WO2016121531A1 - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
WO2016121531A1
WO2016121531A1 PCT/JP2016/051128 JP2016051128W WO2016121531A1 WO 2016121531 A1 WO2016121531 A1 WO 2016121531A1 JP 2016051128 W JP2016051128 W JP 2016051128W WO 2016121531 A1 WO2016121531 A1 WO 2016121531A1
Authority
WO
WIPO (PCT)
Prior art keywords
time difference
correction amount
pulse
distance
circuit
Prior art date
Application number
PCT/JP2016/051128
Other languages
English (en)
French (fr)
Inventor
透 花岡
佐伯 哲夫
石丸 裕
智浩 江川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016121531A1 publication Critical patent/WO2016121531A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to a pulse ToF (time-of-flight) type distance measuring device that measures a distance using an irradiation pulse.
  • ToF time-of-flight
  • the distance to the measurement target is calculated based on the time difference between the irradiation pulse being irradiated on the measurement target and the time when the scattered reflected light (received pulse) from the measurement target is received based on the irradiation pulse.
  • a distance measuring device using the pulse ToF method to be calculated has been widely put into practical use.
  • a short irradiation pulse of several ns to several tens of ns is used as a light source, and the distance is calculated from the time difference between the irradiation pulse and the light reception pulse.
  • the response speed of the light receiving circuit that converts the received light pulse into an electric signal is finite, and the intensity of the received light pulse varies depending on the distance to the measurement target and the reflectance of the measurement target surface. For this reason, a measurement error occurs simply by converting the time difference into a distance.
  • Patent Document 1 discloses a technique for obtaining a correction amount from the pulse width of a light reception pulse signal and correcting the distance.
  • the waveform of the received light pulse signal is A / D (Analog / Digital) converted
  • the first derivative waveform of the received light pulse signal is obtained by digital signal processing
  • the accurate pulse position is obtained from the center of gravity position.
  • Non-Patent Document 1 the relationship between the pulse width of the received light pulse signal and the delay amount (walk error) is measured in advance and stored as a look-up table (LUT: Look Up Table). A method of correcting is disclosed.
  • Japanese Patent Gazette Japanese Patent Laid-Open No. 8-17932 (published July 12, 1996)” Japanese Patent Gazette “Japanese Patent Laid-Open No. 2008-70270 (published March 27, 2008)”
  • Non-Patent Document 1 there is a problem in that a measurement error remains because the fluctuation component of the received light pulse due to the stray light generated by a part of the irradiation pulse reflected by the dust-proof cover member cannot be corrected. is there.
  • This invention solves said subject and provides the distance measuring apparatus which can reduce a measurement error with an inexpensive structure.
  • a distance measuring device includes a pulse width detection circuit that detects a pulse width of a received light pulse signal based on a received light pulse that reflects a projected pulse on a measurement target; A time difference measurement circuit for measuring a time difference from when the light projection pulse is projected until the light reception pulse is received; a pulse width detected by the pulse width detection circuit; and a time difference measured by the time difference measurement circuit; A correction amount calculation circuit that calculates a correction amount based on the time difference, and a distance calculation circuit that calculates a distance to the measurement object based on the time difference and the correction amount.
  • (A) is sectional drawing which shows the structure of the laser range finder (LRF) based on Embodiment 1
  • (b) is a top view for demonstrating the distance measurement range. It is a circuit diagram which shows the circuit structure of the said laser range finder (LRF).
  • (A)-(c) is a wave form diagram which shows the irradiation pulse of the said laser range finder (LRF), a light reception pulse, and a light reception pulse signal.
  • (A) is a graph in which the light emission / emission time difference Tr, the pulse width Tw, and the correction amount Tc of the laser range finder (LRF) are plotted in a three-dimensional space, and (b) shows the pulse width Tw and the correction amount Tc.
  • (C) is a graph which shows the relationship between pulse width Tw and light emission / emission time difference Tr. It is a figure which shows the two-dimensional lookup table for calculating
  • LRF laser range finder
  • FIG. 1A is a cross-sectional view showing the configuration of the LRF 1 according to the first embodiment
  • FIG. 1B is a plan view for explaining the distance measurement range
  • FIG. 2 is a circuit diagram showing a circuit configuration of the LRF 1.
  • the LRF 1 includes a light emitting element 8, a collimating lens 12, a rising mirror 13, a light shielding tube 14, a light receiving mirror 15, a light receiving lens 16, a motor 17, a shaft 18, a light receiving circuit board 19, a processor board 20, and an electrical connection (not shown). Harness and other members, and these are housed in a hood (cover member) 9 and a housing 24.
  • the hood 9 is a substantially cylindrical member made of a resin material that transmits infrared rays and blocks visible light.
  • the hood 9 transmits an irradiation pulse (light projection pulse) P1 and a light reception pulse P2, while sunlight is used. It has the role of preventing the incidence of ambient light.
  • the hood 9 also has a role of preventing foreign matters from adhering to the internal motor 17 and optical members.
  • the motor 17, the shaft 18, the light shielding cylinder 14, and the light receiving mirror 15 are integrated members, and the whole rotates around the central axis of the shaft 18 by the rotation of the motor 17.
  • the light emitting element 8 is an infrared pulse LD (Laser Diode), and emits an infrared pulse having a wavelength of 905 nm.
  • the pulse width of the infrared pulse is several ns to several tens ns, the peak current is 5 to 10 A, and the duty is about 0.05 to 0.1%.
  • the average emission power of the light-emitting element 8 in the present embodiment is several mW or less, satisfies the class 1 defined in IEC 60825-1, which is an international standard for safety standards of laser products, and the light-emitting element 8 directly emits light. Designed to a level that is safe for eyes.
  • the light receiving circuit board 19 is mounted with a light receiving element 21, a light receiving amplifier 22, and a comparator 23, and is electrically connected to the processor board 20.
  • the light receiving element 21 is an avalanche photodiode (APD), a bias voltage is applied to the cathode terminal by a power supply circuit (not shown) in the light receiving circuit board 19, and the anode side is connected to the light receiving amplifier 22.
  • APD avalanche photodiode
  • circuit components such as an arithmetic circuit 31, a TDC (Time Digital Converter) 32, and a driver circuit 33 are mounted.
  • the TDC 32 includes a pulse width detection circuit 2 and a time difference measurement circuit 3.
  • the pulse width detection circuit 2 detects the pulse width of the light reception pulse signal S2 based on the light reception pulse P2 reflecting the irradiation pulse P1 to the measurement object B.
  • the time difference measurement circuit 3 measures a time difference from when the irradiation pulse P1 is projected until the light reception pulse P2 is received.
  • the arithmetic circuit 31 includes a correction amount calculation circuit 4 and a distance calculation circuit 5.
  • the correction amount calculation circuit 4 calculates the correction amount based on the pulse width detected by the pulse width detection circuit 2 and the time difference measured by the time difference measurement circuit 3.
  • the distance calculation circuit 5 calculates the distance to the measurement target B based on the time difference measured by the time difference measurement circuit 3 and the correction amount calculated by the correction amount calculation circuit 4.
  • the driving pulse signal S1 is sent from the arithmetic circuit 31 to the driver circuit 33 at a predetermined timing.
  • the driver circuit 33 pulse-drives the light emitting element (infrared pulse LD (Laser : Diode: laser diode)) 8 based on the drive pulse signal S1.
  • the irradiation pulse P1 emitted from the light emitting element 8 is made into substantially parallel light by the collimating lens 12, and is transmitted to the outside through the hood 9 via the rising mirror 13, the light receiving mirror 15, and the light shielding cylinder 14. .
  • the direction of the light receiving mirror 15 changes as the motor 17 rotates. For this reason, the emission direction of the irradiation pulse P1 also changes continuously.
  • the irradiation pulse P1 can be projected onto a fan-shaped range from OS to OE.
  • the angle is 270 °.
  • O is defined as the origin
  • the direction opposite to the light emitting element 8 with respect to the origin O is defined as the front
  • the front-rear direction is defined as the Y axis (YY ′ axis)
  • the left-right direction is defined as the front direction.
  • the X axis (XX ′ axis) and the vertical direction are defined as the Z axis (ZZ ′ axis).
  • FIG. 1B shows the irradiable directions in the LRF 1 according to this embodiment.
  • the irradiation pulse P1 transmitted through the hood 9 is scattered and reflected on the surface of the measurement object B outside the LRF1, and becomes a light reception pulse.
  • the intensity distribution of the scattered and received light-receiving pulse is close to a Lambert distribution if the surface of the measurement target B is a diffuse reflection surface, and close to specular reflection if the surface of the measurement target B is a glossy surface such as a metal. Angular distribution.
  • the actual measurement object B often has an intermediate distribution between the two.
  • the surface color (reflectance) of the measurement object B, the incident angle of the irradiation pulse P1 to the measurement object B, and the measurement object B Depending on the distance, a part of the irradiation pulse P1 returns to the traveling direction and the academic direction of the irradiation pulse P1 as a light reception pulse P2.
  • the received light pulse P2 returned after being scattered and reflected again passes through the hood 9 and enters the inside of the LRF1. Thereafter, the light receiving pulse P2 is reflected by the light receiving mirror 15, is collected by the light receiving lens 16, and reaches the light receiving element 21 on the light receiving circuit board 19.
  • a photocurrent corresponding to the light receiving pulse P2 is generated, and this is converted into a voltage by the light receiving amplifier 22 and amplified.
  • the amplified light reception pulse signal S2 is binarized by the comparator 23 based on a predetermined threshold voltage, converted into a digital light reception pulse signal S3, and transmitted to the TDC 32 of the processor board 20.
  • the TDC 32 is a circuit element that performs time-digital value conversion, and is configured as an integrated circuit such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
  • the TDC 32 receives the drive pulse signal S1 generated by the arithmetic circuit 31 and the digital light reception pulse signal S3 generated by the comparator 23.
  • the drive pulse signal S1 and A numerical value representing a time difference of the digital light reception pulse signal S3 and a numerical value obtained by digitizing the pulse width of the digital light reception pulse signal S3 are output.
  • the former is referred to as “light emitting / receiving time difference Tr” and the latter is referred to as “pulse width Tw”.
  • FIGS. 3A to 3C are waveform diagrams showing the irradiation pulse P1, the light reception pulse P2, and the light reception pulse signal S2 of the LRF1.
  • T [s] time difference between the irradiation pulse P1 and the light reception pulse P2
  • L T / (2c)
  • c can be calculated by the speed of light [m / s].
  • the calculation of the distance L is performed at a constant timing in synchronization with the rotation of the motor 17.
  • the value of the distance L is averaged for every predetermined angle, and is stored in the arithmetic circuit 31 as an average distance.
  • the predetermined angle can be switched in three ways: 1 °, 0.5 °, and 0.25 °.
  • the average distance for each predetermined angle is combined into binary data for one rotation of the motor 17, that is, 270 °, integrated with header information indicating time information and other measurement conditions, and output to the outside of the LRF 1 as measurement data.
  • the rotation frequency of the motor 17 is 10 Hz
  • measurement data for one rotation is output from the LRF 1 every 10 Hz, that is, every 100 ms.
  • the user of the LRF 1 can know the distance information of the measurement target B existing around the LRF 1 by reading the measurement data.
  • the light receiving / emitting time difference Tr obtained by the time difference measuring circuit 3 provided in the TDC 32 does not completely coincide with the theoretical time difference T from when the irradiation pulse P1 is irradiated until the light receiving pulse P2 is received.
  • the difference between the time difference T and the light emitting / receiving time difference Tr (1) A difference between the time when the drive pulse signal S1 is input to the TDC 32 and the time when the irradiation pulse P1 is irradiated from the light emitting element 8.
  • (1) and (3) are almost constant even when the measurement conditions change, and can be regarded as constants.
  • (2) is because the amount of light received by the light receiving element 21 is increased or decreased depending on the reflectance of the measurement target B, that is, the material, the inclination of the measurement target B, the distance to the measurement target B, and the like. Accordingly, the response waveform of the light reception pulse signal S2 changes, and the value of the light receiving / emitting time difference Tr changes.
  • the delay amount Te in (2) is always a positive value, but (1) and (3) are based on the sum of wiring delays, and may take a negative value. Therefore, depending on the relationship between the magnitudes of (2) and (1) and (3), the correction amount Tc, which is the sum of them, may take a negative value. Since (1) and (3) are almost constant amounts regardless of the conditions, for the sake of simplicity, these will be ignored and the delay amount Te will be assumed to be equal to the correction amount Tc.
  • Non-Patent Document 1 the relationship between the pulse width Tw and the delay amount (walk error) is measured in advance and stored as a look-up table (LUT: Look Up Table, hereinafter also referred to as “LUT”).
  • LUT Look Up Table
  • the relationship between the pulse width Tw and the delay amount (walk error) Te is determined by the waveform of the light receiving pulse P2 and the circuit characteristics of the light receiving amplifier 22, and normally does not depend on the light receiving / emitting time difference Tr.
  • FIG. 4A is a graph in which the light emission / emission time difference Tr, the pulse width Tw, and the correction amount Tc of the LRF 1 are plotted in a three-dimensional space
  • FIG. 4B is a relationship between the pulse width Tw and the correction amount Tc
  • (C) is a graph which shows the relationship between pulse width Tw and light emission / emission time difference Tr.
  • FIG. 4 (b) and 4 (c) correspond to the graphs of FIG. 4 (a) viewed from the side and directly above, respectively. If the relationship between the pulse width Tw and the correction amount Tc is uniform, the plot of FIG. 4B should be on one curve. However, in practice, a slight spread is seen in the region where the pulse width Tw is 60 ns or less. This spread can be considered as an error due to the fluctuation component based on the stray light described above.
  • the received light pulse signal is not simply binarized by a comparator, but is converted into a digital waveform by an A / D converter, and then digital signal processing is performed, so that the waveform shape is matched. Enables fine correction.
  • a very high speed A / D converter is required to accurately digitize the received light pulse signal. For example, if the pulse width of the received light pulse signal is about 10 ns, an A / D converter with a sampling rate of 1 to 2 Gsps and a resolution of about 8 bits is considered necessary.
  • Such an A / D converter is very expensive and costs several to ten times as much as the processor. Therefore, the price of the entire LRF becomes very expensive.
  • FIG. 5 is a diagram showing a two-dimensional LUT for obtaining a correction amount based on the pulse width Tw of the light reception pulse signal and the light emission / emission time difference Tr.
  • Another solution is to use a two-dimensional LUT for correction.
  • a two-dimensional LUT that determines the value of the correction amount Tc for the combination of the pulse width Tw and the light emission / emission time difference Tr is prepared in advance, and the pulse width Tw and The correction amount Tc can be obtained from the value of the light emitting / receiving time difference Tr, and correction can be performed.
  • this method has a problem that a very large storage capacity is required to store a two-dimensional LUT.
  • the LRF 1 of the present embodiment in order to obtain practical distance accuracy, it is necessary to divide each of the pulse width Tw and the light emitting / receiving time difference Tr into about 200 to 300 and perform accurate correction. .
  • a general-purpose processor has a memory for holding user data, which is usually about several k to several tens of kBytes, the internal memory is insufficient to store the two-dimensional LUT, and an external storage element needs to be added. is there. This is an obstacle to reducing the material price of LRF.
  • correction data acquisition work for obtaining correction data to be stored in the two-dimensional LUT in advance becomes enormous, and assembly may be difficult.
  • the LRF 1 is characterized in that the correction LUT is divided into two one-dimensional LUTs and two-stage correction is performed. Details of this correction procedure will be described below with reference to FIGS.
  • FIG. 6 is a diagram showing a first-stage correction procedure in LRF1
  • (a) is a graph showing a fitting curve of a reference data series in the plane of pulse width Tw-1 order correction amount Tc1 related to LRF1
  • FIG. 4 is a diagram showing a one-dimensional lookup table LT1 generated based on the graph.
  • the LRF 1 according to Embodiment 1 acquires correction data at various distances and angles using measurement objects of two or more different colors at the stage after assembly and before shipment.
  • the color to be used is desirably a color having a large difference in reflectance as much as possible, such as black and white. Three or more colors such as black, gray, and white may be used.
  • a data set acquired with one color is hereinafter referred to as a “data series”.
  • a data series of any one color is set as a “reference data series”. For example, when a position where a minute fluctuation component such as stray light is mixed is known, a data series of colors with less influence can be used as a reference data series.
  • a one-dimensional lookup table (one-dimensional first time difference correction amount lookup table) of pulse width Tw ⁇ 1 primary correction amount (first time difference correction amount) Tc1 is used using only the reference data series. Create LT1. This procedure will be described with reference to FIGS.
  • Curve C1 is obtained by fitting the data of this reference data series appropriately.
  • An example of the one-dimensional lookup table LT1 of the pulse width Tw minus the primary correction amount Tc1 created in this way is shown in FIG.
  • the range that can be taken by the pulse width Tw and the primary correction amount Tc1 varies depending on variations in circuit constants of the light receiving circuit, individual differences, and the like.
  • FIG. 7 is a diagram showing a second-stage correction procedure in LRF1, and (a) is a graph showing a fitting curve of a reference data series in a plane relating to pulse width Tw-pulse width Tw-light emitting / receiving time difference Tr relating to LRF1. (B) is a graph showing data of all data series plotted on the plane related to the difference ⁇ Tr ⁇ secondary correction amount Tc2 of the light emission / emission time difference, and (c) is generated based on the graph of (b).
  • FIG. 6 is a diagram showing a one-dimensional lookup table LT2.
  • the difference ⁇ Tr in the light emission / emission time difference represents the difference between the Tr in the given data series with respect to the light emission / emission time difference Tr in the reference data series.
  • the secondary correction amount (time difference correction amount) Tc2 represents the residual of the distance that cannot be corrected by the first-stage correction obtained from the fitting curve of the reference data series (a value converted into time).
  • the secondary correction amount Tc2 corresponding to the residual that cannot be corrected by the primary correction amount Tc1 changes in a manner that is substantially proportional to the distance from the reference data series of the other data series. Therefore, the plot of ( ⁇ Tr, Tc2) relating to all the data series in FIG. 7B is distributed on almost one curve on the difference ⁇ Tr-secondary correction amount Tc2 plane of the light emitting / receiving time difference.
  • the second time difference correction amount circuit 7 calculates the value of the secondary correction amount Tc2 with respect to the time difference difference ⁇ Tr.
  • the one-dimensional lookup table (one-dimensional time difference correction amount lookup table) LT2 related to the difference ⁇ Tr ⁇ secondary correction amount Tc2 as shown in FIG. 7C is finally corrected to the second time difference.
  • the quantity circuit 7 is generated.
  • the first time difference correction amount circuit 6 and the second time difference correction amount circuit 7 provided in the arithmetic circuit 31 of the LRF 1 acquire the correction data as described above after the assembly of the LRF 1, the first step correction, and the second step correction.
  • the LRF 1 is shipped in a state where these one-dimensional lookup tables LT1 and LT2 are stored in a memory (not shown) in the arithmetic circuit 31.
  • correction data is acquired using two types of materials, white and black. Since the actual measurement object B is considered to have an intermediate reflectance between white and black, correction data can be obtained by easily interpolating from the two data relating to white and black. Thus, by using correction data (reflection data) obtained from a plurality of materials having different reflectances, an accurate distance can be calculated regardless of the reflectance of the measurement object B.
  • Correction data can be acquired. First, correction data is acquired with a black or white material with the hood 9 removed from the LRF 1, and this is used as a reference data series. Subsequently, black and white correction data are acquired with the hood 9 attached to the LRF 1, and the two-step correction is performed by the same procedure as described above, using the combined data as the entire data series.
  • the up tables LT1 and LT2 are generated.
  • stray light that is, data from which fluctuation components are completely removed can be used as the reference data series. Therefore, the primary correction amount when stray light is not present in the first stage correction is obtained, and the secondary correction amount that cannot be corrected due to the influence of stray light is obtained in the second stage correction. As a result, it can be expected that the influence of stray light is separated and corrected correctly and a more accurate measurement result is obtained. As described above, in the present embodiment, by using the correction data obtained by measurement in a state where the influence of the stray light in the LRF 1 is excluded, it is possible to calculate an accurate distance without the influence of the stray light.
  • the procedure for actually performing distance measurement using the LRF1 in which the one-dimensional lookup tables LT1 and LT2 are stored in the memory in the arithmetic circuit 31 by the above procedure is as follows.
  • the first time difference correction amount circuit 6 provided in the arithmetic circuit 31 has values of the light emission / emission time difference Tr obtained by the time difference measurement circuit 3 provided in the TDC 32 and the pulse width Tw obtained by the pulse width detection circuit 2.
  • the primary correction amount Tc1 is obtained from the pulse width Tw with reference to the first-stage one-dimensional lookup table LT1.
  • the second time difference correction amount circuit 7 obtains the secondary correction amount Tc2 from the light emitting / receiving time difference Tr with reference to the two-dimensional one-dimensional lookup table LT2.
  • the distance calculation circuit 5 calculates the corrected distance L using these two correction amounts Tc1 and Tc2.
  • L (Tr ⁇ Tc1 ⁇ Tc2) / (2c) Calculate as
  • This mathematical expression (model expression) is generally a rational expression, an exponential function, a logarithmic function, and a combination thereof, and is an expression that includes one or more unknown parameters.
  • f4 (A1 / Tw + A2) ⁇ (A3 ⁇ exp ( ⁇ A4 ⁇ (Tr ⁇ A5) 2 )) + A6
  • A1 to A6 are unknown parameters. These unknown parameters have different values for each individual LRF1 depending on the magnitude of stray light.
  • the memory in the arithmetic circuit 31 stores the lookup table LT1 and the values of the parameters A1 to A6.
  • the first time difference correction amount circuit 6 calculates the primary correction amount Tc1 from the lookup table LT1 as in the previous procedure, but the second time difference correction amount circuit 7 uses the parameters A1 to A6 and the model instead of the lookup table LT2.
  • the one-dimensional lookup table LT2 having the light emitting / receiving time difference Tr as a variable
  • FIG. 8 is a graph for explaining a procedure for setting abnormal data generated by a glossy surface or multi-pass as an invalid distance value in LRF1.
  • the measurement target B has a glossy surface such as a metal or glass
  • the scattered reflection characteristic of the glossy surface is greatly deviated from the Lambert distribution. Therefore, depending on the angle of the irradiation pulse P1, the intensity of the light reception pulse P2 is significantly attenuated and normal.
  • the waveform of the light reception pulse signal S2 may not be obtained. Even if the measurement target B is a normal wall, when the reflected light is added and received by a plurality of different paths (multipath), the waveform of the light reception pulse P2 may be greatly collapsed. In such a case, if the correction is performed using the pulse width Tw in the same manner as the normal light reception pulse P2 whose waveform is not broken, an incorrect correction amount is obtained.
  • a possible range of the difference ⁇ Tr in the light emitting / receiving time difference can be set and stored separately from the one-dimensional lookup table LT2.
  • ⁇ Tr is the upper limit of ⁇ Tr and the lower limit is ⁇ Trb
  • 2nd time difference correction amount circuit 7 aborts the calculation of secondary correction amount Tc2, assuming that data out of the range between curves C2 and C3 appears when data plotted on the lower side appears.
  • the second time difference correction amount circuit 7 outputs a numerical value indicating that measurement is impossible to the distance calculation circuit 5. As a result, it is possible to prevent an error from occurring in the distance measurement value when a glossy surface or multi-pass occurs. Note that the possible range of the value of ⁇ Tr stored in LRF1 can be set to a different value for each individual by referring to the value of the one-dimensional lookup table LT2.
  • an accurate distance can be calculated with an inexpensive configuration without using an expensive A / D converter or a large amount of storage devices.
  • the distance is corrected at low cost by using the memory built in the processor (calculation circuit 31) that performs the distance calculation without using an external storage element, and an accurate distance is obtained. Can be calculated.
  • an accurate distance can be calculated regardless of the reflectance of the measurement target.
  • the measurement error is generated by outputting the distance as an invalid value. Can be prevented.
  • the configuration of the intrusion detection device according to the second embodiment is the same as that of the LRF 1 according to the first embodiment, except that a detection area is set in advance and stored in the arithmetic circuit 31.
  • This intrusion detection device is installed in a security area such as a factory or office with a detection area set in advance.
  • the intrusion detection device When the intrusion detection device always performs measurement at night when no person is present and determines that an object exists in the detection area, the intrusion detection device determines that an obstacle has intruded and outputs an alarm signal.
  • the intrusion detection device can accurately detect the intrusion of an obstacle by calculating an accurate distance to the obstacle even though it is an inexpensive configuration.
  • the configuration of the three-dimensional distance measuring apparatus according to the third embodiment is the same as that of the first embodiment except that an additional motor and shaft are provided outside the housing 24 so that the housing 24 itself can reciprocate in the Z-axis direction. It is the same as LRF1 concerning.
  • the three-dimensional distance measuring device measures the distance at different heights by measuring while performing the reciprocating movement in the vertical direction by the additional motor. Distance information can be output.
  • the three-dimensional distance measuring apparatus has an inexpensive configuration, it can calculate an accurate distance to a measurement target and accurately perform a three-dimensional distance measurement.
  • the distance measuring device (LRF1) detects the pulse width Tw of the received light pulse signal S2 based on the received light pulse P2 that reflects the projection pulse (irradiation pulse P1) to the measurement object B.
  • a circuit 2 a time difference measuring circuit 3 for measuring a time difference from when a light projection pulse (irradiation pulse P1) is projected until the light reception pulse P2 is received, a pulse width detected by the pulse width detection circuit 2,
  • a correction amount calculation circuit 4 that calculates a correction amount based on the time difference measured by the time difference measurement circuit 3, and a distance calculation circuit 5 that calculates a distance to the measurement object B based on the time difference and the correction amount. I have.
  • the light projection pulse is projected by performing correction based on the pulse width of the light reception pulse signal and the time difference between when the light projection pulse is projected and when the light reception pulse is received. Even if there is a collapse of the waveform of the received light pulse depending on the time difference from when the received light pulse is received, the correction can be performed with high accuracy.
  • the distance measuring device (LRF1) according to aspect 2 of the present invention is provided so as to cover the light emitting element 8 that projects the projection pulse (irradiation pulse P1) on the measurement object B in the above aspect 1, and the measurement object B You may further provide the cover member (hood
  • the measurement distance when projecting a projection pulse to the outside through the cover member, stray light generated by partially reflecting the projection pulse on the inner surface of the cover, particularly from a measurement object at a short distance. Even if waveform collapse occurs in the received light pulse, the measurement distance can be corrected with high accuracy.
  • the correction amount calculation circuit 4 uses the first time difference correction amount (primary correction amount Tc1) based on the pulse width Tw.
  • a first time difference correction amount circuit 6 for calculating the second time difference correction amount circuit 7 for calculating a second time difference correction amount (secondary correction amount Tc2) based on at least the time difference, and the distance calculation circuit 5 May calculate the distance based on the time difference, the first time difference correction amount, and the second time difference correction amount.
  • the processing for calculating the first time difference correction amount using only the pulse width of the received light pulse signal as a reference value and only the time difference from when the light projection pulse is projected until the light reception pulse is received are referred to.
  • the process of calculating the second time difference correction amount as a value is performed independently, and finally the distance to the measurement object is calculated using the first time difference correction amount and the second time difference correction amount. That is, using the data from which the fluctuation component such as stray light is completely removed as the reference data series in the first stage correction, the primary correction amount when there is no fluctuation component is obtained, and the influence of the fluctuation component in the second stage correction. As a result, a secondary correction amount that cannot be corrected is obtained. Thereby, the influence of the fluctuation component can be separated and corrected correctly, and a more accurate measurement result can be obtained.
  • the first time difference correction amount circuit 6 includes a one-dimensional first time difference correction amount look in which a correction amount corresponding to the pulse width Tw is described.
  • the first time difference correction amount (primary correction amount Tc1) is calculated based on an up table (one-dimensional lookup table LT1)
  • the second time difference correction amount circuit 7 corresponds to the time difference (light emitting / receiving time difference ⁇ Tr).
  • the second time difference correction amount (secondary correction amount Tc2) may be calculated based on a one-dimensional second time difference correction amount lookup table (one-dimensional lookup table LT2) in which the correction amount is described.
  • each correction amount can be calculated from one type of reference value.
  • the distance calculation circuit 5 includes the first time difference correction amount (primary correction amount Tc1) and the second time difference correction amount.
  • the time difference may be corrected based on the sum of (secondary correction amount Tc2), and the distance may be calculated based on the corrected time difference.
  • a value obtained by adding the first correction amount and the second correction amount is used as a final correction amount, with respect to a time difference from when the light projection pulse is projected until the light reception pulse is received.
  • the time difference can be corrected by taking the difference, and the distance to the measurement object can be calculated based on the corrected time difference.
  • the distance calculation circuit 5 includes the pulse width Tw detected by the pulse width detection circuit 2, and The distance may be calculated when the time difference (light emitting / receiving time difference Tr) measured by the time difference measuring circuit 3 satisfies a predetermined relationship.
  • the range of the relationship between the pulse width of the light reception pulse signal assumed in advance and the time difference from when the light projection pulse is projected until the light reception pulse is received is determined. It is possible to prevent a clear measurement error by determining that a deviation is invalid.
  • the present invention can be used for a pulse ToF (time-of-flight) type distance measuring device that measures a distance using an irradiation pulse.
  • ToF time-of-flight
  • the present invention can be used as an independent device for industrial, consumer and other uses such as a laser range finder (LRF). It is also possible to use the whole as an integrated circuit (IC).
  • LRF laser range finder
  • IC integrated circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

 距離算出回路(1)は、受光パルス信号(S2)のパルス幅を検出するパルス幅検出回路(2)と、照射パルス(P1)と受光パルス(P2)との時間差を測定する時間差測定回路(3)と、上記パルス幅と上記時間差とに基づいて補正量を算出する補正量算出回路(4)と、上記時間差と上記補正量とに基づいて測定対象までの距離を算出する距離算出回路(5)とを備える。

Description

距離測定装置
 本発明は、照射パルスを用いて距離を測定するパルスToF(飛行時間、Time Of Flight)方式の距離測定装置に関する。
 測定対象に照射パルスを照射し、その照射パルスが照射されてから、照射パルスに基づく測定対象からの散乱反射光(受光パルス)が受光されるまでの時間差に基づいて、測定対象までの距離を算出するパルスToF方式を用いた距離測定装置が広く実用化されている。
 パルスToF方式では、光源として数nsから数十nsの短い照射パルスが用いられ、照射パルスと受光パルスとの上記時間差から上記距離を算出する。しかしながら、受光パルスを電気信号(受光パルス信号)に変換する受光回路の応答速度が有限であり、また、受光パルスの強度が測定対象までの距離、測定対象表面の反射率によって変化する。このため、単純に上記時間差を距離に変換するだけでは測定誤差が発生する。この測定誤差を補正する方法がこれまでに幾つか提案されている。
 特許文献1には、受光パルス信号のパルス幅から補正量を求め、上記距離を補正する手法が開示されている。
 また、特許文献2では、受光パルス信号の波形をA/D(Analog/Digital)変換し、デジタル信号処理により受光パルス信号の1次微分波形を得て、その重心位置から正確なパルス位置を求めて距離を算出する手法が開示されている。
 非特許文献1では、受光パルス信号のパルス幅と遅延量(walk error)との関係を予め測定してルックアップテーブル(LUT:Look Up Table)として記憶しておき、これを参照して距離を補正する手法が開示されている。
日本国公開特許公報「特開平8-179032号公報(1996年7月12日公開)」 日本国公開特許公報「特開2008-70270号公報(2008年3月27日公開)」
S.Kurtti and J. Kostamovaara (フィンランドOULU大),IEEE. Trans. Instrum. Meas., vol.60, no.1, pp.146-157
 しかしながら、上記特許文献1に開示された手法では、受光パルス信号のパルス幅のみにより補正量を算出しているので、迷光などの影響により、同じパルス幅でも測定対象の反射率が異なることにより必要な補正量が異なる場合には、測定誤差が生じることになるという問題がある。
 また、特許文献2に開示された手法のように受光パルス信号の波形をA/D変換する場合は、受光パルス信号のパルス幅以外の要因を考慮したより高度な補正が可能になるが、ToF方式に使用可能なレベルの高速かつ高分解能のA/Dコンバータを距離測定装置に搭載する必要がある。このため、部材価格が非常に高価になってしまうという問題がある。
 非特許文献1に開示された手法では、照射パルスの一部が防塵用のカバー部材で反射された生じた迷光による受光パルスの変動成分を補正することができず、測定誤差が残るという問題がある。
 本発明は、上記の課題を解決し、安価な構成で測定誤差を低減することができる距離測定装置を提供するものである。
 上記の課題を解決するために、本発明の一態様に係る距離測定装置は、測定対象への投光パルスを反射した受光パルスに基づく受光パルス信号のパルス幅を検出するパルス幅検出回路と、前記投光パルスが投光されてから受光パルスが受光されるまでの時間差を測定する時間差測定回路と、前記パルス幅検出回路により検出されたパルス幅と、前記時間差測定回路により測定された時間差とに基づいて補正量を算出する補正量算出回路と、前記時間差と前記補正量とに基づいて前記測定対象までの距離を算出する距離算出回路とを備えることを特徴とする。
 本発明の一態様によれば、安価な構成で測定誤差を低減することができる距離測定装置を提供するという効果を奏する。
(a)は実施形態1に係るレーザレンジファインダ(LRF)の構成を示す断面図であり、(b)はその距離測定範囲を説明するための平面図である。 上記レーザレンジファインダ(LRF)の回路構成を示す回路図である。 (a)~(c)は、上記レーザレンジファインダ(LRF)の照射パルス、受光パルス、及び受光パルス信号を示す波形図である。 (a)は、上記レーザレンジファインダ(LRF)の受発光時間差Tr、パルス幅Tw、及び補正量Tcを3次元空間でプロットしたグラフであり、(b)は、パルス幅Twと補正量Tcとの間の関係を示すグラフであり、(c)は、パルス幅Twと受発光時間差Trとの間の関係を示すグラフである。 受光パルス信号のパルス幅Twと受発光時間差Trとに基づいて補正量を求めるための2次元ルックアップテーブルを示す図である。 上記レーザレンジファインダ(LRF)における第1段階の補正手順を示す図であり、(a)は上記レーザレンジファインダ(LRF)に係るパルス幅Tw-1次補正量Tc1平面における基準データ系列のフィッティング曲線を示すグラフであり、(b)は上記グラフに基づいて生成された1次元ルックアップテーブルを示す図である。 上記レーザレンジファインダ(LRF)における第2段階の補正手順を示す図であり、(a)は上記レーザレンジファインダ(LRF)に係るパルス幅Tw-パルス幅Tw-受発光時間差Tr平面における基準データ系列のフィッティング曲線を示すグラフであり、(b)は受発光時間差の差分ΔTr-2次補正量Tc2平面にプロットされた全データ系列のデータを示すグラフであり、(c)は(b)のグラフに基づいて生成された1次元ルックアップテーブルを示す図である。 上記レーザレンジファインダ(LRF)において、光沢面やマルチパスによって生じる異常なデータを距離無効値とする手順を説明するグラフである。
 〔実施形態1〕
 本発明の実施形態1に係る距離測定装置であるレーザレンジファインダ(以下、「LRF」という)1の構成及び動作の詳細について、図1から図8を用いて説明する。
 (LRF1の構成)
 図1(a)は実施形態1に係るLRF1の構成を示す断面図であり、(b)はその距離測定範囲を説明するための平面図である。図2は、LRF1の回路構成を示す回路図である。
 LRF1は、発光素子8、コリメートレンズ12、立上げミラー13、遮光筒14、受光ミラー15、受光レンズ16、モータ17、シャフト18、受光回路基板19、プロセッサ基板20、及び、図示しない電気的接続用ハーネスその他の部材とを備えており、これらがフード(カバー部材)9、及び、筐体24の中に収められている。
 フード9は、赤外線を透過し可視光を遮断する樹脂材料で作製された略円筒形の部材であり、照射パルス(投光パルス)P1、及び、受光パルスP2を透過する一方で、太陽光などの外乱光の入射を防止する役割を有する。また、フード9は、内部のモータ17や光学部材などへの異物の付着を防止する役割も有する。
 モータ17、シャフト18、遮光筒14、及び、受光ミラー15は一体化した部材となっており、モータ17の回転によりこれら全体がシャフト18の中心軸周りに回転するようになっている。
 発光素子8は、赤外パルスLD(Laser Diode:レーザダイオード)であり、波長905nmの赤外線パルスを出射する。この赤外線パルスのパルス幅は数nsから数十nsであり、ピーク電流は5から10Aであり、デューティは0.05から0.1%程度である。本実施形態における発光素子8の平均出射パワーは、数mW以下であり、レーザ製品の安全基準に関する国際規格であるIEC 60825-1に規定されるクラス1を満たし、発光素子8は出射光が直接眼に入っても安全なレベルに設計されている。
 受光回路基板19は、受光素子21、受光アンプ22、及び、コンパレータ23が実装され、プロセッサ基板20と電気的に接続されている。受光素子21はアバランシェフォトダイオード(APD)であり、受光回路基板19内の図示しない電源回路によってカソード端子にバイアス電圧が印加されており、アノード側は受光アンプ22に接続されている。なお、受光素子21にはAPDの他、PINフォトダイオードなどの素子を用いることが可能である。
 プロセッサ基板20には、演算回路31、TDC(Time to Digital Converter:時間デジタル値変換器)32、及び、ドライバ回路33などの回路部品が搭載されている。
 TDC32は、パルス幅検出回路2と時間差測定回路3とを含む。パルス幅検出回路2は、測定対象Bへの照射パルスP1を反射した受光パルスP2に基づく受光パルス信号S2のパルス幅を検出する。時間差測定回路3は、照射パルスP1が投光されてから受光パルスP2が受光されるまでの時間差を測定する。
 演算回路31は、補正量算出回路4と距離算出回路5とを含む。補正量算出回路4は、パルス幅検出回路2により検出されたパルス幅と、時間差測定回路3により測定された時間差とに基づいて補正量を算出する。距離算出回路5は、時間差測定回路3により測定された時間差と、補正量算出回路4により算出された補正量とに基づいて、測定対象Bまでの距離を算出する。
 (LRF1の動作)
 続いて、図2を用いてLRF1の動作を説明する。
 まず、演算回路31から所定のタイミングで駆動パルス信号S1がドライバ回路33に送出される。ドライバ回路33は、駆動パルス信号S1に基づいて発光素子(赤外線パルスLD(Laser Diode:レーザダイオード))8をパルス駆動する。発光素子8から出射した照射パルスP1は、コリメートレンズ12で略平行光にされ、立上げミラー13、受光ミラー15、及び、遮光筒14を経由してフード9を透過して外部に出射される。
 モータ17が回転しているため、回転につれて受光ミラー15の向きが変化する。このため、照射パルスP1の出射方向も連続的に変化する。
 モータ17の回転軸(Z軸)とフード9を透過する照射パルスP1の中心軸との交点をOとしたとき、OSからOEまでの扇型の範囲に照射パルスP1を投射可能であり、その角度は270°である。以下ではOを原点とし、原点Oに対して発光素子8と反対側の方向(OからMに向かう方向)を前方と定義し、前後方向をY軸(Y-Y’軸)、左右方向をX軸(X-X’軸)、さらに上下方向をZ軸(Z-Z’軸)と定義する。
 モータ17が1回転すると照射パルスP1の出射方向も360°回転することになる。但し、真後ろに向かう照射パルスP1は発光素子8自身と干渉するため、真後ろを除いた方向にのみ外部に照射パルスP1を照射することができる。本実施形態に係るLRF1における照射可能な方向を図1(b)に示す。
 フード9を透過して出射した照射パルスP1は、LRF1の外部に測定対象Bがあればその表面で散乱反射されて受光パルスとなる。散乱反射された受光パルスの強度分布は、測定対象Bの表面が拡散反射面であればランバート(Lambert)分布に近くなり、測定対象Bの表面が金属などの光沢面であれば鏡面反射に近い角度分布になる。実際の測定対象Bは両者の中間の分布であることが多く、その場合、測定対象Bの表面の色(反射率)、測定対象Bへの照射パルスP1の入射角度、及び、測定対象Bまでの距離に応じて、照射パルスP1の一部が受光パルスP2として、照射パルスP1の進行方向と学方向に帰ってくることになる。
 散乱反射されて帰ってきた受光パルスP2は、再びフード9を通過しLRF1の内部に入る。その後、受光パルスP2は受光ミラー15で反射され、受光レンズ16で集光されて受光回路基板19上の受光素子21に到達する。
 受光素子(APD)21では、受光パルスP2に応じた光電流が発生し、これを受光アンプ22で電圧に変換して増幅する。増幅後の受光パルス信号S2は、コンパレータ23で所定のしきい値電圧に基づいて2値化され、デジタル受光パルス信号S3に変換されてプロセッサ基板20のTDC32に送信される。
 TDC32は、時間-デジタル値変換を行う回路素子であり、FPGA(Field-Programmable gate array)やASIC(Application Specific Integrated Circuit)などの集積回路として構成されている。TDC32には、演算回路31により生成された駆動パルス信号S1と、コンパレータ23により生成されたデジタル受光パルス信号S3とが入力され、内部で時間-デジタル値変換を行った結果、駆動パルス信号S1及びデジタル受光パルス信号S3の時間差を表す数値、及び、デジタル受光パルス信号S3のパルス幅をデジタル化した数値を出力する。ここで、2つの数値のうち前者を「受発光時間差Tr」、後者を「パルス幅Tw」と呼ぶ。
 図3(a)~(c)は、LRF1の照射パルスP1、受光パルスP2、及び受光パルス信号S2を示す波形図である。図3(a)(b)に示すように、パルスToF測定においては、照射パルスP1と受光パルスP2との時間差T[s]が得られると、測定対象物Bまでの距離L[m]は、
L=T/(2c)、
但しcは光の速度[m/s]で算出することができる。
 上記の距離Lの算出を、モータ17の回転に同期して一定のタイミングで行う。距離Lの値は所定角度ごとに平均され、平均距離として演算回路31の内部に蓄えられる。本LRF1では、所定角度は1°、0.5°、0.25°の3通りに切替可能になっている。この所定角度ごとの平均距離を、モータ17の1回転即ち270°分まとめてバイナリデータとし、時刻情報その他測定条件を示すヘッダ情報と統合して測定データとしてLRF1の外部に出力される。本LRF1ではモータ17の回転周波数は10Hzであり、10Hz即ち100msごとに1回転分の測定データがLRF1から出力される。LRF1の使用者は、この測定データを読み取ることによりLRF1の周囲に存在する測定対象Bの距離情報を知ることができる。
 (距離算出に係る補正)
 次に、LRF1から測定対象Bまでの距離を算出する際に行う補正について説明する。上記TDC32に設けられた時間差測定回路3により得られる受発光時間差Trは、照射パルスP1が照射されてから受光パルスP2が受光されるまでの理論上の時間差Tと完全には一致しない。時間差Tと受発光時間差Trとの間に差異が生じる主な原因としては、
(1)駆動パルス信号S1がTDC32に入力される時刻と照射パルスP1が発光素子8から照射される時刻との間のずれ、
(2)受光アンプ22・コンパレータ23での受光パルス信号S2に係る波形の立上りのなまり、
(3)受光パルスP2が受光素子21から受光アンプ22・コンパレータ23を経由してTDC32に入力されるまでの時間遅延、
の3つの原因が存在する。これら(1)(2)(3)によって発生する時間差Tと受発光時間差Trとの間の差異を「補正量Tc」と定義する。LRF1による距離測定では、距離を正確に算出するために、この補正量Tcを求めることが必要になる。
 上記差異が生じる要因のうち(1)及び(3)は、測定条件が変化してもほぼ一定であり、定数とみなすことができる。しかしながら、(2)は、測定対象Bの反射率、即ち、材質、測定対象Bの傾き、及び、測定対象Bまでの距離などによって、受光素子21が受講する受光パルスP2の光量が増減するため、それに伴い受光パルス信号S2の応答波形が変わり、受発光時間差Trの値が変化する。
 この変化の様子を図3(c)に示す。受光パルスP2の光量が大きくなるほど、受光パルス信号S2の波形が立ち上がりしきい値thを超えるまでの時間が遅れていることが分かる。この遅延量は「walk error」と呼ばれている。以下ではこれをTeで表す。
 なお、(2)の遅延量Teは常に正の値になるが、(1)(3)は配線遅延の和に基づくため、負の値を取ることもある。従って、(2)と(1)や(3)の大きさの関係によっては、それらの総和である補正量Tcが負の値を取ることもあり得る。(1)や(3)は条件に寄らずほぼ一定の量であるので、以下では簡単のためこれらを無視し、遅延量Teが補正量Tcに等しいものとして説明する。
 図3(c)に示すように、受光素子21が受光する受光パルスP2の光量が大きくなると、受光パルス信号S2のパルス幅Twが大きくなり、遅延量Teも大きくなる。この関係を利用して、非特許文献1では、パルス幅Twと遅延量(walk error)との関係を予め測定してルックアップテーブル(LUT:Look Up Table、以下「LUT」ともという)として記憶しておき、これを参照して距離を補正する手法が開示されている。しかし、この手法では補正できない場合があることを以下で説明する。
 フード9を透過させて測定対象Bに照射パルスP1を照射する場合に、フード9の内面で照射パルスP1の一部が反射されて迷光が生じる。当該迷光により、特に近距離の測定対象Bからの受光パルスP2に波形崩れが発生する。このような装置構成を取る限り、遮光などによって上記迷光を軽減することができても、完全に迷光の影響を除去することができない。
 パルス幅Twと遅延量(walk error)Teとの間の関係は、受光パルスP2の波形と受光アンプ22の回路特性によって決まり、通常は受発光時間差Trには依存しない。
 しかしながら、上記迷光、グランドレベルの変動などにより受光パルスP2に微小な変動成分が重畳されると、受光パルスP2の波形がわずかに変動し、パルス幅Twと遅延量(walk error)Teがわずかに変化する。この変動成分が照射パルスP1基準で一定の位置に発生する場合、受発光時間差Trが変わると受光パルスP2に変動成分が重畳される相対位置が変化する。このため、結果として受発光時間差Trによって、パルス幅Twと遅延量(walk error)Te(補正量Tc)との間の関係が変化することになる。
 この変動の原因である迷光、グランドレベルの変動を完全に抑えることができれば上記の変動量は無視できる。しかしながら、実際の測定においては、距離測定範囲を高めるために受光素子21の感度を高めたり受光回路のコンパレータ23のしきい値thを下げたりすることが必要になる。このため、この変動の影響が排除できなくなることがある。
 図4(a)は、LRF1の受発光時間差Tr、パルス幅Tw、及び補正量Tcを3次元空間でプロットしたグラフであり、(b)は、パルス幅Twと補正量Tcとの間の関係を示すグラフであり、(c)は、パルス幅Twと受発光時間差Trとの間の関係を示すグラフである。
 また、図4(b)、図4(c)は、図4(a)をそれぞれ真横、真上から見たグラフに相当する。パルス幅Twと補正量Tcとの関係が一様であれば、図4(b)のプロットは一つの曲線上に載るはずである。しかしながら、実際にはパルス幅Twが60ns以下の領域において若干の広がりが見られる。この広がりは、前述した迷光等に基づく変動成分による誤差と考えることができる。
 パルス幅Twと補正量Tcとの関係が上記のような特性を有する場合、非特許文献1に示されるようなパルス幅Twと遅延量Te(補正量Tc)とのLUTでは補正しきれない変動成分が残り、結果として補正後の距離測定値に誤差が生じることになる。
 これに対し、特許文献2では、受光パルス信号をコンパレータで単純に2値化するのではなく、A/Dコンバータによってデジタル波形に変換してからデジタル信号処理を行うことで、波形の形状に応じた細かな補正を可能にしている。しかし、この方法の場合、受光パルス信号を正確にデジタル化するために非常に高速なA/Dコンバータが必要になる。例えば受光パルス信号のパルス幅を10ns程度とすると、サンプリング速度1~2Gsps、分解能8bit程度のA/Dコンバータが必要になると考えられる。このようなA/Dコンバータは非常に高価で、プロセッサの数倍から十倍程度の価格にもなる。そのため、LRF全体の価格が非常に高価なものとなってしまう。
 図5は、受光パルス信号のパルス幅Twと受発光時間差Trとに基づいて補正量を求めるための2次元LUTを示す図である。他の解決手法として、補正に2次元のLUTを用いることも考えられる。例えば図5に示すように、パルス幅Tw及び受発光時間差Trの組み合わせに対して補正量Tcの値を決定するような2次元LUTをあらかじめ作成しておき、測定で得られたパルス幅Tw及び受発光時間差Trの値から補正量Tcを求め、補正を行うことができる。
 しかしながら、この方法の場合、2次元のLUTを記憶するために非常に大きな記憶容量が必要になるという問題が生じる。本実施形態のLRF1の場合、実用的な距離精度を得るためには、パルス幅Tw・受発光時間差Trのそれぞれについて、200から300程度に細かく分割して精度よく補正を行うことが必要になる。例えば250×250の2次元LUTの場合、概算で62,500点×4Byte=250kByteのデータ量が必要になる。汎用のプロセッサが内蔵するユーザデータ保持用メモリは通常数k~数十kByte程度であるので、この2次元LUTを記憶するには内部のメモリでは不足し、外付けの記憶素子を追加する必要がある。これはLRFの材料価格を低減する障害となる。さらに、2次元LUTに記憶させる補正データをあらかじめ求めるための補正データ取得作業が膨大になり、組立が困難になる恐れがある。
 そこで、本実施形態に係るLRF1では、補正用のLUTを2つの1次元LUTに分けて、2段階の補正を行うことを特徴とする。この補正手順の詳細について図6及び図7を用いて以下で説明する。図6はLRF1における第1段階の補正手順を示す図であり、(a)はLRF1に係るパルス幅Tw-1次補正量Tc1平面における基準データ系列のフィッティング曲線を示すグラフであり、(b)は上記グラフに基づいて生成された1次元ルックアップテーブルLT1を示す図である。
 実施形態1に係るLRF1は、組立後出荷前の段階で、異なる2つ以上の色の測定対象を用いて、様々な距離及び角度で補正データを取得する。用いる色は、例えば黒色と白色のように、なるべく反射率に大きな差がある色であることが望ましい。また、黒・灰・白など3色以上を用いても構わない。
 この補正データ取得工程により、(受発光時間差Tr,パルス幅Tw,距離L)のデータが多数得られる。このデータを、変換式
Tc=Tr-L・2c
により(受発光時間差Tr,パルス幅Tw,補正量Tc)のデータに変換しておく。一つの色で取得したデータの組を、以下では「データ系列」と呼ぶ。取得したデータ系列のうち、いずれか1色のデータ系列を「基準データ系列」とする。例えば、迷光などの微小変動成分が混入する位置が分かっている場合は、その影響が少ない色のデータ系列を基準データ系列とすることができる。
 上記のデータ系列を取得した後で、2段階の距離補正を行うための2種類の1次元LUTを作成する。
 まず第1段階の補正では、基準データ系列のみを用いて、パルス幅Tw-1次補正量(第1時間差補正量)Tc1の1次元ルックアップテーブル(1次元第1時間差補正量ルックアップテーブル)LT1を作成する。この手順を図6(a)(b)を用いて説明する。
 図4(b)で述べた通り、異なる色を含む全データをパルス幅Tw-補正量Tc平面にプロットすると、変動成分の影響で曲線から外れるデータが、例えばパルス幅Twが60ns以下の領域で発生するが、そのうちの一つの色のデータ系列だけを抽出して考えると、このデータ系列の中では変動成分が受光パルスP2の波形に重畳される相対位置は一通りに決まるので、結果としてパルス幅Tw-補正量Tcの関係は一意に決まり、1本の曲線C1上に載ると考えることができる。これを図6(a)に示す。
 この基準データ系列のデータを適切にフィッティングすることで曲線C1を求める。ここで得られるフィッティング曲線を表す曲線C1をTc1=f1(Tw)という関数で表す。次に、補間により曲線Tc1=f1(Tw)上の任意のパルス幅Twに対する1次補正量Tc1を計算して1次元ルックアップテーブルLT1を作成する。このようにして作成したパルス幅Tw-1次補正量Tc1の1次元ルックアップテーブルLT1の一例を図6(b)に示す。パルス幅Tw及び1次補正量Tc1の取りうる範囲は、受光回路の回路定数のバラつきや個体差などによって変化する。
 続いて、上記第1段階の補正で補正しきれない部分のデータを補正するための第2段階のLUT作成を行う。この手順を、図7の(a)から(c)を用いて説明する。図7はLRF1における第2段階の補正手順を示す図であり、(a)はLRF1に係るパルス幅Tw-パルス幅Tw-受発光時間差Trに係る平面における基準データ系列のフィッティング曲線を示すグラフであり、(b)は受発光時間差の差分ΔTr-2次補正量Tc2に係る平面にプロットされた全データ系列のデータを示すグラフであり、(c)は(b)のグラフに基づいて生成された1次元ルックアップテーブルLT2を示す図である。
 まず、パルス幅Tw-受発光時間差Tr平面に全データ系列のデータをプロットする。このとき、色、即ち、反射率が異なるデータ系列では、測定対象Bまでの距離・測定対象Bに対する角度が同じでも、受光パルスP2の強度が異なる。このため、受光パルス信号S2のパルス幅に差異が存在する。つまり、反射率が異なるデータ系列は、同じ受発光時間差Trに対しパルス幅Twが異なる位置にプロットされることになる。一方、同一の色、即ち、同一の反射率で距離を変化させると、受光パルスP2の強度は連続的に変化する。従って、各データ系列は、パルス幅Tw-受発光時間差Tr平面上でそれぞれ異なる曲線上に載ることになる。
 このパルス幅Tw-受発光時間差Tr平面のデータの中で、第1段階で選択した基準データ系列のデータのみを抽出し、フィッティングを行う。ここで得られたフィッティング関数を、
Tr=f2(Tw)
とする。すべてのデータ系列の点(Tr,Tw,Tc)に対し、
受発光時間差の差分ΔTr=Tr-f2(Tw)と、
2次補正量Tc2=L・2c-Tc1=L・2c-f1(Tw)
との値を求める。
 この受発光時間差の差分ΔTrは、基準データ系列の受発光時間差Trに対する与えられたデータ系列のTrとの間の差を表している。また、2次補正量(時間差補正量)Tc2は、基準データ系列のフィッティング曲線から求めた第1段階の補正で補正しきれない距離の残差(を時間に変換した値)を表している。すべてのデータ系列に対し(ΔTr,Tc2)をプロットすると、図7(b)のようになる。このプロットは、受発光時間差の差分ΔTr-2次補正量Tc2平面上でほぼ1つの曲線上に分布していることが分かる。
 先に述べたような迷光、グランドレベルの変動(ノイズ)によって発生する微小な変動成分の大きさは、受光パルスP2に対して微小であると考えられるので、基準データ系列に対する他のデータ系列の補正量は大きくは変化しない。そのため、1次補正量Tc1で補正しきれない残差に対応する2次補正量Tc2は、他のデータ系列の基準データ系列からの距離にほぼ比例する形で変化することになる。そのため、図7(b)ですべてのデータ系列に係る(ΔTr,Tc2)のプロットが受発光時間差の差分ΔTr-2次補正量Tc2平面上でほぼ1つの曲線上に分布することになる。
 第2段階の補正では、上記受発光時間差の差分立上り時間差ΔTr-2次補正量Tc2平面上のデータをフィッティングしてTc2=f3(ΔTr)の曲線を求め、補間により曲線上の任意の受発光時間差の差分ΔTrに対して2次補正量Tc2の値を第2時間差補正量回路7が計算する。その結果、最終的に図7(c)に示すような受発光時間差の差分ΔTr-2次補正量Tc2に係る1次元ルックアップテーブル(1次元時間差補正量ルックアップテーブル)LT2を第2時間差補正量回路7が生成することになる。
 LRF1の演算回路31に設けられた第1時間差補正量回路6・第2時間差補正量回路7は、LRF1の組立後に上記のような補正データの取得、第1段階の補正、第2段階の補正を行い、2つの1次元ルックアップテーブルLT1・LT2を生成する。なお、これらの処理を自動化して、様々な異なる条件での補正データ取得、得られた補正データからの1次元ルックアップテーブルLT1・LT2の生成までを自動的に行うようにすることは可能である。最終的に、これらの1次元ルックアップテーブルLT1・LT2を演算回路31内のメモリ(図示せず)に記憶させた状態でLRF1が出荷される。
 非特許文献1のように2次元ルックアップテーブルを用いた場合は250×250×4Byte=250kByteのデータ量が必要であったのに対し、本実施形態のLRF1では2つの1次元ルックアップテーブルLT1・LT2を記憶させるだけで済むので、必要なデータ量は250×2×4Byte=2kByteと約1/125に削減できることになる。このデータ量であれば演算回路(プロセッサ)31内部のユーザデータ領域に容易に記憶させることができるため、回路構成を単純化し、部材コストを低減することができる。また、特許文献2のように高速かつ高分解能のA/Dコンバータを用いることなく補正を行うため、高速かつ高分解能のA/Dコンバータを搭載する場合と比較して、部材価格を大幅に低減することができる。
 また、本実施形態では、白色及び黒色の2種類の材料を用いて補正データを取得している。実際の測定対象Bは、白色と黒色と間の中間の反射率を有すると考えられるので、この白色及び黒色に係る2つのデータから容易に内挿して補正データを求めることができる。このように、異なる反射率を有する複数の材料から得られた補正データ(反射データ)を用いることで、測定対象Bの反射率によらず正確な距離を算出することができる。
 なお、上記のように白色と黒色との材料を用いる他に、例えばフード9の内面で発生する迷光が変動成分の主要因であると分かっているような場合には、迷光の影響を排除して補正データを取得することができる。まず、フード9をLRF1から除去した状態で黒色または白色の材料で補正データを取得し、これを基準データ系列とする。続いて、フード9をLRF1に取り付けた状態で黒色及び白色の補正データ取得を行い、これらを合わせたデータを全データ系列として、上記と同様の手順により2段階の補正を実施し、1次元ルックアップテーブルLT1・LT2を生成する。
 この場合、基準データ系列として迷光、即ち、変動成分が完全に除去されたデータを用いることができる。従って、第1段階の補正で迷光がない場合の1次補正量を求め、第2段階の補正で迷光の影響が含まれることで補正しきれない分の2次補正量を求めることになる。これにより、迷光の影響を切り分けて正しく補正を行い、より精度の高い測定結果を得ることが期待できる。このように、本実施形態では、LRF1内の迷光の影響を排除した状態で測定して得られた補正データを用いることで、迷光の影響のない正確な距離を算出することができる。
 上記手順で1次元ルックアップテーブルLT1・LT2を演算回路31内のメモリに記憶させたLRF1を用いて実際に距離測定を行う場合の手順は、以下のようになる。まず、演算回路31に設けられた第1時間差補正量回路6は、TDC32に設けられた時間差測定回路3で得られた受発光時間差Tr、パルス幅検出回路2で得られたパルス幅Twの値を用いて、まず1段階目の1次元ルックアップテーブルLT1を参照してパルス幅Twから1次補正量Tc1を求める。次に、第2時間差補正量回路7は、2段階目の1次元ルックアップテーブルLT2を参照して受発光時間差Trから2次補正量Tc2を求める。距離算出回路5は、これら2つの補正量Tc1・Tc2により、補正後の距離Lを、
  L=(Tr-Tc1-Tc2)/(2c)
として算出する。
 (2次補正量が時間差だけでない場合の補正手順例)
 なお、上記手順では、2つの独立な1次元ルックアップテーブルLT1・LT2を使用して補正を行ったが、補正には必ずしも2つのルックアップテーブルを使用する必要はない。例えば、変動成分の主要因がフード9などの特定の部材で発生する迷光であり、その影響による信号波形の崩れがある程度定量的にモデル化できている場合は、ルックアップテーブルではなく数式により補正量を計算するという手順にすることも可能である。具体的には、第2段階の補正において、迷光による補正量を、
Tc2=f4(Tr,Tw)、
という数式でモデル化して表現する。この数式(モデル式)は、一般に有理式、指数関数、対数関数およびそれらの組み合わせであり、1つまたは複数の未知のパラメータを含む式である。例えば、
f4=(A1/Tw+A2)・(A3・exp(-A4・(Tr-A5)))+A6 のような式であり、この式の場合はA1~A6が未知パラメータになる。これらの未知パラメータは、迷光の大きさなどによってLRF1の個体ごとに異なる値になる。
 本手順においては、事前に補正データ取得工程で得られたすべてのデータ系列の点(Tr,Tw,Tc)を上記モデル式に適用し、最小二乗法などを用いてモデル式の未知パラメータA1~A6の最適値を求める。これにより、2次補正量Tc2は数式Tc2=f4(Tr,Tw)から計算できることになる。演算回路31内のメモリには、ルックアップテーブルLT1とパラメータA1~A6の値を保存しておく。第1時間差補正量回路6は前の手順と同様にルックアップテーブルLT1から1次補正量Tc1を計算するが、第2時間差補正量回路7はルックアップテーブルLT2の替わりにパラメータA1~A6とモデル式Tc2=f4(Tr,Tw)から2次補正量Tc2を算出することになる。
 このように、受発光時間差Trを変数とする1次元ルックアップテーブルLT2に代えて、受発光時間差Trとパルス幅Twの2つを変数とするモデル式を用いて2次補正を行うことが可能である。この手順においても、非特許文献1のように2次元ルックアップテーブルを用いた場合と比較して、必要な記憶データ量を削減することができる。従って、回路構成を単純化し、部材コストを低減することができるという利点を有する。
 図8は、LRF1において、光沢面やマルチパスによって生じる異常なデータを距離無効値とする手順を説明するグラフである。
 測定対象Bが金属、ガラスなどの光沢面を有する場合、光沢面の散乱反射特性がLambert分布から大きく外れているため、照射パルスP1の角度によっては受光パルスP2の強度が著しく減衰し、正常な受光パルス信号S2の波形が得られない場合がある。また、測定対象Bが通常の壁であっても、反射した光が異なる複数の経路で足し合わされて受光される場合(マルチパス)、受光パルスP2の波形が大きく崩れる場合がある。このような場合には、波形が崩れていない通常の受光パルスP2と同様にパルス幅Twを用いて補正を行うと誤った補正量が得られてしまう。
 本実施形態のLRF1では、第2段階の補正において、受発光時間差の差分ΔTrの値の取り得る範囲を設定し、1次元ルックアップテーブルLT2とは別に記憶させておくことができる。図8に示すように、ΔTrの上限をΔTra、下限をΔTrbとした場合、上限ΔTraに対応する曲線C2よりも上側にプロットされるデータが現れた場合、又は、下限ΔTrbに対応する曲線C3よりも下側にプロットされるデータが現れた場合に、曲線C2及び曲線C3の間の範囲から外れるデータが現れたとして、2次補正量Tc2の計算を第2時間差補正量回路7は打ち切り、距離測定不能を意味する数値を第2時間差補正量回路7が距離算出回路5に出力する。これにより、光沢面やマルチパスなどが発生した場合に、距離測定値に誤りが発生することを防ぐことができる。なお、LRF1に記憶される上記ΔTrの値の取り得る範囲は、1次元ルックアップテーブルLT2の値を参照するなどして、個体ごとに異なる値にすることもできる。
 以上で述べたように、本実施形態によれば、高価なA/Dコンバータや大量の記憶装置を用いることなく、安価な構成で正確な距離を算出することができる。
 また、本実施形態によれば、外付けの記憶素子を用いることなく、距離計算を行うプロセッサ(演算回路31)に内蔵されているメモリを用いて安価に距離の補正を行い、正確な距離を算出することができる。
 また、本実施形態によれば、異なる反射率を有する複数の材料から得られた反射データを含むことで、測定対象の反射率によらず正確な距離を算出することができる。
 また、本実施形態によれば、LRF内の迷光の影響を排除した状態で測定して得られた補正データを用いることで、迷光の影響のない正確な距離を算出することができる。
 また、本実施形態によれば、パルス幅に関する時刻情報と受発光時間差に関する時刻情報との関係が所定の範囲から外れている場合に、距離を無効値として出力することで、測定誤りの発生を防ぐことができる。
 〔実施形態2〕
 続いて、本発明の実施形態2に係る侵入検知装置の構成及び動作について説明する。
 実施形態2に係る侵入検知装置の構成は、予め検知領域を設定し演算回路31の内部に記憶させておくことを除き、実施形態1に係るLRF1と同様である。
 この侵入検知装置は、予め検知領域を設定した状態で工場、オフィスなどのセキュリティ・エリアに設置する。人が不在になる夜間などに侵入検知装置が常時測定を行い、検知領域内に物体が存在すると判定した場合は、障害物が侵入したと侵入検知装置が判断し、アラーム信号を出力する。
 実施形態2に係る侵入検知装置は、安価な構成でありながら障害物までの正確な距離を算出して、障害物の侵入を精度よく検知することができる。
 実施形態2に係る侵入検知装置のその他の構成及び動作は実施形態1に係るLRFと同様であり、その説明は繰り返さない。
 〔実施形態3〕
 続いて、実施形態3に係る3次元距離測定装置の構成及び動作の詳細について説明する。
 実施形態3に係る3次元距離測定装置の構成は、筐体24の外部に追加のモータ及びシャフトを設け、筐体24自体をZ軸方向に往復運動可能にしている点を除き、実施形態1に係るLRF1と同様である。フード9内にあるモータ17の回転運動に加えて、追加のモータによる上下方向の往復運動を行いながら測定することで、3次元距離測定装置が異なる高さで距離を測定し、3次元的な距離情報を出力することができる。
 実施形態3に係る3次元距離測定装置は、安価な構成でありながら、測定対象までの正確な距離を算出して、3次元的な距離測定を精度よく行うことができる。
 実施形態3に係る3次元距離測定装置のその他の構成及び動作については実施形態1に係るLRFと同様であり、その説明は繰り返さない。
 〔まとめ〕
 本発明の態様1に係る距離測定装置(LRF1)は、測定対象Bへの投光パルス(照射パルスP1)を反射した受光パルスP2に基づく受光パルス信号S2のパルス幅Twを検出するパルス幅検出回路2と、投光パルス(照射パルスP1)が投光されてから受光パルスP2が受光されるまでの時間差を測定する時間差測定回路3と、パルス幅検出回路2により検出されたパルス幅と、時間差測定回路3により測定された時間差とに基づいて補正量を算出する補正量算出回路4と、前記時間差と前記補正量とに基づいて測定対象Bまでの距離を算出する距離算出回路5とを備えている。
 上記の構成によれば、受光パルス信号のパルス幅と投光パルスが投光されてから受光パルスが受光されるまでの時間差とに基づいて補正を行うことにより、投光パルスが投光されてから受光パルスが受光されるまでの時間差に依存した受光パルスの波形崩れがある場合であっても精度よく補正を行うことができる。
 本発明の態様2に係る距離測定装置(LRF1)は、上記態様1において、測定対象Bに前記投光パルス(照射パルスP1)を投光する発光素子8を覆うように設けられ、測定対象Bに向かう投光パルス(照射パルスP1)を透過させるカバー部材(フード9)をさらに備えてもよい。
 上記の構成によれば、カバー部材を透過させて外部に投光パルスを投光する場合に、カバー内面で投光パルスが一部反射されて生じた迷光によって、特に近距離の測定対象からの受光パルスに波形崩れが発生しても、測定距離を精度良く補正することができる。
 本発明の態様3に係る距離測定装置(LRF1)は、上記態様1又は態様2において、前記補正量算出回路4が、前記パルス幅Twに基づいて第1時間差補正量(1次補正量Tc1)を算出する第1時間差補正量回路6と、少なくとも前記時間差に基づいて第2時間差補正量(2次補正量Tc2)を算出する第2時間差補正量回路7とを有し、前記距離算出回路5は、前記時間差と前記第1時間差補正量と前記第2時間差補正量とに基づいて前記距離を算出してもよい。
 上記の構成によれば、受光パルス信号のパルス幅のみを参照値として第1時間差補正量を算出する処理と、投光パルスが投光されてから受光パルスが受光されるまでの時間差のみを参照値として第2時間差補正量を算出する処理をそれぞれ独立に行い、最後に第1時間差補正量と第2時間差補正量とを用いて前記測定対象までの距離を算出する。即ち、第1段階の補正で基準データ系列として迷光などの変動成分が完全に除去されたデータを用いて変動成分がない場合の1次補正量を求め、第2段階の補正で変動成分の影響が含まれることで補正しきれない分の2次補正量を求めることになる。これにより、変動成分の影響を切り分けて正しく補正を行い、より精度の高い測定結果を得ることができる。
 本発明の態様4に係る距離測定装置(LRF1)は、上記態様3において、前記第1時間差補正量回路6は、パルス幅Twに対応する補正量が記述された1次元第1時間差補正量ルックアップテーブル(1次元ルックアップテーブルLT1)に基づいて前記第1時間差補正量(1次補正量Tc1)を算出し、前記第2時間差補正量回路7は、時間差(受発光時間差ΔTr)に対応する補正量が記述された1次元第2時間差補正量ルックアップテーブル(1次元ルックアップテーブルLT2)に基づいて前記第2時間差補正量(2次補正量Tc2)を算出してもよい。
 上記の構成によれば、1次元第1時間差補正量ルックアップテーブル、1次元第2時間差補正量ルックアップテーブルを用いることにより、それぞれの補正量を1種類の参照値から算出することができる。
 本発明の態様5に係る距離測定装置(LRF1)は、上記態様3又は態様4において、前記距離算出回路5は、前記第1時間差補正量(1次補正量Tc1)及び前記第2時間差補正量(2次補正量Tc2)の和に基づいて前記時間差を補正し、前記補正された時間差に基づいて前記距離を算出してもよい。
 上記の構成によれば、第1補正量および第2補正量を足し合わせた値を最終的な補正量として、投光パルスが投光されてから受光パルスが受光されるまでの時間差に対して差分をとることにより時間差を補正し、補正された時間差に基づいて測定対象までの距離を算出することができる。
 本発明の態様6に係る距離測定装置(LRF1)は、上記態様1から態様5のいずれか一態様において、前記距離算出回路5は、前記パルス幅検出回路2により検出されたパルス幅Twと、前記時間差測定回路3により測定された時間差(受発光時間差Tr)とが所定の関係を満足するときに、前記距離を算出してもよい。
 上記の構成によれば、予め想定される受光パルス信号のパルス幅と前記投光パルスが投光されてから受光パルスが受光されるまでの時間差との関係の範囲を定めておき、その範囲から外れるものを無効と判定することによって、明らかな測定の誤りを防ぐことができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、照射パルスを用いて距離を測定するパルスToF(飛行時間、Time Of Flight)方式の距離測定装置に利用することができる。
 本発明は、独立した装置としてレーザレンジファインダ(LRF)を始めとする産業用、民生用その他用途に用いることができる他、他の装置の一部に組み込んで利用したり、装置の一部または全部を集積回路(IC)化して利用したりすることも可能である。
 1 レーザレンジファインダ(距離測定装置)
 2 パルス幅検出回路
 3 時間差測定回路
 4 補正量算出回路
 5 距離算出回路
 6 第1時間差補正量回路
 7 第2時間差補正量回路
 8 発光素子
 9 フード(カバー部材)
21 受光素子
22 受光アンプ
23 コンパレータ
31 演算回路
32 時間デジタル値変換器
33 ドライバ回路
 B 測定対象
P1 照射パルス(投光パルス)
P2 受光パルス
S1 駆動パルス信号
S2 受光パルス信号
S3 デジタル受光パルス信号
 T 時間差
Tw パルス幅
Tr 受発光時間差
Te 遅延量
Tc 補正量
Tc1 1次補正量(第1時間差補正量)
Tc2 2次補正量(第2時間差補正量)
ΔTr 受発光時間差の差分
ΔTra 上限
ΔTrb 下限
th しきい値
LT1 1次元ルックアップテーブル(1次元第1時間差補正量ルックアップテーブル)LT2 1次元ルックアップテーブル(1次元第2時間差補正量ルックアップテーブル)

Claims (6)

  1.  測定対象への投光パルスを反射した受光パルスに基づく受光パルス信号のパルス幅を検出するパルス幅検出回路と、
     前記投光パルスが投光されてから受光パルスが受光されるまでの時間差を測定する時間差測定回路と、
     前記パルス幅検出回路により検出されたパルス幅と、前記時間差測定回路により測定された時間差とに基づいて補正量を算出する補正量算出回路と、
     前記時間差と前記補正量とに基づいて前記測定対象までの距離を算出する距離算出回路とを備えることを特徴とする距離測定装置。
  2.  前記測定対象に前記投光パルスを投光する発光素子を覆うように設けられ、前記測定対象に向かう投光パルスを透過させるカバー部材をさらに備える請求項1に記載の距離測定装置。
  3.  前記補正量算出回路が、前記パルス幅に基づいて第1時間差補正量を算出する第1時間差補正量回路と、少なくとも前記時間差に基づいて第2時間差補正量を算出する第2時間差補正量回路とを有し、
     前記距離算出回路は、前記時間差と前記第1時間差補正量と前記第2時間差補正量とに基づいて前記距離を算出する請求項1又は2に記載の距離測定装置。
  4.  前記第1時間差補正量回路は、パルス幅に対応する補正量が記述された1次元第1時間差補正量ルックアップテーブルに基づいて前記第1時間差補正量を算出し、
     前記第2時間差補正量回路は、時間差に対応する補正量が記述された1次元第2時間差補正量ルックアップテーブルに基づいて前記第2時間差補正量を算出する請求項3に記載の距離測定装置。
  5.  前記距離算出回路は、前記第1時間差補正量及び前記第2時間差補正量の和に基づいて前記時間差を補正し、前記補正された時間差に基づいて前記距離を算出する請求項3又は4に記載の距離測定装置。
  6.  前記距離算出回路は、前記パルス幅検出回路により検出されたパルス幅と、前記時間差測定回路により測定された時間差とが所定の関係を満足するときに、前記距離を算出する請求項1から5のいずれか一項に記載の距離測定装置。
PCT/JP2016/051128 2015-01-29 2016-01-15 距離測定装置 WO2016121531A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016023A JP6054994B2 (ja) 2015-01-29 2015-01-29 距離測定装置
JP2015-016023 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121531A1 true WO2016121531A1 (ja) 2016-08-04

Family

ID=56543150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051128 WO2016121531A1 (ja) 2015-01-29 2016-01-15 距離測定装置

Country Status (2)

Country Link
JP (1) JP6054994B2 (ja)
WO (1) WO2016121531A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176287A1 (zh) * 2017-03-29 2018-10-04 深圳市大疆创新科技有限公司 脉冲信息测量方法及相关装置、移动平台
WO2019101990A1 (de) * 2017-11-27 2019-05-31 Valeo Schalter Und Sensoren Gmbh Optoelektronische detektionseinrichtung, verfahren zum betrieb einer solchen detektionseinrichtung und kraftfahrzeug mit einer solchen detektionseinrichtung
US10539663B2 (en) 2017-03-29 2020-01-21 SZ DJI Technology Co., Ltd. Light detecting and ranging (LIDAR) signal processing circuitry
WO2020071465A1 (ja) * 2018-10-05 2020-04-09 日本電産株式会社 距離測定装置
CN111971578A (zh) * 2018-03-29 2020-11-20 松下半导体解决方案株式会社 距离信息取得装置、多路径检测装置及多路径检测方法
WO2021053958A1 (ja) * 2019-09-18 2021-03-25 ソニーセミコンダクタソリューションズ株式会社 受光装置、並びに、測距装置及び測距装置の制御方法
CN113227828A (zh) * 2018-12-26 2021-08-06 韩商未来股份有限公司 利用脉冲相移的三维距离测量照相机的非线性距离误差校正方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300899B (zh) * 2017-02-17 2023-06-23 北阳电机株式会社 物体捕捉装置
KR102030457B1 (ko) * 2017-10-30 2019-10-10 현대오트론 주식회사 거리 검출 센서 시간 변이 보상 장치 및 방법
JP7221029B2 (ja) * 2018-11-15 2023-02-13 東京計器株式会社 誤差補正装置、距離測定装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109842A (ja) * 1992-09-24 1994-04-22 Mazda Motor Corp 距離検出装置
JPH0771957A (ja) * 1993-09-02 1995-03-17 Omron Corp 距離測定装置
JPH07191143A (ja) * 1993-12-27 1995-07-28 Mazda Motor Corp 距離計測装置
JPH08179032A (ja) * 1994-12-20 1996-07-12 Nikon Corp 距離計測装置
JPH08304535A (ja) * 1995-05-12 1996-11-22 Mitsubishi Electric Corp 車両用距離測定装置及び距離測定方法
JPH1020035A (ja) * 1996-02-27 1998-01-23 Sick Ag レーザ距離測定装置
JPH1138135A (ja) * 1997-07-23 1999-02-12 Denso Corp 距離測定装置
JP2003167054A (ja) * 2001-12-04 2003-06-13 Denso Corp 距離測定方法及び距離測定装置
JP2004184333A (ja) * 2002-12-05 2004-07-02 Denso Corp 距離測定装置
US20120194798A1 (en) * 2011-01-28 2012-08-02 Analog Modules Inc. Accuracy of a laser rangefinder receiver
JP2013224915A (ja) * 2011-08-29 2013-10-31 Denso Wave Inc レーザレーダ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109842A (ja) * 1992-09-24 1994-04-22 Mazda Motor Corp 距離検出装置
JPH0771957A (ja) * 1993-09-02 1995-03-17 Omron Corp 距離測定装置
JPH07191143A (ja) * 1993-12-27 1995-07-28 Mazda Motor Corp 距離計測装置
JPH08179032A (ja) * 1994-12-20 1996-07-12 Nikon Corp 距離計測装置
JPH08304535A (ja) * 1995-05-12 1996-11-22 Mitsubishi Electric Corp 車両用距離測定装置及び距離測定方法
JPH1020035A (ja) * 1996-02-27 1998-01-23 Sick Ag レーザ距離測定装置
JPH1138135A (ja) * 1997-07-23 1999-02-12 Denso Corp 距離測定装置
JP2003167054A (ja) * 2001-12-04 2003-06-13 Denso Corp 距離測定方法及び距離測定装置
JP2004184333A (ja) * 2002-12-05 2004-07-02 Denso Corp 距離測定装置
US20120194798A1 (en) * 2011-01-28 2012-08-02 Analog Modules Inc. Accuracy of a laser rangefinder receiver
JP2013224915A (ja) * 2011-08-29 2013-10-31 Denso Wave Inc レーザレーダ装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176287A1 (zh) * 2017-03-29 2018-10-04 深圳市大疆创新科技有限公司 脉冲信息测量方法及相关装置、移动平台
US10539663B2 (en) 2017-03-29 2020-01-21 SZ DJI Technology Co., Ltd. Light detecting and ranging (LIDAR) signal processing circuitry
WO2019101990A1 (de) * 2017-11-27 2019-05-31 Valeo Schalter Und Sensoren Gmbh Optoelektronische detektionseinrichtung, verfahren zum betrieb einer solchen detektionseinrichtung und kraftfahrzeug mit einer solchen detektionseinrichtung
US20200355828A1 (en) * 2017-11-27 2020-11-12 Valeo Schalter Und Sensoren Gmbh Optoelectronic detection device, method for the operation of such a detection device, and motor vehicle with such a detection device
US11994587B2 (en) 2017-11-27 2024-05-28 Valeo Schalter Und Sensoren Gmbh Optoelectronic detection device, method for the operation of such a detection device, and motor vehicle with such a detection device
CN111971578A (zh) * 2018-03-29 2020-11-20 松下半导体解决方案株式会社 距离信息取得装置、多路径检测装置及多路径检测方法
WO2020071465A1 (ja) * 2018-10-05 2020-04-09 日本電産株式会社 距離測定装置
CN113227828A (zh) * 2018-12-26 2021-08-06 韩商未来股份有限公司 利用脉冲相移的三维距离测量照相机的非线性距离误差校正方法
CN113227828B (zh) * 2018-12-26 2024-04-16 韩商未来股份有限公司 利用脉冲相移的三维距离测量照相机的非线性距离误差校正方法
WO2021053958A1 (ja) * 2019-09-18 2021-03-25 ソニーセミコンダクタソリューションズ株式会社 受光装置、並びに、測距装置及び測距装置の制御方法

Also Published As

Publication number Publication date
JP6054994B2 (ja) 2016-12-27
JP2016142534A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6054994B2 (ja) 距離測定装置
US11650291B2 (en) LiDAR sensor
US11725935B2 (en) Distance meter comprising SPAD arrangement for consideration of multiple targets
CN110809722B (zh) 用于光学距离测量的系统和方法
WO2019163673A1 (ja) 光測距装置
Bosch et al. Three-dimensional object construction using a self-mixing type scanning laser range finder
US20210293942A1 (en) Method of calculating distance-correction data, range-finding device, and mobile object
US20160123764A1 (en) Distance measuring apparatus
US20220187456A1 (en) Distance measurement systems and methods
WO2022011974A1 (zh) 一种距离测量系统、方法及计算机可读存储介质
JP6760320B2 (ja) 光検出装置、光検出方法および光学式測距センサ
US20200225325A1 (en) Lidar apparatus and method of operating the same
KR102105715B1 (ko) 라이다 스캐너
US11722141B1 (en) Delay-locked-loop timing error mitigation
KR102035019B1 (ko) 거리 측정 장치, 시간 디지털 변환기, 및 이동체
US20230152462A1 (en) Lidar sensor, in particular a vertical flash lidar sensor
CN113557444A (zh) 激光雷达装置及空调机
CN114322844A (zh) 一种高速激光轮廓仪
KR20200049726A (ko) 라이다 스캐너
JP5426344B2 (ja) 物体検出センサおよび物体検出方法
JP5545920B2 (ja) 反射型光電スイッチおよび物体検出方法
JP7221029B2 (ja) 誤差補正装置、距離測定装置
EP3985413A1 (en) Distance measuring device and method for measuring distance by using the same
US20230194685A1 (en) Active/passive pixel current injection and bias testing
Hrubý et al. Characteristics of Distance Errors of Infrared Sensor Relation to Colour Surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743135

Country of ref document: EP

Kind code of ref document: A1