WO2018176256A1 - 一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料 - Google Patents

一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料 Download PDF

Info

Publication number
WO2018176256A1
WO2018176256A1 PCT/CN2017/078554 CN2017078554W WO2018176256A1 WO 2018176256 A1 WO2018176256 A1 WO 2018176256A1 CN 2017078554 W CN2017078554 W CN 2017078554W WO 2018176256 A1 WO2018176256 A1 WO 2018176256A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
fiber
texture
mesh
coating layer
Prior art date
Application number
PCT/CN2017/078554
Other languages
English (en)
French (fr)
Inventor
吴学锋
Original Assignee
苏州红泥新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州红泥新材料科技有限公司 filed Critical 苏州红泥新材料科技有限公司
Priority to PCT/CN2017/078554 priority Critical patent/WO2018176256A1/zh
Publication of WO2018176256A1 publication Critical patent/WO2018176256A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/28Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for wrinkle, crackle, orange-peel, or similar decorative effects

Definitions

  • the invention relates to a method for decorating the surface of an object, in particular to a method for preparing a crack-resistant texture sandwich coating and a coating on the surface of an object such as a building.
  • Wall coating refers to the decoration and protection of the building wall surface, which makes the building wall beautiful and clean, and also protects the building wall surface and prolongs its service life.
  • binders such as silicates
  • solvents such as water.
  • inorganic binders such as silicates
  • various aqueous emulsions are commonly used as bonding film-forming materials for coatings.
  • water is often used as a solvent.
  • the texture coating mainly uses special tools to create different shapes and patterns on the wall, which makes the space more three-dimensional and beautiful and elegant.
  • the textured paint exhibits a unique spatial perspective with its ever-changing three-dimensional texture and multi-selective personality. It also satisfies the overall decorative style with individual creation, which makes the texture paint show its own unique style in the decoration, so the texture paint also It can be called art paint.
  • the texture formed by the texture coating on the surface of the wall is a manual texture, which cannot form a standardized and large-scale texture effect. When used in a large area, the uniform uniformity of the texture cannot be achieved.
  • the particle size of the filler in the coating composition needs to be enlarged, usually in the particle size range of the sand, by hand smearing and spray gun spraying to form various hand-painted coating textures and spray textures.
  • a highly elastic binder is usually used as a film-forming substance to improve the ductility of the coating, or to add suitable components such as binders, fillers, pigments, additives and solvents (such as water).
  • suitable components such as binders, fillers, pigments, additives and solvents (such as water).
  • textures on the surface of the wall are the use of special tools to create textures in the surface coating of the building.
  • Chinese patents CN205577286U and CN205444747U are scraped.
  • the knife and spatula are scraped on the surface of the coating to form a texture.
  • This texture coating has high requirements on the operator, and the surface texture of the same building is easily changed, and the crack resistance is poor.
  • the other is to form a texture by wallpapering, wall covering, or imitation of wallpaper.
  • the rough surface of wallpaper, wall covering, or decorative layer is used as the texture, and then the surface is coated with paint.
  • the wallpaper in this texture coating is very It is easy to be peeled off, and when the adjacent wallpapers are docked, the gap is very obvious, resulting in a smooth transition of the texture.
  • Chinese patent CN103758307A first presses the base component in a mold with imitation wallpaper texture to make a decorative surface with texture, and then sprays the anti-ultraviolet coating on the texture surface. When used, the imitation wallpaper texture layer will be produced. Paste on the wall.
  • Coatings with both crack resistance and texture have become a hot research topic in the field of coatings in addition to environmental performance, but there is currently no relevant technology.
  • the present invention provides an infiltration-coated composite crack-resistant texture sandwich coating, a coating and a manufacturing method thereof.
  • a first aspect of the present invention provides a method of making an infiltrated composite crack resistant texture core coating on an object surface
  • a second aspect of the present invention provides a method of fabricating a texture on an object surface
  • the object is preferably a part of a building or a building (such as an inner wall, an outer wall, a column, a roof, a ground), or may be a building decoration material, such as a decorative board, a tile, etc., and the object may also be Sculptures, billboards, furniture, etc., are more preferably building walls, especially interior walls.
  • the method for making an infiltrated composite crack-resistant composite core coating on an object surface according to the present invention, or the method for fabricating the texture comprises the steps of:
  • the fiber texture network core is attached to the first coating layer, and the fiber texture network core contains a three-dimensional interpenetrating network structure formed by the fiber, and the first coating material infiltrates the fiber, and Infiltrating into the mesh of the three-dimensional interconnected network structure;
  • the surface of the fiber texture network core is coated with a second coating layer, and the second coating material is infiltrated into the three-dimensional interpenetrating network structural fiber, immersed in the mesh of the three-dimensional interpenetrating network structure; forming a sandwich coating;
  • the coating on the surface of the mesh of the three-dimensional interpenetrating network structure forms a large collapse inward, and the coating on the surface of the fiber is blocked by the fiber without sagging or forming Smaller depression, resulting in texture.
  • the second coating layer may be flattened during the pressing process, and the second coating layer is solidified After the formation, the texture is formed by the difference between the mesh and the fiber.
  • the first coating may also undergo shrinkage during the curing process, or no shrinkage may occur.
  • pressure is applied to at least partially trap the fiber texture network core into the first coating.
  • the coating of the second coating is immersed in the mesh of the three-dimensional interpenetrating network structure and is in contact with the first coating coating immersed in the mesh of the three-dimensional interpenetrating network structure, more preferably, The pressure is continued after the contact of the first coating and the second coating, so that the first coating and the second coating are further tightly bonded.
  • the first coating, and/or the second coating is one or more coating layers, the layers of the multilayer coating being independently identical or different .
  • the first coating can be one or more layers of adhesive, and/or an organic coating layer, and/or an inorganic coating layer.
  • the first coating layer may contain a putty layer, a base coat layer, a closed primer layer, an interface agent, and the like.
  • the second coating can be one or more layers of adhesive, and/or an organic coating layer, and/or an inorganic coating layer.
  • the second coating layer may contain a top coat layer, a wear layer, or the like.
  • first coating layer and the second coating layer may independently be preferably an opaque coating layer, a translucent coating layer, a transparent coating layer, or one or more of a transparent coating layer and a translucent coating layer, in particular It is the second coating which may preferably be a translucent coating, or a clear coating, or one or more of a clear coating, a translucent coating.
  • the adhesive may be an inorganic adhesive and/or an organic adhesive
  • the film-forming material may include at least cement, lime, epoxy, silicone, Any one or more of silicone rubber, polyamide rubber, polyurethane resin, acrylic resin, melamine-formaldehyde resin, polyester, polyacrylate, and polyvinyl acetate adhesive.
  • the organic coating film-forming substance may be at least including tung oil, nitrocellulose, alkyd resin, epoxy resin, polyacrylate, polyurethane, polyvinyl acetate, latex paint, and the like. Any one or several of them.
  • the inorganic coating film-forming substance may be at least one or more of an alkali metal silicate, a colloidal silica, a phosphate, and a polysiloxane.
  • the inorganic coating is more preferably an inorganic dry powder coating.
  • both the first coating layer and the second coating layer most preferably comprise at least one layer of inorganic dry powder coating Floor.
  • the method comprises:
  • the fiber texture network core is attached to the first adhesive, the first adhesive impregnates the fiber, or the adhesive is used to infiltrate the fiber and infiltrate into the three-dimensional interpenetrating network.
  • the surface of the fiber texture network sandwich is coated with a second adhesive, and the second adhesive is infiltrated into the three-dimensional interpenetrating network structural fiber, immersed in the mesh of the three-dimensional interpenetrating network structure; forming a sandwich coating;
  • the core coating is cured, and during the curing process, the adhesive on the surface of the mesh of the three-dimensional interpenetrating network structure forms a large collapse inward, and the adhesive on the surface of the fiber is blocked by the fiber. There is no sagging or a small depression, which forms a texture.
  • the method comprises:
  • the fiber texture network core is attached to the adhesive, the adhesive impregnates the fiber, or the adhesive is used to infiltrate the fiber and infiltrate into the mesh of the three-dimensional interpenetrating network structure;
  • the surface of the fiber texture network sandwich is coated with an inorganic dry powder coating, and the inorganic dry powder coating is infiltrated into the three-dimensional interpenetrating network structural fiber, immersed in the mesh of the three-dimensional interpenetrating network structure; forming a sandwich coating;
  • the method comprises:
  • the fiber texture network core is attached to the first inorganic dry powder coating, the first inorganic dry powder coating is used to infiltrate the fiber, or the first inorganic dry powder coating is wetted by pressure, and infiltrated into the three-dimensional mutual Within the mesh of the network structure;
  • the surface of the fiber texture network core is coated with a second inorganic dry powder coating, and the second inorganic dry powder coating is infiltrated into the three-dimensional interpenetrating network structural fiber, immersed in the mesh of the three-dimensional interpenetrating network structure; forming a sandwich coating;
  • the coating on the surface of the mesh of the three-dimensional interpenetrating network structure forms a large collapse inward, and the coating on the surface of the fiber is blocked by the fiber. Sink or form a small depression to form a texture.
  • a third aspect of the present invention provides an impregnated coated composite crack resistant texture sandwich coating comprising a first coating, a second coating, and a fiber sandwiched between the first coating and the second coating a texture network sandwich, wherein the fiber texture network core contains a three-dimensional interpenetrating network structure formed by fibers, and the first coating layer and the second coating layer penetrate into the mesh of the three-dimensional interpenetrating network structure;
  • the coating is recessed on a portion of the surface of the three-dimensional interpenetrating network structure mesh, and the second coating forms a convex-concave solid texture in a portion of the three-dimensional interpenetrating network structure fiber surface that is not invaded or invaded.
  • a fourth aspect of the present invention provides an impregnated coated composite crack resistant texture sandwich coating comprising a first coating layer, a second coating layer, and a fiber texture network sandwiched between the first coating layer and the second coating layer a sandwich, wherein the fiber texture network core contains a three-dimensional interpenetrating network structure formed by fibers, and the first coating layer and the second coating infiltrate the fiber surface of the fiber texture network core and infiltrate into the three-dimensional coherence Within the mesh of the network structure; the second coating is recessed on a portion of the surface of the three-dimensional interconnected network structure mesh, and the second coating forms a convex or concave portion on the surface of the three-dimensional interpenetrating network structure fiber without invading or invading. Stereo texture.
  • a fifth aspect of the present invention provides an object having a texture on a surface, in particular, a wall having a texture on the surface, comprising a body, and the surface of the body is formed with an infiltration coated composite crack-resistant texture core coating, wherein the infiltration
  • the coated composite crack-resistant texture sandwich coating includes a first coating layer, a second coating layer, and a fiber texture network sandwich sandwiched between the first coating layer and the second coating layer, wherein the fiber texture network clip
  • the core contains a three-dimensional interpenetrating network structure formed by fibers, and the first coating layer and the second coating layer infiltrate the fiber surface of the fiber texture network core and penetrate into the mesh of the three-dimensional interpenetrating network structure;
  • the coating adheres to the surface of the body; the second coating is recessed on a portion of the surface of the three-dimensional interconnected network structure mesh, and the second coating is formed on the surface of the three-dimensional interpenetrating network structure without a recessed or invaded portion Concave and concave
  • the first coating, the second coating are joined within the mesh of the three-dimensional interpenetrating network structure and are preferably joined together.
  • the first coating layer and the second coating layer are not in contact in a part of the mesh of the three-dimensional interpenetrating network structure, or in all the meshes, that is, the three-dimensional coherence Within the mesh of the network structure, a void is formed between the first coating and the second coating.
  • the first coating layer and the second coating layer may each independently be a multi-layer coating layer, and each of the plurality of layers may be independently the same or different.
  • the first coating can be one or more layers of adhesive, and/or an organic coating layer, and/or an inorganic coating layer.
  • the first coating layer may include a putty layer, a base color coating, a closed primer layer, and an interface agent. Wait.
  • the second coating can be one or more layers of adhesive, and/or an organic coating layer, and/or an inorganic coating layer.
  • the second coating layer may contain a top coat layer, a wear layer, or the like.
  • first coating layer and the second coating layer may independently be preferably an opaque coating layer, a translucent coating layer, a transparent coating layer, or one or more of a transparent coating layer and a translucent coating layer, in particular It is the second coating which may preferably be a translucent coating, or a clear coating, or one or more of a clear coating, a translucent coating.
  • the adhesive may be an inorganic adhesive and/or an organic adhesive
  • the film-forming material may include at least cement, lime, epoxy, silicone, Any one or more of silicone rubber, polyamide rubber, polyurethane resin, acrylic resin, melamine-formaldehyde resin, polyester, polyacrylate, and polyvinyl acetate adhesive.
  • the organic coating film-forming substance may be at least including tung oil, nitrocellulose, alkyd resin, epoxy resin, polyacrylate, polyurethane, polyvinyl acetate, latex paint, and the like. Any one or several of them.
  • the inorganic coating film-forming substance may be at least one or more of an alkali metal silicate, a colloidal silica, a phosphate, and a polysiloxane.
  • the inorganic coating is more preferably an inorganic dry powder coating.
  • both the first coating and the second coating most preferably comprise at least one layer of an inorganic dry powder coating.
  • the fiber texture network core comprises fibers, and a three-dimensionally intersecting mesh formed by voids between the fibers, and more preferably, the fibers are arranged in a three-dimensional distribution.
  • the fibers comprise at least horizontal, vertical, obliquely oriented fibers, and more preferably, at least a portion of the fibers, each fiber having at least two of a horizontal portion, a vertical portion, and an oblique portion Kind, or three.
  • any one or more of the fiber horizontal portion, the vertical portion, and the oblique direction portion intersect with each other, and/or any one or more of the fiber horizontal portion, the vertical portion, and the oblique direction portion and the other Any one or more of the horizontal portion, the vertical portion, and the inclined portion of the one or more fibers cross each other.
  • the mesh comprises at least a horizontal, vertical, oblique direction mesh, wherein one or more of the horizontal, vertical, and oblique meshes are aligned with one or more other levels, Vertical, inclined One or several of the direction meshes are connected to each other.
  • tilt as used in the above description of the present invention means that it is at an angle other than 0 degrees from both the horizontal and vertical directions.
  • the “horizontal” is in the horizontal plane and the “vertical” is in the vertical plane. That is, the “horizontal”, “vertical”, and “tilted” do not belong to the same plane.
  • the "horizontal portion” in the above description of the present invention may be in the same horizontal plane, or in different horizontal planes; the "vertical portion” may be in the same vertical plane, or in different vertical planes; The directional portion may be in the same inclined plane or in different inclined planes.
  • the fibers are arranged in a plurality of layers, and the first mesh is enclosed between the fibers of the same layer, and the fibers of each layer at least partially intersect each other to form a second mesh, at least part of the first mesh.
  • the hole and the second mesh are mutually penetrated to form a three-dimensional interpenetrating network structure.
  • each layer of fibers may be a two-dimensional network structure formed by warp and weft interlacing, and/or a two-dimensional network structure formed by bending the fibers.
  • At least a portion of the fibers are interspersed in at least two layers of fibers.
  • the layers of fibers are staggered from each other to form meshes in different directions.
  • the fiber intersections of each layer or at least a portion of the layers are located at the cells of the other layers, and/or the fibers of each layer or at least a portion of the layers are oriented differently than the fibers of the other layers.
  • connection point between the fibers of the fiber texture network core may be one or more of welding, chemical bonding, etc., and is preferably welded.
  • the number of fiber joints of the fiber texture network core is preferably from 1% to 100%.
  • the number of connection points refers to the percentage of the number of fiber connection points to the number of fiber intersections.
  • the fiber texture network core may be prepared from materials such as metal, plastic, rubber, fiber, etc., and is preferably prepared from a fiber material, and the fiber may be any one or a few of inorganic fibers and organic fibers. And may be any one or more of synthetic fibers, natural fibers (including natural fiber modification), recycled fibers obtained after processing natural fibers, metal fibers, and alloy fibers.
  • the fibers may be selected from the group consisting of polyamide (nylon 6, nylon 66, etc.), polyimide (such as P84 fiber), polypropylene, polytetrafluoroethylene, polyester (such as PET, PBT, etc.), aramid (such as aramid 1414, aramid 1313, etc., such as DuPont's Kevlar, Nomex, Teijin Any one or more of synthetic fibers such as Twaron, Technora, Taiparan, etc. of Taihe New Materials Co., Ltd., and polyphenylene sulfide. However, it may be glass fiber or the like.
  • the fiber can also be improved in rigidity by a modification process such as dipping, and the deformation resistance is improved.
  • the fiber cross-sectional shape of the fiber texture network core may be one or more regular and/or irregular shapes, such as at least including a circle, an ellipse, a semi-circle, a polygon (such as a triangle, a quadrangle, a five-sided One or more of the shapes of a shape, a hexagon, a gossamer, a corrugated shape, a dumbbell shape, and the like, and preferably one or more of a circular shape and an elliptical shape.
  • the fiber texture network core is preferably obtained by one or more of textile (including nonwoven textile material, nonwoven fabric technology), casting, molding, 3D printing, and the like. It is especially preferably obtained by non-woven fabric technology, and/or nonwoven textile material technology, such as electrospinning technology.
  • the fiber texture network sandwich manufacturing method comprises: melt spinning, spraying the fiber filaments into a stack, and then hot pressing to connect the inner layers and the interlayer fibers respectively.
  • the fiber texture network core preferably has a fiber diameter of from 1 ⁇ m to 5000 ⁇ m, more preferably from 1 ⁇ m to 1000 ⁇ m, still more preferably from 1 ⁇ m to 100 ⁇ m, still more preferably from 1 ⁇ m to 50 ⁇ m, still more preferably from 5 ⁇ m to 50 ⁇ m, More preferably, it is 5 ⁇ m - 40 ⁇ m.
  • the thickness of the fiber texture network core is preferably from 0.1 mm to 10 mm, more preferably from 0.1 mm to 5 mm, still more preferably from 0.1 to 1 mm, still more preferably from 0.1 to 0.5 mm, still more preferably 0.2- 0.4 mm, such as 0.25 mm, 0.28 mm, 0.3 mm, 0.33 mm, 0.35 mm, 0.37 mm, and the like.
  • the mesh shape of the fiber texture network core is not particularly required, and may be set according to texture requirements.
  • the mesh holes may be uniformly distributed, or the mesh distribution density of different regions may be different.
  • the pore diameter of the mesh of the fiber texture network core is preferably from 0.1 mm to 10 mm, more preferably from 0.1 mm to 5 mm, still more preferably from 0.1 mm to 3 mm, still more preferably from 0.1 mm to 1 mm.
  • the fiber network texture sandwich preferably has a density 10-300g / m 2, more preferably 15-200g / m 2, more preferably 20-150g / m 2, more preferably 20-100g /m 2 is more preferably 20-50 g/m 2 .
  • the fiber texture network core further comprises at least one pattern formed by the same or different structural structure of the fiber texture network core, and the pattern is in the fiber texture network core.
  • the fiber texture network core may be convex or recessed, or die cut to form a pattern through the fiber texture network core.
  • the pattern is formed by a mesh arrangement that is denser or looser than other portions.
  • the pattern of the fiber texture network core may be composed of one mesh.
  • the pattern of the fiber texture network core may be prepared by a embossing process.
  • the above patterns can be realized by one or more of the techniques of textile (including non-woven fabric technology), casting, molding, hot-bonding embossing, sealing part of mesh, etc., preferably by non-woven technology, spraying One or more of plastic, film, hot-adhesive embossing, plugging part of mesh, die-cutting, etc. More preferably, it is realized by a non-woven fabric technology, and may be formed by forming a pattern during the process of forming a three-dimensional interpenetrating network structure of a fiber texture network sandwich, or forming a pattern after forming a fiber texture network sandwich.
  • the fiber texture network core may or may have been surface finished. But it can also be done without surface finishing.
  • the surface finishing may be a single-sided surface finishing or a double-sided surface finishing.
  • the surface finishing preferably includes, but is not limited to, any one or more of the following a)-g):
  • the surface is flattened, but the surface opening that communicates with the inner mesh is retained; it may be single-sided flattening or double-sided flattening;
  • the surface is coated with a material which changes the properties of the fiber, preferably coated with a material having a different water absorption rate, more preferably, the property (such as water absorption) is gradually changed from one end of the surface finishing portion to the other end, more preferably, The properties (such as water absorption) are graded from one end of the fiber texture network sandwich to the other end;
  • the surface of the fiber texture network sandwich is colored, wherein the color is preferably a single color, a plurality of colors, and the plurality of colors are preferably a gradation color;
  • the fiber texture network core thickness is preferably greater than or equal to the sum of the first coating layer and the second coating layer thickness, and particularly preferably greater than the sum of the first coating layer and the second coating layer thickness.
  • the thickness of the second coating layer is preferably less than or equal to the thickness of the fiber texture network sandwich. 1/2 of the degree, more preferably less than 1/2 of the thickness of the fiber texture network sandwich.
  • the material of the coating, or the coating material may be any available coating material, which can satisfy the particle size of the coating, soak, infiltrate and fill into the mesh in the three-dimensional interpenetrating network structure of the fiber texture network sandwich.
  • the role can be.
  • the maximum particle diameter of the first coating layer and the second coating layer are each independently preferably ⁇ 50 ⁇ m, more preferably ⁇ 30 ⁇ m, still more preferably ⁇ 20 ⁇ m, still more preferably ⁇ 10 ⁇ m.
  • the maximum particle diameters of the first coating layer and the second coating layer are each independently preferably 1/5 of the average pore diameter of the mesh of the fiber texture network sandwich, more preferably ⁇ 1/10. More preferably, it is ⁇ 1/100; but it is more preferably ⁇ 1/1000.
  • the first coating layer and the second coating layer each independently preferably comprise an inorganic gelling material, and/or an organic gelling material, more preferably at least an inorganic gel material, more preferably, Any one or more of a filler, an additive, a pigment, and a solvent may also be included.
  • the inorganic gel material may be at least one or more of cement, lime, alkali metal silicate, phosphate, silica sol, polysiloxane, and preferably at least including cement, lime, Any one or more of alkali metal silicates.
  • the organogel material may be tung oil, linseed oil, shellac, epoxy resin, alkyd resin, amino alkyd resin, polyurethane, chlorinated rubber, perchloroethylene coating, polyvinyl acetate emulsion, styrene-acrylic emulsion Any one or more of ethylene propylene emulsion, pure acrylic emulsion, and the like.
  • the filler may be one or more of stone powder, fiber, metal powder, such as graphite, talcum powder, glass powder, diatomaceous earth, kaolin, carbon black, alumina, mica, wood powder, asbestos powder, Any one or more of clay, calcium carbonate, and fly ash.
  • metal powder such as graphite, talcum powder, glass powder, diatomaceous earth, kaolin, carbon black, alumina, mica, wood powder, asbestos powder, Any one or more of clay, calcium carbonate, and fly ash.
  • the additive may be any useful additive capable of improving the morphology, and/or appearance (eg, color) of the coating, such as a drier, an anti-settling agent, an anti-aging agent, an anti-fungal agent, a plasticizer, a polymer powder.
  • a drier an anti-settling agent
  • the solvent may be any one or more containing water and an organic solvent such as toluene, xylene, cyclohexanone, formaldehyde, etc., and the solvent is preferably water.
  • the curing time (loss plasticity) of the first coating layer and the second coating layer are respectively independently and unrestricted, and can satisfy the infiltration, penetration and filling to the fiber texture after coating the fiber texture network core.
  • the mesh of the network core can be inside. It is generally preferred to cure within 24 hours after application, more preferably Curing within 12 hours after painting, more preferably within 2 hours after painting.
  • the curing time of the first coating layer and the second coating layer is more preferably 1 minute after curing, preferably 2 minutes after curing, more preferably 5 minutes, and more preferably 10 minutes after painting. After curing, it is more preferably cured after 15 minutes from the application, more preferably after 20 minutes from the application, and more preferably after 30 minutes after the application.
  • the curing manners of the first coating layer and the second coating layer may each independently be preferably any one of solvent evaporation curing (such as water-removing curing), photo curing, air curing, and reaction curing.
  • solvent evaporation curing such as water-removing curing
  • photo curing such as water-removing curing
  • air curing such as water-removing curing
  • reaction curing such as reaction curing.
  • dehydration curing and/or air curing are especially preferred.
  • the pressing may be any available method, such as any one or more of rolling and scraping. More preferably, the rolling and scraping methods themselves do not form a texture.
  • the first coating layer and the second coating layer may be separately coated by any known coating method, such as spraying, knife coating, roll coating, brush coating or Several.
  • the thickness of the second coating layer is preferably less than or equal to 1/2 of the thickness of the fiber texture network core, and more preferably less than 1/2 of the thickness of the fiber texture network core.
  • the method for making an infiltrated composite crack-resistant composite core coating on the surface of an object according to the present invention, or the method for fabricating the texture has the following beneficial effects:
  • the coating is infiltrated and filled into the mesh of the three-dimensional interpenetrating network structure of the fiber texture network sandwich, so that the fibers of the fiber texture network sandwich have a bite and a bond between the infiltrated coating and the three-dimensional
  • the mesh of the inter-connected network structure is three-dimensionally distributed, and the plurality of meshes are interpenetrated, and the infiltration, penetration and filling of the coating in the mesh are also three-dimensional forms. Therefore, the present invention can provide a coating and fiber texture network sandwich. A closer combination between them, therefore, has a significantly higher peeling resistance than fabric texture.
  • the invention forms a sandwich structure, the fiber texture network sandwich is located between the infiltrated coating materials, and the thickness of the fiber texture network sandwich is greater than or equal to the sum of the thickness of the first coating layer and the second coating layer, and the fiber texture is After the second coating is applied on the surface of the network sandwich, the thickness of the surface of the fiber is increased, and the second coating on the surface of the mesh is invaded during the curing process, thereby presenting the texture of the fiber texture network core, and thus having a texture controllable
  • the advantage of fiber texture network sandwich can be standardized and scaled manufacturing, and ensure the consistency of texture; at the same time texture
  • the styling can be diversified, making the coating texture rich and varied.
  • the invention forms a sandwich structure, which has significantly better anti-peeling ability than the texture coating made of wallpaper or wall cloth, and is coated with glass fiber cloth compared with the prior art.
  • the layer, the coating weight is significantly smaller, and the cleavage ability has not been lost.
  • the method of the present invention is capable of producing a rich texture similar to a wallpaper on the surface of an object.
  • FIG. 1A is a schematic view showing the structure of an infiltration-coated composite crack-resistant composite core coating and a coating prepared on the surface of the wall according to the present invention
  • FIG. 1B is a schematic view showing the texture of the surface of the wall in FIG. 1A;
  • 2A-2C are schematic views of different point-like connection points of the fiber texture network core
  • FIG. 3 is a partial cross-sectional structural diagram of a three-dimensional interpenetrating network structure of a fiber texture network sandwich
  • FIGS. 4A-4B are perspective photographs of a fiber texture network sandwich of the present invention.
  • 5A-5B are photographs of the fiber texture network core of the present invention after being impregnated and filled with a coating
  • Figure 6 is a schematic view showing the flow of preparing a composite anti-cracking texture sandwich coating of the present invention.
  • the infiltrated coated composite crack resistant texture sandwich coating of the present invention is as follows:
  • the surface of the wall 10 is impregnated with a composite anti-cracking core coating, or the coating comprises a first coating 20, a second coating 30, and fibers sandwiched between the first coating 20 and the second coating 40. Texture network sandwich 30.
  • the fiber texture network core 30 contains a three-dimensional interpenetrating network structure formed by fibers, and the fibers include horizontal fibers, vertical fibers, and obliquely oriented fibers, and FIGS. 2A-2C show several fiber texture network cores 30.
  • the transverse fibers 5 intersect the longitudinal fibers 4 and the oblique fibers 3, and the intersecting fibers enclose the mesh 2.
  • the intersections between the fibers are at least partially joined together to form a joint point 1.
  • the joint may be one or more of welding, chemical bonding, etc., and fusion is preferred in this embodiment.
  • the percentage of the number of fiber joints to the number of fiber intersections may be 1% to 100%, that is, the intersections may all form a joint, but only a part of the intersections may form a joint.
  • 2A the intersection between the transverse fiber referred to by the mark 5 and the longitudinal fiber indicated by the mark 4 does not form a joint, but the mark 5
  • the intersection between the transverse fiber referred to and the oblique fiber referred to by the mark 3 form a joint point 1.
  • the fiber texture network core 30 of the present invention has a three-dimensional structure, that is, the fibers are not all arranged in the same plane, and actually there are horizontal, vertical, oblique fibers, horizontal, vertical, The fibers in the oblique direction intersect each other and form at least a part of the joint.
  • each of the fibers may have a plurality of horizontal portions, vertical portions, and oblique direction portions, and a plurality of horizontal portions, a plurality of vertical portions, or a plurality of oblique direction portions may Exist or may not exist in the same horizontal, vertical or inclined plane.
  • a transverse mesh 22 is formed between the transverse fibers 31 in the upper horizontal plane and the transverse fibers 32 in the lower horizontal plane, and a longitudinal mesh 21 is formed between the vertical fibers 33 in the vertical plane, and the transverse mesh 22 is formed. It is in communication with the longitudinal mesh 21 .
  • the oblique direction mesh 23 is respectively formed, and FIG. 3 shows the case where the two oblique direction meshes 23 are connected, but the inclination is
  • the direction mesh 23 may also be in communication with the transverse mesh 22 and/or the longitudinal mesh 21.
  • transverse fibers 31 in the upper horizontal plane and the transverse fibers 32 in the lower horizontal plane may be from two horizontal portions of the same fiber, or may be two fibers.
  • the method for making an infiltrated composite crack-resistant texture sandwich coating or coating in the present embodiment is as follows:
  • a first inorganic dry powder coating is applied on the surface of the wall 10 to form a first coating layer 20, and the first coating layer only needs to cover the surface of the wall 10, but does not have to be smoothed;
  • the fiber texture network core 30 is attached to the first inorganic dry powder coating, the first inorganic dry powder coating is wetted, or the first inorganic dry powder coating is impregnated by pressure. And infiltrated into the hole of the three-dimensional interpenetrating network structure; in the process, the fiber texture network core 30 can be pressed into contact with the surface of the wall 10 or not, and the first inorganic dry powder coating can also penetrate the fiber texture network core. 30 mesh, and seeping out from the mesh, but not required;
  • a second inorganic dry powder coating that is, a second coating layer 40 is applied, and the second inorganic dry powder coating is pressed to infiltrate the three-dimensional interpenetrating network structural fibers and immersed in the mesh of the three-dimensional interpenetrating network structure; Coating; the total thickness of the second coating and the first coating in the process, preferably not exceeding 50%, more preferably not more than 30%, more preferably less than or equal to the fiber texture of the thickness of the fiber texture network core 30 Network core 30 thickness;
  • the first inorganic dry powder coating and the second inorganic dry powder coating are contacted in the mesh and tightly combined under pressure; as shown in FIG. 6C;
  • the surface fibers of the fiber texture network core 30 may be uneven, as shown in FIG. 1B, the first portion of the fiber 301 is lower than the second portion of the fiber 302, but the surface of the fiber texture network core 30 may also be flattened by a leveling process; During the curing of the second coating 40, the coating on the surface of the fiber is blocked by the fibers to stay on the surface of the fiber.
  • the surface of the first portion of the fiber 301 forms a lower texture 501
  • the surface of the second portion of the fiber 302 forms a higher texture 502.
  • the second coating 40 at the hole 2 is sunken to form a concave texture portion 503, thus forming a rough texture 50, and the shape of the texture 50 is the same or very close to the surface texture of the fiber texture network core 30.
  • the coating is infiltrated into the mesh and infiltrated into the mesh.
  • the dark portion is the coating or coating that fills the mesh
  • the light portion is the fiber. Since the coating is infiltrated and filled into the mesh of the three-dimensional interpenetrating network structure of the fiber texture network core 30, the fibers of the fiber texture network sandwich have a occlusion and adhesion between the fibers and the impregnated coating, and at the same time
  • the pores of the inter-network structure are three-dimensionally distributed, and the plurality of holes are interpenetrated, and the wetting, permeation and filling of the coating in the holes are also in three-dimensional form. Therefore, the present invention can provide a coating between the coating and the fiber texture network core 30. A tighter combination with good resistance to peeling.
  • the mesh 2 surrounded by the fibers is filled with the fibers or the binder cast after the melting, but the cast fibers or the binder form a new one.
  • the mesh 200, the new mesh 200 and the mesh 2 of the fiber are also connected, and the filling of the coating in the mesh of the fiber texture network core 30 is more complicated, and the tear resistance (peeling resistance) can be further increased. ).
  • the fiber diameter of the fiber texture network core of the present invention is preferably from 1 ⁇ m to 5000 ⁇ m, more preferably from 1 ⁇ m to 1000 ⁇ m, still more preferably from 1 ⁇ m to 100 ⁇ m, still more preferably from 1 ⁇ m to 50 ⁇ m, still more preferably from 5 ⁇ m to 50 ⁇ m. More preferably, it is 5 ⁇ m - 40 ⁇ m.
  • the pore size of the mesh of the fiber texture network core is preferably from 0.1 mm to 5 mm, more preferably from 0.1 mm to 3 mm, still more preferably from 0.1 mm to 1 mm.
  • Fiber texture sandwich network 30 preferably has a density of 10-300g / m 2, more preferably 15-200g / m 2, more preferably 20-150g / m 2, more preferably 20-100g / m 2, more preferably 20-50g/m 2 .
  • the thickness of the fiber texture network core 30 is preferably from 0.1 mm to 10 mm, more preferably from 0.1 mm to 5 mm, still more preferably from 0.1 to 1 mm, still more preferably from 0.1 to 0.5 mm, still more preferably from 0.2 to 0.4 mm, such as 0.25 mm. 0.28 mm, 0.3 mm, 0.33 mm, 0.35 mm, 0.37 mm, and the like.
  • the thickness of the fiber texture network core 30 of the present invention is preferably equal to or greater than the sum of the thicknesses of the first coating layer and the second coating layer, and particularly preferably greater than the sum of the thicknesses of the first coating layer and the second coating layer.
  • the thickness of the second coating layer is preferably less than or equal to 1/2 of the thickness of the fiber texture network core 30.
  • Both the first inorganic dry powder coating and the second inorganic dry powder coating of the present invention are preferably an alkali metal silicate as a film-forming material, and may contain components such as a filler, a pigment, an additive, and the like.
  • the particle diameter of the largest particles (generally filler) is preferably ⁇ 50 ⁇ m, more preferably ⁇ 30 ⁇ m, still more preferably ⁇ 20 ⁇ m, still more preferably ⁇ 10 ⁇ m. It is preferably 1/5 of the average pore diameter of the mesh of the ⁇ fiber texture network core, more preferably ⁇ 1/10, more preferably ⁇ 1/100; but more preferably ⁇ 1/1000.
  • an organic adhesive on the surface of the wall 10 such as an epoxy resin adhesive, or applying an organic adhesive to the surface of the fiber texture network core 30, as the first coating, the fiber texture network core 30 passes The organic adhesive adheres to the surface of the wall 10,
  • the organic adhesive is impregnated into the fibers by pressure and infiltrated into the pores of the three-dimensional interpenetrating network structure;
  • the core coating is cured, and the organic coating on the surface of the mesh forms a large collapse inward, and the organic coating on the surface of the fiber is blocked by the fiber without sagging or forming a small depression, thereby forming a texture.
  • the fiber texture network core has a fiber diameter of 20 ⁇ m.
  • the mesh of the fiber texture network core has a pore size of 0.5 mm.
  • the density of the fiber texture network core 30 is preferably 50 g/m 2 .
  • the thickness of the fiber texture network core 30 is preferably 0.25 mm.
  • the first coating has a thickness of 0.1 mm and the second coating has a thickness of 0.13 mm.
  • Solid particles may generally not be present in the organic or organic coating, but solid particles may also be present. In the presence of solid particles, the largest particles (generally filler) have a particle size of 20 ⁇ m.
  • a first organic coating such as a latex paint
  • Coating a second organic coating which may also be a latex paint, as a second coating, applying pressure to infiltrate the second organic coating into the three-dimensional interpenetrating network structural fiber, and immersing into the mesh of the three-dimensional interpenetrating network structure; forming a core Coating; curing the sandwich coating, the organic coating on the surface of the mesh forms a large collapse inward, and the organic coating on the surface of the fiber is blocked by the fiber without sagging or forming a small depression, thereby forming a texture.
  • a second organic coating which may also be a latex paint
  • the fiber texture network core has a fiber diameter of 30 ⁇ m.
  • the mesh of the fiber texture network core has a pore size of 1 mm.
  • the density of the fiber texture network core 30 is preferably 100 g/m 2 .
  • the thickness of the fiber texture network core 30 is preferably 0.3 mm.
  • the first coating has a thickness of 0.15 mm and the second coating has a thickness of 0.15 mm.
  • the organic coating may be an acrylic emulsion as a film-forming material, and solid particles may not be present in the organic coating, but solid particles may also be present, and in the case of solid particles, the largest particles (generally filler) have a particle diameter of 40 ⁇ m.
  • a second inorganic dry powder coating (which may also be coated with an organic coating such as a latex paint), applying pressure to infiltrate the third inorganic dry powder coating into the three-dimensional interpenetrating network structural fiber, and immersing into the mesh of the three-dimensional interpenetrating network structure Forming a sandwich coating; different from Embodiment 1, the second inorganic dry powder coating is a transparent or translucent coating; curing the sandwich coating, the coating on the surface of the mesh forms a large collapse inward, and is located in the fiber Surface coating It is not blocked by the fiber barrier or forms a small depression, thereby forming a texture.
  • an organic coating such as a latex paint
  • the fiber texture network core 30 is applied to the surface of the first coating layer 20, and unlike the embodiment 1, the fiber texture network core 30 of the embodiment has a pattern composed of dense meshes;
  • a second inorganic dry powder coating (which may also be coated with an organic coating such as a latex paint), applying pressure to infiltrate the third inorganic dry powder coating into the three-dimensional interpenetrating network structural fiber, and immersing into the mesh of the three-dimensional interpenetrating network structure Forming a sandwich coating; different from Embodiment 1, the second inorganic dry powder coating is a transparent or translucent coating; curing the sandwich coating, the coating on the surface of the mesh forms a large collapse inward, and is located in the fiber The coating on the surface is blocked by the fibers without sagging or forming a small depression, thereby forming a texture.
  • an organic coating such as a latex paint
  • the fiber texture network core 30 is applied to the surface of the first coating layer 20, and unlike the embodiment 1, the fiber texture network core 30 of the embodiment has a pattern formed by embossing finishing;
  • Example 1 Coating the second inorganic dry powder coating, which may also be a latex paint, applying pressure to infiltrate the three-dimensional interpenetrating network structural fiber into the mesh of the three-dimensional interpenetrating network structure; forming a sandwich coating;
  • the second inorganic dry powder coating is a transparent or translucent coating;
  • the first inorganic dry powder coating and the second inorganic dry powder coating may have at least a portion of the mesh that may not be in contact, thereby forming a partially hollow structure in the mesh.
  • An inorganic dry powder coating is applied to the surface of the wallpaper.
  • the glass fiber cloth is applied to the surface of the wall using an inorganic dry powder coating.
  • An inorganic dry powder coating is applied to the surface of the glass fiber cloth.
  • a two-dimensional mesh woven by warp and weft is applied to the surface of the wall using an inorganic dry powder coating.
  • the inorganic dry powder coating is coated on the surface of the two-dimensional mesh.
  • Example 5 of the present invention the same coating thickness as in Example 5 of the present invention was employed.
  • the method of the present invention is capable of producing a rich texture similar to a wallpaper, and at the same time enables the texture and coating to have good tear resistance and peel resistance; in particular, the fiber network core of the present invention has no visible visible docking. The texture obtained has a good continuity.
  • the gap between the wallpaper splicing is very obvious, and it is easy to peel off.
  • Glass fiber cloth, or two-dimensional mesh fabric coating, or the texture is not obvious, or the texture is too monotonous, can not form the texture effect of the wallpaper, in addition, the mesh splicing (or overlapping or spacing gap) texture and other parts of the texture The difference is too large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

一种在物体表面制作浸渗涂覆复合抗裂肌理夹芯涂层的方法,步骤包括:在物体表面涂覆第一涂层;在第一涂层丧失可塑性之前,将纤维肌理网络夹芯贴覆在第一涂层,该纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层的涂料浸润纤维,并渗入到三维互贯网络结构的网孔内;涂覆第二涂层,施压使第二涂层的涂料浸润三维互贯网络结构纤维,浸入到三维互贯网络结构的网孔内;固化该夹芯涂层,第二涂层在固化过程中,位于三维互贯网络结构的网孔表面的涂料向内形成较大塌陷,而位于纤维表面的涂层受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。

Description

[根据细则37.2由ISA制定的发明名称] 一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料 技术领域
本发明涉及一种装饰物体表面的方法,尤其涉及一种在建筑物等物体表面制作抗裂肌理夹芯涂层、涂料的方法。
背景技术
墙面涂料是指用于建筑墙面的装饰和保护,使建筑墙面美观整洁,同时也能够起到保护建筑墙面,延长其使用寿命的作用。在具体技术领域中,各类粘结剂成膜技术的发展使得涂料的性能有了很大的进步,尤其以乳液配制技术的发展尤为重要。现有的涂料形成了以粘结剂、填料、颜料、添加剂和溶剂(如水)的组成体系。为了体现涂料的环保性能,常用无机粘结剂(如硅酸盐类)和各类水性乳液来作为涂料的粘结成膜物质。为了减少VOC、苯、甲醛等有害物质的含量,常用水作为溶剂。
纵观建筑涂料技术的发展历程,涂料技术的发展,经历了简单色彩装饰、功能性防护到色彩与功能性防护平衡发展的过程,墙面涂料除了本身的装饰和保护作用外,也在向丰富多彩、时尚、健康环保、以及功能化的趋势发展。
质感涂料主要是运用特殊的工具在墙上塑造出不同的造型和图案,使得空间更加的立体和真实美观大方。质感涂料以其变化无穷的立体化纹理、多选择的个性搭配,展现独特的空间视角,并且以个性创作来满足整体装饰风格,使得质感涂料在装潢中展现出自己的独特风格,因此质感涂料也可叫艺术涂料。但是质感涂料在墙体表面形成的肌理是手工肌理,无法形成标准化、规模化的肌理效果,大面积使用时无法达到肌理均匀统一的要求。
为了展现涂料的涂层肌理,涂料组分中的填料粒径需要放大,通常为砂的粒径范围,采用手工抹涂和喷枪喷涂的方法,形成各类手工抹面涂层肌理和喷涂肌理。为了提高涂料的抗裂性能,通常使用高弹性的粘结剂作为成膜物质,来提高涂层的延展性,或者在粘结剂、填料、颜料、添加剂和溶剂(如水)等组分加入合适的短纤维,以提高涂层的抗裂性,从而达到涂层的抗裂要求。与上述质感涂料类似,这种肌理也无法形成标准化、规模化的肌理效果。
其它的在墙体表面制作肌理的技术方面,一种是采用特殊工具在建筑物表面涂层中制作出肌理。如中国专利CN205577286U、CN205444747U均是采用刮 刀、抹刀在涂层表面刮涂形成肌理,这种肌理涂层对操作人员要求较高,同一建筑物表面肌理很容易出现明显差异,而且抗裂性较差。另一种则是贴墙纸、墙布、或仿墙纸装饰层的方式形成肌理,墙纸、墙布、或装饰层粗糙表面作为肌理,再在表面涂覆涂料,这种肌理涂层中的墙纸很容易被剥离,而且相邻墙纸之间对接时,缝隙非常明显,导致肌理不能平滑过渡。如中国专利CN103758307A先将基料组分在带有仿墙纸纹理的模具中压制成型,制作出带肌理的装饰表面,然后在肌理表面喷涂抗紫外线的涂料,使用时,将制作的仿墙纸肌理层黏贴到墙体上。
兼具抗裂和肌理的涂层已经成为涂料领域除环保性能以外的一个热门研究方向,但是目前尚缺乏相关的技术。
发明内容
针对目前涂料在建筑物表面制作肌理过程中存在的不抗裂、或肌理不可控等缺陷,本发明提供了一种浸渗涂覆复合抗裂肌理夹芯涂层、涂料及制作方法。
本发明第一个方面是提供一种在物体表面制作浸渗涂覆复合抗裂肌理夹芯涂层的方法,本发明第二个方面是提供一种在物体表面制作肌理的方法。其中,所述物体优选为建筑物或建筑物的部分(如内墙、外墙、柱、屋顶、地面),也可以是建筑物装饰材料,如装饰板、瓷砖等,所述物体也可以是雕塑、广告牌、家具等,更优选为建筑物墙体,尤其是内墙。
本发明所述的在物体表面制作浸渗涂覆复合抗裂肌理夹芯涂层的方法,或所述制作肌理的方法,步骤包括:
在物体表面涂覆第一涂层;
第一涂层丧失可塑性之前,将纤维肌理网络夹芯贴覆在第一涂层,所述纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层的涂料浸润纤维,并渗入到三维互贯网络结构的网孔内;
纤维肌理网络夹芯表面涂覆第二涂层,施压使第二涂层的涂料浸润三维互贯网络结构纤维、浸入到三维互贯网络结构的网孔内;形成夹芯涂层;
固化所述夹芯涂层,第二涂层在固化过程中,位于三维互贯网络结构的网孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂层受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。
其中,第二涂层固化前,可以在施压过程中将第二涂层压平,第二涂层在固 化后因网孔与纤维处下陷不同而形成肌理。
其中,第一涂层固化过程中也可以发生内缩,或不发生内缩。
在一种优选实施例中,将纤维肌理网络夹芯贴覆在第一涂层后,施压使所述纤维肌理网络夹芯至少部分陷入所述第一涂层。
在一种优选实施例中,第二涂层的涂料浸入三维互贯网络结构的网孔内、并与浸入到三维互贯网络结构网孔内的第一涂层涂料接触,更优选地,第一涂层涂料和第二涂层涂料接触后继续施压,使第一涂层涂料和第二涂层涂料进一步紧密结合。
在本发明的一种优选实施例中,所述第一涂层、和/或第二涂层是一层或多层涂层,所述多层涂层中的各层可以独立地相同或不同。
例如,第一涂层可以是一层或多层胶黏剂层、和/或有机涂料层、和/或无机涂料层。并且,所述第一涂层可以含有腻子层,底色涂层、封闭底涂层、界面剂等。
例如,第二涂层可以是一层或多层胶黏剂层、和/或有机涂料层、和/或无机涂料层。并且,所述第二涂层可以含有面涂层、耐磨层等。
并且,所述第一涂层、第二涂层可以独立地优选为不透明涂层、半透明涂层、透明涂层、或含有透明涂层、半透明涂层中的一种或几种,尤其是第二涂层可以优选为半透明涂层、或透明涂层、或含有透明涂层、半透明涂层中的一种或几种。
在本发明的优选实施例中,所述胶黏剂可以是无机胶黏剂和/或有机胶黏剂,并优选地其成膜物质可以是至少包括水泥、石灰、环氧树脂、有机硅胶、硅酮胶、聚酰胺胶、聚氨酯树脂、丙烯酸树脂、三聚氰胺-甲醛树脂、聚酯、聚丙烯酸酯、聚醋酸乙烯胶黏剂中的任意一种或几种。
在本发明的优选实施例中,所述有机涂料成膜物质可以是至少包括桐油、硝基纤维素、醇酸树脂、环氧树脂、聚丙烯酸酯、聚氨酯、聚醋酸乙烯酯、乳胶漆等中的任意一种或几种。
在本发明的优选实施例中,所述无机涂料成膜物质可以是至少包括碱金属硅酸盐、胶体二氧化硅、磷酸盐、聚硅氧烷中的任意一种或几种。所述无机涂料更优选为无机干粉涂料。
更优选地,所述第一涂层和第二涂层均最优选为至少包括一层无机干粉涂 层。
在本发明的一种更优选实施例中,所述方法包括:
在物体表面涂覆第一胶黏剂;
第一胶黏剂丧失粘性之前,将纤维肌理网络夹芯贴覆到第一胶黏剂,第一胶黏剂浸润纤维、或者通过施压使胶黏剂浸润纤维,并渗入到三维互贯网络结构的网孔内;
纤维肌理网络夹芯表面涂覆第二胶黏剂,施压使第二胶黏剂浸润三维互贯网络结构纤维、浸入到三维互贯网络结构的网孔内;形成夹芯涂层;
固化所述夹芯涂层,第二胶黏剂在固化过程中,位于三维互贯网络结构的网孔表面的胶黏剂向内形成较大塌陷、而位于纤维表面的胶黏剂受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。
在本发明的另一种更优选实施例中,所述方法包括:
在物体表面涂覆胶黏剂;
胶黏剂丧失粘性之前,将纤维肌理网络夹芯贴覆到胶黏剂,胶黏剂浸润纤维、或者通过施压使胶黏剂浸润纤维,并渗入到三维互贯网络结构的网孔内;
纤维肌理网络夹芯表面涂覆无机干粉涂料,施压使无机干粉涂料浸润三维互贯网络结构纤维、浸入到三维互贯网络结构的网孔内;形成夹芯涂层;
固化所述夹芯涂层,无机干粉涂料在固化过程中,位于三维互贯网络结构的网孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂层受到纤维阻挡没有下陷或形成较小下陷,从而形成凸凹立体肌理。
在本发明的另一种更优选实施例中,所述方法包括:
在物体表面涂覆第一无机干粉涂料;
第一无机干粉涂料丧失可塑性之前,将纤维肌理网络夹芯贴覆到第一无机干粉涂料,第一无机干粉涂料浸润纤维、或者通过施压使第一无机干粉涂料浸润纤维,并渗入到三维互贯网络结构的网孔内;
纤维肌理网络夹芯表面涂覆第二无机干粉涂料,施压使第二无机干粉涂料浸润三维互贯网络结构纤维、浸入到三维互贯网络结构的网孔内;形成夹芯涂层;
固化所述夹芯涂层,第二无机干粉涂料在固化过程中,位于三维互贯网络结构的网孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂层受到纤维阻挡没有下 陷或形成较小下陷,从而形成肌理。
本发明第三个方面是提供一种浸渗涂覆复合抗裂肌理夹芯涂层,包括第一涂层、第二涂层、以及夹在第一涂层和第二涂层之间的纤维肌理网络夹芯,其中,所述纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层、第二涂层渗入到所述三维互贯网络结构的网孔内;第二涂层在三维互贯网络结构网孔的部分表面内陷,与第二涂层在三维互贯网络结构纤维表面没有内陷或内陷更小的部分形成凸凹立体肌理。
本发明第四方面是提供一种浸渗涂覆复合抗裂肌理夹芯涂料,包括第一涂层、第二涂层、以及夹在第一涂层和第二涂层之间的纤维肌理网络夹芯,其中,所述纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层、第二涂层浸润纤维肌理网络夹芯的纤维表面,并渗入到所述三维互贯网络结构的网孔内;第二涂层在三维互贯网络结构网孔的部分表面内陷,与第二涂层在三维互贯网络结构纤维表面没有内陷或内陷更小的部分形成凸凹立体肌理。
本发明第五方面是提供一种表面带有肌理的物体,尤其是表面带有肌理的墙体,包括本体,本体表面形成有浸渗涂覆复合抗裂肌理夹芯涂层,其中,浸渗涂覆复合抗裂肌理夹芯涂层包括第一涂层、第二涂层、以及夹在第一涂层和第二涂层之间的纤维肌理网络夹芯,其中,所述纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层、第二涂层浸润纤维肌理网络夹芯的纤维表面,并渗入到所述三维互贯网络结构的网孔内;所述第一涂层粘附在本体表面;第二涂层在三维互贯网络结构网孔的部分表面内陷,与第二涂层在三维互贯网络结构纤维表面没有内陷或内陷更小的部分形成凸凹立体肌理。
在本发明的一种优选实施例中,第一涂层、第二涂层在所述三维互贯网络结构的网孔内连接,并优选为连接成一体。在本发明的另一种优选实施例中,第一涂层、第二涂层在所述三维互贯网络结构的部分网孔内、或全部网孔内不接触,即,所述三维互贯网络结构的网孔内,在第一涂层、第二涂层之间,形成空隙。
在本发明的一种优选实施例中,所述第一涂层、第二涂层可以分别独立地是多层涂层,所述多层涂层中的各层可以独立地相同或不同。
例如,第一涂层可以是一层或多层胶黏剂层、和/或有机涂料层、和/或无机涂料层。并且,所述第一涂层可以含有腻子层,底色涂层、封闭底涂层、界面剂 等。
例如,第二涂层可以是一层或多层胶黏剂层、和/或有机涂料层、和/或无机涂料层。并且,所述第二涂层可以含有面涂层、耐磨层等。
并且,所述第一涂层、第二涂层可以独立地优选为不透明涂层、半透明涂层、透明涂层、或含有透明涂层、半透明涂层中的一种或几种,尤其是第二涂层可以优选为半透明涂层、或透明涂层、或含有透明涂层、半透明涂层中的一种或几种。
在本发明的优选实施例中,所述胶黏剂可以是无机胶黏剂和/或有机胶黏剂,并优选地其成膜物质可以是至少包括水泥、石灰、环氧树脂、有机硅胶、硅酮胶、聚酰胺胶、聚氨酯树脂、丙烯酸树脂、三聚氰胺-甲醛树脂、聚酯、聚丙烯酸酯、聚醋酸乙烯胶黏剂中的任意一种或几种。
在本发明的优选实施例中,所述有机涂料成膜物质可以是至少包括桐油、硝基纤维素、醇酸树脂、环氧树脂、聚丙烯酸酯、聚氨酯、聚醋酸乙烯酯、乳胶漆等中的任意一种或几种。
在本发明的优选实施例中,所述无机涂料成膜物质可以是至少包括碱金属硅酸盐、胶体二氧化硅、磷酸盐、聚硅氧烷中的任意一种或几种。所述无机涂料更优选为无机干粉涂料。
更优选地,所述第一涂层和第二涂层均最优选为至少包括一层无机干粉涂层。
本发明上述内容中,所述纤维肌理网络夹芯包括纤维、以及所述纤维之间的空隙形成的立体交叉的网孔,更优选地,纤维的排列为三维立体分布。
在更优选实施例中,所述纤维至少包括水平、竖直、倾斜方向的纤维,并且更优选地,至少部分纤维中,每一条纤维同时存在水平部分、竖直部分、倾斜方向部分中至少两种,或三种。
更优选地,纤维水平部分、竖直部分、倾斜方向部分中的任意一种或几种相互交叉,和/或纤维水平部分、竖直部分、倾斜方向部分中的任意一种或几种与另一条或多条纤维水平部分、竖直部分、倾斜方向部分中的任意一种或几种相互交叉。
在更优选实施例中,所述网孔至少包括水平、竖直、倾斜方向的网孔,其中,水平、竖直、倾斜方向网孔中的一种或几种与其他一个或多个水平、竖直、倾斜 方向网孔中的一种或几种相互连通。
本发明上述内容中所述“倾斜”,是指与水平和竖直方向均呈非0度夹角。所述“水平”是在水平面内,所述“竖直”是在竖直面内。即,所述“水平”、“竖直”、“倾斜”不属于同一平面。
本发明上述内容中所述“水平部分”可以是在同一水平面内,或不同水平面内;所述“竖直部分”可以是在同一竖直面内,或不同竖直面内;所述“倾斜方向部分”可以是在同一倾斜面内,或不同倾斜面内。
在本发明的更优选实施例中,纤维为多层排布,同层纤维之间围成第一网孔,各层纤维之间至少部分相互交叉围成第二网孔,至少部分第一网孔和第二网孔之间相相互贯通,形成三维互贯网络结构。
在本发明的更优选实施例中,每一层纤维可以是经纬线交织形成的二维网络结构、和/或为纤维弯曲排布形成的二维网络结构。
更优选地,至少部分纤维穿插于至少两层纤维层。
更优选地,各层纤维彼此交错排布,形成不同方向的网孔。例如,每一层或至少部分层的纤维交叉点位于其他层的网孔处,和/或每一层或至少部分层的纤维与其他层纤维方向不同。
本发明上述内容中,所述纤维肌理网络夹芯的纤维之间的连接点可以是熔接、化学粘结等连接方式中的一种或几种,并优选为熔接。
本发明上述内容中,所述纤维肌理网络夹芯的纤维连接点的数量优选为1%-100%。
本发明上述内容中,所述连接点数量是指纤维连接点个数占纤维交叉点个数的百分比。
本发明上述内容中,所述纤维肌理网络夹芯可以是金属、塑料、橡胶、纤维等材料制备,并优选为纤维材料制备,所述纤维可以是无机纤维、有机纤维中的任意一种或几种,并可以是人工合成纤维、天然纤维(包括天然纤维改性)、天然纤维加工后获得的再生纤维、金属纤维、合金纤维中的任意一种或几种。
在更优选实施例中,所述纤维可以是选自:聚酰胺(尼龙6、尼龙66等)、聚酰亚胺(如P84纤维)、聚丙烯、聚四氟乙烯、聚酯(如PET、PBT等)、芳纶(如芳纶1414、芳纶1313等,具体如杜邦公司的Kevlar、Nomex,帝人公 司Twaron、Technora,泰和新材公司的Taparan等)、聚苯硫醚等合成纤维中的任意一种或几种。但也可以是玻璃纤维等。
其中,所述纤维还可以通过浸胶等改性工艺提高刚性,提高抗形变能力。
其中,所述纤维肌理网络夹芯的纤维截面形状可以是一种或多种规则和/或不规则形状,如至少包括圆形、椭圆形、半圆形、多边形(如三角形、四边形、五边形、六边形)、五角星、腰果形、波纹形、哑铃形等形状中的一种或几种,并优选为圆形、椭圆形中的一种或几种。
本发明上述内容中,所述纤维肌理网络夹芯优选为纺织(包括非织造纺织材料、无纺布技术)、浇注、模压、3D打印等方法中的一种或多种获得。尤其优选为通过无纺布技术、和/或非织造纺织材料技术获得,如静电纺丝技术等。在更优选实施例中,所述纤维肌理网络夹芯制作方法包括:熔融喷丝,将纤维丝喷出层叠,然后热压将层内、层间纤维分别连接。
本发明上述内容中,所述纤维肌理网络夹芯的纤维直径优选为1μm-5000μm,更优选为1μm-1000μm,更优选为1μm-100μm,更优选为1μm-50μm,更优选为5μm-50μm,更优选为5μm-40μm。
本发明上述内容中,所述纤维肌理网络夹芯的厚度优选为0.1mm-10mm,更优选为0.1mm-5mm,更优选为0.1-1mm,更优选为0.1-0.5mm,更优选为0.2-0.4mm,如0.25mm、0.28mm、0.3mm、0.33mm、0.35mm、0.37mm等。
本发明上述内容中,所述纤维肌理网络夹芯的网孔形状没有特别要求,可以是根据肌理要求进行设定。其中,网孔可以是均匀分布,或者不同区域的网孔分布密度不同。
本发明上述内容中,所述纤维肌理网络夹芯的网孔的孔径优选为0.1mm-10mm,更优选为0.1mm-5mm,更优选为0.1mm-3mm,更优选为0.1mm-1mm。
本发明上述内容中,所述纤维肌理网络夹芯的密度优选为10-300g/m2,更优选为15-200g/m2,更优选为20-150g/m2,更优选为20-100g/m2,更优选为20-50g/m2
本发明上述内容中,所述纤维肌理网络夹芯还包括至少一个图案,所述图案由相同或不同于纤维肌理网络夹芯的结构组织形成,图案在纤维肌理网络夹芯中 可凸出或凹陷、或模切所述纤维肌理网络夹芯形成贯穿所述纤维肌理网络夹芯的图案。
在一种更优选实施例中,所述图案由比其他部分更加密集或疏松的网孔排布形成。或者,所述纤维肌理网络夹芯的图案可以是由一个网孔构成。或者,所述纤维肌理网络夹芯的图案可以是通过轧纹工艺制备。
上述图案均可以通过纺织(包括无纺布技术)、浇制、模压、热粘压印、封堵部分网孔等技术中的一种或多种来实现,优选为通过无纺布技术、喷塑、贴膜、热粘压印、封堵部分网孔、模切等方法中的一种或几种来实现。更优选为通过无纺布技术来实现,可以是喷丝形成纤维肌理网络夹芯三维互贯网络结构过程中形成图案,或者形成纤维肌理网络夹芯后热压形成图案。
本发明上述内容中,所述纤维肌理网络夹芯可以进行或已经进行过表面整理。但是也可以未经表面整理。所述表面整理可以是单面表面整理或双面表面整理。
其中,所述表面整理优选为包括、但不限于如下a)-g)中的任意一种或几种:
a)表面压平,但保留与内部网孔连通的表面开口;可以是单面压平或双面压平;
b)表面涂覆有改变纤维性能的材料,优选为涂覆有吸水率不同的材料,更优选地,所述性能(如吸水率)从表面整理部分的一端向另一端渐变,更优选地,所述性能(如吸水率)从纤维肌理网络夹芯一端向另一端渐变;
c)染色,使纤维肌理网络夹芯表面带有颜色,其中,所述颜色优选为单一颜色、多种颜色,所述多种颜色优选为渐变色;
d)贴膜,但保留与内部网孔连通的表面开口;
e)模压,使纤维肌理网络夹芯表面带有压痕图案;更优选地进行轧纹、轧点、轧孔整理;
f)模切,使纤维肌理网络夹芯带有贯穿的图案;
g)浸胶等工艺进行改性,以提高纤维刚性,提高抗形变能力。
本发明上述内容中,所述纤维肌理网络夹芯厚度优选为大于等于第一涂层与第二涂层厚度之和,尤其优选为大于第一涂层与第二涂层厚度之和。
本发明上述内容中,所述第二涂层厚度优选为小于等于纤维肌理网络夹芯厚 度的1/2,更优选为小于纤维肌理网络夹芯厚度的1/2。
本发明上述内容中,所述涂层的材料、或涂料可以是任意可用涂料,能够满足涂料粒径在所述纤维肌理网络夹芯的三维互贯网络结构中浸润、渗透并填充到网孔内的作用即可。
本发明上述内容中,所述第一涂层、第二涂层最大颗粒粒径分别独立地优选为≤50μm,更优选为≤30μm,更优选为≤20μm,更优选为≤10μm。
本发明上述内容中,所述第一涂层、第二涂层最大颗粒粒径分别独立地优选为≤纤维肌理网络夹芯的网孔的平均孔径的1/5,更优选为≤1/10,更优选为≤1/100;但更优选为≥1/1000。
本发明上述内容中,所述第一涂层、第二涂层分别独立地优选为包括无机胶凝材料、和/或有机胶凝材料,更优选为至少包括无机凝胶材料,更优选地,还可以包括填料、添加剂、颜料、溶剂中的任意一种或几种。
其中,所述无机凝胶材料可以是至少包括水泥、石灰、碱金属硅酸盐、磷酸盐、硅溶胶、聚硅氧烷中的任意一种或几种,并优选为至少包括水泥、石灰、碱金属硅酸盐中的任意一种或几种。
其中,所述有机凝胶材料可以是桐油、亚麻油、虫胶、环氧树脂、醇酸树脂、氨基醇酸树脂、聚氨酯、氯化橡胶、过氯乙烯涂料、聚醋酸乙烯乳液、苯丙乳液、乙丙乳液、纯丙乳液等中的任意一种或几种。
其中,所述填料可以是石粉、纤维、金属粉中的一种或几种,如石墨、滑石粉、玻璃粉、硅藻土、高岭土、炭黑、氧化铝、云母、木粉、石棉粉、陶土、碳酸钙、粉煤灰中的任意一种或几种。
所述添加剂可以是任意可用的能够改善涂层形态、和/或外观(如颜色)的添加剂,如催干剂、防沉剂、抗老化剂、防霉剂、增塑剂、聚合物胶粉、纤维素醚、消泡剂、增稠剂、防水剂、流平剂等添加剂中的一种或几种。
所述溶剂可以是含有水、以及有机溶剂(如甲苯、二甲苯、环己酮、甲醛等)中的任意一种或几种,所述溶剂优选为水。
本发明上述内容中,所述第一涂层、第二涂层固化时间(失去可塑性)分别独立地优选为不受限制,能够满足贴覆纤维肌理网络夹芯后浸润、渗透并填充至纤维肌理网络夹芯的网孔内即可。一般优选为涂刷后24小时内固化,更优选为 涂刷后12小时内固化,更优选为涂刷后2小时内固化.
所述第一涂层、第二涂层固化时间更优选为涂刷后1分钟后固化,优选为涂刷后2分钟后固化,更优选为5分钟后固化,更优选为涂刷后10分钟后固化,更优选为涂刷后15分钟后固化,更优选为涂刷后20分钟后固化,更优选为涂刷后30分钟后固化。
本发明上述内容中,所述第一涂层、第二涂层的固化方式可以分别独立地优选为溶剂蒸发固化(如失水固化)、光固化、空气固化、反应固化中的任意一种或几种,尤其优选为失水固化和/或空气固化。
本发明上述内容中,所述施压可以是任意可用的方法,如可以是滚压、刮压中的任意一种或几种。更优选地,所述滚压、刮压方法本身不形成肌理。
本发明上述内容中,所述第一涂层、第二涂层可以分别独立地通过已知的可用涂覆方式进行涂覆,如喷涂、刮涂、辊涂、刷涂中的任意一种或几种。
本发明上述内容中,所述第二涂层厚度优选为小于等于纤维肌理网络夹芯厚度的1/2,更优选为小于纤维肌理网络夹芯厚度的1/2。
本发明所述的在物体表面制作浸渗涂覆复合抗裂肌理夹芯涂层的方法,或所述制作肌理的方法,具有如下有益效果:
1)浸渗涂覆涂料涂覆在物体表面,与物体表面具有足够的粘结力,整个涂层完成面牢固可靠。
2)涂料浸润渗透并填充到纤维肌理网络夹芯的三维互贯网络结构的网孔中,使得纤维肌理网络夹芯的纤维与浸渗涂覆涂料之间具有咬合、粘结作用,同时由于三维互贯网络结构的网孔是三维立体分布,而且多个网孔之间相互贯通,涂料在网孔中的浸润、渗透和填充也是三维形式,因此,本发明能够提供涂料与纤维肌理网络夹芯之间更加紧密的结合,因此,相比于墙纸制作肌理,具有明显更高的耐剥离能力。
3)本发明形成的是一种夹芯结构,纤维肌理网络夹芯位于浸渗涂覆涂料之间,纤维肌理网络夹芯厚度大于等于第一涂层和第二涂层厚度之和,纤维肌理网络夹芯表面涂覆第二涂层后,纤维表面厚度增加,而网孔表面的第二涂层在固化过程中内陷,从而将纤维肌理网络夹芯的肌理呈现,因此,具有肌理可控的优点,纤维肌理网络夹芯可以标准化和规模化生产制造,并确保肌理的一致性;同时肌理 造型可以多样化,使得涂层肌理造型丰富多样。
4)本发明形成的是一种夹芯结构,相比于墙纸、墙布分层制作的肌理涂层,具有明显更好的抗剥离能力,相比于现有技术采用玻璃纤维布制作的涂层,涂层重量明显更小,而且坑裂能力并未有受到损失。
5)本发明方法在物体表面制作肌理,不会在对接处出现明显缝隙,肌理连贯性好;
6)本发明方法能够在物体表面制作类似于墙纸的丰富的肌理。
附图说明
图1A为本发明在墙体表面制备的浸渗涂覆复合抗裂肌理夹芯涂层、涂料结构示意图,图1B为图1A中墙体表面的肌理示意图;
图2A-图2C为纤维肌理网络夹芯不同点状连接点示意图;
图3为纤维肌理网络夹芯三维互贯网络结构局部剖面构造示意图;
图4A-图4B为本发明纤维肌理网络夹芯透视照片;
图5A-图5B为本发明纤维肌理网络夹芯被涂层浸渗填充后的照片;
图6为本发明制备浸渗涂覆复合抗裂肌理夹芯涂层流程示意图。
具体实施方式
实施例1
参照图1A,本发明浸渗涂覆复合抗裂肌理夹芯涂层、或涂料结构如下:
墙体10表面浸渗涂覆复合抗裂肌理夹芯涂层、或涂料包括第一涂层20、第二涂层30、以及夹在第一涂层20和第二涂层40之间的纤维肌理网络夹芯30。
其中,纤维肌理网络夹芯30内含有纤维形成的三维互贯网络结构,纤维包括水平纤维、竖直纤维和倾斜方向的纤维,图2A-图2C给出了几种纤维肌理网络夹芯30的俯视结构,参照图2A-图2C,在同一平面内,横向纤维5与纵向纤维4以及斜向纤维3相互交叉,交叉的纤维围成网孔2。纤维之间的交叉点至少部分连接在一起形成连接点1,如连接点可以是熔接、化学粘结等连接方式中的一种或几种,本实施例中优选为熔接。
纤维连接点个数占纤维交叉点个数的百分比可以是1%-100%,即交叉点可以都形成连接点,但是也可以只是部分交叉点形成连接点。如图2A,标记5所指的横向纤维与标记4所指的纵向纤维之间的交叉点没有形成连接点,但标记5 所指的横向纤维与标记3所指的斜向纤维之间的交叉点、标记4所指的纵向纤维与标记3所指的斜向纤维之间的交叉点均形成连接点1。
应当理解的是,本发明的纤维肌理网络夹芯30为三维立体结构,即纤维并不全部在同一个平面内排布,实际上存在水平、竖直、倾斜方向的纤维,水平、竖直、倾斜方向的纤维相互交叉,并形成至少部分连接点。另外,由于纤维具有较大的长度,每一条纤维都有可能是存在多个水平部分、竖直部分和倾斜方向部分,而且多个水平部分、多个竖直部分、或多个倾斜方向部分可能存在于、或也可能并不存在于同一个水平面、竖直面或倾斜面内。
如图3所示,上面水平面内的横向纤维31与下方水平面内的横向纤维32之间形成横向网孔22,与垂直面内的竖直纤维33之间形成纵向网孔21,横向网孔22与纵向网孔21连通。类似的,横向纤维31与倾斜方向纤维之间、竖直纤维33与倾斜方向纤维之间,分别形成倾斜方向网孔23,图3给出了两个倾斜方向网孔23连通的情况,但是倾斜方向网孔23也可以是与横向网孔22和/或纵向网孔21连通。
而且,上面水平面内的横向纤维31与下方水平面内的横向纤维32可以是来自于同一个纤维的两个水平部分,也可以是两个纤维。
参照图6,本实施例中制作浸渗涂覆复合抗裂肌理夹芯涂层、或涂料的方法如下:
参照图6A,在墙体10表面涂覆第一无机干粉涂料,形成第一涂层20,第一涂层仅需要覆盖墙体10的表面,但并不必须抹平;
参照图6B,第一无机干粉涂料丧失可塑性之前,将纤维肌理网络夹芯30贴覆到第一无机干粉涂料,第一无机干粉涂料浸润纤维、或者通过施压使第一无机干粉涂料浸润纤维,并渗入到三维互贯网络结构的孔内;该过程中,纤维肌理网络夹芯30可以施压接触到墙体10表面,也可以不接触,第一无机干粉涂料也可以贯穿纤维肌理网络夹芯30的网孔,并从网孔中渗出,但并不是必须的;
参照图6C涂覆第二无机干粉涂料,即第二涂层40,施压使第二无机干粉涂料浸润三维互贯网络结构纤维、并浸入到三维互贯网络结构的网孔内;形成夹芯涂层;该过程中,第二涂层和第一涂层的总厚度,最好不超过纤维肌理网络夹芯30厚度的50%,更优选为不超过30%,更优选为小于等于纤维肌理网络夹芯 30厚度;
施压之后,第一无机干粉涂料和第二无机干粉涂料在网孔内接触,并在压力作用下紧密结合;如图6C所示;
固化所述夹芯涂层,第二无机干粉涂料在固化过程中,位于三维互贯网络结构的孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂层受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理;如图1A所示。并且第一无机干粉涂料和第二无机干粉涂料固化过程中,紧密结合的部分连成一体。
参照图1B,纤维肌理网络夹芯30表面纤维可以不平整的,如图1B中第一部分纤维301低于第二部分纤维302,但也可以通过整平工艺使纤维肌理网络夹芯30表面平整;第二涂层40固化过程中,纤维表面的涂层被纤维阻挡从而停留在纤维表面,例如,第一部分纤维301表面形成较低肌理501,第二部分纤维302表面形成较高肌理502,在网孔2处第二涂层40下陷形成凹陷肌理部分503,因此,形成凸凹不平的肌理50,而且肌理50的形状与纤维肌理网络夹芯30表面凸凹结构相同或非常接近。
参照图5A-5B显示了涂料浸润纤维、渗入填充到网孔中的情况,图中,深色部分为填充到网孔内的涂料或涂层,浅色部分为纤维。由于涂料浸润渗透并填充到纤维肌理网络夹芯30的三维互贯网络结构的网孔中,使得纤维肌理网络夹芯的纤维与浸渗涂覆涂料之间具有咬合、粘结作用,同时由于三维互贯网络结构的孔是三维立体分布,而且多个孔之间相互贯通,涂料在孔中的浸润、渗透和填充也是三维形式,因此,本发明能够提供涂料与纤维肌理网络夹芯30之间更加紧密的结合,具有良好的耐剥离能力。
参照图2B,以聚乙烯纤维为例,本发明纤维肌理网络夹芯30的三维立体排布的纤维之间,通过热压进行熔接过程中,会有部分纤维熔融,形成块状结构100,这样,第一无机干粉涂料和第二无机干粉涂料浸润渗透、并填充到网孔中时,能够进一步加大对纤维的咬合力。
参照图2C,如果热压过度或粘结过度,会在纤维围成的网孔2内填充有熔融后流延的纤维或粘结剂,但是流延的纤维或粘结剂内又形成新的网孔200,新的网孔200与纤维围成的网孔2之间也会连通,涂料在纤维肌理网络夹芯30网孔中的填充更加复杂,可以进一步增加抗撕裂能力(耐剥离能力)。
参照图4A-图4B,本发明纤维肌理网络夹芯的纤维直径优选为1μm-5000μm,更优选为1μm-1000μm,更优选为1μm-100μm,更优选为1μm-50μm,更优选为5μm-50μm,更优选为5μm-40μm。纤维肌理网络夹芯的网孔的孔径优选为0.1mm-5mm,更优选为0.1mm-3mm,更优选为0.1mm-1mm。纤维肌理网络夹芯30的密度优选为10-300g/m2,更优选为15-200g/m2,更优选为20-150g/m2,更优选为20-100g/m2,更优选为20-50g/m2
纤维肌理网络夹芯30的厚度优选为0.1mm-10mm,更优选为0.1mm-5mm,更优选为0.1-1mm,更优选为0.1-0.5mm,更优选为0.2-0.4mm,如0.25mm、0.28mm、0.3mm、0.33mm、0.35mm、0.37mm等。本发明纤维肌理网络夹芯30的厚度优选为大于等于第一涂层与第二涂层厚度之和,尤其优选为大于第一涂层与第二涂层厚度之和。第二涂层厚度优选为小于等于纤维肌理网络夹芯30厚度的1/2。
本发明第一无机干粉涂料和第二无机干粉涂料均优选为碱金属硅酸盐作为成膜材料,并可以含有填料、颜料、添加剂等组分。所有组分中,最大颗粒(一般为填料)的粒径优选为≤50μm,更优选为≤30μm,更优选为≤20μm,更优选为≤10μm。并优选为≤纤维肌理网络夹芯的网孔的平均孔径的1/5,更优选为≤1/10,更优选为≤1/100;但更优选为≥1/1000。
实施例2
本实施例中制作浸渗涂覆复合抗裂肌理夹芯涂层、或涂料的方法如下:
在墙体10表面涂覆有机胶黏剂,如环氧树脂胶黏剂,或者将有机胶黏剂涂覆到纤维肌理网络夹芯30表面,作为第一涂层,纤维肌理网络夹芯30通过有机胶黏剂黏贴到墙体10表面,
通过施压使有机胶黏剂浸润纤维,并渗入到三维互贯网络结构的孔内;
涂覆有机涂料,形成第二涂层,施压使有机涂料浸润三维互贯网络结构纤维、并浸入到三维互贯网络结构的网孔内;形成夹芯涂层;
固化所述夹芯涂层,网孔表面的有机涂料向内形成较大塌陷、而位于纤维表面的有机涂料受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。
其中,纤维肌理网络夹芯的纤维直径为20μm。纤维肌理网络夹芯的网孔的孔径为0.5mm。纤维肌理网络夹芯30的密度优选为50g/m2
纤维肌理网络夹芯30的厚度优选为0.25mm。第一涂层厚度0.1mm,第二涂层厚度0.13mm。
有机胶黏剂或有机涂料中一般可以不存在固体颗粒,但也可以存在固体颗粒,存在固体颗粒的情况下,最大颗粒(一般为填料)的粒径为20μm。
实施例3
本实施例中制作浸渗涂覆复合抗裂肌理夹芯涂层、或涂料的方法如下:
在墙体10表面涂覆第一有机涂料,如乳胶漆,形成第一涂层20;
将纤维肌理网络夹芯30贴敷到第一涂层20表面,对纤维肌理网络夹芯30施压使第一有机涂料浸润纤维,并渗入到三维互贯网络结构的孔内;
涂覆第二有机涂料,也可以是乳胶漆,作为第二涂层,施压使第二有机涂料浸润三维互贯网络结构纤维、并浸入到三维互贯网络结构的网孔内;形成夹芯涂层;固化所述夹芯涂层,网孔表面的有机涂料向内形成较大塌陷、而位于纤维表面的有机涂料受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。
其中,纤维肌理网络夹芯的纤维直径为30μm。纤维肌理网络夹芯的网孔的孔径为1mm。纤维肌理网络夹芯30的密度优选为100g/m2
纤维肌理网络夹芯30的厚度优选为0.3mm。第一涂层厚度0.15mm,第二涂层厚度0.15mm。
有机涂料可以是丙烯酸乳液作为成膜材料,有机涂料中可以不存在固体颗粒,但也可以存在固体颗粒,存在固体颗粒的情况下,最大颗粒(一般为填料)的粒径为40μm。
实施例4
本实施例中制作浸渗涂覆复合抗裂肌理夹芯涂层、或涂料的方法如下:
在墙体10表面涂覆第一无机干粉涂料,形成第一涂层20;
将纤维肌理网络夹芯30贴敷到第一涂层20表面,对纤维肌理网络夹芯30施压使第一无机干粉涂料浸润纤维,并渗入到三维互贯网络结构的孔内;
涂覆第二无机干粉涂料(也可以是涂覆有有机涂料,如乳胶漆),施压使第二无机干粉涂料浸润三维互贯网络结构纤维、并浸入到三维互贯网络结构的网孔内;形成夹芯涂层;与实施例1不同的是,第二无机干粉涂料为透明或半透明涂料;固化所述夹芯涂层,网孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂料 受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。
实施例5
本实施例中制作浸渗涂覆复合抗裂肌理夹芯涂层、或涂料的方法如下:
在墙体10表面涂覆第一无机干粉涂料,形成第一涂层20;
将纤维肌理网络夹芯30贴敷到第一涂层20表面,与实施例1不同,本实施例纤维肌理网络夹芯30含有密集网孔组成的图案;
对纤维肌理网络夹芯30施压使第一无机干粉涂料浸润纤维,并渗入到三维互贯网络结构的孔内;
涂覆第二无机干粉涂料(也可以是涂覆有有机涂料,如乳胶漆),施压使第二无机干粉涂料浸润三维互贯网络结构纤维、并浸入到三维互贯网络结构的网孔内;形成夹芯涂层;与实施例1不同的是,第二无机干粉涂料为透明或半透明涂料;固化所述夹芯涂层,网孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂料受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。
实施例6
本实施例中制作浸渗涂覆复合抗裂肌理夹芯涂层、或涂料的方法如下:
在墙体10表面涂覆第一无机干粉涂料,形成第一涂层20;
将纤维肌理网络夹芯30贴敷到第一涂层20表面,与实施例1不同,本实施例纤维肌理网络夹芯30含有轧纹整理后形成的图案;
对纤维肌理网络夹芯30施压使第一无机干粉涂料浸润纤维,并渗入到三维互贯网络结构的孔内;
涂覆第二无机干粉涂料,也可以是乳胶漆,施压使第二无机干粉涂料浸润三维互贯网络结构纤维、并浸入到三维互贯网络结构的网孔内;形成夹芯涂层;与实施例1不同的是,第二无机干粉涂料为透明或半透明涂料;
固化所述夹芯涂层,网孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂料受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理;但是与实施例1不同的是,第一无机干粉涂料和第二无机干粉涂料在网孔内至少有一部分可以不接触,从而在网孔中形成部分中空结构。
对比例1
使用有机胶黏剂将墙纸贴敷到墙体表面。
在墙纸表面涂覆乳胶漆。
固化有机胶黏剂和乳胶漆。
对比例2
使用无机干粉涂料将墙纸贴敷到墙体表面。
在墙纸表面涂覆无机干粉涂料。
固化无机干粉涂料。
对比例3
使用无机干粉涂料将玻璃纤维布贴敷到墙体表面。
在玻璃纤维布表面涂覆无机干粉涂料。
固化无机干粉涂料。
对比例4
使用无机干粉涂料将经纬线编织的二维网布贴敷到墙体表面。
在二维网布表面涂覆无机干粉涂料。
固化无机干粉涂料。
上述对比例1-4中,均采用与本发明实施例5相同的涂层厚度。
对本发明上述实施例和对比例的涂层进行抗撕裂和表面肌理对比,结果如下:
表1,实施例和对比例的涂层进行抗撕裂和表面肌理对比结果
Figure PCTCN2017078554-appb-000001
Figure PCTCN2017078554-appb-000002
总体而言,本发明方法能够制作出类似于墙纸的丰富肌理,同时能够使得肌理和涂层具有很好的抗撕裂、抗剥离能力;尤其是本发明纤维网络夹芯处无肉眼可见对接缝,所获得的肌理具有良好的延续性。
采用墙纸制作的涂层,墙纸拼接处缝隙非常明显,而且容易剥离。玻璃纤维布、或二维网布制作的涂层,或者肌理不明显,或者肌理过于单调,无法形成墙纸的肌理效果,另外,网布拼接处(或重叠或间隔缝隙)肌理与其他部分的肌理差异过大。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (20)

  1. 一种在物体表面制作浸渗涂覆复合抗裂肌理夹芯涂层的方法,其特征在于,步骤包括:
    在物体表面涂覆第一涂层;
    第一涂层丧失可塑性之前,将纤维肌理网络夹芯贴覆在第一涂层,所述纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层的涂料浸润纤维,并渗入到三维互贯网络结构的网孔内;
    涂覆第二涂层,施压使第二涂层的涂料浸润三维互贯网络结构纤维、浸入到三维互贯网络结构的网孔内;形成夹芯涂层;
    固化所述夹芯涂层,第二涂层在固化过程中,位于三维互贯网络结构的网孔表面的涂料向内形成较大塌陷、而位于纤维表面的涂层受到纤维阻挡没有下陷或形成较小下陷,从而形成肌理。
  2. 根据权利要求1所述的方法,其特征在于,将纤维肌理网络夹芯贴覆在第一涂层后,施压使所述纤维肌理网络夹芯至少部分陷入所述第一涂层。
  3. 根据权利要求1所述的方法,其特征在于,第二涂层的涂料浸入三维互贯网络结构的网孔内、并与浸入到三维互贯网络结构的网孔内第一涂层涂料接触。
  4. 根据权利要求3所述的方法,其特征在于,第一涂层涂料和第二涂层涂料接触后继续施压,使第一涂层涂料和第二涂层涂料进一步紧密结合。
  5. 根据权利要求1所述的方法,其特征在于,第一涂层和/或第二涂层为不透明涂层、透明涂层、或半透明涂层、或含有透明涂层或半透明涂层。
  6. 根据权利要求1所述的方法,其特征在于,所述第一涂层和/或第二涂层是一层或多层胶黏剂层、和/或有机涂料层、和/或无机涂料层,并均优选为无机涂料层。
  7. 根据权利要求1所述的方法,其特征在于,所述纤维肌理网络夹芯包括纤维、以及所述纤维之间的空隙形成的立体交叉的网孔,更优选地,纤维的排列为三维立体分布。
  8. 根据权利要求7所述的方法,其特征在于,所述纤维至少包括水平、竖直、倾斜方向的纤维。
  9. 根据权利要求8所述的方法,其特征在于,至少部分纤维中,每一条纤维同时存在水平部分、竖直部分、倾斜方向部分中至少两种,或三种;其中纤维水平部分、竖直部分、倾斜方向部分中的任意一种或几种相互交叉,和/或纤维水平部分、竖直部分、倾斜方向部分中的任意一种或几种与另一条或多条纤维水平部分、竖直部分、倾斜方向部分中的任意一种或几种相互交叉。
  10. 根据权利要求9所述的方法,其特征在于,所述网孔至少包括水平、竖直、倾斜方向的网孔,其中,水平、竖直、倾斜方向网孔中的一种或几种与其他一个或多个水平、竖直、倾斜方向网孔中的一种或几种相互连通。
  11. 根据权利要求1所述的方法,其特征在于,所述纤维肌理网络夹芯的纤维直径为1μm-5000μm,优选为1μm-1000μm,更优选为1μm-100μm,更优选为1μm-50μm,更优选为5μm-50μm,更优选为5μm-40μm。
  12. 根据权利要求1所述的方法,其特征在于,所述纤维肌理网络夹芯的厚度为0.1mm-10mm,更优选为0.1mm-5mm,更优选为0.1-1mm,更优选为0.1-0.5mm,更优选为0.2-0.4mm,如0.25mm、0.28mm、0.3mm、0.33mm、0.35mm、0.37mm;和/或
    所述纤维肌理网络夹芯厚度大于等于第一涂层与第二涂层厚度之和。
  13. 根据权利要求1所述的方法,其特征在于,所述纤维肌理网络夹芯的网孔的孔径为0.1-10mm,优选为0.1mm-5mm,更优选为0.1mm-3mm,更优选为0.1mm-1mm。
  14. 根据权利要求1或13所述的方法,其特征在于,所述第一涂层、第二涂层最大颗粒粒径分别独立地为≤50μm,更优选为≤30μm,更优选为≤20μm,更优选为≤10μm。
  15. 根据权利要求14所述的方法,其特征在于,所述第一涂层、第二涂层最大颗粒粒径分别独立地优选为≤纤维肌理网络夹芯的网孔的平均孔径的1/5,更优选为≤1/10,更优选为≤1/100;但更优选为≥1/1000。
  16. 根据权利要求1所述的方法,其特征在于,所述纤维肌理网络夹芯的密度为10-300g/m2,更优选为15-200g/m2,更优选为20-150g/m2,更优选为20-100g/m2,更优选为20-50g/m2
  17. 根据权利要求1所述的方法,其特征在于,所述纤维肌理网络夹芯还包括 至少一个图案,所述图案由相同或不同于纤维肌理网络夹芯的结构组织形成,图案在纤维肌理网络夹芯中可凸出或凹陷、或模切所述纤维肌理网络夹芯形成贯穿纤维肌理网络夹芯的图案。
  18. 根据权利要求1或17所述的方法,其特征在于,所述纤维肌理网络夹芯进行或已经进行过单面或双面表面整理,所述表面整理优选为包括、但不限于如下a)-g)中的任意一种或几种:
    a)表面压平,但保留与内部网孔连通的表面开口;
    b)表面涂覆有改变纤维性能的材料,优选为涂覆有吸水率不同的材料,更优选地,所述性能(如吸水率)从表面整理部分的一端向另一端渐变,更优选地,所述性能(如吸水率)从纤维肌理网络夹芯一端向另一端渐变;
    c)染色,使纤维肌理网络夹芯表面带有颜色,其中,所述颜色优选为单一颜色、多种颜色,所述多种颜色优选为渐变色;
    d)贴膜,但保留与内部网孔连通的表面开口;
    e)模压,使纤维肌理网络夹芯表面带有图案;更优选地进行轧纹、轧点、轧孔整理;
    f)模切,使纤维肌理网络夹芯带有贯穿的图案;
    g)浸胶等工艺进行改性,以提高纤维刚性,提高抗形变能力。
  19. 一种权利要求1所述方法获得的浸渗涂覆复合抗裂肌理夹芯涂层,其特征在于,包括第一涂层、第二涂层、以及夹在第一涂层和第二涂层之间的纤维肌理网络夹芯,其中,所述纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层、第二涂层渗入到所述三维互贯网络结构的网孔内;第二涂层在三维互贯网络结构网孔的部分表面内陷,与第二涂层在三维互贯网络结构纤维表面没有内陷或内陷更小的部分形成凸凹立体肌理。
  20. 一种用于权利要求1所述方法或权利要求19所述涂层的浸渗涂覆复合抗裂肌理夹芯涂料,其特征在于,包括第一涂层、第二涂层、以及夹在第一涂层和第二涂层之间的纤维肌理网络夹芯,其中,所述纤维肌理网络夹芯内含有纤维形成的三维互贯网络结构,第一涂层、第二涂层浸润纤维肌理网络夹芯的纤维表面,并渗入到所述三维互贯网络结构的网孔内;第二涂层在三维互贯网络结构网孔的部分表面内陷,与第二涂层在三维互贯网络结构纤维表面没有内陷或内陷更小的 部分形成凸凹立体肌理。
PCT/CN2017/078554 2017-03-29 2017-03-29 一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料 WO2018176256A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078554 WO2018176256A1 (zh) 2017-03-29 2017-03-29 一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078554 WO2018176256A1 (zh) 2017-03-29 2017-03-29 一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料

Publications (1)

Publication Number Publication Date
WO2018176256A1 true WO2018176256A1 (zh) 2018-10-04

Family

ID=63674396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078554 WO2018176256A1 (zh) 2017-03-29 2017-03-29 一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料

Country Status (1)

Country Link
WO (1) WO2018176256A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210079596A1 (en) * 2018-02-16 2021-03-18 Suzhou Hongni New-Material Technology Ltd., Co. A wall-cloth with a laminated core coated through infiltration and a method for preparing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250363A (zh) * 2008-04-03 2008-08-27 惠州市长润发涂料有限公司 一种三维立体涂料
US20110024938A1 (en) * 2009-08-03 2011-02-03 S.D. Warren Company Imparting texture to cured powder coatings
CN104893457A (zh) * 2014-03-05 2015-09-09 胡小磷 一种腻子和涂料合为一体、浇注成型的墙面装饰材料
CN105602350A (zh) * 2016-01-21 2016-05-25 莆田市蔓贝尔环保产品有限公司 植物纤维混纺墙衣及其制备方法
CN205933723U (zh) * 2016-08-30 2017-02-08 广州市诺宝涂料有限公司 一种树脂漆涂料防水涂层

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250363A (zh) * 2008-04-03 2008-08-27 惠州市长润发涂料有限公司 一种三维立体涂料
US20110024938A1 (en) * 2009-08-03 2011-02-03 S.D. Warren Company Imparting texture to cured powder coatings
CN104893457A (zh) * 2014-03-05 2015-09-09 胡小磷 一种腻子和涂料合为一体、浇注成型的墙面装饰材料
CN105602350A (zh) * 2016-01-21 2016-05-25 莆田市蔓贝尔环保产品有限公司 植物纤维混纺墙衣及其制备方法
CN205933723U (zh) * 2016-08-30 2017-02-08 广州市诺宝涂料有限公司 一种树脂漆涂料防水涂层

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210079596A1 (en) * 2018-02-16 2021-03-18 Suzhou Hongni New-Material Technology Ltd., Co. A wall-cloth with a laminated core coated through infiltration and a method for preparing the same

Similar Documents

Publication Publication Date Title
CN207582074U (zh) 一种纤维抗裂肌理夹芯
CN101734076B (zh) 一种脱胎大漆雕塑作品的制作方法
CN111593854B (zh) 一种浸渗涂覆复合抗裂肌理夹芯涂层、涂料及制作方法
CN110158882A (zh) 一种相变储能浸渗涂覆夹芯墙布及其制作方法
CN110158892A (zh) 一种防火的浸渗涂覆夹芯墙布及其制作方法
WO2018176256A1 (zh) 一种制作浸透涂覆复合抗裂肌理夹芯涂层的方法及所用涂料
CN207582169U (zh) 一种浸渗涂覆复合抗裂肌理夹芯涂层
CN208618698U (zh) 一种抗碱浸渗涂覆夹芯墙布
WO2019157878A1 (zh) 一种浸渗涂覆夹芯墙布及其制作方法
JPS63125332A (ja) 壁面外装用防水化粧シート
CN113266118A (zh) 一种装配式拼接墙地面抗裂装饰面及制作方法
CN110616910A (zh) 一种墙面翻新方法
CN208618711U (zh) 一种浸渗涂覆夹芯墙布
CN114412116A (zh) 改善板材拼接抗裂性的方法以及板材拼接抗裂饰面及制作方法
CN216446386U (zh) 一种装配式拼接墙地面抗裂装饰面
CN110158898A (zh) 一种浸渗涂覆夹芯墙布及其制作方法
CN111055617A (zh) 一种带压花图案的抗裂肌理夹芯及其制作方法
CN110158890A (zh) 一种防水的浸渗涂覆夹芯墙布及其制作方法
CN110158893A (zh) 一种电磁屏蔽浸渗涂覆夹芯墙布及其制作方法
CN110158885A (zh) 一种防涂鸦浸渗涂覆夹芯墙布及其制作方法
CN206034828U (zh) 一种轻质仿文化石板
CN110158884A (zh) 一种抗碱浸渗涂覆夹芯墙布及其制作方法
CN110158883A (zh) 一种磁吸墙挂浸渗涂覆夹芯墙布及其制作方法
CN110158891A (zh) 一种保温浸渗涂覆夹芯墙布及其制作方法
CN216446425U (zh) 一种结构装饰一体化地面

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902704

Country of ref document: EP

Kind code of ref document: A1