KR20220114914A - 배터리 관리 장치 및 방법 - Google Patents
배터리 관리 장치 및 방법 Download PDFInfo
- Publication number
- KR20220114914A KR20220114914A KR1020210018521A KR20210018521A KR20220114914A KR 20220114914 A KR20220114914 A KR 20220114914A KR 1020210018521 A KR1020210018521 A KR 1020210018521A KR 20210018521 A KR20210018521 A KR 20210018521A KR 20220114914 A KR20220114914 A KR 20220114914A
- Authority
- KR
- South Korea
- Prior art keywords
- battery
- discharging
- rate
- voltage
- charging
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000007599 discharging Methods 0.000 claims abstract description 133
- 238000005259 measurement Methods 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims description 10
- 239000007773 negative electrode material Substances 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 5
- 238000007726 management method Methods 0.000 description 32
- 238000010586 diagram Methods 0.000 description 16
- 230000014759 maintenance of location Effects 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000011149 active material Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000006183 anode active material Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0069—Charging or discharging for charge maintenance, battery initiation or rejuvenation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/00714—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
본 발명의 일 실시예에 따른 배터리 관리 장치는 기설정된 충전 C-rate 및 기설정된 방전 C-rate에 따라 배터리가 충전 및 방전되는 과정에서, 충전 전압, 충전 전류, 방전 전압 및 방전 전류를 측정하도록 구성된 측정부; 및 상기 측정부로부터 상기 배터리의 전압 및 전류에 대한 정보를 수신하고, 상기 충전 전압 및 상기 충전 전류에 기반하여 상기 배터리의 전압마다 충전 저항을 산출하며, 상기 방전 전압 및 상기 방전 전류에 기반하여 상기 배터리의 전압마다 방전 저항을 산출하고, 상기 배터리의 전압마다 상기 충전 저항과 상기 방전 저항 간의 저항비를 산출하며, 상기 배터리의 전압마다 산출된 저항비에 기반하여 상기 배터리에 대한 방전 C-rate를 설정하도록 구성된 제어부를 포함할 수 있다.
Description
본 발명은 배터리 관리 장치 및 방법에 관한 것으로서, 보다 상세하게는, 배터리의 성능 효율을 향상시킬 수 있는 배터리 관리 장치 및 방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
또한, 최근에는 배터리의 고용량화 및 고출력화 등의 다양한 목표를 달성하기 위하여, 2종 이상의 물질이 혼합된 음극 활물질에 대해 연구가 진행되고 있다. 다만, 2종 이상의 물질은 서로 충방전 효율과 반응 전압대가 상이하기 때문에, 상대적으로 충방전 효율이 낮은 물질의 빠른 퇴화로 인하여 배터리의 퇴화 이슈가 발생되고 있다. 따라서, 2종 이상의 물질이 혼합된 음극 활물질을 포함하는 배터리에 대하여, 수명을 증대시킬 수 있는 방안 마련이 필요한 실정이다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 방전 C-rate를 조정함으로써, 배터리의 성능 효율 및 수명을 증대시킬 수 있는 배터리 관리 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 관리 장치는 기설정된 충전 C-rate 및 기설정된 방전 C-rate에 따라 배터리가 충전 및 방전되는 과정에서, 충전 전압, 충전 전류, 방전 전압 및 방전 전류를 측정하도록 구성된 측정부; 및 상기 측정부로부터 상기 배터리의 전압 및 전류에 대한 정보를 수신하고, 상기 충전 전압 및 상기 충전 전류에 기반하여 상기 배터리의 전압마다 충전 저항을 산출하며, 상기 방전 전압 및 상기 방전 전류에 기반하여 상기 배터리의 전압마다 방전 저항을 산출하고, 상기 배터리의 전압마다 상기 충전 저항과 상기 방전 저항 간의 저항비를 산출하며, 상기 배터리의 전압마다 산출된 저항비에 기반하여 상기 배터리에 대한 방전 C-rate를 설정하도록 구성된 제어부를 포함할 수 있다.
상기 제어부는, 상기 배터리의 전압마다 상기 방전 저항에 대한 상기 충전 저항의 비율을 각각 계산하여 전압별 저항비를 산출하도록 구성될 수 있다.
상기 제어부는, 상기 배터리의 전압마다 산출된 저항비 중 최대 저항비를 선택하고, 선택된 최대 저항비에 기반하여 상기 방전 C-rate를 조정하도록 구성될 수 있다.
상기 제어부는, 상기 최대 저항비가 기준값 미만인 경우, 상기 방전 C-rate를 상기 기설정된 방전 C-rate로 설정하도록 구성될 수 있다.
상기 제어부는, 상기 최대 저항비가 상기 기준값 이상인 경우, 상기 방전 C-rate를 상기 기설정된 방전 C-rate와 상이하게 변경하도록 구성될 수 있다.
상기 제어부는, 상기 방전 C-rate가 상기 배터리에 대해 상기 기설정된 충전 C-rate보다 크도록 변경하도록 구성될 수 있다.
상기 제어부는, 상기 방전 C-rate를 상기 최대 저항비에 대응되도록 증가시키고, 증가된 방전 C-rate를 상기 배터리에 대한 방전 C-rate로 설정하도록 구성될 수 있다.
상기 제어부는, 상기 방전 C-rate를 상기 최대 저항비 및 상기 배터리에 대응되는 배터리 특성 계수에 기반하여 증가시키도록 구성될 수 있다.
상기 배터리는, 흑연 및 실리콘이 혼합된 복합 음극 활물질을 포함하도록 구성될 수 있다.
상기 측정부는, 상기 배터리가 상기 기설정된 충전 C-rate로 정전류 충전되는 과정에서 상기 충전 전압 및 상기 충전 전류를 측정하고, 상기 배터리가 상기 기설정된 방전 C-rate로 정전류 방전되는 과정에서 상기 방전 전압 및 상기 방전 전류를 측정하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 팩은 본 발명의 일 측면에 따른 배터리 관리 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 관리 방법은 기설정된 충전 C-rate 및 기설정된 방전 C-rate에 따라 배터리가 충전 및 방전되는 과정에서, 충전 전압, 충전 전류, 방전 전압 및 방전 전류를 측정하는 측정 단계; 상기 충전 전압 및 상기 충전 전류에 기반하여 상기 배터리의 전압마다 충전 저항을 산출하는 충전 저항 산출 단계; 상기 방전 전압 및 상기 방전 전류에 기반하여 상기 배터리의 전압마다 방전 저항을 산출하는 방전 저항 산출 단계; 상기 배터리의 전압마다 상기 충전 저항과 상기 방전 저항 간의 저항비를 산출하는 저항비 산출 단계; 및 상기 배터리의 전압마다 산출된 저항비에 기반하여 상기 배터리에 대한 방전 C-rate를 설정하는 방전 C-rate 설정 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면 배터리 관리 장치는 배터리의 방전 C-rate를 조정함으로써, 배터리의 성능 효율을 향상시키고, 배터리의 수명을 증대시킬 수 있는 장점이 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 관리 장치를 포함하는 배터리 팩의 예시적 구성을 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리와 참조 셀의 충전 저항 및 방전 저항을 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따라 방전 C-rate가 설정된 배터리의 충전 저항 및 방전 저항을 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 배터리의 제1 용량 보존율과 제2 용량 보존율을 개략적으로 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 배터리의 제1 쿨롱 효율과 제2 쿨롱 효율을 개략적으로 도시한 도면이다.
도 7은 본 발명의 다른 실시예에 따른 배터리 관리 방법을 개략적으로 도시한 도면이다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 관리 장치를 포함하는 배터리 팩의 예시적 구성을 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리와 참조 셀의 충전 저항 및 방전 저항을 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따라 방전 C-rate가 설정된 배터리의 충전 저항 및 방전 저항을 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 배터리의 제1 용량 보존율과 제2 용량 보존율을 개략적으로 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 배터리의 제1 쿨롱 효율과 제2 쿨롱 효율을 개략적으로 도시한 도면이다.
도 7은 본 발명의 다른 실시예에 따른 배터리 관리 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치(100)를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 관리 장치(100)를 포함하는 배터리 팩(1)의 예시적 구성을 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 측정부(110) 및 제어부(120)를 포함할 수 있다.
측정부(110)는 기설정된 충전 C-rate 및 기설정된 방전 C-rate에 따라 배터리(B)가 충전 및 방전되는 과정에서, 충전 전압, 충전 전류, 방전 전압 및 방전 전류를 측정하도록 구성될 수 있다.
기설정된 충전 C-rate와 기설정된 방전 C-rate는 최초로 미리 설정된 C-rate이거나, 제어부(120)에 의해 이전에 미리 설정된 C-rate일 수 있다. 예컨대, 기설정된 충전 C-rate는 0.03C로 미리 설정되고, 기설정된 방전 C-rate는 0.03C로 미리 설정될 수 있다.
여기서, 배터리(B)는 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 리튬 이온 전지 또는 리튬 폴리머 전지가 배터리(B)로 간주될 수 있다.
바람직하게, 배터리(B)는 SOC(State of charge) 하단 구간에서 용량이 발현되며, 기본 활물질 대비 저항과 전압 간의 저항 히스테리시스(Hysteresis)가 크고 충방전 효율이 낮은 추가 활물질을 더 포함할 수 있다. 즉, 배터리(B)는 기본 활물질과 추가 활물질이 혼합된 복합 음극 활물질을 포함할 수 있다. 예컨대, 상기 배터리(B)는, 흑연 및 실리콘이 혼합된 복합 음극 활물질을 포함하도록 구성될 수 있다. 여기서, 흑연은 기본 활물질이고, 실리콘은 추가 활물질일 수 있다.
상기 측정부(110)는, 상기 배터리(B)가 상기 기설정된 충전 C-rate로 정전류 충전되는 과정에서 상기 충전 전압 및 상기 충전 전류를 측정하고, 상기 배터리(B)가 상기 기설정된 방전 C-rate로 정전류 방전되는 과정에서 상기 방전 전압 및 상기 방전 전류를 측정하도록 구성될 수 있다.
구체적으로, 도 2의 실시예에서, 측정부(110)는 제1 센싱 라인(SL1), 제2 센싱 라인(SL2) 및 제3 센싱 라인(SL3)과 연결될 수 있다. 측정부(110)는 제1 센싱 라인(SL1)을 통해 배터리(B)의 양극 단자와 연결되고, 제2 센싱 라인(SL2)을 통해 배터리(B)의 음극 단자와 연결될 수 있다. 그리고, 측정부(110)는 제1 센싱 라인(SL1)을 통해 측정되는 전압과 제2 센싱 라인(SL2)을 통해 측정되는 전압 간의 차이를 계산하여, 배터리(B)의 전압을 측정할 수 있다. 배터리(B)가 충전 C-rate로 충전되는 과정에서, 측정부(110)는 제1 센싱 라인(SL1) 및 제2 센싱 라인(SL2)을 통해 배터리(B)의 충전 전압을 측정할 수 있다. 반대로, 배터리(B)가 방전 C-rate로 방전되는 과정에서, 측정부(110)는 제1 센싱 라인(SL1) 및 제2 센싱 라인(SL2)을 통해 배터리(B)의 방전 전압을 측정할 수 있다.
또한, 측정부(110)는 제3 센싱 라인(SL3)을 통해 전류 측정 유닛과 연결되어 배터리(B)의 충전 전류 및 방전 전류를 측정할 수 있다. 여기서, 배터리(B)는 충전 C-rate로 정전류 충전되거나 방전 C-rate로 정전류 방전될 수 있다.
예컨대, 전류 측정 유닛은 배터리(B)의 충방전 경로에 구비되어 배터리(B)의 충전 전류 및 방전 전류를 측정할 수 있는 전류 센서 또는 션트 저항일 수 있다. 여기서, 배터리(B)의 충방전 경로란 배터리(B)로 충전 전류가 인가되거나 배터리(B)로부터 방전 전류가 출력되는 대전류 경로일 수 있다. 도 2의 실시예에서, 전류 측정 유닛은 배터리(B)의 충방전 경로 중 배터리(B)의 음극 단자와 배터리 팩(1)의 음극 단자(P-) 사이에 연결될 수 있다. 다만, 전류 측정 유닛은 배터리(B)의 충방전 경로 상이라면, 배터리(B)의 양극 단자와 배터리 팩(1)의 양극 단자(P+) 사이에도 연결될 수 있음을 유의한다.
제어부(120)는 상기 측정부(110)로부터 상기 배터리(B)의 전압 및 전류에 대한 정보를 수신하도록 구성될 수 있다.
예컨대, 도 2의 실시예에서, 제어부(120)와 측정부(110)는 통신 가능하도록 연결될 수 있다. 측정부(110)는 측정한 충전 전압, 충전 전류, 방전 전압 및 방전 전류에 대한 정보를 제어부(120)로 출력하고, 제어부(120)는 측정부(110)로부터 배터리(B)의 전압 및 전류에 대한 정보를 수신할 수 있다.
제어부(120)는 상기 충전 전압 및 상기 충전 전류에 기반하여 상기 배터리(B)의 전압마다 충전 저항을 산출하도록 구성될 수 있다.
구체적으로, 제어부(120)는 오옴의 법칙(Ohm's law)을 이용하여, 충전 전류에 대한 충전 전압의 비율을 계산함으로써 충전 전압마다 충전 저항을 산출할 수 있다. 예컨대, 배터리(B)는 충전 C-rate로 정전류 충전되기 때문에, 제어부(120)는 전류에 대한 저항의 변화율을 계산함으로써, 충전 전압마다 충전 저항을 산출할 수 있다.
제어부(120)는 상기 방전 전압 및 상기 방전 전류에 기반하여 상기 배터리(B)의 전압마다 방전 저항을 산출하도록 구성될 수 있다.
구체적으로, 제어부(120)는 충전 저항을 산출하는 방식과 동일하게, 오옴의 법칙을 이용하여 방전 전류에 대한 방전 전류의 비율을 계산함으로써, 방전 전압마다 방전 저항을 산출할 수 있다.
도 3은 본 발명의 일 실시예에 따른 배터리(B)와 참조 셀의 충전 저항 및 방전 저항을 개략적으로 도시한 도면이다.
도 3의 실시예에서, 제1 충전 저항(BC1)은 제어부(120)에 의해 산출된 배터리(B)의 전압별 충전 저항이고, 제1 방전 저항(BD1)은 제어부(120)에 의해 산출된 배터리(B)의 전압별 방전 저항일 수 있다.
또한, 도 3을 참조하면, 참조 셀은 배터리(B)와 달리 1종의 음극 활물질을 포함한 셀일 수 있다. 예컨대, 참조 셀은 흑연을 음극 활물질로 포함하는 셀일 수 있다. 참조 셀의 충전 저항(RC) 및 방전 저항(RD)과 배터리(B)의 제1 충전 저항(BC1) 및 제1 방전 저항(BD1)을 비교하면, 배터리(B)의 저항 히스테리시스가 참조 셀의 저항 히스테리시스보다 큰 것을 알 수 있다. 이는, 배터리(B)에 서로 다른 음극 활물질(예컨대, 흑연 및 실리콘)이 포함되어있기 때문일 수 있다. 배터리(B)에 포함된 흑연 및 실리콘은 용량이 발현되는 SOC 구간이 상이하기 때문에, 실리콘의 용량이 발현되는 저전압 구간(SOC 하단 구간)에서 배터리(B)의 저항 히스테리시스는 참조 셀의 저항 히스테리시스보다 클 수 있다.
제어부(120)는 상기 배터리(B)의 전압마다 상기 충전 저항과 상기 방전 저항 간의 저항비를 산출하도록 구성될 수 있다.
구체적으로, 제어부(120)는 전압마다 방전 저항에 대한 충전 저항의 비율을 계산하여, 전압별 저항비를 산출할 수 있다. 예컨대, 제어부(120)는 각각의 전압에서 "충전 저항÷방전 저항"을 계산하여, 각각의 전압에 대한 저항비를 산출할 수 있다.
예컨대, 도 3의 실시예에서, 3.3V에서 배터리(B)의 방전 저항은 RB2이고, 충전 저항은 RB1일 수 있다. 제어부(120)는 "RB1÷RB2"를 계산하여, 3.3V에 대한 저항비를 산출할 수 있다.
한편, 도 3의 실시예에서, 3.3V에서의 참조 셀의 저항비는 "RC1÷RC2"일 수 있다. 즉, 참조 셀은 배터리(B)에 비해 저항 히스테리시스가 작기 때문에, 동일한 전압(3.3V)에 대한 참조 셀의 저항비는 배터리(B)의 저항비보다 작을 수 있다.
제어부(120)는 상기 배터리(B)의 전압마다 산출된 저항비에 기반하여 상기 배터리(B)에 대한 방전 C-rate를 설정하도록 구성될 수 있다.
구체적으로, 제어부(120)는 배터리(B)에 대해 기설정된 방전 C-rate를 산출된 저항비에 기반하여 변경 설정할 수 있다. 바람직하게, 제어부(120)는 방전 C-rate를 산출된 저항비에 기반하여 증가시킬 수 있다. 이 경우, 증가된 방전 C-rate에 의해 배터리(B)가 방전되면, 양극 과전압의 누적으로 인하여 방전 후반부(저전압 구간, SOC 하단 구간)의 양극 전위가 감소될 수 있다. 즉, 실리콘의 용량이 발현되는 구간에서 양극 전위가 감소될 수 있다. 또한, 방전 후반부의 양극 전위가 감소됨에 따라 배터리(B)의 방전 저항이 증가되기 때문에, 배터리(B)의 저항 히스테리시스가 감소될 수 있다. 즉, 제어부(120)에 의해 증가된 방전 C-rate에 의해, 배터리(B)의 저항 히스테리시스가 감소될 수 있다.
도 4는 본 발명의 일 실시예에 따라 방전 C-rate가 설정된 배터리(B)의 충전 저항 및 방전 저항을 개략적으로 도시한 도면이다.
도 4의 실시예에서, 제2 충전 저항(BC2)은 방전 C-rate가 변경 설정된 배터리(B)의 전압별 충전 저항이고, 제2 방전 저항(BD2)은 방전 C-rate가 변경 설정된 배터리(B)의 전압별 방전 저항일 수 있다. 제1 충전 저항(BC1)은 도 3의 제1 충전 저항(BC1)과 동일하고, 제1 방전 저항(BD1)은 도 3의 제1 방전 저항(BD1)과 동일하다. 즉, 제1 충전 저항(BC1) 및 제1 방전 저항(BD1)은 방전 C-rate가 변경 설정되기 전의 배터리(B)에 대한 저항 프로파일일 수 있다.
도 4를 참조하면, 저항비에 따라 방전 C-rate가 설정된 경우, 방전 C-rate가 기설정된 경우에 비해 배터리(B)의 저항 히스테리시스가 감소됨을 알 수 있다. 예컨대, 배터리(B)의 방전 C-rate가 변경되기 전, 3.3V에서 배터리(B)의 저항비가 "RB1÷RB2"일 수 있다. 반면, 배터리(B)의 방전 C-rate가 변경된 후, 3.3V에서 배터리(B)의 저항비는 "RB3÷RB4"일 수 있다. 제어부(120)에 의해 방전 C-rate가 설정된 후에는 배터리(B)에 대한 저항 히스테리시스가 현저하게 감소됨을 확인할 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 2종 이상의 활물질이 혼합된 복합 음극 활물질을 포함하는 배터리(B)에 대하여, 방전 C-rate를 적절하게 설정함으로써 배터리(B)의 저항 히스테리시스를 감소시킬 수 있는 장점이 있다.
따라서, 배터리 관리 장치(100)에 의해 설정된 방전 C-rate는, 배터리(B)가 운용되는 과정에서 이용되는 방전 C-rate로 설정될 수 있다. 즉, 배터리(B)에 대하여 최적의 방전 C-rate가 설정되기 때문에, 배터리(B)의 성능 효율이 향상될 수 있다.
한편, 배터리 관리 장치(100)에 구비된 제어부(120)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 상기 제어부(120)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 제어부(120)에 의해 실행될 수 있다. 상기 메모리는 제어부(120) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 제어부(120)와 연결될 수 있다.
또한, 배터리 관리 장치(100)는 저장부(130)를 더 포함할 수 있다. 저장부(130)는 배터리 관리 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(130)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(130)는 제어부(120)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
예컨대, 저장부(130)는 측정부(110)에 의해 측정된 배터리(B)의 충전 전류, 충전 전압, 방전 전류 및 방전 전압을 저장할 수 있다. 또한, 저장부(130)는 배터리(B)에 대해 기설정된 충전 C-rate 및 기설정된 방전 C-rate를 저장할 수 있다.
이하에서는, 배터리(B)의 저항 히스테리시스와 성능 효율에 대해 설명한다.
도 5는 본 발명의 일 실시예에 따른 배터리(B)의 제1 용량 보존율(CR1)과 제2 용량 보존율(CR2)을 개략적으로 도시한 도면이다.
구체적으로, 도 5의 실시예는, 방전 C-rate가 변경 설정되기 전의 배터리(B)의 제1 용량 보존율(CR1)과 방전 C-rate가 변경 설정된 후의 배터리(B)의 제2 용량 보존율(CR2)을 도시한 도면이다. 여기서, 용량 보존율이란, 초기 사이클에서의 용량에 대한 현재 사이클에서의 용량의 비율일 수 있다. 즉, 용량 보존율은 BOL(Beginning of life) 상태의 최대 용량과 현재의 최대 용량 간의 비율일 수 있다. 일반적으로, 배터리(B)는 사이클이 증가될수록 퇴화되기 때문에, 사이클이 증가됨에 다라 용량 보존율이 감소될 수 있다.
도 5를 참조하면, 제0 사이클 내지 제200 사이클까지는 배터리(B)의 제1 용량 보존율(CR1)과 제2 용량 보존율(CR2)이 거의 유사할 수 있다. 다만, 제200 사이클부터, 배터리(B)의 제1 용량 보존율(CR1)은 제2 용량 보존율(CR2)에 비해 급격하게 감소될 수 있다. 이는, 배터리(B)에 대한 방전 C-rate가 변경 설정되어 배터리(B)의 저항 히스테리시스가 감소되었기 때문에, 배터리(B)의 제2 용량 보존율(CR2)이 일정하게 유지될 수 있는 것이다. 따라서, 제어부(120)는 배터리(B)에 대한 방전 C-rate를 변경 설정함으로써, 배터리(B)의 성능 효율을 향상시킬 수 있다.
도 6은 본 발명의 일 실시예에 따른 배터리(B)의 제1 쿨롱 효율(CE1)과 제2 쿨롱 효율(CE2)을 개략적으로 도시한 도면이다.
구체적으로, 도 6의 실시예는, 방전 C-rate가 변경 설정되기 전의 배터리(B)의 제1 쿨롱 효율(CE1)과 방전 C-rate가 변경 설정된 후의 배터리(B)의 제2 쿨롱 효율(CE2)을 도시한 도면이다. 여기서, 쿨롱 효율이란 직전 사이클에서의 용량에 대한 현재 사이클에서의 용량의 비율을 의미한다.
도 6을 참조하면, 제0 사이클 내지 제200 사이클까지는 배터리(B)의 제1 쿨롱 효율(CE1)과 제2 쿨롱 효율(CE2)이 거의 유사한 개형을 띨 수 있다. 예컨대, 제0 사이클 내지 제140 사이클까지 쿨롱 효율이 증가되고, 제140 사이클부터 쿨롱 효율이 점차 감소될 수 있다.
다만, 제200 사이클부터, 배터리(B)의 제1 쿨롱 효율(CE1)은 제2 쿨롱 효율(CE2)에 비해 급격하게 감소될 수 있다. 이는, 배터리(B)에 대한 방전 C-rate가 변경 설정되어 배터리(B)의 저항 히스테리시스가 감소되었기 때문에, 배터리(B)의 제2 쿨롱 효율(CE2)이 일정하게 유지될 수 있는 것이다. 따라서, 제어부(120)는 배터리(B)에 대한 방전 C-rate를 변경 설정함으로써, 배터리(B)의 성능 효율을 향상시킬 수 있다.
이하에서는, 제어부(120)가 산출한 저항비에 기반하여 배터리(B)에 대한 방전 C-rate를 설정하는 구체적인 실시예에 대해 설명한다.
상기 제어부(120)는, 상기 배터리(B)의 전압마다 상기 방전 저항에 대한 상기 충전 저항의 비율을 각각 계산하여 전압별 저항비를 산출하도록 구성될 수 있다.
도 3의 실시예에서, 제어부(120)는 각각의 전압마다 제1 방전 저항(BD1)에 대한 제1 충전 저항(BC1)의 비율을 계산하여, 전압별 저항비를 산출할 수 있다. 예컨대, 제어부(120)는 "RB1÷RB2"를 계산하여, 3.3V에 대한 저항비를 산출할 수 있다.
상기 제어부(120)는, 상기 배터리(B)의 전압마다 산출된 저항비 중 최대 저항비를 선택하도록 구성될 수 있다.
도 3의 실시예에서, 제어부(120)는 전압마다 저항비를 산출한 후, 산출된 저항비 중 최대값을 갖는 최대 저항비를 선택할 수 있다.
그리고, 제어부(120)는 선택된 최대 저항비에 기반하여 상기 방전 C-rate를 조정하도록 구성될 수 있다.
구체적으로, 제어부(120)는, 배터리(B)의 저항 히스테리시스의 최대값(최대 저항비)이 기준값 이상인 경우, 배터리(B)의 방전 C-rate를 변경할 수 있다. 즉, 제어부(120)는 최대 저항비가 기준값 미만인 경우에는 배터리(B)의 방전 C-rate를 기설정된 방전 C-rate로 유지하고, 최대 저항비가 기준값 이상인 경우에 한하여 배터리(B)의 방전 C-rate를 변경 설정할 수 있다.
예컨대, 상기 최대 저항비가 기준값 미만인 경우, 제어부(120)는 상기 방전 C-rate를 상기 기설정된 방전 C-rate로 설정하도록 구성될 수 있다. 반대로, 상기 최대 저항비가 상기 기준값 이상인 경우, 제어부(120)는 상기 방전 C-rate를 상기 기설정된 방전 C-rate와 상이하게 변경하도록 구성될 수 있다.
바람직하게, 상기 제어부(120)는, 상기 방전 C-rate를 상기 최대 저항비에 대응되도록 증가시키고, 증가된 방전 C-rate를 상기 배터리(B)에 대한 방전 C-rate로 설정하도록 구성될 수 있다.
여기서, 상기 제어부(120)는, 상기 방전 C-rate가 상기 배터리(B)에 대해 상기 기설정된 충전 C-rate보다 크도록 변경하도록 구성될 수 있다.
앞서 설명한 바와 같이, 방전 C-rate가 충전 C-rate보다 증가되면, 양극 과전압의 누적으로 인하여, 배터리(B)에 포함된 실리콘의 용량이 발현되는 구간에서 양극 전위가 감소될 수 있다. 따라서, 충전 C-rate보다 증가된 방전 C-rate에 의해 배터리(B)가 방전됨으로써, 배터리(B)의 저항 히스테리시스가 감소될 수 있다.
구체적으로, 상기 제어부(120)는, 상기 방전 C-rate를 상기 최대 저항비 및 상기 배터리(B)에 대응되는 배터리(B) 특성 계수에 기반하여 증가시키도록 구성될 수 있다. 예컨대, 제어부(120)는 아래의 수학식에 따라 방전 C-rate를 설정할 수 있다.
[수학식]
DCm = DCn×Max×α
여기서, DCm은 수학식에 따라 설정된 방전 C-rate이고, DCn은 기설정된 방전 C-rate이다. 또한, Max는 최대 저항비이고, α는 배터리(B) 특성 계수이다.
예컨대, 배터리(B) 특성 계수(α)는, 배터리(B)의 설계 사양에 기반하여 설정될 수 있다. 구체적인 예로, 배터리(B) 특성 계수(α)는 배터리(B)의 양극 용량 로딩, 도전재 함량, 양극재 종류, 음극재 종류 및 전해액 염의 몰수 등에 따라 설정 가능한 변수일 수 있다.
예컨대, 양극 용량 로딩이 5mA/cm2인 배터리(B)의 경우 배터리(B) 특성 계수(α)가 1 미만의 수로 설정될 수 있다.
만약, 상기 수학식에 따라 설정된 방전 C-rate(DCm)이 충전 C-rate 이하일 경우, 배터리(B) 특성 계수(α)가 조정될 수 있다. 그리고, 산출되는 방전 C-rate가 충전 C-rate보다 클 수 있도록, 제어부(120)는 조정된 배터리(B) 특성 계수(α)에 기반하여 방전 C-rate를 재산출할 수 있다.
본 발명에 따른 배터리 관리 장치(100)는, BMS(Battery Management System)에 적용될 수 있다. 즉, 본 발명에 따른 BMS는, 상술한 배터리 관리 장치(100)를 포함할 수 있다. 이러한 구성에 있어서, 배터리 관리 장치(100)의 각 구성요소 중 적어도 일부는, 종래 BMS에 포함된 구성의 기능을 보완하거나 추가함으로써 구현될 수 있다. 예를 들어, 배터리 관리 장치(100)의 측정부(110), 제어부(120) 및 저장부(130)는 BMS의 구성요소로서 구현될 수 있다.
또한, 본 발명에 따른 배터리 관리 장치(100)는, 배터리 팩(1)에 구비될 수 있다. 즉, 본 발명에 따른 배터리 팩(1)은, 상술한 배터리 관리 장치(100) 및 하나 이상의 배터리(B)를 포함할 수 있다. 또한, 배터리 팩(1)은, 전장품(릴레이, 퓨즈 등) 및 케이스 등을 더 포함할 수 있다.
예컨대, 도 2는 배터리 관리 장치(100)가 포함된 배터리 팩(1)의 예시적 구성을 개략적으로 도시한 도면이다. 도 2를 참조하면, 배터리 팩(1)은 배터리(B), 전류 측정 유닛 및 배터리 관리 장치(100)를 포함할 수 있다.
충방전부(200)는 배터리 팩(1)에 포함될 수도 있고, 배터리 팩(1)의 전극 단자에 전기적으로 연결될 수 있다. 도 2의 실시예에서, 배터리 팩(1)의 양극 단자(P+)와 음극 단자(P-)에는 충방전부(200)가 연결될 수 있다.
충방전부(200)에 의해 배터리(B)가 충전되는 과정에서, 측정부(110)는 배터리(B)의 충전 전류 및 충전 전압을 측정할 수 있다. 또한, 충방전부(200)에 의해 배터리(B)가 방전되는 과정에서, 측정부(110)는 배터리(B)의 방전 전류 및 방전 전압을 측정할 수 있다.
예컨대, 충방전부(200)는 배터리(B)를 SOC 0%에서 100%까지 완전 충전시킬 수 있고, SOC 100%에서 0%까지 완전 방전시킬 수도 있다.
도 7은 본 발명의 다른 실시예에 따른 배터리 관리 방법을 개략적으로 도시한 도면이다.
바람직하게, 배터리 관리 방법의 각 단계는 배터리 관리 장치(100)에 의해 수행될 수 있다. 이하에서는, 앞서 설명한 내용과 중복되는 내용은 생략하거나 간략히 설명함을 유의한다.
도 7을 참조하면, 배터리 관리 방법은 측정 단계(S100), 충전 저항 산출 단계(S200), 방전 저항 산출 단계(S300), 저항비 산출 단계(S400) 및 방전 C-rate 설정 단계(S500)를 포함할 수 있다.
측정 단계(S100)는 기설정된 충전 C-rate 및 기설정된 방전 C-rate에 따라 배터리(B)가 충전 및 방전되는 과정에서, 충전 전압, 충전 전류, 방전 전압 및 방전 전류를 측정하는 단계로서, 측정부(110)에 의해 수행될 수 있다.
바람직하게, 측정부(110)는 배터리(B)가 기설정된 충전 C-rate로 충전되는 과정에서, 충전 전압 및 충전 전류를 측정할 수 있다. 또한, 측정부(110)는 배터리(B)가 기설정된 방전 C-rate로 방전되는 과정에서, 방전 전압 및 방전 전류를 측정할 수 있다.
충전 저항 산출 단계(S200)는 상기 충전 전압 및 상기 충전 전류에 기반하여 상기 배터리(B)의 전압마다 충전 저항을 산출하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 제어부(120)는 충전 전류에 대한 충전 전압의 비율을 산출하여 충전 저항을 산출할 수 있다.
방전 저항 산출 단계(S300)는 상기 방전 전압 및 상기 방전 전류에 기반하여 상기 배터리(B)의 전압마다 방전 저항을 산출하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 제어부(120)는 방전 전류에 대한 방전 전압의 비율을 산출하여 방전 저항을 산출할 수 있다.
이상에서는, 도 7의 실시예에 따라 충전 저항 산출 단계(S200) 이후에 방전 저항 산출 단계(S300)가 진행되는 것으로 도시되었으나, 방전 저항 산출 단계(S300)가 먼저 진행된 후 충전 저항 산출 단계(S200)가 진행될 수도 있음을 유의한다.
저항비 산출 단계(S400)는 상기 배터리(B)의 전압마다 상기 충전 저항과 상기 방전 저항 간의 저항비를 산출하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
구체적으로, 제어부(120)는 각각의 전압에 대하여, 방전 저항에 대한 충전 저항의 비율을 계산함으로써 저항비를 산출할 수 있다. 예컨대, 도 3의 실시예에서, 제어부(120)는 "RB1÷RB2"를 계산함으로써, 3.3V에 대한 저항비를 산출할 수 있다.
방전 C-rate 설정 단계(S500)는 상기 배터리(B)의 전압마다 산출된 저항비에 기반하여 상기 배터리(B)에 대한 방전 C-rate를 설정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
구체적으로, 제어부(120)는 배터리(B)의 각각의 전압마다 산출된 복수의 저항비 중 최대 저항비를 선택할 수 있다. 그리고, 선택된 최대 저항비가 기준값 이상인 경우, 제어부(120)는 선택된 최대 저항비, 배터리(B) 특성 계수 및 기설정된 방전 C-rate에 기반하여 배터리(B)에 대한 방전 C-rate를 변경 설정할 수 있다.
바람직하게, 제어부(120)는 배터리(B)에 대한 방전 C-rate가 충전 C-rate보다 크도록, 배터리(B)에 대한 방전 C-rate를 증가시킴으로써, 배터리(B)의 성능 효율을 향상시킬 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
1: 배터리 팩
100: 배터리 관리 장치
110: 측정부
120: 제어부
130: 저장부
200: 충방전부
100: 배터리 관리 장치
110: 측정부
120: 제어부
130: 저장부
200: 충방전부
Claims (11)
- 기설정된 충전 C-rate 및 기설정된 방전 C-rate에 따라 배터리가 충전 및 방전되는 과정에서, 충전 전압, 충전 전류, 방전 전압 및 방전 전류를 측정하도록 구성된 측정부; 및
상기 측정부로부터 상기 배터리의 전압 및 전류에 대한 정보를 수신하고, 상기 충전 전압 및 상기 충전 전류에 기반하여 상기 배터리의 전압마다 충전 저항을 산출하며, 상기 방전 전압 및 상기 방전 전류에 기반하여 상기 배터리의 전압마다 방전 저항을 산출하고, 상기 배터리의 전압마다 상기 충전 저항과 상기 방전 저항 간의 저항비를 산출하며, 상기 배터리의 전압마다 산출된 저항비에 기반하여 상기 배터리에 대한 방전 C-rate를 설정하도록 구성된 제어부를 포함하는 것을 특징으로 하는 배터리 관리 장치.
- 제1항에 있어서,
상기 제어부는,
상기 배터리의 전압마다 상기 방전 저항에 대한 상기 충전 저항의 비율을 각각 계산하여 전압별 저항비를 산출하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제1항에 있어서,
상기 제어부는,
상기 배터리의 전압마다 산출된 저항비 중 최대 저항비를 선택하고, 선택된 최대 저항비에 기반하여 상기 방전 C-rate를 조정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제3항에 있어서,
상기 제어부는,
상기 최대 저항비가 기준값 미만인 경우, 상기 방전 C-rate를 상기 기설정된 방전 C-rate로 설정하고,
상기 최대 저항비가 상기 기준값 이상인 경우, 상기 방전 C-rate를 상기 기설정된 방전 C-rate와 상이하게 변경하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제4항에 있어서,
상기 제어부는,
상기 방전 C-rate가 상기 배터리에 대해 상기 기설정된 충전 C-rate보다 크도록 변경하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제3항에 있어서,
상기 제어부는,
상기 방전 C-rate를 상기 최대 저항비에 대응되도록 증가시키고, 증가된 방전 C-rate를 상기 배터리에 대한 방전 C-rate로 설정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제6항에 있어서,
상기 제어부는,
상기 방전 C-rate를 상기 최대 저항비 및 상기 배터리에 대응되는 배터리 특성 계수에 기반하여 증가시키도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제1항에 있어서,
상기 배터리는,
흑연 및 실리콘이 혼합된 복합 음극 활물질을 포함하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제1항에 있어서,
상기 측정부는,
상기 배터리가 상기 기설정된 충전 C-rate로 정전류 충전되는 과정에서 상기 충전 전압 및 상기 충전 전류를 측정하고, 상기 배터리가 상기 기설정된 방전 C-rate로 정전류 방전되는 과정에서 상기 방전 전압 및 상기 방전 전류를 측정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
- 제1항 내지 제9항 중 어느 한 항에 따른 배터리 관리 장치를 포함하는 배터리 팩.
- 기설정된 충전 C-rate 및 기설정된 방전 C-rate에 따라 배터리가 충전 및 방전되는 과정에서, 충전 전압, 충전 전류, 방전 전압 및 방전 전류를 측정하는 측정 단계;
상기 충전 전압 및 상기 충전 전류에 기반하여 상기 배터리의 전압마다 충전 저항을 산출하는 충전 저항 산출 단계;
상기 방전 전압 및 상기 방전 전류에 기반하여 상기 배터리의 전압마다 방전 저항을 산출하는 방전 저항 산출 단계;
상기 배터리의 전압마다 상기 충전 저항과 상기 방전 저항 간의 저항비를 산출하는 저항비 산출 단계; 및
상기 배터리의 전압마다 산출된 저항비에 기반하여 상기 배터리에 대한 방전 C-rate를 설정하는 방전 C-rate 설정 단계를 포함하는 것을 특징으로 하는 배터리 관리 방법.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210018521A KR20220114914A (ko) | 2021-02-09 | 2021-02-09 | 배터리 관리 장치 및 방법 |
US17/925,342 US20230178818A1 (en) | 2021-02-09 | 2022-02-09 | Battery Management Apparatus and Method |
CN202280004884.0A CN115699404A (zh) | 2021-02-09 | 2022-02-09 | 电池管理设备和方法 |
JP2022551632A JP2023516953A (ja) | 2021-02-09 | 2022-02-09 | バッテリー管理装置及び方法 |
PCT/KR2022/095026 WO2022173283A1 (ko) | 2021-02-09 | 2022-02-09 | 배터리 관리 장치 및 방법 |
EP22753043.3A EP4148865A4 (en) | 2021-02-09 | 2022-02-09 | BATTERY MANAGEMENT DEVICE AND METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210018521A KR20220114914A (ko) | 2021-02-09 | 2021-02-09 | 배터리 관리 장치 및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220114914A true KR20220114914A (ko) | 2022-08-17 |
Family
ID=82838049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210018521A KR20220114914A (ko) | 2021-02-09 | 2021-02-09 | 배터리 관리 장치 및 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230178818A1 (ko) |
EP (1) | EP4148865A4 (ko) |
JP (1) | JP2023516953A (ko) |
KR (1) | KR20220114914A (ko) |
CN (1) | CN115699404A (ko) |
WO (1) | WO2022173283A1 (ko) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6026120B2 (ja) * | 2012-03-19 | 2016-11-16 | 株式会社東芝 | 二次電池の内部抵抗演算装置及びその内部抵抗演算方法、二次電池の異常検出装置及びその異常検出方法、並びに二次電池の劣化推定装置及びその劣化推定方法 |
JP6195489B2 (ja) * | 2013-08-22 | 2017-09-13 | ルネサスエレクトロニクス株式会社 | 半導体装置、電池パック、及び携帯端末 |
KR102071589B1 (ko) * | 2016-01-19 | 2020-01-30 | 주식회사 엘지화학 | 리튬 이차전지의 충방전 방법 |
CN109874354B (zh) * | 2016-09-23 | 2023-01-13 | 古河电气工业株式会社 | 二次电池状态检测装置和二次电池状态检测方法 |
GB2555142B (en) | 2016-10-21 | 2019-09-04 | Canon Kk | Enhanced management of ACs in multi-user EDCA transmission mode in wireless networks |
WO2018176428A1 (zh) * | 2017-03-31 | 2018-10-04 | 深圳市大疆创新科技有限公司 | 电池放电控制方法、电池放电控制系统及智能电池 |
KR102182691B1 (ko) * | 2017-10-20 | 2020-11-24 | 주식회사 엘지화학 | 배터리 저항 추정 장치 및 방법 |
KR102439689B1 (ko) * | 2017-11-13 | 2022-09-01 | 주식회사 엘지에너지솔루션 | 배터리 충전 방법 및 배터리 충전 장치 |
KR102286780B1 (ko) * | 2018-11-27 | 2021-08-09 | 디티아이코리아(주) | 이차전지 충전 방법 |
KR102493232B1 (ko) * | 2019-03-18 | 2023-01-27 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 |
KR102521576B1 (ko) * | 2019-03-18 | 2023-04-12 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 |
-
2021
- 2021-02-09 KR KR1020210018521A patent/KR20220114914A/ko active Search and Examination
-
2022
- 2022-02-09 CN CN202280004884.0A patent/CN115699404A/zh active Pending
- 2022-02-09 JP JP2022551632A patent/JP2023516953A/ja active Pending
- 2022-02-09 US US17/925,342 patent/US20230178818A1/en active Pending
- 2022-02-09 WO PCT/KR2022/095026 patent/WO2022173283A1/ko unknown
- 2022-02-09 EP EP22753043.3A patent/EP4148865A4/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115699404A (zh) | 2023-02-03 |
JP2023516953A (ja) | 2023-04-21 |
EP4148865A4 (en) | 2024-04-17 |
US20230178818A1 (en) | 2023-06-08 |
EP4148865A1 (en) | 2023-03-15 |
WO2022173283A1 (ko) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111344584B (zh) | 电池管理装置和方法 | |
US8854780B2 (en) | Protection circuit of battery pack and battery pack using the same | |
US20230179007A1 (en) | Battery Management Apparatus and Method | |
KR20220065604A (ko) | 배터리 진단 장치 및 방법 | |
KR20220093842A (ko) | 배터리 관리 장치 및 방법 | |
KR20220021730A (ko) | 배터리 관리 장치 및 방법 | |
JP7517661B2 (ja) | バッテリー管理装置及び方法 | |
KR20220114914A (ko) | 배터리 관리 장치 및 방법 | |
US20230393214A1 (en) | Battery Classification Apparatus and Method | |
KR20220080620A (ko) | 배터리 진단 장치 및 방법 | |
US20240006907A1 (en) | Battery Management Apparatus and Method | |
US20240275200A1 (en) | Battery Management Apparatus and Method, and Battery Pack Including Battery Management Apparatus | |
KR102600139B1 (ko) | 배터리 관리 장치 및 방법 | |
KR102688039B1 (ko) | 배터리 진단 장치 및 방법 | |
KR20240101262A (ko) | 배터리 진단 장치 및 방법 | |
KR20240117421A (ko) | 배터리 진단 장치 및 방법 | |
JP2023526931A (ja) | バッテリー診断装置及び方法 | |
CN118901021A (zh) | 电池诊断设备和方法 | |
KR20240117422A (ko) | 배터리 진단 장치 및 방법 | |
KR20230085002A (ko) | 배터리 상태 추정 장치 및 방법 | |
KR20220054105A (ko) | 배터리 관리 장치 및 방법 | |
CN117897851A (zh) | 电池管理装置和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |