及存储介质
CN204423290U (zh) 一种系统关机自动散热电路、散热装置及电子设备
TW201724684A (zh) 切換式電源供應器及使用其之電源供應設備
TW200838141A (en) Method for stabling voltage, pulse frequency modulating circuit and power supply using the same
JP2013200966A (ja) 蓄電セル温度調整回路及び当該蓄電セル温度調整回路を備えた蓄電装置
CN105822578B (zh) 一种多模式风扇控制电路、散热装置及电子设备
CN102645948B (zh) 一种可调恒流源
WO2019085408A1 (zh) 磁控管温度调节方法、装置及系统、变频电源及微波设备
CN104754800B (zh) 一种led模组输入浪涌电流的控制装置
CN112327967B (zh) 一种功率器件的温度控制装置、方法和电器设备
CN103490396A (zh) 一种电流限制电路
KR20240009352A (ko) 무화 장치의 가열제어 방법, 장치, 회로, 무화 장치,저장매체 및 컴퓨터 프로그램 제품
CN106603016B (zh) 一种提高线性功放效率的方法
TWI697150B (zh) 陣列式燃料電池系統之控制裝置與方法
CN206790140U (zh) 电池放电控制系统及智能电池
CN203756570U (zh) 基于通道闸产品的电动机功放散热控制电路及散热装置
CN201252646Y (zh) 一种新型的电加热装置
KR20190063998A (ko) 배터리팩의 온도 제어 방법 및 장치
CN104389806B (zh) 一种适用于车辆散热系统的风机智能控制装置
CN211018251U (zh) 过温保护电路、过温关断电路及过温保护装置
CN216792764U (zh) 一种传感器控温电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903247

Country of ref document: EP

Kind code of ref document: A1