WO2018176287A1 - 脉冲信息测量方法及相关装置、移动平台 - Google Patents

脉冲信息测量方法及相关装置、移动平台 Download PDF

Info

Publication number
WO2018176287A1
WO2018176287A1 PCT/CN2017/078660 CN2017078660W WO2018176287A1 WO 2018176287 A1 WO2018176287 A1 WO 2018176287A1 CN 2017078660 W CN2017078660 W CN 2017078660W WO 2018176287 A1 WO2018176287 A1 WO 2018176287A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
pulse signal
time
leading edge
trailing edge
Prior art date
Application number
PCT/CN2017/078660
Other languages
English (en)
French (fr)
Inventor
刘祥
占志鹏
蒲文进
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780004472.6A priority Critical patent/CN108513618B/zh
Priority to PCT/CN2017/078660 priority patent/WO2018176287A1/zh
Publication of WO2018176287A1 publication Critical patent/WO2018176287A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/02Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • the invention relates to the field of laser ranging technology, in particular to a pulse information measuring method and related device and a mobile platform.
  • Lidar is a perception system for the outside world. It can know the stereoscopic three-dimensional information of the outside world, and is no longer limited to the plane perception of the outside world such as a camera.
  • the principle of the laser radar is to actively emit the laser pulse signal externally, detect the reflected pulse signal, and judge the distance of the measured object according to the time difference between the transmission and reception of the pulse signal; combined with the emission angle information of the light pulse, it can be reconstructed Get 3D depth information.
  • the pulse time is usually determined based on the leading edge time of the pulse signal. However, since the pulse itself has a certain width, the widths of the pulse signals are not uniform under different distances and different reflectances. Therefore, only the sampling front time will undoubtedly cause a certain error in the measurement of the pulse time.
  • the embodiment of the invention provides a pulse information measuring method, a related device and a mobile platform, so as to reduce the error of the pulse information measurement and improve the accuracy of the pulse information measurement.
  • a method of measuring pulse information comprising:
  • the pulse information comprises pulse time and/or pulse energy.
  • a pulse information measuring device comprising:
  • An acquisition circuit configured to receive a pulse signal, and obtain a leading edge time and a trailing edge time of the pulse signal under one or more threshold conditions
  • an information acquiring unit configured to calculate pulse information of the pulse signal according to the leading edge time and the trailing edge time; wherein the pulse information includes a pulse time and/or a pulse energy.
  • a method of measuring pulse information comprising:
  • a pulse information measuring device comprising:
  • An acquisition circuit configured to receive a pulse signal, and obtain a leading edge time or a trailing edge time of the pulse signal under a plurality of threshold conditions
  • an information acquiring unit configured to calculate pulse information of the pulse signal according to the plurality of leading edge times or a plurality of trailing edge times; wherein the pulse information includes a pulse time and/or a pulse energy.
  • a laser measuring device includes a pulse information measuring device, and the pulse information measuring device includes:
  • An acquisition circuit configured to receive a pulse signal, and obtain a leading edge time and a trailing edge time of the pulse signal under one or more threshold conditions
  • an information acquiring unit configured to calculate pulse information of the pulse signal according to the leading edge time and the trailing edge time; wherein the pulse information includes a pulse time and/or a pulse energy.
  • a laser measuring device includes a pulse information measuring device, and the pulse information measuring device includes:
  • An acquisition circuit configured to receive a pulse signal, and obtain a leading edge time or a trailing edge time of the pulse signal under a plurality of threshold conditions
  • an information acquiring unit configured to calculate pulse information of the pulse signal according to the plurality of leading edge times or a plurality of trailing edge times; wherein the pulse information includes a pulse time and/or a pulse energy.
  • a mobile platform comprising a laser measuring device and a platform body, the laser measuring device being mounted on the platform body, the laser measuring device comprising a pulse information measuring device, the pulse information measuring device comprising:
  • An acquisition circuit configured to receive a pulse signal, and obtain a leading edge time and a trailing edge time of the pulse signal under one or more threshold conditions
  • An information acquiring unit configured to calculate the pulse signal according to the leading edge time and the trailing edge time Pulse information of the number; wherein the pulse information includes pulse time and/or pulse energy.
  • a mobile platform comprising a laser measuring device and a platform body, the laser measuring device being mounted on the platform body, the laser measuring device comprising a pulse information measuring device, the pulse information measuring device comprising:
  • An acquisition circuit configured to receive a pulse signal, and obtain a leading edge time or a trailing edge time of the pulse signal under a plurality of threshold conditions
  • an information acquiring unit configured to calculate pulse information of the pulse signal according to the plurality of leading edge times or a plurality of trailing edge times; wherein the pulse information includes a pulse time and/or a pulse energy.
  • the pulse information measuring method and apparatus calculate pulse information of the pulse signal according to the leading edge time and the trailing edge time by acquiring a leading edge time and a trailing edge time of the pulse signal under one or more threshold conditions.
  • the method of determining the pulse time based only on the leading edge time of the pulse signal can effectively reduce the error of the pulse information measurement and improve the accuracy of the pulse information measurement.
  • FIG. 1 is a first schematic flowchart of a method for measuring pulse information according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing waveform comparison of a pulse signal of a pulse information measuring method under a single threshold condition according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a multi-threshold comparator applied to a pulse information measurement method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing waveforms of front and back time of a pulse signal under a multi-threshold condition according to a pulse information measuring method according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a first structure of a pulse information measuring apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an acquisition circuit of a pulse information measuring apparatus according to an embodiment of the present invention.
  • FIG. 7 is a second schematic structural diagram of a pulse information measuring apparatus according to an embodiment of the present invention.
  • FIG. 8 is a diagram of a pulse energy acquiring circuit of a pulse information measuring apparatus according to an embodiment of the present invention. a schematic diagram of the structure;
  • FIG. 9 is a second schematic structural diagram of a pulse energy acquiring circuit of a pulse information measuring apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing waveform comparison of pulse signals of a pulse information measuring apparatus before and after stretch processing according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a third structure of a pulse energy acquiring circuit of a pulse information measuring apparatus according to an embodiment of the present invention.
  • FIG. 12 is a fourth schematic structural diagram of a pulse energy acquiring circuit of a pulse information measuring apparatus according to an embodiment of the present invention.
  • FIG. 13 is a second schematic flowchart diagram of a method for measuring pulse information according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a comparison of partial triggering of a plurality of preset thresholds of pulse signals of different pulse energies fitted by a pulse information measuring method according to an embodiment of the present invention
  • FIG. 15 is a schematic diagram of a third structure of a pulse information measuring apparatus according to an embodiment of the present invention.
  • a pulse information measurement method which can be applied to a laser radar to measure pulse information of a laser pulse signal detected by a laser radar.
  • the method can at least include the following steps:
  • Step 101 Receive a pulse signal, and acquire a leading edge time and a trailing edge time of the pulse signal under one or more threshold conditions;
  • Step 102 Calculate pulse information of the pulse signal according to the leading edge time and the trailing edge time;
  • the pulse information comprises pulse time and/or pulse energy.
  • the pulse signal is a reflected laser pulse signal detected by the laser radar after the laser pulse signal is externally emitted.
  • the laser radar transmits the laser pulse signal to the outside and detects the reflected laser pulse signal, which can be based on the pulse time of the laser pulse signal and the pulse of the reflected laser pulse signal.
  • the difference between the target objects is determined, and the surface reflectance information and the contour information of the target object can be determined according to the pulse energy of the reflected laser pulse signal.
  • the pulse energy of the reflected laser pulse signal of the target object received by the laser radar may be different. It can be understood that under the same distance and threshold conditions, when the reflectivity of the surface of the target object is large, the pulse energy of the reflected laser pulse signal is large, so that the corresponding pulse amplitude is large, and the leading edge time of the pulse is small and small.
  • the pulse time of the pulse signal can be calculated according to the leading edge time and the trailing edge time by acquiring the leading edge time and the trailing edge time of the pulse signal.
  • the acquiring the pulse signal corresponding to the leading edge time and the trailing edge time under one or more threshold conditions includes:
  • the time at which the trailing edge of the pulse signal is triggered to trigger the threshold corresponding to the leading edge time is taken as the trailing edge time.
  • Vref is a threshold value
  • the amplitude of the laser pulse signal A1 indicated by a broken line is large, and the leading edge time of the laser pulse signal A1 is t1, the trailing edge time is t4, and the amplitude of the laser pulse signal A2 indicated by the solid line is It is small, and the leading edge time of the laser pulse signal A2 is t2, and the trailing edge time is t3.
  • the leading edge time t1 of the laser pulse signal A1 is the time when the leading edge of the laser pulse signal A1 triggers the threshold value Vref
  • the trailing edge time of the laser pulse signal A1 is the time when the trailing edge of the laser pulse signal A1 triggers the threshold value ref.
  • the leading edge time t2 of the laser pulse signal A2 is the time at which the leading edge of the laser pulse signal A2 triggers the threshold value Vref
  • the trailing edge time t3 of the laser pulse signal A2 triggers the time at which the threshold value Vref is triggered by the trailing edge of the laser pulse signal A2.
  • the acquisition of the leading edge time and the trailing edge time can be realized by a comparator and a time measuring unit (Time-to-Digital Converter, TDC in this embodiment).
  • the comparator is configured to compare the voltage pulse signal corresponding to the reflected laser pulse signal with the one or more threshold values to obtain a corresponding square wave signal, and then trigger the TDC by the square wave signal to measure the square wave signal.
  • the leading edge and trailing edge times correspond to the leading edge time and the trailing edge time of the reflected laser pulse signal, respectively.
  • the laser pulse signal A1 and the laser pulse signal A2 shown in FIG. 2 can be The laser pulse signal reflected by the target object at the same distance, but the amplitude of the laser pulse signal A2 is smaller than the amplitude of the laser pulse signal A1 due to the difference in reflectance of the surface of the target object.
  • the pulse time is determined only by measuring the leading edge time of the laser pulse signal A1 and the laser pulse signal A2, since the leading edge time of the laser pulse signal A1 is t1 smaller than the leading edge time of the laser pulse signal A2 is t2, the laser pulse is caused.
  • the pulse time of the signal A1 is smaller than the erroneous measurement result of the pulse time of the laser pulse signal A2.
  • the pulse information includes a pulse time
  • the calculating pulse information of the pulse signal according to the leading edge time and the trailing edge time includes:
  • a weighted average of the leading edge time and the corresponding trailing edge time is calculated and used as the pulse time of the pulse signal.
  • the pulse time of the laser pulse signal A1 can be obtained by calculating the weighted average value of the leading edge time t1 and the trailing edge time t4. It can be understood that, according to the waveform of the laser pulse signal, the weight of the leading edge time and the trailing edge time can also be adjusted by weights, thereby further improving the accuracy of the pulse time calculation.
  • the pulse information includes a pulse time
  • the pulse information measurement is performed under a plurality of threshold conditions, and the pulse of the pulse signal is calculated according to the leading edge time and the trailing edge time Information, including:
  • the input of the first preset function is all leading edges corresponding to the multiple threshold conditions
  • the interval between the first predetermined function and the trailing edge time is the pulse time of the pulse signal.
  • the multi-threshold comparator mode can be used to compare and calculate the pulse signal.
  • two or more comparators may be used, and different threshold conditions are respectively set for each comparator, so that two or more sets of leading edge time and trailing edge time can be obtained for the same pulse signal.
  • SU31, U32, U33, and U34 are respectively four comparators
  • TDC31, TDC32, TDC33, and TDC34 are time measuring units corresponding to the four comparators, respectively, Vf01, Vf02, Vf03, and Vf04.
  • the threshold voltages corresponding to the four different threshold conditions are respectively obtained, and after the pulse signals are compared by the four comparators and passed through the corresponding time measuring unit, four different sets of leading edge time and trailing edge time, that is, four, are obtained. Group edge time.
  • t1 and t8 are the leading edge time and the trailing edge time corresponding to the threshold voltage Vf01, respectively
  • t2 and t7 are the leading edge time and the trailing edge time corresponding to the threshold voltage Vf02, respectively
  • t3 and t6 are the threshold voltage Vf03, respectively.
  • the corresponding leading edge time and trailing edge time, t4 and t5 are the leading edge time and the trailing edge time corresponding to the threshold voltage Vf04, respectively, and further, the average values of the four different sets of leading edge time and trailing edge time may be calculated to obtain the Pulse time of the pulse signal.
  • eight time-voltage information of the pulse signal may be obtained according to the leading edge time and the trailing edge time corresponding to the four sets of threshold conditions, respectively (t1, Vf01), (t2, Vf02), (t3, Vf03), (t4, Vf04), (t5, Vf04), (t6, Vf03), (t7, Vf02), (t8, Vf01), and further according to the eight times of the pulse signal -
  • the voltage information fits the pulse signal and determines the pulse time based on the fitted pulse signal at a corresponding point in time on the threshold voltage.
  • the actual pulse time of the pulse signal can also be acquired according to a known scene, for example, a laser pulse signal is transmitted to a target object at a known distance and a reflected laser pulse signal is received, and measured according to a precision experimental instrument. Obtain the actual pulse time of the pulse signal. Obtaining a functional relationship between the four sets of different leading edge times and trailing edge times and the pulse time of the pulse signal on the basis of knowing the actual pulse time of the pulse signal, for example, assuming that the actual pulse time is T1, The following functional relationships can be established:
  • T f (t1, t2, t3, t4, t5, t6, t7, t8), where T is the pulse time of the pulse signal calculated according to the functional relationship.
  • the first predetermined function is obtained by optimizing the solution function f F1, such that the pulse time T calculated by the first preset function f1 is closest to the actual pulse time T1 of the pulse signal. Further, the pulse time of the pulse signal under other arbitrary threshold conditions may be calculated according to the first preset function f1 obtained by the optimization solution.
  • the pulse information includes pulse energy
  • the pulse information measurement is performed under a plurality of threshold conditions
  • the pulse of the pulse signal is calculated according to the leading edge time and the trailing edge time Information, including:
  • the input of the second preset function is all leading edge time and trailing edge time corresponding to the multiple threshold conditions, and the output of the second preset function is pulse energy of the pulse signal.
  • the present embodiment will be described by taking a four-way comparator and four different threshold conditions as an example.
  • the leading edge time and the trailing edge corresponding to the four sets of threshold conditions can also be collected by the four comparators SU31, U32, U33, U34 and the corresponding time measuring units TDC31, TDC32, TDC33, TDC34 shown in FIG. Time (t1, t8), (t2, t7), (t3, t6), (t4, t5), as shown in FIG.
  • the eight time-voltage information of the pulse signal are (t1, Vf01), (t2, Vf02), (t3, Vf03), (t4, Vf04), (t5, Vf04), (t6, Vf03), (t7). , Vf02), (t8, Vf01).
  • the sum of the plurality of pulse widths corresponding to the plurality of threshold conditions may be calculated, that is, (t8-t1)+(t7-t2)+(t6-t3)+(t5 -t4), and the sum of the plurality of pulse widths is used as the pulse energy of the pulse signal.
  • the pulse signal may be fitted according to the eight time-voltage information, and then the pulse signal is calculated according to the difference between the fitted pulse signal and the pulse baseline. Pulse energy.
  • the actual pulse energy of the pulse signal can also be acquired according to a known scene, for example, a laser pulse signal is transmitted to a target object at a known distance and a reflected laser pulse signal is received. No., and according to the precision experimental instrument measurement to obtain the actual pulse energy of the pulse signal. Based on the actual pulse energy of the pulse signal, by establishing a functional relationship between the four sets of different leading edge times and trailing edge times and the pulse energy of the pulse signal, for example, assuming that the actual pulse energy is E1, The following functional relationships can be established:
  • E f (t1, t2, t3, t4, t5, t6, t7, t8), where E is the pulse time of the pulse signal calculated according to the functional relationship.
  • the pulse information includes pulse energy
  • the method further includes:
  • the pulse energy of the pulse signal is calculated based on the pulse amplitude.
  • the pulse amplitude of the pulse signal may be determined according to a time difference between a leading edge time and a trailing edge time of the pulse signal. For example, the time difference between the leading edge time and the trailing edge time of the pulse signal is larger, The larger the pulse amplitude, and vice versa, the smaller the pulse amplitude. Furthermore, the pulse amplitude of the pulse signal can also be obtained by a peak hold circuit and an analog to digital converter ADC.
  • the pulse energy of the pulse signal can be calculated according to the pulse amplitude by establishing a correspondence between the pulse energy and the pulse amplitude.
  • the pulse information further includes a pulse time
  • the method further includes:
  • the pulse time is corrected based on the pulse energy to obtain a corrected pulse time.
  • the pulse energy of the pulse signal can be obtained according to the leading edge time and the trailing edge time. For details, refer to the related description about the pulse energy calculation in the previous embodiment. Further, the pulse energy of the pulse signal can also be obtained by a pulse energy acquisition circuit, and the configuration of the pulse energy acquisition circuit will be described in detail in the following embodiments.
  • the correcting the pulse time according to the pulse amplitude comprises:
  • the pulse time is corrected based on the offset.
  • the waveform of the pulse signal may have a certain distortion
  • the pulse time is calculated only according to the leading edge time and the trailing edge time, there may be a certain error in the pulse time. Therefore, in the present embodiment, the model of the pulse signal is acquired, and the relationship between the pulse energy and the pulse time offset is calculated according to the model, and the pulse time is corrected according to the offset. Thus, the accuracy of the pulse time measurement can be further improved.
  • the actual pulse time of the pulse signal can also be acquired according to a known scene, for example, a laser pulse signal is transmitted to a target object at a known distance and a reflected laser pulse signal is received, and according to a precision experiment.
  • the instrument measures to obtain an actual pulse time of the pulse signal, and calculates an offset between the pulse time calculated according to the leading edge time and the trailing edge time and the actual pulse time, thereby establishing the leading edge time And a relationship between the difference between the trailing edge time and the offset amount, and establishing a corresponding database, so that after the leading edge time and the trailing edge time of the pulse signal are acquired, the front edge can be calculated And the difference between the trailing edge times, query the corresponding offset in the database, and correct the pulse time according to the offset.
  • the pulse information includes pulse energy
  • the method further includes:
  • the pulse signal is integrated, and the pulse energy of the pulse signal is calculated based on the integration result.
  • the integrated DC quantity can be sampled by a low sampling rate analog-to-digital converter ADC, and the pulse energy of the pulse signal can be calculated according to the sampling result.
  • the pulse information includes pulse energy
  • the method further includes:
  • the spread pulse signal is digitally sampled, and the pulse energy of the pulse signal is calculated according to the sampling result.
  • the stretched pulse signal can be digitally sampled by a low sampling rate analog-to-digital converter ADC, and the pulse energy of the pulse signal can be calculated according to the sampling result.
  • a pulse information measuring apparatus 100 including:
  • the acquiring circuit 110 is configured to acquire a leading edge time and a trailing edge time of the pulse signal under one or more threshold conditions;
  • the information acquiring unit 130 is configured to calculate pulse information of the pulse signal according to the leading edge time and the trailing edge time;
  • the pulse information comprises pulse time and/or pulse energy.
  • the pulse information measuring device is a laser radar
  • the pulse signal is a laser pulse signal detected by the laser radar.
  • the information acquisition unit 130 can be implemented by a circuit.
  • the information acquisition unit 130 can be implemented by software.
  • the acquisition circuit 110 includes:
  • a comparator or a plurality of comparators having different thresholds for respectively receiving a pulse signal
  • a time measuring unit located at the output of each comparator for acquiring a leading edge time and a trailing edge time of the threshold of the pulse signal to trigger the comparator.
  • a comparator in which the acquisition circuit 110 includes four different threshold conditions is taken as an example for description.
  • SU61, U62, U63, and U64 are respectively four comparators
  • TDC61, TDC62, TDC63, and TDC64 are respectively time measuring units corresponding to the four comparators, and Vf01, Vf02, Vf03, and Vf04 are respectively the four paths.
  • the threshold voltage corresponding to the comparator after the pulse signal is compared by the four comparators and passed through the corresponding time measuring unit, four different sets of leading edge time and trailing edge time, that is, four sets of edge times, can be obtained.
  • the collection circuit 110 reference may be made to the related descriptions in the embodiments shown in FIG. 3 and FIG. 4, and details are not described herein again.
  • the pulse information includes a pulse time
  • the acquisition circuit 110 is specifically configured to acquire a leading edge time and a trailing edge time of the pulse signal under a threshold condition
  • the information acquiring unit 130 is specifically configured to:
  • a weighted average of the leading edge time and the corresponding trailing edge time is calculated and used as the pulse time of the pulse signal.
  • the pulse information includes a pulse time
  • the acquisition circuit 110 is specifically configured to acquire a leading edge time and a trailing edge time of the pulse signal under a plurality of threshold conditions
  • the information acquiring unit 130 is specifically configured to:
  • the input of the first preset function is all leading edge time and trailing edge time corresponding to the multiple threshold conditions, and the output of the first preset function is the pulse time of the pulse signal.
  • the pulse information includes pulse energy
  • the acquisition circuit 110 is specifically configured to acquire a leading edge time and a trailing edge time corresponding to the pulse signal under a plurality of threshold conditions
  • the information acquiring unit 130 is specifically configured to:
  • the input of the second preset function is all leading edge time and trailing edge time corresponding to the multiple threshold conditions, and the output of the second preset function is pulse energy of the pulse signal.
  • the pulse information further includes a pulse time
  • the information acquiring unit 130 is further configured to correct the pulse time according to the pulse energy to obtain a corrected pulse time.
  • the information acquiring unit 130 is specifically configured to:
  • the pulse time is corrected based on the offset.
  • the apparatus 100 further includes:
  • the pulse energy acquisition circuit 150 is configured to acquire pulse energy of the pulse signal.
  • the information acquiring unit 130 is further configured to correct the pulse time according to the pulse energy acquired by the pulse energy acquiring circuit 150 to obtain a corrected pulse time.
  • the pulse energy acquisition circuit 150 is specifically configured to The number is integrated, and the pulse energy of the pulse signal is calculated based on the integration result.
  • the pulse energy acquisition circuit 150 includes an integration circuit 151 for integrating the pulse signal.
  • the integrating circuit 151 may include an integrating operational amplifier U21, a first input resistor R21 and a first feedback capacitor C21, and a first input terminal +IN of the operational amplifier U21 is used to input a first reference level Vref1, the operational amplifier
  • the second input terminal -IN of U21 is electrically connected to one end of the first input resistor R21.
  • the other end of the first input resistor R21 is used for inputting the pulse signal, and the second input terminal -IN of the operational amplifier U21 is also passed through the first
  • the feedback capacitor C21 is electrically connected to the output terminal OUT of the operational amplifier U21.
  • the positive and negative power terminals V+ and V- of the operational amplifier U21 are used to connect the positive and negative power supplies VCC+ and VCC-, respectively.
  • the output of the integrating circuit 211 can also be connected to an analog-to-digital converter ADC. After the pulse signal is integrated by the integrating circuit 211, the analog-to-digital converter can be used to lower the ADC. The sampling rate is sampled to obtain the pulse energy of the pulse signal.
  • the pulse energy acquisition circuit 150 is specifically configured to perform widening processing on the pulse signal to obtain a broadened pulse signal, and is also used for digitally sampling the widened pulse signal, and according to sampling As a result, the pulse energy of the pulse signal is calculated.
  • the pulse energy acquisition circuit 150 includes a stretch circuit 153 for widening and amplifying the pulse signal.
  • the stretch circuit 153 may include a stretched operational amplifier U23, a second input resistor R231, a feedback resistor R232, and a second feedback capacitor C23.
  • the first input terminal +IN of the operational amplifier U23 is used to input a second reference level Vref2, the second input terminal -IN of the operational amplifier U23 is connected to one end of the second input resistor R231, and the second input resistor R231 is further One end is used to input the pulse signal, and the second input terminal -IN of the operational amplifier U23 is also connected to the output terminal OUT of the operational amplifier U23 through a feedback resistor R232 and a second feedback capacitor C23 connected in parallel with each other.
  • the positive and negative power terminals V+ and V- of the operational amplifier U23 are used to connect the positive and negative power sources VCC+ and VCC-, respectively.
  • the pulse waveform of the pulse signal before and after the stretching and amplification processing is as shown in FIG. 10, wherein the solid line shows the original pulse waveform of the pulse signal, and the broken line shows the pulse signal of the broadening.
  • the output of the stretch circuit 153 can also be connected to an analog-to-digital converter ADC.
  • the analog-to-digital converter ADC can be used at a lower sampling rate.
  • the spread pulse signal is digitally sampled, and the pulse energy of the pulse signal is calculated according to the sampling result.
  • the pulse energy acquisition circuit 150 includes a peak hold circuit 155 including a first diode D1 and a holding capacitor C1, the first diode The first end of the D1 is used for inputting a pulse signal, and the second end of the first diode D1 is electrically connected to the first end of the holding capacitor C1 and the output end of the peak hold circuit 215, the holding capacitor The second end of C1 is used to input a third reference level Vref3.
  • the output of the peak hold circuit 155 is used to connect an analog-to-digital converter ADC for acquiring the peak value of the pulse signal, thereby acquiring the pulse amplitude of the pulse signal.
  • the peak hold circuit 155 further includes a first operational amplifier U31, the first operational amplifier U31 includes a first input terminal +IN, a second input terminal -IN, an output terminal OUT, and a positive power terminal.
  • V+ and the negative power supply terminal V-, the positive and negative power terminals V+, V- of the first operational amplifier U31 are respectively used to connect the positive and negative power sources VCC+, VCC-, and the first input terminal of the first operational amplifier U31 +IN is used for inputting a pulse signal
  • the second input terminal -IN of the first operational amplifier U31 is electrically connected to the output terminal OUT of the first operational amplifier U31 and the first terminal of the first diode D1,
  • the first operational amplifier U31 is configured to amplify the pulse signal and output the amplified pulse signal to the first end of the first diode D1.
  • the peak hold circuit 215 may further include a second resistor R2 electrically connected to the second end of the first diode D1 and the first end of the holding capacitor C1.
  • the peak hold circuit 215 further includes a second operational amplifier U32 and a first resistor R1.
  • the second operational amplifier U32 includes a first input terminal +IN and a second input terminal. -IN, the output terminal OUT, the positive power supply terminal V+ and the negative power supply terminal V-, the positive and negative power supply terminals V+, V- of the second operational amplifier U32 are respectively used for connecting the positive and negative power sources VCC+, VCC-,
  • the first input terminal +IN of the second operational amplifier U32 is electrically connected to the first end of the holding capacitor C1, and the second input terminal -IN of the second operational amplifier U32 and the first end of the first resistor R1
  • the output terminal OUT of the second operational amplifier U32 is electrically connected, and the second end of the first resistor R1 is used to input a fourth reference level Vref4.
  • the second operational amplifier U32 is used to improve the load driving capability of the subsequent circuit.
  • the third reference level Vref3 may be the same as the fourth reference level Vref4.
  • the peak hold circuit 155 further includes a second diode D2, the first end of the second diode D2 and the second input terminal -IN of the second operational amplifier U32 Connected, the second end of the second diode D2 is electrically connected to the output terminal OUT of the second operational amplifier U32
  • the polarity of the second diode D2 is opposite to the polarity of the first diode D1. It can be understood that there is an error in the peak value outputted by the peak hold circuit 215 due to the turn-on voltage drop of the first diode D1, and the magnitude of the error is equal to the turn-on voltage drop of the first diode D1.
  • the compensation of the error is achieved by setting the second diode D2 such that the polarity of the second diode D2 is opposite to the polarity of the first diode D1.
  • the peak hold circuit 155 is used to acquire the peak value of the negative pulse of the pulse signal, the first end of the first diode D1 is a negative pole, and the second end of the first diode D2 is second.
  • the terminal is a positive electrode
  • the first end of the second diode D2 is a positive electrode
  • the second end of the second diode D2 is a negative electrode.
  • the peak hold circuit 155 is configured to acquire the peak value of the positive pulse of the pulse signal
  • the first end of the first diode D1 is a positive pole
  • the second end of the first diode D1 is a negative pole.
  • the first end of the second diode D2 is a negative electrode
  • the second end of the second diode D2 is a positive electrode.
  • the peak hold circuit 155 further includes a controllable switch Q, the controllable switch Q being connected in parallel with the holding capacitor C1 for releasing the peak after the analog to digital converter ADC completes peak acquisition.
  • the charge stored by the holding capacitor C1 is described.
  • the controllable switch Q can include a control signal input terminal Ctrl for receiving a control signal, and is turned on or off according to the control signal, and is used to release the hold when the controllable switch Q is turned on. The charge stored by capacitor C1.
  • the specific steps of the pulse information measuring device 100 for measuring the pulse information of the pulse signal can also refer to the related description in the method embodiment shown in FIG. 1 to FIG. 4 , and details are not described herein again.
  • a pulse information measurement method which can be applied to a laser radar to measure pulse information of a laser pulse signal detected by a laser radar.
  • the method can at least include the following steps:
  • Step 301 Receive a pulse signal, and acquire a leading edge time or a trailing edge time corresponding to the pulse signal under multiple threshold conditions;
  • Step 302 Calculate pulse information of the pulse signal according to the plurality of leading edge times or a plurality of trailing edge times; wherein the pulse information includes pulse time and/or pulse energy.
  • the pulse information measuring device is a laser radar
  • the pulse signal is a laser pulse signal detected by the laser radar.
  • the receiving a pulse signal and acquiring a leading edge time or a trailing edge time of the pulse signal under a plurality of threshold conditions includes:
  • a leading edge time or a trailing edge time at which the pulse signal triggers the threshold of the comparator is acquired by a time measuring unit located at the output of each comparator.
  • the pulse information includes a pulse time
  • the calculating pulse information of the pulse signal according to the plurality of leading edge times or a plurality of trailing edge times includes:
  • the input of the first preset function is all leading edge time or all trailing edge time corresponding to the multiple threshold conditions, and the output of the first preset function is the pulse time of the pulse signal.
  • the pulse information includes pulse energy, and calculating pulse information of the pulse signal according to the plurality of leading edge times or a plurality of trailing edge times, including:
  • a pulse energy of the pulse signal is determined based on a plurality of preset thresholds triggered by the portion of the fitted pulse signal.
  • the plurality of preset thresholds include four sequentially increasing threshold voltages V01, V02, V03, and V04, for the pulse signals having different pulse energies, due to the pulse amplitude. a difference such that the number of preset thresholds triggered by the portions of the pulse signals of different pulse energies is different, so that the number of preset thresholds triggered by the portion of the fitted pulse signal can be calculated.
  • the energy estimation value of the fitted pulse signal is further determined, and the magnitude relationship of the pulse energy of the different pulse signals is determined according to the energy estimation value. For example, the number of preset thresholds of the partially triggered pulse signal A3 shown in FIG.
  • the threshold voltage corresponding to the plurality of preset thresholds and the threshold voltage corresponding to the plurality of threshold conditions are at least partially different.
  • the pulse information includes pulse energy, according to the plurality of leading edges Calculating pulse information of the pulse signal by time or multiple trailing edge times, including:
  • the input of the second preset function is all leading edge time or all trailing edge time corresponding to the multiple threshold conditions, and the output of the second preset function is pulse energy of the pulse signal.
  • the plurality of comparators having different thresholds respectively receive the pulse signals, and the pulse signal is triggered by the time measuring unit located at the output end of each comparator.
  • the leading edge time or the trailing edge time of the threshold of the comparator, and the specific implementation manner of calculating the pulse information of the pulse signal according to the plurality of leading edge times or the plurality of trailing edge times may refer to FIG. 3 to FIG. 4 .
  • the related description in the illustrated embodiment is not described herein again.
  • a pulse information measuring apparatus 200 including:
  • the acquisition circuit 210 is configured to receive a pulse signal, and acquire a leading edge time or a trailing edge time of the pulse signal under a plurality of threshold conditions;
  • the information acquiring unit 230 is configured to calculate pulse information of the pulse signal according to the plurality of leading edge times or a plurality of trailing edge times, wherein the pulse information includes a pulse time and/or a pulse energy.
  • the pulse information measuring device 200 is a laser radar, and the pulse signal is a laser pulse signal detected by the laser radar.
  • the acquisition circuit 210 includes:
  • a time measuring unit located at an output of each comparator for acquiring a leading edge time or a trailing edge time at which the pulse signal triggers a threshold of the comparator.
  • the structure of the collection circuit 210 can be referred to the related description of the acquisition circuit 110 shown in FIG. 6, and details are not described herein again.
  • the pulse information includes a pulse time
  • the information acquiring unit 230 is specifically configured to:
  • the input of the first preset function is all leading edge time or all trailing edge time corresponding to the multiple threshold conditions, and the output of the first preset function is the pulse time of the pulse signal.
  • the pulse information includes pulse energy
  • the information acquiring unit 230 is specifically configured to:
  • a pulse energy of the pulse signal is determined based on a plurality of preset thresholds triggered by the portion of the fitted pulse signal.
  • the pulse information includes pulse energy
  • the information acquiring unit 230 is specifically configured to:
  • the input of the second preset function is all leading edge time or all trailing edge time corresponding to the multiple threshold conditions, and the output of the second preset function is pulse energy of the pulse signal.
  • the pulse signals are respectively received by the plurality of comparators having different threshold values, and the pulse signal is triggered by the time measuring unit located at the output end of each comparator.
  • the leading edge time or the trailing edge time of the threshold of the comparator, and the specific implementation manner of calculating the pulse information of the pulse signal according to the plurality of leading edge times or the plurality of trailing edge times may refer to FIG. 3 to FIG. 4 .
  • the related description in the illustrated embodiment is not described herein again.
  • a laser measuring device is further provided for sensing external environmental information, such as distance information of an environmental target, angle information, reflection intensity information, speed information, and the like.
  • the laser measuring device can be a laser radar.
  • the laser measuring device of the embodiment of the present invention can be applied to a mobile platform, and the laser measuring device can be mounted on a platform body of the mobile platform.
  • a mobile platform with a laser measuring device can measure the external environment, for example, measuring the distance between the mobile platform and the obstacle for obstacle avoidance, and performing two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a remote control car.
  • the platform body When the laser measuring device is applied to an unmanned aerial vehicle, the platform body is the body of the unmanned aerial vehicle.
  • a laser measuring device When a laser measuring device is applied to a car At the time, the platform body is the body of the car.
  • the laser measuring device When the laser measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the laser measuring device may include the pulse information measuring device according to any one of the embodiments of the present invention.
  • the pulse information measuring device may include the pulse information measuring device according to any one of the embodiments of the present invention.
  • the pulse information measuring method and apparatus calculate pulse information of the pulse signal according to the leading edge time and the trailing edge time by acquiring a leading edge time and a trailing edge time of the pulse signal under one or more threshold conditions.
  • the method of determining the pulse time based only on the leading edge time of the pulse signal can effectively reduce the error of the pulse information measurement and improve the accuracy of the pulse information measurement.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory RAM.

Abstract

一种脉冲信息测量方法及相关装置、移动平台,所述脉冲信息测量方法包括:接收脉冲信号,并获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间(101);根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量(102)。所述脉冲信息测量方法可以提升脉冲时间和脉冲能量测量的精确度。

Description

脉冲信息测量方法及相关装置、移动平台
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或该专利披露。
技术领域
本发明涉及激光测距技术领域,尤其涉及一种脉冲信息测量方法及相关装置、移动平台。
背景技术
激光雷达是对外界的感知系统,可以获知外界的立体三维信息,不再局限于相机等对外界的平面感知方式。激光雷达的原理为主动对外发射激光脉冲信号,探测到反射回来的脉冲信号,根据脉冲信号的发射与接收之间的时间差,判断被测物体的距离;结合光脉冲的发射角度信息,便可重建获知三维深度信息。目前,在脉冲信号的脉冲时间、脉冲能量等脉冲信息的测量中,通常基于脉冲信号的前沿时间来确定脉冲时间。然而,由于脉冲本身具有一定的宽度,不同的距离、不同的反射率下,脉冲信号的宽度并不一致。因此,仅采样前沿时间无疑会对脉冲时间的测量造成一定的误差。
发明内容
本发明实施例提供一种脉冲信息测量方法及相关装置、移动平台,以降低脉冲信息测量的误差,提升脉冲信息测量的精确度。
一种脉冲信息测量方法,包括:
接收脉冲信号,并获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;
其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
一种脉冲信息测量装置,包括:
采集电路,用于接收脉冲信号,并获取所述脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
信息获取单元,用于根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
一种脉冲信息测量方法,包括:
接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
一种脉冲信息测量装置,包括:
采集电路,用于接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
信息获取单元,用于根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
一种激光测量装置,包括脉冲信息测量装置,所述脉冲信息测量装置包括:
采集电路,用于接收脉冲信号,并获取所述脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
信息获取单元,用于根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
一种激光测量装置,包括脉冲信息测量装置,所述脉冲信息测量装置包括:
采集电路,用于接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
信息获取单元,用于根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
一种移动平台,包括激光测量装置和平台本体,所述激光测量装置安装在所述平台本体,所述激光测量装置包括脉冲信息测量装置,所述脉冲信息测量装置包括:
采集电路,用于接收脉冲信号,并获取所述脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
信息获取单元,用于根据所述前沿时间和所述后沿时间,计算所述脉冲信 号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
一种移动平台,包括激光测量装置和平台本体,所述激光测量装置安装在所述平台本体,所述激光测量装置包括脉冲信息测量装置,所述脉冲信息测量装置包括:
采集电路,用于接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
信息获取单元,用于根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
所述脉冲信息测量方法及装置通过获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间,进而根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,相对于现有技术中仅根据脉冲信号的前沿时间来确定脉冲时间的方案,可以有效降低脉冲信息测量的误差,提升脉冲信息测量的精确度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的脉冲信息测量方法的第一流程示意图;
图2为本发明实施例的脉冲信息测量方法的脉冲信号在单一阈值条件下的波形对比示意图;
图3为本发明实施例的脉冲信息测量方法应用的多阈值比较器的结构示意图;
图4为本发明实施例的脉冲信息测量方法的脉冲信号在多阈值条件下的波形及前后沿时间关系示意图;
图5为本发明实施例提供的脉冲信息测量装置的第一结构示意图;
图6为本发明实施例提供的脉冲信息测量装置的采集电路的结构示意图;
图7为本发明实施例提供的脉冲信息测量装置的第二结构示意图;
图8为本发明实施例提供的脉冲信息测量装置的脉冲能量获取电路的第 一结构示意图;
图9为本发明实施例提供的脉冲信息测量装置的脉冲能量获取电路的第二结构示意图;
图10为本发明实施例提供的脉冲信息测量装置的脉冲信号在展宽处理前后的波形对比示意图;
图11为本发明实施例提供的脉冲信息测量装置的脉冲能量获取电路的第三结构示意图;
图12为本发明实施例提供的脉冲信息测量装置的脉冲能量获取电路的第四结构示意图;
图13为本发明实施例的脉冲信息测量方法的第二流程示意图;
图14为本发明实施例的脉冲信息测量方法拟合出的不同脉冲能量的脉冲信号的部分触发多个预置阈值的对比示意图;
图15为本发明实施例提供的脉冲信息测量装置的第三结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,在本发明一个实施例中,提供一种脉冲信息测量方法,可以应用于激光雷达中,以对激光雷达探测到的激光脉冲信号的脉冲信息进行测量。所述方法至少可以包括如下步骤:
步骤101:接收脉冲信号,并获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
步骤102:根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;
其中,所述脉冲信息包括脉冲时间和/或脉冲能量。所述脉冲信号为激光雷达对外发射激光脉冲信号后探测到的反射回来的激光脉冲信号。
可以理解,激光雷达通过对外发射激光脉冲信号,并探测反射激光脉冲信号,进而可以根据发射激光脉冲信号的脉冲时间与反射激光脉冲信号的脉冲时 间之差来确定目标物体的距离,并可以根据反射激光脉冲信号的脉冲能量来确定目标物体的表面反射率信息及轮廓信息。在不同的距离、不同的反射率下,激光雷达接收到的目标物体的反射激光脉冲信号的脉冲能量大小可能存在差异。可以理解,在同样的距离和阈值条件下,当目标物体表面的反射率较大时,反射激光脉冲信号的脉冲能量较大,从而使得对应的脉冲幅度较大,脉冲的前沿时间偏小、后沿时间偏大,而当目标物体表面的反射率较小时,反射激光脉冲信号的脉冲能量较小,从而使得脉冲幅度较小,脉冲的前沿时间偏大、后沿时间偏小。因此,为获取准确的脉冲时间,可以通过获取脉冲信号的前沿时间和后沿时间,进而根据所述前沿时间和后沿时间计算所述脉冲信号的脉冲时间。
在一种实施方式中,所述获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间,包括:
获取脉冲信号的前沿触发一个或多个阈值的时间作为前沿时间;
获取脉冲信号的后沿触发与所述前沿时间对应的阈值的时间作为后沿时间。
请参阅图2,其中,Vref为阈值,虚线表示的激光脉冲信号A1的幅度较大,且激光脉冲信号A1的前沿时间为t1、后沿时间为t4,实线表示的激光脉冲信号A2的幅度较小,且激光脉冲信号A2的前沿时间为t2、后沿时间为t3。其中,激光脉冲信号A1的前沿时间t1即为激光脉冲信号A1的前沿触发所述阈值Vref的时间,激光脉冲信号A1的后沿时间t4激光脉冲信号A1的后沿触发所述阈值ref的时间。激光脉冲信号A2的前沿时间t2即为激光脉冲信号A2的前沿触发所述阈值Vref的时间,激光脉冲信号A2的后沿时间t3激光脉冲信号A2的后沿触发所述阈值Vref的时间。
可以理解,所述前沿时间和后沿时间的获取可以通过比较器和时间测量单元(本实施例中为时间数字转换器Time-to-Digital Converter,TDC)来实现。其中,比较器用于将反射激光脉冲信号对应的电压脉冲信号与所述一个或多个阈值进行比较,得到对应的方波信号,进而由所述方波信号触发TDC来测量所述方波信号的前沿与后沿时间,分别对应于所述反射激光脉冲信号的前沿时间与后沿时间。
可以理解,如果图2所示的激光脉冲信号A1与激光脉冲信号A2可以是 由相同距离上的目标物体反射回来的激光脉冲信号,但由于目标物体表面的反射率的差异,导致激光脉冲信号A2的幅度小于激光脉冲信号A1的幅度。此时,若仅通过测量激光脉冲信号A1与激光脉冲信号A2的前沿时间来确定脉冲时间,因激光脉冲信号A1的前沿时间为t1小于激光脉冲信号A2的前沿时间为t2,则会导致激光脉冲信号A1的脉冲时间小于激光脉冲信号A2的脉冲时间这一错误的测量结果。
通过对比图2所示的激光脉冲信号A1和激光脉冲信号A2的波形及其前、后沿时间的关系可以看出,若同时获取激光脉冲信号A1和激光脉冲信号A2的前沿时间和后沿时间,进而根据各自的前沿时间和后沿时间来计算各自的脉冲时间,则可以使前沿时间与后沿时间的误差相互抵消,从而提升脉冲时间测量的精确度。
在一种实施方式中,所述脉冲信息包括脉冲时间,所述根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,包括:
计算所述前沿时间和对应的所述后沿时间的加权平均值,并将所述加权平均值作为所述脉冲信号的脉冲时间。
例如,对于图2所示的激光脉冲信号A1,通过计算所述前沿时间为t1、后沿时间为t4的加权平均值,即可得到所述激光脉冲信号A1的脉冲时间。可以理解,根据激光脉冲信号的波形的不同,还可以通过权值来调整所述前沿时间和所述后沿时间的权重,从而进一步提升脉冲时间计算的精确度。
在一种实施方式中,所述脉冲信息包括脉冲时间,且所述脉冲信息测量是在多个阈值条件下,所述根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,包括:
计算所述多个阈值条件下对应的全部前沿时间和后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉冲信号,并根据拟合出的脉冲信号在阈值电压上对应的时间点确定所述脉冲时间;或者,
根据第一预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时间,计算所述脉冲信号的脉冲时间;
其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时 间和后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
请参阅图3,通过比较器和时间测量单元来获取脉冲信号的前沿时间和后沿时间时,为获取更多的脉冲信息,可以采用多阈值比较器方式来对所述脉冲信号进行比较和计算。具体地,可以采用两路或两路以上的比较器,并为各路比较器分别设置不同的阈值条件,从而使得针对同一脉冲信号可以得到两组或两组以上的前沿时间和后沿时间。
在本实施例中,以采用四路比较器及四组不同的阈值条件为例来进行说明。如图3所示,其中,SU31、U32、U33、U34分别为四路比较器,TDC31、TDC32、TDC33、TDC34分别为所述四路比较器对应的时间测量单元,Vf01、Vf02、Vf03、Vf04分别为所述四组不同的阈值条件对应的阈值电压,则所述脉冲信号经过四路比较器比较并经过对应的时间测量单元之后,可以得到四组不同的前沿时间和后沿时间,即四组边沿时间。
如图4所示,其中,t1、t8分别为阈值电压Vf01对应的前沿时间和后沿时间,t2、t7分别为阈值电压Vf02对应的前沿时间和后沿时间,t3、t6分别为阈值电压Vf03对应的前沿时间和后沿时间,t4、t5分别为阈值电压Vf04对应的前沿时间和后沿时间,进一步地,可以计算所述四组不同的前沿时间和后沿时间的平均值来获取所述脉冲信号的脉冲时间。
在一种实施方式中,还可以根据所述四组阈值条件对应的前沿时间和后沿时间,可以得到所述脉冲信号的八个时间-电压信息,分别为(t1,Vf01)、(t2,Vf02)、(t3,Vf03)、(t4,Vf04)、(t5,Vf04)、(t6,Vf03)、(t7,Vf02)、(t8,Vf01),进而根据所述脉冲信号的八个时间-电压信息拟合出所述脉冲信号,并根据拟合出的脉冲信号在阈值电压上对应的时间点确定所述脉冲时间。
在一种实施方式中,还可以根据已知的场景获取脉冲信号的实际脉冲时间,例如,对已知距离上的目标物体发射激光脉冲信号并接收反射激光脉冲信号,并根据精密实验仪器测量来获取脉冲信号的实际脉冲时间。在获知脉冲信号的实际脉冲时间的基础上,通过建立所述四组不同的前沿时间和后沿时间与所述脉冲信号的脉冲时间之间的函数关系,例如,假设实际脉冲时间为T1,则可以建立如下函数关系:
T=f(t1,t2,t3,t4,t5,t6,t7,t8),其中,T为根据所述函数关系计算得到的所述脉冲信号的脉冲时间。通过最优化求解函数f,得到第一预设函数 f1,使得通过所述第一预设函数f1计算得到的脉冲时间T最接近所述脉冲信号的实际脉冲时间T1。进一步地,则可以根据最优化求解得到的第一预设函数f1来计算其他任意阈值条件下所述脉冲信号的脉冲时间。
在一种实施方式中,所述脉冲信息包括脉冲能量,且所述脉冲信息测量是在多个阈值条件下,所述根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,包括:
根据所述前沿时间和后沿时间,计算所述多个阈值条件下对应的多个脉冲宽度的和,并将所述多个脉冲宽度的和作为所述脉冲信号的脉冲能量;或者,
根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉冲信号,并根据拟合出的脉冲信号与脉冲基线之间的差值积分,计算所述脉冲信号的脉冲能量;或者,
根据第二预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时间,计算所述脉冲信号的脉冲能量;
其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间和后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
请再次参阅图3和图4,以采用四路比较器及四组不同的阈值条件为例来对本实施方式进行说明。在本实施方式中,同样可以通过图3所示四路比较器SU31、U32、U33、U34和对应的时间测量单元TDC31、TDC32、TDC33、TDC34采集得到四组阈值条件对应的前沿时间和后沿时间(t1、t8)、(t2、t7)、(t3、t6)、(t4、t5),如图4所示,并根据所述四组阈值条件对应的前沿时间和后沿时间得到所述脉冲信号的八个时间-电压信息,分别为(t1,Vf01)、(t2,Vf02)、(t3,Vf03)、(t4,Vf04)、(t5,Vf04)、(t6,Vf03)、(t7,Vf02)、(t8,Vf01)。
进一步地,在一种实施方式中,可以通过计算所述多个阈值条件下对应的多个脉冲宽度的和,即(t8-t1)+(t7-t2)+(t6-t3)+(t5-t4),并将所述多个脉冲宽度的和作为所述脉冲信号的脉冲能量。
在一种实施方式中,还可以根据所述八个时间-电压信息拟合出所述脉冲信号,进而根据拟合出的脉冲信号与脉冲基线之间的差值积分,计算所述脉冲信号的脉冲能量。
在一种实施方式中,还可以根据已知的场景获取脉冲信号的实际脉冲能量,例如,对已知距离上的目标物体发射激光脉冲信号并接收反射激光脉冲信 号,并根据精密实验仪器测量来获取脉冲信号的实际脉冲能量。在获知脉冲信号的实际脉冲能量的基础上,通过建立所述四组不同的前沿时间和后沿时间与所述脉冲信号的脉冲能量之间的函数关系,例如,假设实际脉冲能量为E1,则可以建立如下函数关系:
E=f(t1,t2,t3,t4,t5,t6,t7,t8),其中,E为根据所述函数关系计算得到的所述脉冲信号的脉冲时间。通过最优化求解函数f,得到第二预设函数f2,使得通过所述第二预设函数f2计算得到的脉冲能量E最接近所述脉冲信号的实际脉冲能量E1。进一步地,则可以根据最优化求解得到的第二预设函数f2来计算其他任意阈值条件下所述脉冲信号的脉冲能量。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述方法,还包括:
获取所述脉冲信号的脉冲幅度;
根据所述脉冲幅度,计算所述脉冲信号的脉冲能量。
其中,所述脉冲信号的脉冲幅度可以根据所述脉冲信号的前沿时间和后沿时间的时间差值来确定,例如,所述脉冲信号的前沿时间和后沿时间的时间差值越大,则脉冲幅度越大,反之,则脉冲幅度越小。此外,所述脉冲信号的脉冲幅度也可以通过峰值保持电路和模数转换器ADC来获取。
可以理解,脉冲信号的脉冲能量越大,则脉冲幅度也会越大。因此,可以通过建立脉冲能量与脉冲幅度之间的对应关系,进而可以根据脉冲幅度来计算所述脉冲信号的脉冲能量。
在一种实施方式中,所述脉冲信息还包括脉冲时间,所述方法还包括:
根据所述脉冲能量对所述脉冲时间进行校正,得到校正后的脉冲时间。
可以理解,所述脉冲信号的脉冲能量可以根据所述前沿时间和后沿时间来获取,具体可以参照前面实施例中关于脉冲能量计算的相关描述。此外,所述脉冲信号的脉冲能量还可以通过脉冲能量获取电路来获取,关于脉冲能量获取电路的构成将在后面的实施例中详细描述。
在一种实施方式中,所述根据所述脉冲幅度对所述脉冲时间进行校正,包括:
获取所述脉冲信号的模型;
根据所述脉冲信号的模型计算所述脉冲能量和偏移量的关系;
根据所述偏移量对所述脉冲时间进行校正。
可以理解,由于所述脉冲信号的波形可能存在一定的失真,如果仅根据所述前沿时间和后沿时间计算所述脉冲时间,可能导致所述脉冲时间存在一定的误差。因此,在本实施方式中,通过获取所述脉冲信号的模型,并根据所述模型计算所述脉冲能量和脉冲时间偏移量的关系,进而根据所述偏移量对所述脉冲时间进行校正,从而可以进一步提升脉冲时间测量的精确度。
可以理解,在一种实施方式中,还可以根据已知的场景获取脉冲信号的实际脉冲时间,例如,对已知距离上的目标物体发射激光脉冲信号并接收反射激光脉冲信号,并根据精密实验仪器测量来获取脉冲信号的实际脉冲时间,并计算所述根据所述前沿时间和所述后沿时间计算得到的脉冲时间和所述实际脉冲时间之间的偏移量,进而建立所述前沿时间和所述后沿时间之差和所述偏移量的关系,并建立对应的数据库,从而在获取到所述脉冲信号的前沿时间和后沿时间按之后,即可通过计算所述前沿之间和后沿时间之差,查询数据库中对应的偏移量,并根据所述偏移量对所述脉冲时间进行校正。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述方法,还包括:
对所述脉冲信号进行积分,并根据所述积分结果计算所述脉冲信号的脉冲能量。
可以理解,通过对所述脉冲信号进行积分之后,可以通过低采样速率的模数转换器ADC来对积分得到的直流量进行采样,进而根据采样结果计算所述脉冲信号的脉冲能量。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述方法,还包括:
对所述脉冲信号进行展宽和放大处理,得到展宽的脉冲信号;
对所述展宽的脉冲信号进行数字采样,并根据采样结果计算所述脉冲信号的脉冲能量。
可以理解,通过对所述脉冲信号进行展宽和放大处理之后,可以通过低采样速率的模数转换器ADC来对展宽的脉冲信号进行数字采样,并根据采样结果计算所述脉冲信号的脉冲能量。
请参阅图5,在本发明一个实施例中,提供一种脉冲信息测量装置100,包括:
采集电路110,用于获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
信息获取单元130,用于根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;
其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
在一种实施方式中,所述脉冲信息测量装置为激光雷达,所述脉冲信号为所述激光雷达探测到的激光脉冲信号。
在一种实施方式中,该信息获取单元130可以通过电路实现。
在一种实施方式中,该信息获取单元130可以通过软件实现。
在一种实施方式中,所述采集电路110包括:
一个比较器或多个具有不同阈值的比较器,分别用于接收脉冲信号;
位于每个比较器输出端的时间测量单元,用于获取所述脉冲信号触发所述比较器的阈值的前沿时间和后沿时间。
请参阅图6,在本实施例中,以所述采集电路110包括四路不同的阈值条件的比较器为例来进行说明。其中,SU61、U62、U63、U64分别为四路比较器,TDC61、TDC62、TDC63、TDC64分别为所述四路比较器对应的时间测量单元,Vf01、Vf02、Vf03、Vf04分别为所述四路比较器对应的阈值电压,则所述脉冲信号经过四路比较器比较并经过对应的时间测量单元之后,可以得到四组不同的前沿时间和后沿时间,即四组边沿时间。其中,关于所述采集电路110的具体功能还可以参照图3和图4所示实施例中的相关描述,此处不再赘述。
在一种实施方式中,所述脉冲信息包括脉冲时间,所述采集电路110具体用于获取所述脉冲信号在一个阈值条件下对应的前沿时间和后沿时间;
所述信息获取单元130具体用于:
计算所述前沿时间和对应的所述后沿时间的加权平均值,并将所述加权平均值作为所述脉冲信号的脉冲时间。
在一种实施方式中,所述脉冲信息包括脉冲时间,所述采集电路110具体用于获取所述脉冲信号在多个阈值条件下对应的前沿时间和后沿时间;
所述信息获取单元130具体用于:
计算所述多个阈值条件下对应的全部前沿时间和后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉 冲信号,并根据拟合出的脉冲信号在阈值电压上对应的时间点确定所述脉冲时间;或者,
根据第一预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时间,计算所述脉冲信号的脉冲时间;
其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时间和后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述采集电路110具体用于获取所述脉冲信号在多个阈值条件下对应的前沿时间和后沿时间;
所述信息获取单元130具体用于:
根据所述前沿时间和后沿时间,计算所述多个阈值条件下对应的多个脉冲宽度的和,并将所述多个脉冲宽度的和作为所述脉冲信号的脉冲能量;或者,
根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉冲信号,并根据拟合出的脉冲信号与脉冲基线之间的差值积分,计算所述脉冲信号的脉冲能量;或者,
根据第二预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时间,计算所述脉冲信号的脉冲能量;
其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间和后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
在一种实施方式中,所述脉冲信息还包括脉冲时间;
所述信息获取单元130,还用于根据所述脉冲能量对所述脉冲时间进行校正,得到校正后的脉冲时间。
在一种实施方式中,所述信息获取单元130具体用于:
获取所述脉冲信号的模型;
根据所述脉冲信号的模型计算所述脉冲能量和偏移量的关系;
根据所述偏移量对所述脉冲时间进行校正。
请参阅图7,在一种实施方式中,所述装置100还包括:
脉冲能量获取电路150,用于获取所述脉冲信号的脉冲能量。
所述信息获取单元130,还用于根据所述脉冲能量获取电路150获取到的所述脉冲能量对所述脉冲时间进行校正,得到校正后的脉冲时间。
在一种实施方式中,所述脉冲能量获取电路150,具体用于对所述脉冲信 号进行积分,并根据所述积分结果计算所述脉冲信号的脉冲能量。
请参阅图8,在一种实施方式中,所述脉冲能量获取电路150包括积分电路151,用于对所述脉冲信号进行积分。所述积分电路151可以包括积分运算放大器U21、第一输入电阻R21和第一反馈电容C21,所述运算放大器U21的第一输入端+IN用于输入第一参考电平Vref1,所述运算放大器U21的第二输入端-IN电连接第一输入电阻R21的一端,第一输入电阻R21的另一端用于输入所述脉冲信号,所述运算放大器U21的第二输入端-IN还通过第一反馈电容C21与所述运算放大器U21的输出端OUT电连接。所述运算放大器U21的正、负电源端V+、V-分别用于连接正、负电源VCC+、VCC-。可以理解,所述积分电路211的输出端还可以连接一模数转换器ADC,当所述脉冲信号经所述积分电路211进行积分运算之后,即可通过所述模数转换器ADC以较低的采样速率进行采样而得到所述脉冲信号的脉冲能量。
在一种实施方式中,所述脉冲能量获取电路150,具体用于对所述脉冲信号进行展宽处理,得到展宽的脉冲信号,还用于对所述展宽的脉冲信号进行数字采样,并根据采样结果计算所述脉冲信号的脉冲能量。
请参阅图9,在一种实施方式中,所述脉冲能量获取电路150包括展宽电路153,用于对所述脉冲信号进行展宽和放大处理。所述展宽电路153可以包括展宽运算放大器U23、第二输入电阻R231、反馈电阻R232及第二反馈电容C23。所述运算放大器U23的第一输入端+IN用于输入第二参考电平Vref2,所述运算放大器U23的第二输入端-IN连接第二输入电阻R231的一端,第二输入电阻R231的另一端用于输入所述脉冲信号,所述运算放大器U23的第二输入端-IN还通过相互并联的反馈电阻R232及第二反馈电容C23与所述运算放大器U23的输出端OUT连接。所述运算放大器U23的正、负电源端V+、V-分别用于连接正、负电源VCC+、VCC-。所述脉冲信号在展宽和放大处理前后的脉冲波形如图10所示,其中,实线所示为脉冲信号的原始脉冲波形,虚线所示为展宽的脉冲信号。
可以理解,所述展宽电路153的输出端还可以连接一模数转换器ADC,通过对所述脉冲信号进行展宽和放大处理之后,可以通过所述模数转换器ADC以较低的采样速率来对展宽的脉冲信号进行数字采样,并根据采样结果计算所述脉冲信号的脉冲能量。
请参阅图11,在一种实施方式中,所述脉冲能量获取电路150包括峰值保持电路155,所述峰值保持电路155包括第一二极管D1及保持电容C1,所述第一二极管D1的第一端用于输入脉冲信号,所述第一二极管D1的第二端与所述保持电容C1的第一端及所述峰值保持电路215的输出端电连接,所述保持电容C1的第二端用于输入第三参考电平Vref3。所述峰值保持电路155的输出端用于连接一模数转换器ADC,所述模数转换器ADC用于采集所述脉冲信号的峰值,从而获取所述脉冲信号的脉冲幅度。
在一种实施方式中,所述峰值保持电路155还包括第一运算放大器U31,所述第一运算放大器U31包括第一输入端+IN、第二输入端-IN、输出端OUT、正电源端V+和负电源端V-,所述第一运算放大器U31的正、负电源端V+、V-分别用于连接正、负电源VCC+、VCC-,所述第一运算放大器U31的第一输入端+IN用于输入脉冲信号,所述第一运算放大器U31的第二输入端-IN与所述第一运算放大器U31的输出端OUT及所述第一二极管D1的第一端电连接,所述第一运算放大器U31用于对所述脉冲信号进行放大,并将放大后的脉冲信号输出至所述第一二极管D1的第一端。可选地,所述峰值保持电路215还可以包括第二电阻R2,所述第二电阻R2电连接于所述第一二极管D1的第二端和所述保持电容C1的第一端之间。
请参阅图12,在一种实施方式中,所述峰值保持电路215还包括第二运算放大器U32和第一电阻R1,所述第二运算放大器U32包括第一输入端+IN、第二输入端-IN、输出端OUT、正电源端V+和负电源端V-,所述第二运算放大器U32的正、负电源端V+、V-分别用于连接正、负电源VCC+、VCC-,所述第二运算放大器U32的第一输入端+IN与所述保持电容C1的第一端电连接,所述第二运算放大器U32的第二输入端-IN与所述第一电阻R1的第一端及所述第二运算放大器U32的输出端OUT电连接,所述第一电阻R1的第二端用于输入第四参考电平Vref4。所述第二运算放大器U32用于提高后续电路的负载驱动能力。其中,所述第三参考电平Vref3可以与所述第四参考电平Vref4相同。
在一种实施方式中,所述峰值保持电路155还包括第二二极管D2,所述第二二极管D2的第一端与所述第二运算放大器U32的第二输入端-IN电连接,所述第二二极管D2的第二端与所述第二运算放大器U32的输出端OUT电连 接,所述第二二极管D2的极性与所述第一二极管D1的极性相反。可以理解,由于所述第一二极管D1的导通压降会造成所述峰值保持电路215输出的峰值存在误差,该误差的大小等于所述第一二极管D1的导通压降,通过设置所述第二二极管D2,且使得所述第二二极管D2的极性与所述第一二极管D1的极性相反,从而实现对所述误差的补偿。
可以理解,若所述峰值保持电路155用于获取所述脉冲信号的负脉冲的峰值,则所述第一二极管D1的第一端为负极,所述第一二极管D2的第二端为正极,所述第二二极管D2的第一端为正极,所述第二二极管D2的第二端为负极。若所述峰值保持电路155用于获取所述脉冲信号的正脉冲的峰值,则所述第一二极管D1的第一端为正极,所述第一二极管D1的第二端为负极,所述第二二极管D2的第一端为负极,所述第二二极管D2的第二端为正极。
在一种实施方式中,所述峰值保持电路155还包括可控开关Q,所述可控开关Q与所述保持电容C1并联,用于在所述模数转换器ADC完成峰值采集之后释放所述保持电容C1存储的电荷。其中,所述可控开关Q可以包括控制信号输入端Ctrl,用于接收控制信号,并根据所述控制信号导通或截止,当所述可控开关Q导通时,用于释放所述保持电容C1存储的电荷。
可以理解,所述脉冲信息测量装置100测量脉冲信号的脉冲信息的具体步骤还可以参照图1至图4所示方法实施例中的相关描述,此处不再赘述。
请参阅图13,在本发明一个实施例中,提供一种脉冲信息测量方法,可以应用于激光雷达中,以对激光雷达探测到的激光脉冲信号的脉冲信息进行测量。所述方法至少可以包括如下步骤:
步骤301:接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
步骤302:根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
在一种实施方式中,所述脉冲信息测量装置为激光雷达,所述脉冲信号为所述激光雷达探测到的激光脉冲信号。
在一种实施方式中,所述接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间,包括:
通过多个具有不同阈值的比较器分别接收脉冲信号;
通过位于每个比较器输出端的时间测量单元获取所述脉冲信号触发所述比较器的阈值的前沿时间或者后沿时间。
在一种实施方式中,所述脉冲信息包括脉冲时间,所述根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息,包括:
计算所述多个阈值条件下对应的全部前沿时间或后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
根据所述多个阈值条件下对应的全部前沿时间或后沿时间,拟合出所述脉冲信号的部分,并根据拟合出的脉冲信号的部分在预置电压上对应的时间点确定所述脉冲时间;或者,
根据第一预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲时间;
其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息,包括:
根据所述多个阈值条件下对应的全部前沿时间或全部后沿时间,拟合出所述脉冲信号的部分;
根据所述拟合出的脉冲信号的所述部分所触发的多个预置阈值,确定所述脉冲信号的脉冲能量。
具体的,请参阅图14,假设所述多个预置阈值包括四个依次增大的阈值电压V01、V02、V03及V04,对于拟合出的具有不同脉冲能量的脉冲信号,由于脉冲幅度上的差异,从而使得不同脉冲能量的脉冲信号的部分所触发的预置阈值的数量不同,从而可以根据所述拟合出的脉冲信号的所述部分所触发的预置阈值的数量,计算出所述拟合出的脉冲信号的能量估计值,进而根据所述能量估计值确定不同脉冲信号的脉冲能量的大小关系。例如,图14中所示的拟合出的脉冲信号A3的部分触发的预置阈值数量为4,另一拟合出的脉冲信号A4的部分触发的预置阈值数量为3,则可以确定所述脉冲信号A3的脉冲能量大于脉冲信号A4的脉冲能量。可以理解,所述多个预置阈值对应的阈值电压和所述多个阈值条件对应的阈值电压至少部分不同。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述根据所述多个前沿 时间或者多个后沿时间,计算所述脉冲信号的脉冲信息,包括:
根据第二预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲能量;
其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
可以理解,在本实施例所述的脉冲信息测量方法中,所述通过多个具有不同阈值的比较器分别接收脉冲信号,并通过位于每个比较器输出端的时间测量单元获取所述脉冲信号触发所述比较器的阈值的前沿时间或者后沿时间,以及所述根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息的具体实现方式可以参照图3至图4所示实施例中的相关描述,此处不再赘述。
请参阅图15,在本发明一个实施例中,提供一种脉冲信息测量装置200,包括:
采集电路210,用于接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
信息获取单元230,用于根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
在一种实施方式中,所述脉冲信息测量装置200为激光雷达,所述脉冲信号为所述激光雷达探测到的激光脉冲信号。
在一种实施方式中,所述采集电路210包括:
多个具有不同阈值的比较器,分别用于接收脉冲信号;
位于每个比较器输出端的时间测量单元,用于获取所述脉冲信号触发所述比较器的阈值的前沿时间或者后沿时间。
具体地,所述采集电路210的结构可以参照图6所示采集电路110的相关描述,此处不再赘述。
在一种实施方式中,所述脉冲信息包括脉冲时间,所述信息获取单元230具体用于:
计算所述多个阈值条件下对应的全部前沿时间或后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
根据所述多个阈值条件下对应的全部前沿时间或后沿时间,拟合出所述脉冲信号的部分,并根据拟合出的脉冲信号的部分在预置电压上对应的时间点确 定所述脉冲时间;或者,
根据第一预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲时间;
其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述信息获取单元230具体用于:
根据所述多个阈值条件下对应的全部前沿时间或全部后沿时间,拟合出所述脉冲信号的部分;
根据所述拟合出的脉冲信号的所述部分所触发的多个预置阈值,确定所述脉冲信号的脉冲能量。
在一种实施方式中,所述脉冲信息包括脉冲能量,所述信息获取单元230具体用于:
根据第二预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲能量;
其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
可以理解,在本实施例所述的脉冲信息测量装置中,通过所述多个具有不同阈值的比较器分别接收脉冲信号,并通过位于每个比较器输出端的时间测量单元获取所述脉冲信号触发所述比较器的阈值的前沿时间或者后沿时间,以及所述根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息的具体实现方式可以参照图3至图4所示实施例中的相关描述,此处不再赘述。
在一种实施方式中,还提供一种激光测量装置,用于感测外部环境信息,例如,环境目标的距离信息、角度信息、反射强度信息、速度信息等。所述激光测量装置可以为激光雷达。具体地,本发明实施方式的激光测量装置可应用于移动平台,所述激光测量装置可安装在移动平台的平台本体。具有激光测量装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车和遥控车中的至少一种。当激光测量装置应用于无人飞行器时,平台本体为无人飞行器的机身。当激光测量装置应用于汽车 时,平台本体为汽车的车身。当激光测量装置应用于遥控车时,平台本体为遥控车的车身。
可以理解,所述激光测量装置可以包括本发明任意一个实施例所述的脉冲信息测量装置,具体可以参照图5至图12及图15所示实施例中的相关描述,此处不再赘述。
所述脉冲信息测量方法及装置通过获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间,进而根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,相对于现有技术中仅根据脉冲信号的前沿时间来确定脉冲时间的方案,可以有效降低脉冲信息测量的误差,提升脉冲信息测量的精确度。
可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体RAM等。
可以理解,以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (45)

  1. 一种脉冲信息测量方法,其特征在于,包括:
    接收脉冲信号,并获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
    根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;
    其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
  2. 如权利要求1所述的方法,其特征在于,所述脉冲信号为激光雷达探测到的激光脉冲信号。
  3. 如权利要求1所述的方法,其特征在于,所述获取脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间,包括:
    获取脉冲信号的前沿触发一个或多个阈值的时间作为前沿时间;
    获取脉冲信号的后沿触发与所述前沿时间对应的阈值的时间作为后沿时间。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述脉冲信息包括脉冲时间,所述根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,包括:
    计算所述前沿时间和对应的所述后沿时间的加权平均值,并将所述加权平均值作为所述脉冲信号的脉冲时间。
  5. 如权利要求1至3任一项所述的方法,其特征在于,所述脉冲信息包括脉冲时间,且所述脉冲信息测量是在多个阈值条件下,所述根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,包括:
    计算所述多个阈值条件下对应的全部前沿时间和后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
    根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉冲信号,并根据拟合出的脉冲信号在阈值电压上对应的时间点确定所述脉冲时 间;或者,
    根据第一预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时间,计算所述脉冲信号的脉冲时间;
    其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时间和后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
  6. 如权利要求1至3任一项所述的方法,其特征在于,所述脉冲信息包括脉冲能量,且所述脉冲信息测量是在多个阈值条件下,所述根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息,包括:
    根据所述前沿时间和后沿时间,计算所述多个阈值条件下对应的多个脉冲宽度的和,并将所述多个脉冲宽度的和作为所述脉冲信号的脉冲能量;或者,
    根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉冲信号,并根据拟合出的脉冲信号与脉冲基线之间的差值积分,计算所述脉冲信号的脉冲能量;或者,
    根据第二预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时间,计算所述脉冲信号的脉冲能量;
    其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间和后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
  7. 如权利要求6所述的方法,其特征在于,所述脉冲信息还包括脉冲时间,所述方法还包括:
    根据所述脉冲能量对所述脉冲时间进行校正,得到校正后的脉冲时间。
  8. 如权利要求6所述的方法,其特征在于,所述脉冲信息还包括脉冲时间,所述方法还包括:
    获取所述脉冲信号的模型;
    根据所述脉冲信号的模型计算所述脉冲能量和偏移量的关系;
    根据所述偏移量对所述脉冲时间进行校正。
  9. 如权利要求1至3任一项所述的方法,其特征在于,所述脉冲信息包 括脉冲能量,所述方法,还包括:
    对所述脉冲信号进行积分,并根据所述积分结果计算所述脉冲信号的脉冲能量。
  10. 如权利要求1至3任一项所述的方法,其特征在于,所述脉冲信息包括脉冲能量,所述方法,还包括:
    对所述脉冲信号进行展宽处理,得到展宽的脉冲信号;
    对所述展宽的脉冲信号进行数字采样,并根据采样结果计算所述脉冲信号的脉冲能量。
  11. 如权利要求1至3任一项所述的方法,其特征在于,所述脉冲信息包括脉冲能量,所述方法,还包括:
    获取所述脉冲信号的脉冲幅度;
    根据所述脉冲幅度,计算所述脉冲信号的脉冲能量。
  12. 一种脉冲信息测量装置,其特征在于,包括:
    采集电路,用于接收脉冲信号,并获取所述脉冲信号在一个或多个阈值条件下对应的前沿时间和后沿时间;
    信息获取单元,用于根据所述前沿时间和所述后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
  13. 如权利要求12所述的装置,其特征在于,所述脉冲信息测量装置为激光雷达,所述脉冲信号为所述激光雷达探测到的激光脉冲信号。
  14. 如权利要求12所述的装置,其特征在于,所述采集电路包括:
    一个比较器或多个具有不同阈值的比较器,分别用于接收脉冲信号;
    位于每个比较器输出端的时间测量单元,用于获取所述脉冲信号触发所述比较器的阈值的前沿时间和后沿时间。
  15. 如权利要求12至14任一项所述的装置,其特征在于,所述脉冲信息 包括脉冲时间,所述采集电路具体用于获取所述脉冲信号在一个阈值条件下对应的前沿时间和后沿时间;
    所述信息获取单元具体用于:
    计算所述前沿时间和对应的所述后沿时间的加权平均值,并将所述加权平均值作为所述脉冲信号的脉冲时间。
  16. 如权利要求12至14任一项所述的装置,其特征在于,所述脉冲信息包括脉冲时间,所述采集电路具体用于获取所述脉冲信号在多个阈值条件下对应的前沿时间和后沿时间;
    所述信息获取单元具体用于:
    计算所述多个阈值条件下对应的全部前沿时间和后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
    根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉冲信号,并根据拟合出的脉冲信号在阈值电压上对应的时间点确定所述脉冲时间;或者,
    根据第一预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时间,计算所述脉冲信号的脉冲时间;
    其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时间和后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
  17. 如权利要求12至14任一项所述的装置,其特征在于,所述脉冲信息包括脉冲能量,所述采集电路具体用于获取所述脉冲信号在多个阈值条件下对应的前沿时间和后沿时间;
    所述信息获取单元具体用于:
    根据所述前沿时间和后沿时间,计算所述多个阈值条件下对应的多个脉冲宽度的和,并将所述多个脉冲宽度的和作为所述脉冲信号的脉冲能量;或者,
    根据所述多个阈值条件下对应的全部前沿时间和后沿时间,拟合出所述脉冲信号,并根据拟合出的脉冲信号与脉冲基线之间的差值积分,计算所述脉冲信号的脉冲能量;或者,
    根据第二预设函数及所述多个阈值条件下对应的全部前沿时间和后沿时 间,计算所述脉冲信号的脉冲能量;
    其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间和后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
  18. 如权利要求17所述的装置,其特征在于,所述脉冲信息还包括脉冲时间;
    所述信息获取单元,还用于根据所述脉冲能量对所述脉冲时间进行校正,得到校正后的脉冲时间。
  19. 如权利要求18所述的装置,其特征在于,所述信息获取单元具体用于:
    获取所述脉冲信号的模型;
    根据所述脉冲信号的模型计算所述脉冲能量和偏移量的关系;
    根据所述偏移量对所述脉冲时间进行校正。
  20. 如权利要求12至19任一项所述的装置,其特征在于,所述装置还包括:
    脉冲能量获取电路,用于获取所述脉冲信号的脉冲能量。
  21. 如权利要求20所述的装置,其特征在于,所述信息获取单元,还用于根据所述脉冲能量获取电路获取到的所述脉冲能量对所述脉冲时间进行校正,得到校正后的脉冲时间。
  22. 如权利要求20或21所述的装置,其特征在于,所述脉冲能量获取电路,具体用于对所述脉冲信号进行积分,并根据所述积分结果计算所述脉冲信号的脉冲能量。
  23. 如权利要求22所述的装置,其特征在于,所述脉冲能量获取电路包括积分电路,所述积分电路包括积分运算放大器、第一输入电阻和第一反馈电容,所述运算放大器的第一输入端与第一参考电平电连接,所述运算放大器的 第二输入端与所述第一输入电阻的一端电连接,所述第一输入电阻的另一端用于输入所述脉冲信号,所述第一反馈电容电连接于所述积分运算放大器的第二输入端与输出端之间。
  24. 如权利要求20或21所述的装置,其特征在于,所述脉冲能量获取电路具体用于对所述脉冲信号进行展宽处理,得到展宽的脉冲信号,还用于对所述展宽的脉冲信号进行数字采样,并根据采样结果计算所述脉冲信号的脉冲能量。
  25. 如权利要求24所述的装置,其特征在于,所述脉冲能量获取电路,具体包括展宽电路,所述展宽电路包括运算放大器、第二输入电阻、第二反馈电容及反馈电阻,所述运算放大器的第一输入端与第二参考电平电连接,所述运算放大器的第二输入端与所述第二输入电阻的一端电连接,所述第二输入电阻的另一端用于输入所述脉冲信号,所述第二反馈电容与所述反馈电阻并联连接于所述运算放大器的第二输入端与输出端之间。
  26. 如权利要求20或21所述的装置,其特征在于,所述脉冲能量获取电路包括峰值保持电路,所述峰值保持电路包括第一二极管及保持电容,所述第一二极管的第一端用于输入脉冲信号,所述第一二极管的第二端与所述保持电容的第一端及所述峰值保持电路的输出端电连接,所述保持电容的第二端用于输入第三参考电平。
  27. 如权利要求26所述的装置,其特征在于,所述峰值保持电路还包括第一运算放大器,所述第一运算放大器的第一输入端用于输入脉冲信号,所述第一运算放大器的第二输入端与所述第一运算放大器的输出端及所述第一二极管的第一端电连接,所述第一运算放大器用于对所述脉冲信号进行放大,并将放大后的脉冲信号输出至所述第一二极管的第一端。
  28. 如权利要求26所述的装置,其特征在于,所述峰值保持电路还包括第二运算放大器和第一电阻,所述第二运算放大器的第一输入端与所述保持电 容的第一端电连接,所述第二运算放大器的第二输入端与所述第一电阻的第一端及所述第二运算放大器的输出端电连接,所述第一电阻的第二端用于输入第四参考电平。
  29. 如权利要求28所述的装置,其特征在于,所述峰值保持电路还包括第二二极管,所述第二二极管的第一端与所述第二运算放大器的第二输入端电连接,所述第二二极管的第二端与所述第二运算放大器的输出端电连接,所述第二二极管的极性与所述第一二极管的极性相反。
  30. 如权利要求26所述的装置,其特征在于,所述峰值保持电路的输出端用于连接模数转换器,所述模数转换器用于采集所述脉冲信号的峰值,所述峰值保持电路还包括可控开关,所述可控开关与所述保持电容并联,用于在所述模数转换器完成峰值采集之后释放所述保持电容存储的电荷。
  31. 一种脉冲信息测量方法,其特征在于,包括:
    接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
    根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
  32. 如权利要求31所述的方法,其特征在于,所述脉冲信息测量装置为激光雷达,所述脉冲信号为所述激光雷达探测到的激光脉冲信号。
  33. 如权利要求31所述的方法,其特征在于,所述接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间,包括:
    通过多个具有不同阈值的比较器分别接收脉冲信号;
    通过位于每个比较器输出端的时间测量单元获取所述脉冲信号触发所述比较器的阈值的前沿时间或者后沿时间。
  34. 如权利要求31至33任一项所述的方法,其特征在于,所述脉冲信息 包括脉冲时间,所述根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息,包括:
    计算所述多个阈值条件下对应的全部前沿时间或后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
    根据所述多个阈值条件下对应的全部前沿时间或后沿时间,拟合出所述脉冲信号的部分,并根据拟合出的脉冲信号的部分在预置电压上对应的时间点确定所述脉冲时间;或者,
    根据第一预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲时间;
    其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
  35. 如权利要求31至33任一项所述的方法,其特征在于,所述脉冲信息包括脉冲能量,所述根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息,包括:
    根据所述多个阈值条件下对应的全部前沿时间或全部后沿时间,拟合出所述脉冲信号的部分;
    根据所述拟合出的脉冲信号的所述部分所触发的多个预置阈值,确定所述脉冲信号的脉冲能量。
  36. 如权利要求31至33任一项所述的方法,其特征在于,所述脉冲信息包括脉冲能量,所述根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息,包括:
    根据第二预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲能量;
    其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
  37. 一种脉冲信息测量装置,其特征在于,包括:
    采集电路,用于接收脉冲信号,并获取所述脉冲信号在多个阈值条件下对应的前沿时间或者后沿时间;
    信息获取单元,用于根据所述多个前沿时间或者多个后沿时间,计算所述脉冲信号的脉冲信息;其中,所述脉冲信息包括脉冲时间和/或脉冲能量。
  38. 如权利要求37所述的装置,其特征在于,所述脉冲信息测量装置为激光雷达,所述脉冲信号为所述激光雷达探测到的激光脉冲信号。
  39. 如权利要求37所述的装置,其特征在于,所述采集电路包括:
    多个具有不同阈值的比较器,分别用于接收脉冲信号;
    位于每个比较器输出端的时间测量单元,用于获取所述脉冲信号触发所述比较器的阈值的前沿时间或者后沿时间。
  40. 如权利要求37至39任一项所述的装置,其特征在于,所述脉冲信息包括脉冲时间,所述信息获取单元具体用于:
    计算所述多个阈值条件下对应的全部前沿时间或后沿时间的平均值,并将所述平均值作为所述脉冲信号的脉冲时间;或者,
    根据所述多个阈值条件下对应的全部前沿时间或后沿时间,拟合出所述脉冲信号的部分,并根据拟合出的脉冲信号的部分在预置电压上对应的时间点确定所述脉冲时间;或者,
    根据第一预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲时间;
    其中,所述第一预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第一预设函数的输出为所述脉冲信号的脉冲时间。
  41. 如权利要求37至39任一项所述的装置,其特征在于,所述脉冲信息包括脉冲能量,所述信息获取单元具体用于:
    根据所述多个阈值条件下对应的全部前沿时间或全部后沿时间,拟合出所述脉冲信号的部分;
    根据所述拟合出的脉冲信号的所述部分所触发的多个预置阈值,确定所述脉冲信号的脉冲能量。
  42. 如权利要求37至39任一项所述的装置,其特征在于,所述脉冲信息包括脉冲能量,所述信息获取单元具体用于:
    根据第二预设函数及所述多个阈值条件下对应的全部前沿时间或全部后沿时间,计算所述脉冲信号的脉冲能量;
    其中,所述第二预设函数的输入为所述多个阈值条件下对应的全部前沿时间或全部后沿时间,所述第二预设函数的输出为所述脉冲信号的脉冲能量。
  43. 一种激光测量装置,其特征在于,包括如权利要求12至30、37至42中任一项所述的脉冲信息测量装置。
  44. 一种移动平台,其特征在于,包括:
    权利要求43所述的激光测量装置;和
    平台本体,所述激光测量装置安装在所述平台本体。
  45. 根据权利要求44所述的移动平台,其特征在于,所述移动平台包括无人飞行器、汽车和遥控车中的至少一种。
PCT/CN2017/078660 2017-03-29 2017-03-29 脉冲信息测量方法及相关装置、移动平台 WO2018176287A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780004472.6A CN108513618B (zh) 2017-03-29 2017-03-29 脉冲信息测量方法及相关装置、移动平台
PCT/CN2017/078660 WO2018176287A1 (zh) 2017-03-29 2017-03-29 脉冲信息测量方法及相关装置、移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078660 WO2018176287A1 (zh) 2017-03-29 2017-03-29 脉冲信息测量方法及相关装置、移动平台

Publications (1)

Publication Number Publication Date
WO2018176287A1 true WO2018176287A1 (zh) 2018-10-04

Family

ID=63375777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078660 WO2018176287A1 (zh) 2017-03-29 2017-03-29 脉冲信息测量方法及相关装置、移动平台

Country Status (2)

Country Link
CN (1) CN108513618B (zh)
WO (1) WO2018176287A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063992A (zh) * 2021-03-30 2021-07-02 北京航星机器制造有限公司 用于测量两路脉冲信号间时间差的计时电路及计时方法
JP7365719B2 (ja) 2018-11-30 2023-10-20 マイクロビジョン,インク. アナログ-デジタルコンバータ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990158B2 (ja) * 2018-09-18 2022-01-12 株式会社東芝 距離計測装置、及び距離計測方法
CN111316130B (zh) * 2018-09-27 2024-03-08 深圳市大疆创新科技有限公司 一种测距装置以及基于测距装置的时间测量方法
CN211505895U (zh) * 2018-09-27 2020-09-15 深圳市大疆创新科技有限公司 激光发射装置、峰值保持电路、测距装置和移动平台
US11320520B2 (en) * 2018-11-07 2022-05-03 Baidu Usa Llc Lidar peak detection using time-to-digital converter and multi-pixel photon counter for autonomous driving vehicles
WO2020113360A1 (zh) * 2018-12-03 2020-06-11 深圳市大疆创新科技有限公司 一种采样电路、采用方法及测距装置、移动平台
CN110531168B (zh) * 2019-07-22 2021-09-28 同方电子科技有限公司 一种基于数字化接收机的脉冲信号能量检测系统及方法
CN112596062B (zh) * 2021-01-28 2021-07-13 锐驰智光(北京)科技有限公司 激光雷达的回波信号检测方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051805A2 (de) * 2008-11-10 2010-05-14 Esw Gmbh Laserentfernungsmesser mit zwei laserstrahlungsquellen
CN103791785A (zh) * 2012-11-02 2014-05-14 天津市医学堂科技有限公司 基于脉冲式激光测距原理的引信测试设备
CN104833979A (zh) * 2015-04-27 2015-08-12 北京航天控制仪器研究所 一种激光测距及激光测距数据的信号处理的方法
CN105759279A (zh) * 2016-04-20 2016-07-13 深圳市速腾聚创科技有限公司 一种基于波形时域匹配的激光测距系统及方法
WO2016121531A1 (ja) * 2015-01-29 2016-08-04 シャープ株式会社 距離測定装置
CN106019300A (zh) * 2016-08-05 2016-10-12 上海思岚科技有限公司 一种激光测距装置及其激光测距方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075300B (en) * 1980-04-30 1984-03-07 Philips Electronic Associated Method of and apparatus for detecting range pulses for distance measurement
DE19602187A1 (de) * 1996-01-23 1997-07-24 Philips Patentverwaltung Bild-ZF-Demodulatorschaltung mit variabler ZF-Verstärkungsregelung
CN202092776U (zh) * 2011-06-01 2011-12-28 北京光电技术研究所 脉冲激光能量测量装置
CN102621555B (zh) * 2012-01-20 2013-08-14 南京理工大学 一种双阈值时刻鉴别电路
CN103873017B (zh) * 2012-12-10 2018-09-25 北京普源精电科技有限公司 一种提高脉冲边沿时间分辨率的装置及方法
CN104502684B (zh) * 2014-12-19 2017-07-14 中国科学院长春光学精密机械与物理研究所 一种全数字化峰值到达时刻鉴别方法
CN105486934B (zh) * 2015-12-23 2019-04-02 北京握奇智能科技有限公司 一种基于直线拟合的脉冲波形前沿检测的方法和系统
CN106054205A (zh) * 2016-08-05 2016-10-26 上海思岚科技有限公司 一种激光测距装置及其激光测距方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051805A2 (de) * 2008-11-10 2010-05-14 Esw Gmbh Laserentfernungsmesser mit zwei laserstrahlungsquellen
CN103791785A (zh) * 2012-11-02 2014-05-14 天津市医学堂科技有限公司 基于脉冲式激光测距原理的引信测试设备
WO2016121531A1 (ja) * 2015-01-29 2016-08-04 シャープ株式会社 距離測定装置
CN104833979A (zh) * 2015-04-27 2015-08-12 北京航天控制仪器研究所 一种激光测距及激光测距数据的信号处理的方法
CN105759279A (zh) * 2016-04-20 2016-07-13 深圳市速腾聚创科技有限公司 一种基于波形时域匹配的激光测距系统及方法
CN106019300A (zh) * 2016-08-05 2016-10-12 上海思岚科技有限公司 一种激光测距装置及其激光测距方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365719B2 (ja) 2018-11-30 2023-10-20 マイクロビジョン,インク. アナログ-デジタルコンバータ
CN113063992A (zh) * 2021-03-30 2021-07-02 北京航星机器制造有限公司 用于测量两路脉冲信号间时间差的计时电路及计时方法
CN113063992B (zh) * 2021-03-30 2023-12-08 北京航星机器制造有限公司 用于测量两路脉冲信号间时间差的计时电路及计时方法

Also Published As

Publication number Publication date
CN108513618B (zh) 2022-06-21
CN108513618A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2018176287A1 (zh) 脉冲信息测量方法及相关装置、移动平台
CN211236238U (zh) 光检测和测距(lidar)系统及无人载运工具
CN110784220B (zh) 动态阈值定时电路、激光雷达、以及获取时间信息的方法
CN108781116B (zh) 一种功率调整方法及激光测量装置
CN109581399A (zh) 一种大动态范围厘米级精度激光测距方法
CN107632298B (zh) 一种应用于脉冲式激光雷达系统的高灵敏度接收电路
CN110799802B (zh) 光检测和测距系统的物体测量
CN109375194A (zh) 用于激光雷达的模拟前端读出电路
WO2023024493A1 (zh) 用于激光雷达的信号处理方法、探测方法以及激光雷达
CN111679290A (zh) 光子计数校正方法、激光雷达以及计算机可读介质
KR102430788B1 (ko) 파라미터 최적화 기능을 구비하는 라이다 센서 및 그것의 tof 산출 방법
US9874441B1 (en) Circuitry and method for reducing echo walk error in a time-of-flight laser distance device
CN114428239A (zh) 激光雷达及其飞行时间获取方法、测距方法和存储介质
US9030651B2 (en) Laser range finding device and distance measurement method thereof
CN112596062A (zh) 激光雷达的回波信号检测方法、装置及存储介质
US11448738B2 (en) Light detection and ranging signal correction methods and systems
CN210129035U (zh) 激光雷达回波数据提取装置
CN112444819A (zh) 一种脉宽检测电路、测距电路、检测方法及测距方法
CN211698204U (zh) 一种脉宽检测电路以及激光雷达测距电路
CN218445996U (zh) 激光雷达设备
Kurtti et al. An integrated receiver channel for a laser scanner
CN110646804A (zh) 基于双脉冲激光信号的脉冲时刻鉴别电路
CN210072076U (zh) 方位探测装置
Patil et al. Echo detection using differentiation for compact lidar implementation
CN111580121A (zh) 一种基于SiPM信号摆幅的测距方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902971

Country of ref document: EP

Kind code of ref document: A1