WO2018173534A1 - Adsorbent for removal of aldehyde, deodorizing material, and production method for same - Google Patents

Adsorbent for removal of aldehyde, deodorizing material, and production method for same Download PDF

Info

Publication number
WO2018173534A1
WO2018173534A1 PCT/JP2018/004420 JP2018004420W WO2018173534A1 WO 2018173534 A1 WO2018173534 A1 WO 2018173534A1 JP 2018004420 W JP2018004420 W JP 2018004420W WO 2018173534 A1 WO2018173534 A1 WO 2018173534A1
Authority
WO
WIPO (PCT)
Prior art keywords
aldehyde
adsorbent
atom
mass
porous carrier
Prior art date
Application number
PCT/JP2018/004420
Other languages
French (fr)
Japanese (ja)
Inventor
勇記 田村
信幸 谷
清水 康弘
里恵 吉村
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to CN201880007477.9A priority Critical patent/CN110198744A/en
Priority to JP2019507423A priority patent/JP6816258B2/en
Publication of WO2018173534A1 publication Critical patent/WO2018173534A1/en

Links

Images

Definitions

  • the present invention relates to an adsorbent for aldehyde removal.
  • Japanese Patent Application Laid-Open No. 2006-75312 describes a deodorant composition comprising an inorganic porous material to which triazoles are attached. This deodorant composition efficiently deodorizes lower aldehydes such as formaldehyde at room temperature.
  • JP 2011-72603 A describes a fibrous deodorant containing fibrous activated carbon, p-aminobenzoic acid, and sulfuric acid.
  • This fibrous deodorant makes it possible to remove odorous components such as volatile organic compounds such as ammonia and aldehydes with high efficiency and has excellent storage stability.
  • deodorizers for removing odors containing aldehydes
  • JP, 2001-149456, JP 05-023588, and JP 2000-186212 JP, 2001-149456, JP 05-023588, and JP 2000-186212.
  • the present inventors have found that conventional deodorant compositions and fibrous deodorizers have room for improvement in terms of removal performance and storage stability of aldehydes such as formaldehyde and acetaldehyde.
  • an object of the present invention is to provide an adsorbent for removing aldehyde that can remove aldehydes with high efficiency and has excellent storage stability.
  • each of the porous carrier, the non-volatile strong acid, the 1,2,4-triazole skeleton, and the electron donating group bonded to the N atom at the 4-position thereof An aldehyde-removing adsorbent comprising one or more agents in which the atoms bonded to the 4-position N atom have a lone pair of electrons is provided.
  • a deodorizing material comprising the aldehyde removing adsorbent according to the first aspect and a substrate carrying the aldehyde removing adsorbent.
  • the base material, the porous carrier supported on the base material, the non-volatile strong acid, the 1,2,4-triazole skeleton and the electron donation bonded to the N atom at the 4-position thereof there is provided a deodorizing material each comprising a functional group, wherein an atom bonded to the N atom at the 4-position of the electron donating group and one or more agents having an unshared electron pair are provided.
  • each of the non-volatile strong acid, the 1,2,4-triazole skeleton, and the electron donating group bonded to the N atom at the 4-position thereof there is provided a method for producing an adsorbent for removing aldehyde, comprising a step of supporting a porous carrier with one or more drugs having an unshared electron pair in the atom bonded to the N atom at the position.
  • a method for producing a deodorizing material including supporting an adsorbent for removing aldehyde according to the first aspect on a base material.
  • a dispersion comprising a non-volatile strong acid, one or more drugs, a porous carrier and a dispersion medium, each of the one or more drugs being 1, 2, 4
  • a dispersion comprising a triazole skeleton and an electron donating group bonded to the N atom at the 4-position, wherein the atom bonded to the N atom at the 4-position of the electron donating group has an unshared electron pair
  • a method for producing a deodorizing material comprising supplying a liquid to a base material and drying the base material supplied with the dispersion.
  • the adsorbent for removing aldehyde includes a porous carrier, a non-volatile strong acid, and one or more drugs.
  • the porous carrier is, for example, activated carbon, activated clay, talc, clay, molecular sieve, silica gel, bentonite, alumina, perlite, zeolite, or sepiolite.
  • the kind of the porous carrier can be appropriately selected according to the kind of odor to be removed.
  • the porous carrier is activated carbon. Since activated carbon has a large specific surface area, it can remove odor more efficiently.
  • the raw material for the activated carbon is, for example, coconut shell, coal, or charcoal.
  • the shape of the porous carrier is, for example, granular, powdery, crushed, fibrous, spherical, sheet-like or honeycomb-like.
  • the non-volatile strong acid is, for example, sulfuric acid.
  • Nonvolatile acids are less likely to reduce in volume due to volatilization. That is, when a non-volatile acid is used, the storage stability of the aldehyde-removing adsorbent is better than when a volatile acid is used.
  • Each of the drugs includes a 1,2,4-triazole skeleton and an electron donating group bonded to the 4-position N atom, and among the electron-donating groups, the atom bonded to the 4-position N atom is It is a compound having an unshared electron pair.
  • the atom bonded to the 4-position N atom in the electron donating group is, for example, an N atom, an O atom, or an S atom.
  • the electron donating group is preferably one that does not prevent the aldehyde from approaching the electron donating group due to its steric hindrance.
  • the number of atoms other than hydrogen contained in the electron donating group is preferably 3 or less, and more preferably 2 or less.
  • the electron donating group is, for example, an amino group, a hydroxy group, a methoxy group, a thiol group, or a hydrazino group.
  • Each drug may have a substituent on at least one of the C atom at the 3-position and the C atom at the 5-position of the 1,2,4-triazole skeleton.
  • the substituent bonded to the 3-position C atom and the substituent bonded to the 5-position C atom may be bonded to each other to form a ring together with the 1,2,4-triazole skeleton.
  • each of these substituents preferably has 3 or less atoms, and more preferably 2 or less atoms other than hydrogen. Examples of these substituents include hydrazino group, mercapto group, amino group, hydroxy group, and methoxy group.
  • At least one of the drugs is preferably a compound represented by the following general formula (1). More preferably, all of the drugs are compounds represented by the following general formula (1).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or a substituent having a number of atoms other than hydrogen in the range of 1 to 7, preferably in the range of 1 to 4. Yes.
  • substituents include an alkyl group, an alkylamino group, an amino group, a hydroxy group, a methoxy group, and a thiol group.
  • R 3 and R 4 are the same or different and represent a hydrogen atom or a substituent having a number of atoms other than hydrogen in the range of 1 to 5, preferably in the range of 1 to 3. .
  • substituents include an alkyl group, an alkylamino group, an amino group, a hydroxy group, a methoxy group, and a thiol group.
  • At least one of the drugs is preferably selected from the group consisting of 4-amino-1,2,4-triazole and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. More preferably, all of the drugs are selected from the group consisting of 4-amino-1,2,4-triazole and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole.
  • This adsorbent for removing aldehyde is produced by supporting one or more drugs and a non-volatile strong acid on a porous carrier.
  • the non-volatile strong acid and the drug are supported on the porous carrier by, for example, the following method.
  • a treatment liquid is prepared by dissolving a drug and a non-volatile strong acid in a solvent.
  • a treatment liquid containing a chemical and a treatment liquid containing a non-volatile strong acid may be prepared.
  • the treatment liquid can be prepared by adding the drug and non-volatile strong acid to the solvent in any order and stirring.
  • the solvent for example, water can be used.
  • an aqueous solution of a non-volatile strong acid may be heated or cooled to a temperature in the range of 0 to 100 ° C, for example.
  • This treatment liquid may be used in a heated state or may be used after being cooled.
  • the drug may be dissolved in an aqueous solution of a non-volatile strong acid sufficiently diluted with water, or may be dissolved in an aqueous solution containing a non-volatile strong acid at a relatively high concentration and then diluted with water. Good. The amount of the chemical and the non-volatile strong acid in the treatment liquid will be described later.
  • the porous carrier is brought into contact with the treatment liquid.
  • the step of bringing the treatment liquid into contact with the porous carrier can be performed, for example, by immersing the porous carrier in the treatment liquid or by spraying the treatment liquid onto the porous carrier.
  • immersing the porous carrier in the treatment liquid for example, the porous carrier is uniformly dispersed in the treatment liquid.
  • the solvent is removed from the porous carrier brought into contact with the treatment liquid.
  • the removal of the solvent is performed, for example, by drying the porous carrier.
  • drying for example, natural drying, ventilation drying, hot air drying, microwave heating drying or indirect heating drying is used.
  • This drying is performed so that the temperature of the porous carrier is maintained at a temperature that does not affect the drug, for example, 200 ° C. or lower, typically 150 ° C. or lower.
  • the adsorbent for aldehyde removal is obtained as described above.
  • these process liquids can be made to contact a porous support
  • a total of one or more drugs is preferably within a range of 2 to 30 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the porous carrier. In the range of 3 parts by mass to 10 parts by mass. When this ratio is reduced, the initial performance of the aldehyde-removing adsorbent is lowered.
  • the treatment liquid contains a non-volatile strong acid, preferably in the range of 0.5 to 12 parts by mass, more preferably 0.6 to 7 parts by mass with respect to 100 parts by mass of the porous carrier.
  • a non-volatile strong acid preferably in the range of 0.5 to 12 parts by mass, more preferably 0.6 to 7 parts by mass with respect to 100 parts by mass of the porous carrier.
  • 0.8 parts by mass more preferably in the range of 0.8 parts by mass to 5 parts by mass, and most preferably in the range of 0.8 parts by mass to 4 parts by mass. Since the reaction between the drug and the aldehyde tends to be activated in a strongly acidic environment, increasing this ratio can remove malodorous components with higher efficiency. However, if this ratio is excessively increased, the initial performance of the aldehyde removing adsorbent is lowered.
  • the adsorbent for aldehyde removal obtained by the above method has a pH obtained according to JIS K1474: 2014, for example, in the range of 1.5 to 4.5, preferably in the range of 1.9 to 4.1. Is in.
  • the aldehyde-removing adsorbent obtained by the above-described method has a sulfur content of, for example, 0.1% by mass to 2% by mass, preferably 0.2% by mass to 1%. .4 mass%, more preferably 0.2 to 1 mass%.
  • the amount of sulfur contained in the aldehyde removing adsorbent is a value obtained by performing measurement by a UniQuant measurement method in a vacuum atmosphere using a fluorescent X-ray analyzer.
  • the adsorbent for removing aldehyde obtained by the above-mentioned method can remove malodorous components such as volatile organic compounds such as ammonia and aldehydes from the gas phase with high efficiency.
  • the aldehyde-removing adsorbent is excellent in storage stability. That is, this aldehyde removing adsorbent exhibits excellent performance regardless of the time from the completion of production to the start of use. The present inventors consider that the reason is as follows.
  • H + is bonded to the oxygen atom of the carbonyl group of the aldehyde, and the aldehyde has a state in which the carbon atom of the carbonyl group is positively charged and a state in which the oxygen atom of the carbonyl group is positively charged. It changes reversibly between. As a result, the aldehyde activates the carbonyl carbon and increases the reactivity with the drug.
  • the unshared electron pair possessed by the electron donating group of the drug contributes to the reaction with the aldehyde.
  • This unshared electron pair is likely to be deactivated by binding to H + in the presence of an acid.
  • the above-mentioned drug can stably hold electrons contributing to the reaction with the aldehyde even in the presence of an acid by the mechanism described below, and therefore can maintain the reactivity with the aldehyde. it is conceivable that.
  • the drug used here can take at least three states as shown below, for example, due to resonance of the 1,2,4-triazole skeleton.
  • R 1 , R 2 , R 3 , and R 4 are hydrogen atoms. Is a possible state.
  • the electron donating group of this drug contains an atom with an unshared electron pair, here an N atom.
  • the drug remains reactive with the aldehyde even in the presence of acid.
  • aldehydes are highly reactive with drugs in the presence of acids. Therefore, as a whole, the reaction between the drug and the aldehyde is promoted in the presence of an acid.
  • the amount of non-volatile acid is less likely to decrease due to volatilization. That is, when a non-volatile acid is used, the storage stability of the aldehyde-removing adsorbent is better than when a volatile acid is used.
  • the adsorbent for aldehyde removal described above can remove aldehydes with high efficiency and has excellent storage stability.
  • the adsorbent for removing aldehyde described above can be used, for example, in a deodorizing material.
  • a deodorizing material 1 shown in FIG. 1 includes an aldehyde removing adsorbent 2 and a base material 3.
  • the base material 3 carries the aldehyde removing adsorbent 2.
  • the base material 3 is a nonwoven fabric here.
  • reference numeral 4 indicates a non-woven fiber.
  • the base material 3 may not be a non-woven fabric.
  • the substrate 3 may be, for example, a foam, a porous polyurethane, a curtain, a carpet, a woven fabric such as an automobile seat fabric, paper, corrugated paper, or various fibrous materials.
  • This deodorizing material can be obtained by supporting an adsorbent for removing aldehyde on a base material.
  • the deodorizing material can be obtained by spraying, applying, or impregnating a dispersion containing an aldehyde-removing adsorbent and a dispersion medium and drying the dispersion.
  • a dispersion medium for example, polar solvents such as water, ethanol and acetone, or a mixed solution thereof can be used.
  • this deodorizing material contains the aldehyde removing adsorbent described above, it is possible to remove malodorous components such as volatile organic compounds such as ammonia and aldehydes from the gas phase with high efficiency.
  • this deodorizing material is unlikely to cause deterioration of the aldehyde removing adsorbent, it has excellent storage stability. That is, this deodorizing material exhibits excellent performance regardless of the time from the completion of production until the start of use.
  • the deodorizing material can also be obtained by the following method. First, a dispersion containing the components described above for the aldehyde-removing adsorbent, that is, a non-volatile strong acid, one or more drugs, a porous carrier, and a dispersion medium is prepared. Next, this dispersion is supplied to the substrate. For example, the dispersion is sprayed, applied, or impregnated onto the substrate. Then it is dried.
  • the porous carrier is supported on the base material.
  • the non-volatile strong acid and the one or more drugs are supported on at least one of the base material and the porous carrier.
  • a part of the aldehyde removing adsorbent other than the porous carrier is supported on the porous carrier, and the rest is supported on the substrate.
  • Such a deodorizing material also exhibits excellent performance regardless of the time from the completion of production to the start of use.
  • the components preferably used in this deodorizing material are the same as those described above for the aldehyde removing adsorbent. Moreover, the suitable quantity of each component in this deodorizing material is the same as that mentioned above about the adsorbent for aldehyde removal.
  • the aldehyde removal adsorbent a suitable amount of a specific component, for example, sulfur is described as a ratio to the amount of the aldehyde removal adsorbent.
  • the proportion of the specific component in the total of the porous carrier, the non-volatile strong acid, and the one or more drugs is preferably the above-described ratio of the specific component in the adsorbent for aldehyde removal. Is in range.
  • this deodorizing material has a pH of preferably within the range described above for the aldehyde-removing adsorbent using the method defined in JIS K1474: 2014.
  • a pH measurement method is defined for a powder sample or a granular sample.
  • the deodorizing material has a solid content other than the nonwoven fabric of 3 g, that is, the total amount of the porous carrier, the non-volatile strong acid, and one or more drugs is 3 g. A sample cut in this manner is used as a sample.
  • the components suitably used in the dispersion used in the production of the deodorizing material are the same as the components suitably used in the treatment liquid described above for the aldehyde-removing adsorbent.
  • the suitable quantity of each component in this dispersion liquid is the same as that of what was mentioned above about the processing liquid mentioned above.
  • Example 1 An aldehyde removing adsorbent was prepared by the following method. To 50 parts by mass of water, 5 parts by mass of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass and 3 parts by mass of 4-amino-1,2,4-triazole were added. This solution was stirred and 4-amino-1,2,4-triazole was completely dissolved in an aqueous solution to prepare a treatment solution.
  • activated carbon 100 parts by mass of activated carbon was prepared.
  • the activated carbon coconut shell activated carbon having a BET specific surface area of 1000 m 2 / g was used.
  • the treatment liquid was sprayed on the activated carbon to uniformly adhere the treatment liquid to the activated carbon.
  • the activated carbon was dried at 80 ° C. for 10 hours using a dryer. As described above, an adsorbent for removing aldehyde was obtained.
  • Example 2 In the same manner as described in Example 1 except that 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole was used instead of 4-amino-1,2,4-triazole. An aldehyde removal adsorbent was prepared.
  • FIG. 2 is a graph showing the aldehyde removal rate of the aldehyde removal adsorbent using various chemicals.
  • the horizontal axis of this graph indicates the numbers of the example and the comparative example, and the vertical axis indicates the initial acetaldehyde removal rate.
  • Examples 1 and 2 achieved an excellent initial acetaldehyde removal rate as compared with Comparative Examples 1 to 3. That is, when 4-amino-1,2,4-triazole or 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole is used as a drug used in combination with sulfuric acid, 3-amino-1 Excellent initial acetaldehyde removal rate was achieved compared to the use of 1,2,4-triazole, 1,2,4-triazole, or p-aminobenzoic acid. Further, Examples 1 and 2 achieved an excellent initial acetaldehyde removal rate as compared with Comparative Examples 4 and 5.
  • Example 3 An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 1 part by mass.
  • Example 4 An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of the sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 2 parts by mass.
  • Example 5 An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 9 parts by mass.
  • Example 6 An aldehyde removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by mass to 5 parts by mass.
  • Example 7 An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by mass to 10 parts by mass.
  • Example 8 An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by mass to 20 parts by mass.
  • Example 9 An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by weight to 30 parts by weight.
  • Example 10 An adsorbent for aldehyde removal was prepared in the same manner as described in Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 0.75 parts by mass. did.
  • Example 11 An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of the sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 12 parts by mass.
  • Example 12 An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 15 parts by mass.
  • Example 13 An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by weight to 2 parts by weight.
  • FIG. 3 is a graph showing an example of the influence of the amount of sulfuric acid contained in the aldehyde removal adsorbent on the aldehyde removal rate.
  • the horizontal axis of this graph indicates the ratio of sulfur contained in the aldehyde-removing adsorbent, and the vertical axis indicates the initial acetaldehyde removal rate.
  • This figure shows data obtained when the amount of 4-amino-1,2,4-triazole is 3 parts by mass.
  • FIG. 4 is a graph showing an example of the effect of the amount of 4-amino-1,2,4-triazole on the aldehyde removal rate of the aldehyde removal adsorbent.
  • the horizontal axis of this graph represents the amount of 4-amino-1,2,4-triazole, and the vertical axis represents the initial acetaldehyde removal rate.
  • this figure has shown the data obtained when the quantity of 75 mass% sulfuric acid aqueous solution was 5 mass parts.
  • Example 1 to Example 5, and Example 10 to 12 achieved superior initial performance as compared with Comparative Example 6. That is, the aldehyde-removing adsorbent has superior initial performance when it contains 4-amino-1,2,4-triazole together with sulfuric acid, compared to when it contains 4-amino-1,2,4-triazole alone. Achieved.
  • Example 1, Example 3 to Example 5, and Example 10 achieved better initial performance as compared with Example 11 and Example 12. That is, when the amount of sulfuric acid contained in the aldehyde-removing adsorbent is sufficiently small, excellent initial performance can be achieved as compared with the case where the amount of sulfuric acid is large.
  • Example 1 and Examples 6 to 9 achieved superior initial performance as compared with Example 13. That is, when the amount of 4-amino-1,2,4-triazole is sufficiently large, excellent initial performance can be achieved as compared with the case where the amount of 4-amino-1,2,4-triazole is small.
  • Example 1 was the same as that described for Example 1 except that 9 parts by mass of hydrochloric acid containing hydrogen chloride at a concentration of 35% by mass was used instead of 5 parts by mass of sulfuric acid aqueous solution containing 75% by mass of sulfuric acid.
  • the adsorbent for aldehyde removal was prepared by the method.
  • acetaldehyde removal rate was determined by the same method as described for the initial acetaldehyde removal rate.
  • FIG. 5 is a graph showing an example of the influence of the type of acid and drug on the storage stability of the aldehyde removal adsorbent.
  • the horizontal axis of this graph represents the number of days that have passed since the aldehyde-removing adsorbent was subjected to the acceleration test, and the vertical axis represents the acetaldehyde removal rate.
  • This figure shows data obtained when the amount of 4-amino-1,2,4-triazole is 3 parts by mass.
  • Example 1 and Example 4 achieved superior storage stability compared to Comparative Example 6. That is, when 4-amino-1,2,4-triazole was used in combination with sulfuric acid, excellent storage stability was achieved as compared with the case where it was not used in combination with sulfuric acid. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 3. That is, when 4-amino-1,2,4-triazole was used as a drug used in combination with sulfuric acid, excellent storage stability was achieved compared to the case where p-aminobenzoic acid was used. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 7.
  • Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 8. That is, when sulfuric acid was used as the acid, excellent initial performance and excellent storage stability were achieved compared to the case where acetic acid was used. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 9. That is, when sulfuric acid was used as the acid, excellent storage stability was achieved compared to the case where iron chloride was used. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 10. That is, when sulfuric acid was used as the acid, excellent storage stability was achieved compared to the case where iron sulfide was used.
  • FIG. 6 is a graph showing an example of the effect of the pH of the aldehyde removal adsorbent on the aldehyde removal rate.
  • the horizontal axis of this graph indicates the pH value of the aldehyde removing adsorbent, and the vertical axis indicates the initial acetaldehyde removal rate.
  • This figure shows data obtained when the amount of 4-amino-1,2,4-triazole is 3 parts by mass.
  • Examples 1, 3 to 5 and Examples 10 to 12 achieved an excellent initial acetaldehyde removal rate as compared with Comparative Example 6. Among them, Example 1 and Examples 3 to 5 achieved particularly excellent initial performance.
  • an aldehyde removing adsorbent was prepared by the following method. To 250 g of water, 1.3 g of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass and 8 g of 4-amino-1,2,4-triazole were added. This solution was stirred and 4-amino-1,2,4-triazole was completely dissolved in the aqueous solution to prepare a treatment solution.
  • activated carbon 100 g was added to the treatment liquid.
  • the activated carbon coconut shell activated carbon having a BET specific surface area of 1000 m 2 / g and a median diameter (D50) of 25 ⁇ m was used.
  • the dispersion was sufficiently stirred, and 2 g of hydroxyethyl cellulose and 61 g of an acrylic binder were added thereto. The dispersion was further stirred to prepare a slurry.
  • this slurry was applied to a nonwoven fabric having a basis weight of 95 g / m 2 .
  • the application of the slurry was performed so that the basis weight of the solid content contained in the slurry was 260 g / m 2 .
  • Example 11 A deodorizing material was produced in the same manner as described for Example 14 except that no sulfuric acid aqueous solution was used.
  • each deodorizing material was cut into five pieces having different sizes. These pieces were enclosed in separate bags. Here, a bag having a capacity of 5 L was used.
  • acetaldehyde was injected into each bag so as to have a concentration of 1000 ppm, and this was left under the conditions of 25 ° C. and 50% RH until the concentration of acetaldehyde reached saturation.
  • poured the same quantity of aldehyde as the above was prepared, without enclosing the fragment
  • each deodorizing material was cut into five pieces having different sizes. Subsequently, these fragments were allowed to stand in a thermostat at 70 ° C. for 7 days and 14 days.
  • the acetaldehyde adsorption amount was determined by the same method as described for the initial acetaldehyde adsorption amount using the fragments after 7 days and 14 days.
  • Example 14 achieved superior storage stability compared to Comparative Example 11. That is, when sulfuric acid was used in combination with 4-amino-1,2,4-triazole, excellent storage stability was achieved as compared with the case where sulfuric acid was not used.

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Provided is an adsorbent for removal of aldehydes which is able to highly efficiently remove aldehydes and exhibits excellent storage stability. This adsorbent for removal of aldehydes contains a porous carrier, a non-volatile strong acid, and one or more agents each containing a 1,2,4-triazol backbone with an electron donor group bonded to the N atom at position 4. The atom of the electron donor group bonded to the N atom at position 4 has an unshared electron pair.

Description

アルデヒド除去用吸着剤及び脱臭材並びにそれらの製造方法Adsorbent for removing aldehyde, deodorizing material, and production method thereof
 本発明は、アルデヒド除去用吸着剤に関する。 The present invention relates to an adsorbent for aldehyde removal.
 近年、屋内及び車内環境には、臭気及び埃が少ないことが求められている。例えば、車内環境については、樹脂部品、エンジンからの排気ガス、燃料、煙草及び人体等に由来した臭気の除去が望まれている。 In recent years, indoor and in-vehicle environments are required to have less odor and dust. For example, regarding the in-vehicle environment, it is desired to remove odors originating from resin parts, exhaust gas from engines, fuel, tobacco, human bodies, and the like.
 特開2006-75312号公報には、トリアゾール類を添着させた無機多孔質体からなる消臭性組成物が記載されている。この消臭性組成物は、ホルムアルデヒド等の低級アルデヒド類を常温で効率よく消臭する。 Japanese Patent Application Laid-Open No. 2006-75312 describes a deodorant composition comprising an inorganic porous material to which triazoles are attached. This deodorant composition efficiently deodorizes lower aldehydes such as formaldehyde at room temperature.
 特開2011-72603号公報には、繊維状活性炭とp-アミノ安息香酸と硫酸とを含んだ繊維状脱臭剤が記載されている。この繊維状脱臭剤は、悪臭成分、例えばアンモニア及びアルデヒド類等の揮発性有機化合物を、高い効率で除去可能とし且つ優れた貯蔵安定性を有する。 JP 2011-72603 A describes a fibrous deodorant containing fibrous activated carbon, p-aminobenzoic acid, and sulfuric acid. This fibrous deodorant makes it possible to remove odorous components such as volatile organic compounds such as ammonia and aldehydes with high efficiency and has excellent storage stability.
 他にもアルデヒド類を含む臭気を除去する消臭剤として、種々の消臭剤が知られている(特開2005-137601号公報、特開平11-004879号公報、特開2000-152979号公報、特開2001-149456号公報、特開平05-023588号公報、及び特開2000-186212号公報)。 In addition, various deodorants are known as deodorizers for removing odors containing aldehydes (Japanese Patent Laid-Open Nos. 2005-137601, 11-004879, 2000-152979). JP, 2001-149456, JP 05-023588, and JP 2000-186212).
 本発明者らは、従来の消臭性組成物及び繊維状脱臭剤には、アルデヒド類、例えば、ホルムアルデヒド及びアセトアルデヒドの除去性能ならびに貯蔵安定性に関して改善の余地があることを見出している。 The present inventors have found that conventional deodorant compositions and fibrous deodorizers have room for improvement in terms of removal performance and storage stability of aldehydes such as formaldehyde and acetaldehyde.
 そこで、本発明の目的は、アルデヒド類を高い効率で除去可能であり且つ優れた貯蔵安定性を有するアルデヒド除去用吸着剤を提供することにある。 Therefore, an object of the present invention is to provide an adsorbent for removing aldehyde that can remove aldehydes with high efficiency and has excellent storage stability.
 本発明の第1側面によると、多孔質担体と、不揮発性強酸と、1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤とを含んだアルデヒド除去用吸着剤が提供される。 According to the first aspect of the present invention, each of the porous carrier, the non-volatile strong acid, the 1,2,4-triazole skeleton, and the electron donating group bonded to the N atom at the 4-position thereof, An aldehyde-removing adsorbent comprising one or more agents in which the atoms bonded to the 4-position N atom have a lone pair of electrons is provided.
 本発明の第2側面によると、第1側面に係るアルデヒド除去用吸着剤と、前記アルデヒド除去用吸着剤を担持した基材とを含んだ脱臭材が提供される。 According to the second aspect of the present invention, there is provided a deodorizing material comprising the aldehyde removing adsorbent according to the first aspect and a substrate carrying the aldehyde removing adsorbent.
 本発明の第3側面によると、基材と、前記基材に担持された多孔質担体と、不揮発性強酸と、1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤とを含んだ脱臭材が提供される。 According to the third aspect of the present invention, the base material, the porous carrier supported on the base material, the non-volatile strong acid, the 1,2,4-triazole skeleton and the electron donation bonded to the N atom at the 4-position thereof There is provided a deodorizing material each comprising a functional group, wherein an atom bonded to the N atom at the 4-position of the electron donating group and one or more agents having an unshared electron pair are provided. The
 本発明の第4側面によると、不揮発性強酸と、1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤とを、多孔質担体に担持させる工程を含むアルデヒド除去用吸着剤の製造方法が提供される。 According to the fourth aspect of the present invention, each of the non-volatile strong acid, the 1,2,4-triazole skeleton, and the electron donating group bonded to the N atom at the 4-position thereof, There is provided a method for producing an adsorbent for removing aldehyde, comprising a step of supporting a porous carrier with one or more drugs having an unshared electron pair in the atom bonded to the N atom at the position.
 本発明の第5側面によると、第1側面に係るアルデヒド除去用吸着剤を基材に担持させることを含んだ脱臭材の製造方法が提供される。 According to the fifth aspect of the present invention, there is provided a method for producing a deodorizing material including supporting an adsorbent for removing aldehyde according to the first aspect on a base material.
 本発明の第6側面によると、不揮発性強酸と1つ以上の薬剤と多孔質担体と分散媒とを含んだ分散液であって、前記1つ以上の薬剤の各々は、1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している分散液を、基材へ供給することと、前記分散液を供給した前記基材を乾燥させることとを含んだ脱臭材の製造方法が提供される。 According to a sixth aspect of the present invention, there is provided a dispersion comprising a non-volatile strong acid, one or more drugs, a porous carrier and a dispersion medium, each of the one or more drugs being 1, 2, 4 A dispersion comprising a triazole skeleton and an electron donating group bonded to the N atom at the 4-position, wherein the atom bonded to the N atom at the 4-position of the electron donating group has an unshared electron pair There is provided a method for producing a deodorizing material comprising supplying a liquid to a base material and drying the base material supplied with the dispersion.
本発明の一態様に係る脱臭材の一例を概略的に示す図。The figure which shows roughly an example of the deodorizing material which concerns on 1 aspect of this invention. 各種薬剤を用いたアルデヒド除去用吸着剤のアルデヒド除去率を示すグラフ。The graph which shows the aldehyde removal rate of the adsorption agent for aldehyde removal using various chemical | medical agents. 硫酸の量がアルデヒド除去率に及ぼす影響の一例を示すグラフ。The graph which shows an example of the influence which the quantity of a sulfuric acid has on the aldehyde removal rate. 薬剤の量がアルデヒド除去率に及ぼす影響の一例を示すグラフ。The graph which shows an example of the influence which the quantity of a chemical | medical agent has on an aldehyde removal rate. 酸及び薬剤の種類が貯蔵安定性に及ぼす影響の一例を示すグラフ。The graph which shows an example of the influence which the kind of an acid and a chemical | medical agent has on storage stability. pHがアルデヒド除去率に及ぼす影響の一例を示すグラフ。The graph which shows an example of the influence which pH has on the aldehyde removal rate.
 以下、本発明の態様について説明する。 
 本発明の一態様に係るアルデヒド除去用吸着剤は、多孔質担体と、不揮発性強酸と、1つ以上の薬剤とを含んでいる。
Hereinafter, embodiments of the present invention will be described.
The adsorbent for removing aldehyde according to one embodiment of the present invention includes a porous carrier, a non-volatile strong acid, and one or more drugs.
 多孔質担体は、例えば、活性炭、活性白土、タルク、クレー、モレキュラーシーブ、シリカゲル、ベントナイト、アルミナ、パーライト、ゼオライト又はセピオライトである。多孔質担体の種類は、除去する臭気の種類に応じて適宜選択することができる。 The porous carrier is, for example, activated carbon, activated clay, talc, clay, molecular sieve, silica gel, bentonite, alumina, perlite, zeolite, or sepiolite. The kind of the porous carrier can be appropriately selected according to the kind of odor to be removed.
 好ましくは、多孔質担体は活性炭である。活性炭は、その比表面積が大きいことから、より効率的に臭気を除去することができる。活性炭の原料は、例えば、ヤシ殻、石炭又は木炭である。 Preferably, the porous carrier is activated carbon. Since activated carbon has a large specific surface area, it can remove odor more efficiently. The raw material for the activated carbon is, for example, coconut shell, coal, or charcoal.
 多孔質担体の形状は、例えば、粒状、粉末状、破砕状、繊維状、球状、シート状又はハニカム状である。 The shape of the porous carrier is, for example, granular, powdery, crushed, fibrous, spherical, sheet-like or honeycomb-like.
 不揮発性強酸は、例えば、硫酸である。 
 不揮発性の酸は、揮発に起因した量の減少が生じ難い。即ち、不揮発性の酸を用いた場合、揮発性の酸を用いた場合と比較して、アルデヒド除去用吸着剤の貯蔵安定性が良好である。
The non-volatile strong acid is, for example, sulfuric acid.
Nonvolatile acids are less likely to reduce in volume due to volatilization. That is, when a non-volatile acid is used, the storage stability of the aldehyde-removing adsorbent is better than when a volatile acid is used.
 弱酸を使用した場合、強酸に比べて多量に酸を使用しなければならない。多量の酸を使用すると、多孔質担体の細孔の閉塞が生じる。これに対し、強酸は、少量でアルデヒド除去用吸着剤のアルデヒド類除去性を向上させることができる。そのため、強酸を使用すると多孔質担体の細孔の閉塞を最小限に抑制できる。それ故、強酸を使用した場合、弱酸を使用した場合と比較して、アルデヒドとの反応をより効率的に生じさせることができる。 When a weak acid is used, a larger amount of acid must be used than a strong acid. When a large amount of acid is used, the pores of the porous carrier are blocked. On the other hand, strong acid can improve the aldehyde removal property of the adsorbent for aldehyde removal with a small amount. Therefore, when a strong acid is used, blockage of the pores of the porous carrier can be minimized. Therefore, when a strong acid is used, a reaction with an aldehyde can be caused more efficiently than when a weak acid is used.
 薬剤の各々は、1,2,4-トリアゾール骨格と、その4位のN原子に結合した電子供与性基とを含み、電子供与性基のうち4位のN原子に結合している原子は非共有電子対を有している化合物である。 Each of the drugs includes a 1,2,4-triazole skeleton and an electron donating group bonded to the 4-position N atom, and among the electron-donating groups, the atom bonded to the 4-position N atom is It is a compound having an unshared electron pair.
 電子供与性基のうち4位のN原子に結合している原子は、例えば、N原子、O原子、又はS原子である。 The atom bonded to the 4-position N atom in the electron donating group is, for example, an N atom, an O atom, or an S atom.
 電子供与性基は、その立体障害によって電子供与性基へのアルデヒドの接近を妨げないものであることが好ましい。電子供与性基が含んでいる水素以外の原子の数は、3以下であることが好ましく、2以下であることがより好ましい。 The electron donating group is preferably one that does not prevent the aldehyde from approaching the electron donating group due to its steric hindrance. The number of atoms other than hydrogen contained in the electron donating group is preferably 3 or less, and more preferably 2 or less.
 電子供与性基は、例えば、アミノ基、ヒドロキシ基、メトキシ基、チオール基、又はヒドラジノ基である。 The electron donating group is, for example, an amino group, a hydroxy group, a methoxy group, a thiol group, or a hydrazino group.
 各薬剤は、1,2,4-トリアゾール骨格の3位のC原子及び5位のC原子の少なくとも一方に置換基を有していてもよい。3位のC原子に結合している置換基と、5位のC原子に結合している置換基とは、互いに結合して、1,2,4-トリアゾール骨格とともに環を形成してもよい。また、これら置換基の各々は、水素以外の原子の数が3以下であることが好ましく、2以下であることがより好ましい。これら置換基としては、例えば、ヒドラジノ基、メルカプト基、アミノ基、ヒドロキシ基、及びメトキシ基が挙げられる。 Each drug may have a substituent on at least one of the C atom at the 3-position and the C atom at the 5-position of the 1,2,4-triazole skeleton. The substituent bonded to the 3-position C atom and the substituent bonded to the 5-position C atom may be bonded to each other to form a ring together with the 1,2,4-triazole skeleton. . Further, each of these substituents preferably has 3 or less atoms, and more preferably 2 or less atoms other than hydrogen. Examples of these substituents include hydrazino group, mercapto group, amino group, hydroxy group, and methoxy group.
 薬剤の少なくとも1つは、好ましくは、下記の一般式(1)で表される化合物である。より好ましくは、薬剤の全ては、下記の一般式(1)で表される化合物である。 At least one of the drugs is preferably a compound represented by the following general formula (1). More preferably, all of the drugs are compounds represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ここで、R及びRは、同一又は異なり、水素原子、又は、水素以外の原子の数が1乃至7の範囲内に、好ましくは、1乃至4の範囲内にある置換基を示している。そのような置換基としては、例えば、アルキル基、アルキルアミノ基、アミノ基、ヒドロキシ基、メトキシ基、及びチオール基が挙げられる。 Here, R 1 and R 2 are the same or different and each represents a hydrogen atom or a substituent having a number of atoms other than hydrogen in the range of 1 to 7, preferably in the range of 1 to 4. Yes. Examples of such a substituent include an alkyl group, an alkylamino group, an amino group, a hydroxy group, a methoxy group, and a thiol group.
 また、R及びRは、同一又は異なり、水素原子、又は、水素以外の原子の数が1乃至5の範囲内に、好ましくは、1乃至3の範囲内にある置換基を示している。そのような置換基としては、例えば、アルキル基、アルキルアミノ基、アミノ基、ヒドロキシ基、メトキシ基、及びチオール基が挙げられる。 R 3 and R 4 are the same or different and represent a hydrogen atom or a substituent having a number of atoms other than hydrogen in the range of 1 to 5, preferably in the range of 1 to 3. . Examples of such a substituent include an alkyl group, an alkylamino group, an amino group, a hydroxy group, a methoxy group, and a thiol group.
 薬剤の少なくとも1つは、好ましくは、4-アミノ-1,2,4-トリアゾール及び4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾールからなる群より選ばれる。より好ましくは、薬剤の全ては、4-アミノ-1,2,4-トリアゾール及び4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾールからなる群より選ばれる。 At least one of the drugs is preferably selected from the group consisting of 4-amino-1,2,4-triazole and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. More preferably, all of the drugs are selected from the group consisting of 4-amino-1,2,4-triazole and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole.
 このアルデヒド除去用吸着剤は、1つ以上の薬剤と、不揮発性強酸とを多孔質担体に担持させることにより製造する。 
 不揮発性強酸および薬剤の多孔質担体への担持は、例えば、以下の方法により行う。 
 まず、薬剤と、不揮発性強酸とを溶媒に溶解させて処理液を調製する。
This adsorbent for removing aldehyde is produced by supporting one or more drugs and a non-volatile strong acid on a porous carrier.
The non-volatile strong acid and the drug are supported on the porous carrier by, for example, the following method.
First, a treatment liquid is prepared by dissolving a drug and a non-volatile strong acid in a solvent.
 薬剤および不揮発性強酸の双方を含んだ処理液を調製する代わりに、薬剤を含んだ処理液と不揮発性強酸を含んだ処理液とを調製してもよい。 
 薬剤および不揮発性強酸をまとめて1つの溶媒に溶解させて処理液を調製する場合、処理液は、薬剤および不揮発性強酸を任意の順で溶媒に添加し、撹拌することにより調製することができる。溶媒としては、例えば、水を用いることができる。薬剤を溶媒に溶解させるために、不揮発性強酸の水溶液を、例えば0乃至100℃の範囲内の温度に加熱又は冷却してもよい。この処理液は、加熱された状態で使用してもよく、冷却した後に使用してもよい。また、薬剤は、水で十分に希釈した不揮発性強酸の水溶液中に溶解させてもよく、不揮発性強酸を比較的高い濃度で含んだ水溶液中に溶解させた後にこれを水で希釈してもよい。なお、処理液中の薬剤及び不揮発性強酸の量については、後で説明する。
Instead of preparing a treatment liquid containing both a chemical and a non-volatile strong acid, a treatment liquid containing a chemical and a treatment liquid containing a non-volatile strong acid may be prepared.
When preparing a treatment liquid by dissolving a drug and a non-volatile strong acid together in one solvent, the treatment liquid can be prepared by adding the drug and non-volatile strong acid to the solvent in any order and stirring. . As the solvent, for example, water can be used. In order to dissolve the drug in a solvent, an aqueous solution of a non-volatile strong acid may be heated or cooled to a temperature in the range of 0 to 100 ° C, for example. This treatment liquid may be used in a heated state or may be used after being cooled. The drug may be dissolved in an aqueous solution of a non-volatile strong acid sufficiently diluted with water, or may be dissolved in an aqueous solution containing a non-volatile strong acid at a relatively high concentration and then diluted with water. Good. The amount of the chemical and the non-volatile strong acid in the treatment liquid will be described later.
 次に、多孔質担体を処理液に接触させる。 
 多孔質担体に処理液を接触させる工程は、例えば、多孔質担体を処理液に浸漬させるか、又は、処理液を多孔質担体に噴霧することにより行うことができる。 
 多孔質担体を処理液に浸漬させる場合は、例えば、多孔質担体を処理液中に均一に分散させる。
Next, the porous carrier is brought into contact with the treatment liquid.
The step of bringing the treatment liquid into contact with the porous carrier can be performed, for example, by immersing the porous carrier in the treatment liquid or by spraying the treatment liquid onto the porous carrier.
When immersing the porous carrier in the treatment liquid, for example, the porous carrier is uniformly dispersed in the treatment liquid.
 次いで、処理液に接触させた多孔質担体から溶媒を除去する。 
 溶媒の除去は、例えば、多孔質担体を乾燥させることにより行う。この乾燥には、例えば、自然乾燥、通風乾燥、熱風乾燥、マイクロ波加熱乾燥又は間接加熱乾燥を利用する。
Next, the solvent is removed from the porous carrier brought into contact with the treatment liquid.
The removal of the solvent is performed, for example, by drying the porous carrier. For this drying, for example, natural drying, ventilation drying, hot air drying, microwave heating drying or indirect heating drying is used.
 この乾燥は、多孔質担体の温度が、薬剤に影響を与えない温度、例えば200℃以下に、典型的には150℃以下に維持されるように行う。 
 以上のようにして、アルデヒド除去用吸着剤を得る。なお、薬剤を含んだ処理液と不揮発性強酸を含んだ処理液とを調製する場合、これらの処理液は、任意の順で多孔質担体に接触させることができる。
This drying is performed so that the temperature of the porous carrier is maintained at a temperature that does not affect the drug, for example, 200 ° C. or lower, typically 150 ° C. or lower.
The adsorbent for aldehyde removal is obtained as described above. In addition, when preparing the process liquid containing a chemical | medical agent and the process liquid containing a non-volatile strong acid, these process liquids can be made to contact a porous support | carrier in arbitrary orders.
 上記処理液は、多孔質担体100質量部に対して、1つ以上の薬剤を、合計で、好ましくは、2質量部乃至30質量部の範囲内、より好ましくは、3質量部乃至30質量部の範囲内、更に好ましくは、3質量部乃至10質量部の範囲内で含有する。この比を小さくすると、アルデヒド除去用吸着剤の初期性能が低下する。 In the treatment liquid, a total of one or more drugs is preferably within a range of 2 to 30 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the porous carrier. In the range of 3 parts by mass to 10 parts by mass. When this ratio is reduced, the initial performance of the aldehyde-removing adsorbent is lowered.
 また、この処理液は、多孔質担体100質量部に対して、不揮発性強酸を、好ましくは、0.5質量部乃至12質量部の範囲内、より好ましくは、0.6質量部乃至7質量部の範囲内、更に好ましくは、0.8質量部乃至5質量部の範囲内、最も好ましくは、0.8質量部乃至4質量部の範囲内で含有する。薬剤とアルデヒドとの反応は強酸性の環境下で活性化し易いため、この比を大きくすると、悪臭成分をより高い効率で除去することができる。但し、この比を過剰に大きくすると、アルデヒド除去用吸着剤の初期性能が低下する。 In addition, the treatment liquid contains a non-volatile strong acid, preferably in the range of 0.5 to 12 parts by mass, more preferably 0.6 to 7 parts by mass with respect to 100 parts by mass of the porous carrier. In the range of 0.8 parts by mass, more preferably in the range of 0.8 parts by mass to 5 parts by mass, and most preferably in the range of 0.8 parts by mass to 4 parts by mass. Since the reaction between the drug and the aldehyde tends to be activated in a strongly acidic environment, increasing this ratio can remove malodorous components with higher efficiency. However, if this ratio is excessively increased, the initial performance of the aldehyde removing adsorbent is lowered.
 上述の方法により得られるアルデヒド除去用吸着剤は、JIS K1474:2014に従って得られるpHが、例えば、1.5乃至4.5の範囲内にあり、好ましくは、1.9乃至4.1の範囲内にある。 The adsorbent for aldehyde removal obtained by the above method has a pH obtained according to JIS K1474: 2014, for example, in the range of 1.5 to 4.5, preferably in the range of 1.9 to 4.1. Is in.
 また、不揮発性強酸として硫酸を用いた場合、上述の方法により得られるアルデヒド除去用吸着剤は、硫黄を、例えば、0.1質量%乃至2質量%、好ましくは、0.2質量%乃至1.4質量%、より好ましくは、0.2質量%乃至1質量%の割合で含む。なお、アルデヒド除去用吸着剤に含まれる硫黄の量は、蛍光X線分析装置を用いて、真空雰囲気中でUniQuant測定方法による測定を行うことにより得られる値である。 In addition, when sulfuric acid is used as the non-volatile strong acid, the aldehyde-removing adsorbent obtained by the above-described method has a sulfur content of, for example, 0.1% by mass to 2% by mass, preferably 0.2% by mass to 1%. .4 mass%, more preferably 0.2 to 1 mass%. The amount of sulfur contained in the aldehyde removing adsorbent is a value obtained by performing measurement by a UniQuant measurement method in a vacuum atmosphere using a fluorescent X-ray analyzer.
 上述の方法により得られるアルデヒド除去用吸着剤は、悪臭成分、例えばアンモニア及びアルデヒド類などの揮発性有機化合物を、高い効率で気相から除去することが可能である。加えて、このアルデヒド除去用吸着剤は、貯蔵安定性に優れている。即ち、このアルデヒド除去用吸着剤は、製造を完了してから使用を開始するまでの時間に拘らず、優れた性能を発揮する。本発明者らは、この理由は以下の通りであると考えている。 The adsorbent for removing aldehyde obtained by the above-mentioned method can remove malodorous components such as volatile organic compounds such as ammonia and aldehydes from the gas phase with high efficiency. In addition, the aldehyde-removing adsorbent is excellent in storage stability. That is, this aldehyde removing adsorbent exhibits excellent performance regardless of the time from the completion of production to the start of use. The present inventors consider that the reason is as follows.
 酸の存在下では、アルデヒドのカルボニル基の酸素原子にHが結合して、アルデヒドは、カルボニル基の炭素原子がプラスに帯電した状態と、カルボニル基の酸素原子がプラスに帯電した状態との間で可逆的に変化する。その結果、アルデヒドは、カルボニル炭素が活性化して薬剤との反応性が増大する。 In the presence of an acid, H + is bonded to the oxygen atom of the carbonyl group of the aldehyde, and the aldehyde has a state in which the carbon atom of the carbonyl group is positively charged and a state in which the oxygen atom of the carbonyl group is positively charged. It changes reversibly between. As a result, the aldehyde activates the carbonyl carbon and increases the reactivity with the drug.
 アルデヒドとの反応には、薬剤の電子供与性基が有する非共有電子対が寄与する。この非共有電子対は、酸の存在下ではHと結合して失活しやすい。しかしながら、上記の薬剤は、以下に説明するメカニズムにより、酸存在下でも、アルデヒドとの反応に寄与する電子を安定に保持することができ、それ故、アルデヒドとの反応性を維持することができると考えられる。 The unshared electron pair possessed by the electron donating group of the drug contributes to the reaction with the aldehyde. This unshared electron pair is likely to be deactivated by binding to H + in the presence of an acid. However, the above-mentioned drug can stably hold electrons contributing to the reaction with the aldehyde even in the presence of an acid by the mechanism described below, and therefore can maintain the reactivity with the aldehyde. it is conceivable that.
 また、ここで使用する薬剤は、1,2,4-トリアゾール骨格の共鳴により、例えば、以下に示すように、少なくとも3つの状態をとることができる。 In addition, the drug used here can take at least three states as shown below, for example, due to resonance of the 1,2,4-triazole skeleton.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ここで、上記の状態(A)乃至(C)は、上記の一般式(1)で表される化合物のうち、R、R、R、及びRの全てが水素原子であるものがとり得る状態である。この薬剤の電子供与性基は、非共有電子対を有する原子、ここではN原子を含んでいる。 Here, in the states (A) to (C), among the compounds represented by the general formula (1), all of R 1 , R 2 , R 3 , and R 4 are hydrogen atoms. Is a possible state. The electron donating group of this drug contains an atom with an unshared electron pair, here an N atom.
 状態(A)では、この原子へのHの結合を生じやすい。そして、この結合が生じると、薬剤のアルデヒドとの反応性が低下する。 In state (A), H + bonds to this atom tend to occur. And when this coupling | bonding arises, the reactivity with the aldehyde of a chemical | medical agent will fall.
 状態(B)及び(C)では、状態(A)と比較して、Hと、電子供与性基の非共有電子対を有する原子、ここではN原子との結合が弱い。それ故、状態(A)から状態(B)又は(C)への変化が生じると、Hと上記原子(N原子)との結合が切断され得る。 In the states (B) and (C), the bond between H + and an atom having an unshared electron pair of an electron donating group, in this case, an N atom is weaker than in the state (A). Therefore, when the change from the state (A) to the state (B) or (C) occurs, the bond between H + and the atom (N atom) can be broken.
 状態(B)及び(C)の安定性が低い場合には、状態(A)から状態(B)又は(C)への変化の頻度が低く、上述した結合が切断される頻度も低い。しかしながら、この薬剤では、電子供与性基が1,2,4-トリアゾール骨格の4位のN原子に結合しているため、4位のN原子における電子密度が低い状態(B)及び(C)を安定化させる。即ち、この薬剤では、状態(B)及び(C)の安定性が高い。このため、この薬剤は、状態(A)から状態(B)又は(C)への変化の頻度が高く、上述した結合が切断される頻度も高い。 When the stability of the states (B) and (C) is low, the frequency of change from the state (A) to the state (B) or (C) is low, and the frequency at which the above-described bond is broken is low. However, in this drug, since the electron donating group is bonded to the 4-position N atom of the 1,2,4-triazole skeleton, the electron density at the 4-position N atom is low (B) and (C) To stabilize. That is, this drug has high stability in the states (B) and (C). For this reason, this chemical | medical agent has the high frequency of the change from a state (A) to a state (B) or (C), and the frequency which the coupling | bonding mentioned above is cut | disconnected is also high.
 従って、この薬剤は、電子供与性基の非共有電子対を有する原子へのHの結合を生じたとしても、この結合は速やかに切断され、高い活性を示す。 Therefore, even if this drug produces a bond of H + to an atom having an unshared electron pair of an electron donating group, this bond is quickly cleaved and shows high activity.
 このようにして、薬剤は、酸の存在下においても、アルデヒドとの反応性を維持する。また、上記の通り、アルデヒドは酸の存在下では、薬剤と高い反応性を示す。従って、全体として、酸の存在下で薬剤とアルデヒドとの反応が促進される。 Thus, the drug remains reactive with the aldehyde even in the presence of acid. In addition, as described above, aldehydes are highly reactive with drugs in the presence of acids. Therefore, as a whole, the reaction between the drug and the aldehyde is promoted in the presence of an acid.
 また、強酸の代わりに弱酸を使用した場合、強酸を使用した場合に比べて多量に酸を使用しなければならない。多量の酸を使用すると、多孔質担体の細孔の閉塞が生じる。これに対し、強酸は、少量でアルデヒド除去用吸着剤のアルデヒド類除去性を向上させることができる。そのため、強酸を使用すると多孔質担体の細孔の閉塞を最小限に抑制できる。それ故、強酸を使用した場合、弱酸を使用した場合と比較して、薬剤とアルデヒドとの反応をより効率的に生じさせることができる。 Also, when a weak acid is used instead of a strong acid, a larger amount of acid must be used than when a strong acid is used. When a large amount of acid is used, the pores of the porous carrier are blocked. On the other hand, strong acid can improve the aldehyde removal property of the adsorbent for aldehyde removal with a small amount. Therefore, when a strong acid is used, blockage of the pores of the porous carrier can be minimized. Therefore, when a strong acid is used, the reaction between the drug and the aldehyde can be caused more efficiently than when a weak acid is used.
 更に、不揮発性の酸は、揮発に起因した量の減少が生じ難い。即ち、不揮発性の酸を用いた場合、揮発性の酸を用いた場合と比較して、アルデヒド除去用吸着剤の貯蔵安定性が良好である。 Furthermore, the amount of non-volatile acid is less likely to decrease due to volatilization. That is, when a non-volatile acid is used, the storage stability of the aldehyde-removing adsorbent is better than when a volatile acid is used.
 従って、上記のアルデヒド除去用吸着剤は、アルデヒド類を高い効率で除去可能であり且つ優れた貯蔵安定性を有する。 Therefore, the adsorbent for aldehyde removal described above can remove aldehydes with high efficiency and has excellent storage stability.
 上述したアルデヒド除去用吸着剤は、例えば、脱臭材において使用することができる。 The adsorbent for removing aldehyde described above can be used, for example, in a deodorizing material.
 図1に、本発明の一態様に係る脱臭材の一例を概略的に示す。 
 図1に示す脱臭材1は、アルデヒド除去用吸着剤2と,基材3とを含んでいる。基材3はアルデヒド除去用吸着剤2を担持している。基材3はここでは不織布である。なお、図1において、参照符号4は不織布の繊維を示している。
In FIG. 1, an example of the deodorizing material which concerns on 1 aspect of this invention is shown roughly.
A deodorizing material 1 shown in FIG. 1 includes an aldehyde removing adsorbent 2 and a base material 3. The base material 3 carries the aldehyde removing adsorbent 2. The base material 3 is a nonwoven fabric here. In FIG. 1, reference numeral 4 indicates a non-woven fiber.
 基材3は、不織布でなくてもよい。基材3は、例えば、発泡体、多孔性ポリウレタン、カーテン、カーペット、自動車シートファブリックなどの織物、紙、コルゲート紙又は各種繊維状の材料であってもよい。 The base material 3 may not be a non-woven fabric. The substrate 3 may be, for example, a foam, a porous polyurethane, a curtain, a carpet, a woven fabric such as an automobile seat fabric, paper, corrugated paper, or various fibrous materials.
 この脱臭材は、アルデヒド除去用吸着剤を基材に担持させることによって得られる。例えば、この脱臭材は、アルデヒド除去用吸着剤と分散媒とを含んだ分散液を、基材に噴霧するか、塗布するか、又は、含浸させ、これを乾燥させることにより得られる。分散媒としては、例えば、水、エタノール、アセトン等の極性溶媒、又はこれらの混合液を使用することができる。 This deodorizing material can be obtained by supporting an adsorbent for removing aldehyde on a base material. For example, the deodorizing material can be obtained by spraying, applying, or impregnating a dispersion containing an aldehyde-removing adsorbent and a dispersion medium and drying the dispersion. As the dispersion medium, for example, polar solvents such as water, ethanol and acetone, or a mixed solution thereof can be used.
 この脱臭材は、上述したアルデヒド除去用吸着剤を含んでいるので、悪臭成分、例えばアンモニア及びアルデヒド類などの揮発性有機化合物を、高い効率で気相から除去することが可能である。加えて、この脱臭材は、アルデヒド除去用吸着剤の劣化を生じ難いので、貯蔵安定性に優れている。即ち、この脱臭材は、製造を完了してから使用を開始するまでの時間に拘らず、優れた性能を発揮する。 Since this deodorizing material contains the aldehyde removing adsorbent described above, it is possible to remove malodorous components such as volatile organic compounds such as ammonia and aldehydes from the gas phase with high efficiency. In addition, since this deodorizing material is unlikely to cause deterioration of the aldehyde removing adsorbent, it has excellent storage stability. That is, this deodorizing material exhibits excellent performance regardless of the time from the completion of production until the start of use.
 なお、脱臭材は、以下の方法でも得られる。まず、アルデヒド除去用吸着剤について上述した成分、すなわち、不揮発性強酸と1つ以上の薬剤と多孔質担体と分散媒とを含んだ分散液を調製する。次に、この分散液を基材へ供給する。例えば、この分散液を、基材に噴霧するか、塗布するか、又は、含浸させる。その後、これを乾燥させる。 The deodorizing material can also be obtained by the following method. First, a dispersion containing the components described above for the aldehyde-removing adsorbent, that is, a non-volatile strong acid, one or more drugs, a porous carrier, and a dispersion medium is prepared. Next, this dispersion is supplied to the substrate. For example, the dispersion is sprayed, applied, or impregnated onto the substrate. Then it is dried.
 この方法で得られる脱臭材では、多孔質担体は基材に担持される。また、不揮発性強酸及び1つ以上の薬剤は、基材及び多孔質担体の少なくとも一方に担持される。例えば、アルデヒド除去用吸着剤のうち多孔質担体以外の成分は、一部が多孔質担体に担持され、残りは基材に担持される。このような脱臭材も、製造を完了してから使用を開始するまでの時間に拘らず、優れた性能を発揮する。 In the deodorizing material obtained by this method, the porous carrier is supported on the base material. The non-volatile strong acid and the one or more drugs are supported on at least one of the base material and the porous carrier. For example, a part of the aldehyde removing adsorbent other than the porous carrier is supported on the porous carrier, and the rest is supported on the substrate. Such a deodorizing material also exhibits excellent performance regardless of the time from the completion of production to the start of use.
 この脱臭材において好適に使用される成分は、アルデヒド除去用吸着剤について上述したものと同様である。また、この脱臭材における各成分の好適な量は、アルデヒド除去用吸着剤について上述したものと同様である。 The components preferably used in this deodorizing material are the same as those described above for the aldehyde removing adsorbent. Moreover, the suitable quantity of each component in this deodorizing material is the same as that mentioned above about the adsorbent for aldehyde removal.
 なお、アルデヒド除去用吸着剤については、特定成分、例えば硫黄の好適な量を、アルデヒド除去用吸着剤の量に占める割合で記載している。この脱臭材では、多孔質担体と不揮発性強酸と1つ以上の薬剤との合計に占める上記特定成分の割合は、好ましくは、アルデヒド除去用吸着剤に占める上記特定成分の割合として上述した好適な範囲内にある。 As for the aldehyde removal adsorbent, a suitable amount of a specific component, for example, sulfur is described as a ratio to the amount of the aldehyde removal adsorbent. In this deodorizing material, the proportion of the specific component in the total of the porous carrier, the non-volatile strong acid, and the one or more drugs is preferably the above-described ratio of the specific component in the adsorbent for aldehyde removal. Is in range.
 また、この脱臭材は、JIS K1474:2014において規定された方法を利用してpHが、好ましくは、アルデヒド除去用吸着剤について上述した範囲内にある。なお、JIS K1474:2014では、粉末試料又は粒状試料についてpHの測定法が規定されている。脱臭材についてpHを測定するには、脱臭材を不織布以外の固形分の量が3gとなるように、すなわち、多孔質担体と不揮発性強酸と1つ以上の薬剤との合計量が3gとなるように切断したものを試料として用いる。 Moreover, this deodorizing material has a pH of preferably within the range described above for the aldehyde-removing adsorbent using the method defined in JIS K1474: 2014. In JIS K1474: 2014, a pH measurement method is defined for a powder sample or a granular sample. In order to measure the pH of the deodorizing material, the deodorizing material has a solid content other than the nonwoven fabric of 3 g, that is, the total amount of the porous carrier, the non-volatile strong acid, and one or more drugs is 3 g. A sample cut in this manner is used as a sample.
 また、この脱臭材の製造において使用する分散液において好適に使用される成分は、アルデヒド除去用吸着剤について上述した処理液において好適に使用される成分と同様である。そして、この分散液における各成分の好適な量は、上述した処理液について上述したものと同様である。 In addition, the components suitably used in the dispersion used in the production of the deodorizing material are the same as the components suitably used in the treatment liquid described above for the aldehyde-removing adsorbent. And the suitable quantity of each component in this dispersion liquid is the same as that of what was mentioned above about the processing liquid mentioned above.
 以下、本発明の例について説明する。 
 <薬剤の種類がアルデヒド除去率に及ぼす影響>
 (例1)
 以下の方法により、アルデヒド除去用吸着剤を調製した。 
 50質量部の水に、75質量%の濃度で硫酸を含有した5質量部の硫酸水溶液および3質量部の4-アミノ-1,2,4-トリアゾールを加えた。この溶液を撹拌して、4-アミノ-1,2,4-トリアゾールを水溶液に完全に溶解させて処理液を調製した。
Examples of the present invention will be described below.
<Effect of drug type on aldehyde removal rate>
(Example 1)
An aldehyde removing adsorbent was prepared by the following method.
To 50 parts by mass of water, 5 parts by mass of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass and 3 parts by mass of 4-amino-1,2,4-triazole were added. This solution was stirred and 4-amino-1,2,4-triazole was completely dissolved in an aqueous solution to prepare a treatment solution.
 次に、100質量部の活性炭を準備した。活性炭としては、1000m/gのBET比表面積を有するヤシ殻活性炭を使用した。 
 続いて、この活性炭へ処理液を噴霧して、活性炭に処理液を均一に付着させた。 
 その後、この活性炭を、乾燥機を用いて80℃で10時間に亘って加熱して、乾燥させた。 
 以上のようにして、アルデヒド除去用吸着剤を得た。
Next, 100 parts by mass of activated carbon was prepared. As the activated carbon, coconut shell activated carbon having a BET specific surface area of 1000 m 2 / g was used.
Subsequently, the treatment liquid was sprayed on the activated carbon to uniformly adhere the treatment liquid to the activated carbon.
Thereafter, the activated carbon was dried at 80 ° C. for 10 hours using a dryer.
As described above, an adsorbent for removing aldehyde was obtained.
 (例2)
 4-アミノ-1,2,4-トリアゾールの代わりに4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾールを用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 2)
In the same manner as described in Example 1 except that 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole was used instead of 4-amino-1,2,4-triazole. An aldehyde removal adsorbent was prepared.
 (比較例1)
 4-アミノ-1,2,4-トリアゾールの代わりに3-アミノ-1,2,4-トリアゾールを用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を製造した。
(Comparative Example 1)
An adsorbent for removing aldehyde was produced in the same manner as described in Example 1 except that 3-amino-1,2,4-triazole was used instead of 4-amino-1,2,4-triazole. did.
 (比較例2)
 4-アミノ-1,2,4-トリアゾールの代わりに1,2,4-トリアゾールを用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を製造した。
(Comparative Example 2)
An aldehyde-removing adsorbent was produced in the same manner as described in Example 1 except that 1,2,4-triazole was used instead of 4-amino-1,2,4-triazole.
 (比較例3)
 4-アミノ-1,2,4-トリアゾールの代わりにp-アミノ安息香酸を用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を製造した。
(Comparative Example 3)
An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that p-aminobenzoic acid was used in place of 4-amino-1,2,4-triazole.
 (比較例4)
 3質量部の4-アミノ-1,2,4-トリアゾールの代わりに5質量部のアジピン酸ジヒドラジドを用い、75質量%の濃度で硫酸を含有した5質量部の硫酸水溶液の代わりに4質量部の塩化カルシウムを用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を製造した。
(Comparative Example 4)
Instead of 3 parts by mass of 4-amino-1,2,4-triazole, 5 parts by mass of adipic acid dihydrazide was used, and instead of 5 parts by mass of sulfuric acid containing 75 parts by mass of sulfuric acid, 4 parts by mass An aldehyde-removing adsorbent was produced in the same manner as described in Example 1 with the exception of using calcium chloride.
 (比較例5)
 3質量部の4-アミノ-1,2,4-トリアゾールの代わりに5質量部のアジピン酸ジヒドラジドを用い、75質量%の濃度で硫酸を含有した5質量部の硫酸水溶液の代わりに5質量部の酢酸ナトリウムを用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を製造した。
(Comparative Example 5)
Instead of 3 parts by weight of 4-amino-1,2,4-triazole, 5 parts by weight of adipic acid dihydrazide was used instead of 5 parts by weight of sulfuric acid aqueous solution containing 75 parts by weight of sulfuric acid. An aldehyde-removing adsorbent was produced in the same manner as described in Example 1 except that sodium acetate was used.
 (性能評価)
 例1及び例2並びに比較例1乃至比較例5で得られたアルデヒド除去用吸着剤の各々について、以下の方法に従ってアルデヒド除去性能を評価した。
(Performance evaluation)
For each of the adsorbents for aldehyde removal obtained in Examples 1 and 2 and Comparative Examples 1 to 5, the aldehyde removal performance was evaluated according to the following method.
 まず、2.94mLのアルデヒド除去用吸着剤を、直径30mmのカラムに充填した。次に、アルデヒド除去用吸着剤を充填したカラムを、23±5℃の温度及び60±10%RHの湿度に調節し、これに、10ppmの濃度でアセトアルデヒドを含んだガスを、2.35L/minの流量及び48000/hの空間速度で60分間流通させた。60分経過後にカラム入口及び出口におけるアセトアルデヒドの濃度を測定した。カラム入口における測定値とカラム出口における測定値との差と、カラム入口における測定値との比を百分率で表した値を初期アセトアルデヒド除去率とした。 First, 2.94 mL of an adsorbent for removing aldehyde was packed in a 30 mm diameter column. Next, the column packed with the adsorbent for aldehyde removal was adjusted to a temperature of 23 ± 5 ° C. and a humidity of 60 ± 10% RH, and a gas containing acetaldehyde at a concentration of 10 ppm was added to 2.35 L / It was circulated for 60 minutes at a flow rate of min and a space velocity of 48000 / h. After 60 minutes, the concentration of acetaldehyde at the inlet and outlet of the column was measured. The initial acetaldehyde removal rate was defined as a percentage of the difference between the measured value at the column inlet and the measured value at the column outlet and the measured value at the column inlet.
 (pH測定)
 例1及び例2並びに比較例1乃至比較例5で得られたアルデヒド除去用吸着剤の各々について、JIS K1474:2014に従ってpHを測定した。即ち、3gのアルデヒド除去用吸着剤に100mlの水を加えて煮沸し、冷却した後、pH計でpHを測定した。 
 これらの結果を以下の表1及び図2に纏める。
(PH measurement)
About each of the adsorption agent for aldehyde removal obtained in Example 1 and Example 2 and Comparative Example 1 thru | or Comparative Example 5, pH was measured according to JISK1474: 2014. That is, 100 ml of water was added to 3 g of the aldehyde-removing adsorbent, boiled, cooled, and then the pH was measured with a pH meter.
These results are summarized in Table 1 below and FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図2は、各種薬剤を用いたアルデヒド除去用吸着剤のアルデヒド除去率を示すグラフである。このグラフの横軸は、例及び比較例の番号を示し、縦軸は、初期アセトアルデヒド除去率を示している。 FIG. 2 is a graph showing the aldehyde removal rate of the aldehyde removal adsorbent using various chemicals. The horizontal axis of this graph indicates the numbers of the example and the comparative example, and the vertical axis indicates the initial acetaldehyde removal rate.
 表1及び図2に示すように、例1及び例2は、比較例1乃至比較例3と比較して優れた初期アセトアルデヒド除去率を達成した。即ち、硫酸と併用する薬剤として、4-アミノ-1,2,4-トリアゾール又は4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾールを使用した場合、3-アミノ-1,2,4-トリアゾール、1,2,4-トリアゾール、又はp-アミノ安息香酸を使用した場合と比較して優れた初期アセトアルデヒド除去率を達成できた。また、例1及び例2は比較例4及び比較例5と比較して優れた初期アセトアルデヒド除去率を達成した。即ち、4-アミノ-1,2,4-トリアゾール又は4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾールを硫酸と併用した場合、アジピン酸ジヒドラジドを塩化カルシウム又は酢酸ナトリウムと併用した場合と比較して優れた初期アセトアルデヒド除去率を達成できた。 As shown in Table 1 and FIG. 2, Examples 1 and 2 achieved an excellent initial acetaldehyde removal rate as compared with Comparative Examples 1 to 3. That is, when 4-amino-1,2,4-triazole or 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole is used as a drug used in combination with sulfuric acid, 3-amino-1 Excellent initial acetaldehyde removal rate was achieved compared to the use of 1,2,4-triazole, 1,2,4-triazole, or p-aminobenzoic acid. Further, Examples 1 and 2 achieved an excellent initial acetaldehyde removal rate as compared with Comparative Examples 4 and 5. That is, when 4-amino-1,2,4-triazole or 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole is used in combination with sulfuric acid, adipic acid dihydrazide is mixed with calcium chloride or sodium acetate. Excellent initial acetaldehyde removal rate was achieved compared with the case of using together.
 <薬剤及び酸の量がアルデヒド除去率に及ぼす影響>
 (例3)
 75質量%の濃度で硫酸を含有した硫酸水溶液の量を、5質量部から1質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
<Effect of drug and acid amount on aldehyde removal rate>
(Example 3)
An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 1 part by mass.
 (例4)
 75質量%の濃度で硫酸を含有した硫酸水溶液の量を、5質量部から2質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 4)
An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of the sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 2 parts by mass.
 (例5)
 75質量%の濃度で硫酸を含有した硫酸水溶液の量を、5質量部から9質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 5)
An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 9 parts by mass.
 (例6)
 4-アミノ-1,2,4-トリアゾールの量を、3質量部から5質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 6)
An aldehyde removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by mass to 5 parts by mass.
 (例7)
 4-アミノ-1,2,4-トリアゾールの量を、3質量部から10質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 7)
An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by mass to 10 parts by mass.
 (例8)
 4-アミノ-1,2,4-トリアゾールの量を、3質量部から20質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 8)
An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by mass to 20 parts by mass.
 (例9)
 4-アミノ-1,2,4-トリアゾールの量を、3質量部から30質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 9)
An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by weight to 30 parts by weight.
 (例10)
 75質量%の濃度で硫酸を含有した硫酸水溶液の量を、5質量部から0.75質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 10)
An adsorbent for aldehyde removal was prepared in the same manner as described in Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 0.75 parts by mass. did.
 (例11)
 75質量%の濃度で硫酸を含有した硫酸水溶液の量を、5質量部から12質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 11)
An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of the sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 12 parts by mass.
 (例12)
 75質量%の濃度で硫酸を含有した硫酸水溶液の量を、5質量部から15質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 12)
An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that the amount of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass was changed from 5 parts by mass to 15 parts by mass.
 (例13)
 4-アミノ-1,2,4-トリアゾールの量を、3質量部から2質量部に変更したこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Example 13)
An aldehyde-removing adsorbent was prepared in the same manner as described for Example 1 except that the amount of 4-amino-1,2,4-triazole was changed from 3 parts by weight to 2 parts by weight.
 (比較例6)
 硫酸水溶液を使用しなかったこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Comparative Example 6)
An adsorbent for aldehyde removal was prepared in the same manner as described for Example 1 except that no sulfuric acid aqueous solution was used.
 (性能評価)
 例3乃至例13及び比較例6で得られたアルデヒド除去用吸着剤の各々について、上で説明したのと同様の方法により、初期アセトアルデヒド除去率を求めた。
(Performance evaluation)
For each of the aldehyde-removing adsorbents obtained in Examples 3 to 13 and Comparative Example 6, the initial acetaldehyde removal rate was determined by the same method as described above.
 (pH測定)
 例3乃至例13及び比較例6で得られたアルデヒド除去用吸着剤の各々について、上で説明したのと同様の方法により、pHを測定した。
(PH measurement)
About each of the adsorption agent for aldehyde removal obtained in Example 3 thru | or Example 13 and the comparative example 6, pH was measured by the method similar to having demonstrated above.
 (硫黄量の測定)
 例1及び例3乃至例13で得られたアルデヒド除去用吸着剤の各々について、蛍光X線分析装置であるPANalytical社製のAxios(登録商標)を用いて、真空雰囲気中でUniQuant測定方法により硫黄量を測定した。 
 これらの結果を以下の表2並びに図3及び図4に纏める。
(Measurement of sulfur content)
For each of the aldehyde-removing adsorbents obtained in Example 1 and Examples 3 to 13, sulfur was measured by a UniQuant measurement method in a vacuum atmosphere using Axios (registered trademark) manufactured by PANalytical, which is an X-ray fluorescence analyzer. The amount was measured.
These results are summarized in Table 2 below and FIGS. 3 and 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図3は、アルデヒド除去用吸着剤に含まれる硫酸の量がアルデヒド除去率に及ぼす影響の一例を示すグラフである。このグラフの横軸は、アルデヒド除去用吸着剤に含まれる硫黄の割合を示し、縦軸は、初期アセトアルデヒド除去率を示している。なお、この図には、4-アミノ-1,2,4-トリアゾールの量を3質量部とした場合に得られたデータを示している。 FIG. 3 is a graph showing an example of the influence of the amount of sulfuric acid contained in the aldehyde removal adsorbent on the aldehyde removal rate. The horizontal axis of this graph indicates the ratio of sulfur contained in the aldehyde-removing adsorbent, and the vertical axis indicates the initial acetaldehyde removal rate. This figure shows data obtained when the amount of 4-amino-1,2,4-triazole is 3 parts by mass.
 図4は、4-アミノ-1,2,4-トリアゾールの量がアルデヒド除去用吸着剤のアルデヒド除去率に及ぼす影響の一例を示すグラフである。このグラフの横軸は、4-アミノ-1,2,4-トリアゾールの量を示し、縦軸は、初期アセトアルデヒド除去率を示している。なお、この図には、75質量%硫酸水溶液の量を5質量部とした場合に得られたデータを示している。 FIG. 4 is a graph showing an example of the effect of the amount of 4-amino-1,2,4-triazole on the aldehyde removal rate of the aldehyde removal adsorbent. The horizontal axis of this graph represents the amount of 4-amino-1,2,4-triazole, and the vertical axis represents the initial acetaldehyde removal rate. In addition, this figure has shown the data obtained when the quantity of 75 mass% sulfuric acid aqueous solution was 5 mass parts.
 表2及び図3に示すように、例1、例3乃至例5及び例10乃至12は、比較例6と比較して優れた初期性能を達成した。即ち、アルデヒド除去用吸着剤は4-アミノ-1,2,4-トリアゾールを硫酸と共に含む場合、4-アミノ-1,2,4-トリアゾールを単独で含む場合と比較して優れた初期性能を達成した。また、例1、例3乃至例5及び例10は、例11及び例12と比較してより優れた初期性能を達成した。即ち、アルデヒド除去用吸着剤に含まれる硫酸の量が十分に少ない場合、硫酸の量が多い場合と比較して優れた初期性能を達成できた。 As shown in Table 2 and FIG. 3, Example 1, Example 3 to Example 5, and Example 10 to 12 achieved superior initial performance as compared with Comparative Example 6. That is, the aldehyde-removing adsorbent has superior initial performance when it contains 4-amino-1,2,4-triazole together with sulfuric acid, compared to when it contains 4-amino-1,2,4-triazole alone. Achieved. In addition, Example 1, Example 3 to Example 5, and Example 10 achieved better initial performance as compared with Example 11 and Example 12. That is, when the amount of sulfuric acid contained in the aldehyde-removing adsorbent is sufficiently small, excellent initial performance can be achieved as compared with the case where the amount of sulfuric acid is large.
 表2及び図4に示すように、例1及び例6乃至例9は、例13と比較して優れた初期性能を達成した。即ち、4-アミノ-1,2,4-トリアゾールの量が十分に多い場合、4-アミノ-1,2,4-トリアゾールの量が少ない場合と比較して優れた初期性能を達成できた。 As shown in Table 2 and FIG. 4, Example 1 and Examples 6 to 9 achieved superior initial performance as compared with Example 13. That is, when the amount of 4-amino-1,2,4-triazole is sufficiently large, excellent initial performance can be achieved as compared with the case where the amount of 4-amino-1,2,4-triazole is small.
 <薬剤及び酸の種類が貯蔵安定性に及ぼす影響>
 (比較例7)
 75質量%の濃度で硫酸を含有した5質量部の硫酸水溶液の代わりに35質量%の濃度で塩化水素を含有した9質量部の塩酸を用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
<Effects of drug and acid type on storage stability>
(Comparative Example 7)
Example 1 was the same as that described for Example 1 except that 9 parts by mass of hydrochloric acid containing hydrogen chloride at a concentration of 35% by mass was used instead of 5 parts by mass of sulfuric acid aqueous solution containing 75% by mass of sulfuric acid. The adsorbent for aldehyde removal was prepared by the method.
 (比較例8)
 75質量%の濃度で硫酸を含有した5質量部の硫酸水溶液の代わりに10質量部の酢酸を用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Comparative Example 8)
An aldehyde-removing adsorbent was prepared in the same manner as described in Example 1 except that 10 parts by mass of acetic acid was used instead of 5 parts by mass of sulfuric acid containing 75 parts by mass of sulfuric acid. .
 (比較例9)
 75質量%の濃度で硫酸を含有した5質量部の硫酸水溶液の代わりに7質量部の塩化鉄四水和物を用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Comparative Example 9)
For removal of aldehyde by the same method as described in Example 1 except that 7 parts by mass of iron chloride tetrahydrate was used instead of 5 parts by mass of sulfuric acid solution containing sulfuric acid at a concentration of 75% by mass. An adsorbent was prepared.
 (比較例10)
 75質量%の濃度で硫酸を含有した5質量部の硫酸水溶液の代わりに7質量部の硫化鉄七水和物を用いたこと以外は例1について説明したのと同様の方法により、アルデヒド除去用吸着剤を調製した。
(Comparative Example 10)
For removal of aldehyde by the same method as described in Example 1 except that 7 parts by mass of iron sulfide heptahydrate was used instead of 5 parts by mass of sulfuric acid solution containing sulfuric acid at a concentration of 75% by mass. An adsorbent was prepared.
 (pH測定)
 比較例7乃至比較例10で得られたアルデヒド除去用吸着剤の各々について、上で説明したのと同様の方法により、pHを測定した。
(PH measurement)
About each of the adsorption agent for aldehyde removal obtained by the comparative example 7 thru | or the comparative example 10, pH was measured by the method similar to having demonstrated above.
 (貯蔵安定性の評価)
 例1及び例4並びに比較例3及び比較例6乃至10で得られたアルデヒド除去用吸着剤の各々を、以下に説明する貯蔵安定性加速試験に供した。
(Evaluation of storage stability)
Each of the aldehyde-removing adsorbents obtained in Examples 1 and 4 and Comparative Examples 3 and 6 to 10 was subjected to a storage stability acceleration test described below.
 まず、50gのアルデヒド除去用吸着剤を200mlビーカーに入れ、70℃の恒温槽で7日間及び14日間静置した。7日経過後及び14日経過後のアルデヒド除去用吸着剤の各々についても、初期アセトアルデヒド除去率について説明したのと同様の方法により、アセトアルデヒド除去率を求めた。 First, 50 g of an adsorbent for removing aldehyde was placed in a 200 ml beaker and allowed to stand in a thermostatic bath at 70 ° C. for 7 days and 14 days. For each of the aldehyde-removing adsorbents after 7 days and 14 days, the acetaldehyde removal rate was determined by the same method as described for the initial acetaldehyde removal rate.
 貯蔵安定性加速試験後のアルデヒド除去率と初期アセトアルデヒド除去率との比を百分率で表した値を、「貯蔵安定性」とした。 
 これらの結果を以下の表3及び図5に纏める。
The value representing the ratio between the aldehyde removal rate after the storage stability acceleration test and the initial acetaldehyde removal rate as a percentage was defined as “storage stability”.
These results are summarized in Table 3 below and FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図5は、酸及び薬剤の種類がアルデヒド除去用吸着剤の貯蔵安定性に及ぼす影響の一例を示すグラフである。このグラフの横軸は、アルデヒド除去用吸着剤を加速試験に供してからの経過日数を示し、縦軸は、アセトアルデヒド除去率を示している。なお、この図には、4-アミノ-1,2,4-トリアゾールの量を3質量部とした場合に得られたデータを示している。 FIG. 5 is a graph showing an example of the influence of the type of acid and drug on the storage stability of the aldehyde removal adsorbent. The horizontal axis of this graph represents the number of days that have passed since the aldehyde-removing adsorbent was subjected to the acceleration test, and the vertical axis represents the acetaldehyde removal rate. This figure shows data obtained when the amount of 4-amino-1,2,4-triazole is 3 parts by mass.
 表3及び図5に示すように、例1及び例4は、比較例6と比較して優れた貯蔵安定性を達成した。即ち、4-アミノ-1,2,4-トリアゾールは硫酸と併用した場合、硫酸と併用しない場合と比較して優れた貯蔵安定性を達成した。また、例1及び例4は、比較例3と比較して優れた貯蔵安定性を達成した。即ち、硫酸と併用する薬剤として4-アミノ-1,2,4-トリアゾールを使用した場合、p-アミノ安息香酸を使用した場合と比較して優れた貯蔵安定性を達成した。また、例1及び例4は、比較例7と比較して優れた貯蔵安定性を達成した。即ち、酸として硫酸を使用した場合、塩酸を使用した場合と比較して優れた貯蔵安定性を達成できた。また、例1及び例4は、比較例8と比較して優れた貯蔵安定性を達成した。即ち、酸として硫酸を使用した場合、酢酸を使用した場合と比較して優れた初期性能及び優れた貯蔵安定性を達成できた。また、例1及び例4は、比較例9と比較して優れた貯蔵安定性を達成した。即ち、酸として硫酸を使用した場合、塩化鉄を使用した場合と比較して優れた貯蔵安定性を達成できた。また、例1及び例4は、比較例10と比較して優れた貯蔵安定性を達成した。即ち、酸として硫酸を使用した場合、硫化鉄を使用した場合と比較して優れた貯蔵安定性を達成できた。 As shown in Table 3 and FIG. 5, Example 1 and Example 4 achieved superior storage stability compared to Comparative Example 6. That is, when 4-amino-1,2,4-triazole was used in combination with sulfuric acid, excellent storage stability was achieved as compared with the case where it was not used in combination with sulfuric acid. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 3. That is, when 4-amino-1,2,4-triazole was used as a drug used in combination with sulfuric acid, excellent storage stability was achieved compared to the case where p-aminobenzoic acid was used. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 7. That is, when sulfuric acid was used as the acid, excellent storage stability was achieved compared to the case where hydrochloric acid was used. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 8. That is, when sulfuric acid was used as the acid, excellent initial performance and excellent storage stability were achieved compared to the case where acetic acid was used. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 9. That is, when sulfuric acid was used as the acid, excellent storage stability was achieved compared to the case where iron chloride was used. In addition, Examples 1 and 4 achieved excellent storage stability as compared with Comparative Example 10. That is, when sulfuric acid was used as the acid, excellent storage stability was achieved compared to the case where iron sulfide was used.
 <アルデヒド除去用吸着剤のpHがアルデヒド除去率に及ぼす影響>
 図6は、アルデヒド除去用吸着剤のpHがアルデヒド除去率に及ぼす影響の一例を示すグラフである。このグラフの横軸は、アルデヒド除去用吸着剤のpH値を示し、縦軸は、初期アセトアルデヒド除去率を示している。なお、この図には、4-アミノ-1,2,4-トリアゾールの量を3質量部とした場合に得られたデータを示している。
<Effect of pH of aldehyde removal adsorbent on aldehyde removal rate>
FIG. 6 is a graph showing an example of the effect of the pH of the aldehyde removal adsorbent on the aldehyde removal rate. The horizontal axis of this graph indicates the pH value of the aldehyde removing adsorbent, and the vertical axis indicates the initial acetaldehyde removal rate. This figure shows data obtained when the amount of 4-amino-1,2,4-triazole is 3 parts by mass.
 図6に示すように、例1、例3乃至例5及び例10乃至例12は、比較例6と比較して優れた初期アセトアルデヒド除去率を達成した。それらの中でも、例1及び例3乃至例5は、特に優れた初期性能を達成した。 As shown in FIG. 6, Examples 1, 3 to 5 and Examples 10 to 12 achieved an excellent initial acetaldehyde removal rate as compared with Comparative Example 6. Among them, Example 1 and Examples 3 to 5 achieved particularly excellent initial performance.
 <脱臭材の製造及び評価>
 (例14)
 まず、以下の方法により、アルデヒド除去用吸着剤を調製した。 
 250gの水に、75質量%の濃度で硫酸を含有した1.3gの硫酸水溶液および8gの4-アミノ-1,2,4-トリアゾールを加えた。この溶液を撹拌し、4-アミノ-1,2,4-トリアゾールを水溶液に完全に溶解させて、処理液を調製した。
<Manufacture and evaluation of deodorizing material>
(Example 14)
First, an aldehyde removing adsorbent was prepared by the following method.
To 250 g of water, 1.3 g of sulfuric acid aqueous solution containing sulfuric acid at a concentration of 75% by mass and 8 g of 4-amino-1,2,4-triazole were added. This solution was stirred and 4-amino-1,2,4-triazole was completely dissolved in the aqueous solution to prepare a treatment solution.
 次に、この処理液に、100gの活性炭を加えた。活性炭としては、BET比表面積が1000m/gであり、メジアン径(D50)が25μmであるヤシ殻活性炭を使用した。 
 この分散液を十分に撹拌し、これに、2gのヒドロキシエチルセルロースと、61gのアクリルバインダとを添加した。この分散液を更に攪拌することにより、スラリーを調製した。
Next, 100 g of activated carbon was added to the treatment liquid. As the activated carbon, coconut shell activated carbon having a BET specific surface area of 1000 m 2 / g and a median diameter (D50) of 25 μm was used.
The dispersion was sufficiently stirred, and 2 g of hydroxyethyl cellulose and 61 g of an acrylic binder were added thereto. The dispersion was further stirred to prepare a slurry.
 続いて、このスラリーを、目付量が95g/mの不織布に塗布した。スラリーの塗布は、スラリーに含まれる固形分の目付量が260g/mとなるように行った。 Subsequently, this slurry was applied to a nonwoven fabric having a basis weight of 95 g / m 2 . The application of the slurry was performed so that the basis weight of the solid content contained in the slurry was 260 g / m 2 .
 その後、これを、100℃で1時間に亘って加熱して、乾燥させた。 
 以上のようにして、脱臭材を得た。
Thereafter, this was heated at 100 ° C. for 1 hour and dried.
A deodorizing material was obtained as described above.
 (比較例11)
 硫酸水溶液を使用しなかったこと以外は、例14ついて説明したのと同様の方法により、脱臭材を製造した。
(Comparative Example 11)
A deodorizing material was produced in the same manner as described for Example 14 except that no sulfuric acid aqueous solution was used.
 (pH測定)
 例14及び比較例11で得られた脱臭材の各々について、JIS K1474:2014において規定された方法を利用してpHを測定した。即ち、脱臭材を不織布以外の固形分の量が3gとなるように切断し、これに100mlの水を加えて煮沸した。これを冷却した後、pH計でpHを測定した。結果を、以下の表4に示す。
(PH measurement)
About each of the deodorizing material obtained in Example 14 and Comparative Example 11, pH was measured using the method prescribed | regulated in JISK1474: 2014. That is, the deodorizing material was cut so that the solid content other than the nonwoven fabric was 3 g, and 100 ml of water was added thereto and boiled. After cooling, the pH was measured with a pH meter. The results are shown in Table 4 below.
 (性能評価)
 例14及び比較例11で得られた脱臭材の各々について、以下の方法に従ってアルデヒド除去性能を評価した。
(Performance evaluation)
Each of the deodorizing materials obtained in Example 14 and Comparative Example 11 was evaluated for aldehyde removal performance according to the following method.
 まず、各脱臭材を、大きさが互いに異なる5つの断片へと切り出した。これら断片を、別々の袋に封入した。ここでは、容量が5Lの袋を使用した。 First, each deodorizing material was cut into five pieces having different sizes. These pieces were enclosed in separate bags. Here, a bag having a capacity of 5 L was used.
 次いで、各バッグに、アセトアルデヒドを1000ppmの濃度になるように注入し、これを、25℃、50%RHの条件下で、アセトアルデヒドの濃度が飽和に達するまで放置した。また、脱臭材の断片を封入することなしに、上記と同量のアルデヒドを注入したバッグを準備し、このバッグにおけるアセトアルデヒド濃度を測定した。そして、このアセトアルデヒド濃度と、上記のアセトアルデヒドの飽和濃度との差を求め、この差とバッグ内のガスの体積とから、上記断片が吸着した脱臭材の質量を算出した。この質量を上記断片の面積で除することにより、単位面積当たりの脱臭材のアセトアルデヒド吸着量を求めた。 Next, acetaldehyde was injected into each bag so as to have a concentration of 1000 ppm, and this was left under the conditions of 25 ° C. and 50% RH until the concentration of acetaldehyde reached saturation. Moreover, the bag which inject | poured the same quantity of aldehyde as the above was prepared, without enclosing the fragment | piece of a deodorizing material, and the acetaldehyde density | concentration in this bag was measured. Then, the difference between the acetaldehyde concentration and the saturated concentration of the acetaldehyde was determined, and the mass of the deodorizing material adsorbed by the fragments was calculated from the difference and the volume of gas in the bag. By dividing this mass by the area of the fragment, the amount of acetaldehyde adsorbed by the deodorizing material per unit area was determined.
 次に、アセトアルデヒドの飽和濃度と単位面積当たりの脱臭材のアセトアルデヒド吸着量との関係式を求めた。そして、この関係式から、飽和濃度が300μg/mであるときの、単位面積当たりの脱臭材のアセトアルデヒド吸着量、即ち、初期アセトアルデヒド吸着量を求めた。結果を、以下の表4に示す。 Next, a relational expression between the saturated concentration of acetaldehyde and the acetaldehyde adsorption amount of the deodorizing material per unit area was obtained. And from this relational expression, the acetaldehyde adsorption amount of the deodorizing material per unit area when the saturation concentration was 300 μg / m 3 , that is, the initial acetaldehyde adsorption amount was determined. The results are shown in Table 4 below.
 (貯蔵安定性の評価)
 例14及び比較例11で得られた脱臭材の各々を、以下に説明する貯蔵安定性加速試験に供した。
(Evaluation of storage stability)
Each of the deodorizing materials obtained in Example 14 and Comparative Example 11 was subjected to a storage stability acceleration test described below.
 まず、各脱臭材を、大きさが互いに異なる5つの断片へと切り出した。次いで、これら断片を、70℃の恒温槽で7日間及び14日間静置した。7日経過後及び14日経過後の断片を用いて、初期アセトアルデヒド吸着量について説明したのと同様の方法により、アセトアルデヒド吸着量を求めた。 First, each deodorizing material was cut into five pieces having different sizes. Subsequently, these fragments were allowed to stand in a thermostat at 70 ° C. for 7 days and 14 days. The acetaldehyde adsorption amount was determined by the same method as described for the initial acetaldehyde adsorption amount using the fragments after 7 days and 14 days.
 そして、14日経過後の断片を用いて得られたアセトアルデヒド吸着量と初期アセトアルデヒド吸着量との比を百分率で表した値を、「貯蔵安定性」とした。  And the value which expressed the ratio of the acetaldehyde adsorption amount obtained using the fragments after 14 days and the initial acetaldehyde adsorption amount as a percentage was defined as “storage stability”. *
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、例14は、比較例11と比較して優れた貯蔵安定性を達成した。即ち、硫酸を4-アミノ-1,2,4-トリアゾールと併用した場合、硫酸を使用しない場合と比較して優れた貯蔵安定性を達成した。 As shown in Table 4, Example 14 achieved superior storage stability compared to Comparative Example 11. That is, when sulfuric acid was used in combination with 4-amino-1,2,4-triazole, excellent storage stability was achieved as compared with the case where sulfuric acid was not used.

Claims (14)

  1.  多孔質担体と、
     不揮発性強酸と、
     1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤と
    を含んだアルデヒド除去用吸着剤。
    A porous carrier;
    A non-volatile strong acid;
    Each includes a 1,2,4-triazole skeleton and an electron donating group bonded to the N atom at the 4-position thereof, and the atom bonded to the N atom at the 4-position of the electron donating group is an unshared electron An adsorbent for aldehyde removal comprising one or more drugs having a pair.
  2.  前記1つ以上の薬剤の少なくとも1つは、下記の一般式(1)で表される化合物である請求項1に記載のアルデヒド除去用吸着剤。
    Figure JPOXMLDOC01-appb-C000001
     (ここで、R1及びR2は、同一又は異なり、水素原子、又は、水素以外の原子の数が1乃至7の範囲内にある置換基を示し、R3及びR4は、同一又は異なり、水素原子、又は、水素以外の原子の数が1乃至4の範囲内にある置換基を示す。)
    The adsorbent for aldehyde removal according to claim 1, wherein at least one of the one or more drugs is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R1 and R2 are the same or different and each represents a hydrogen atom or a substituent having a number of atoms other than hydrogen in the range of 1 to 7, and R3 and R4 are the same or different and represent a hydrogen atom, Or a substituent having a number of atoms other than hydrogen in the range of 1 to 4.
  3.  前記1つ以上の薬剤の少なくとも1つは、4-アミノ-1,2,4-トリアゾール及び4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾールからなる群より選ばれる請求項1又は2に記載のアルデヒド除去用吸着剤。 At least one of the one or more agents is selected from the group consisting of 4-amino-1,2,4-triazole and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole Item 3. Adsorbent for removing aldehyde according to item 1 or 2.
  4.  前記アルデヒド除去用吸着剤は、
     溶媒と、
     不揮発性強酸と、
     1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤とを含有した処理液に、多孔質担体を接触させる工程と、
     前記多孔質担体から前記溶媒を除去する工程と
    を含む方法により得られ、
     前記処理液は前記多孔質担体100質量部に対して前記1つ以上の薬剤を2質量部乃至30質量部の範囲内で含有する請求項1乃至3の何れか1項に記載のアルデヒド除去用吸着剤。
    The adsorbent for aldehyde removal is
    A solvent,
    A non-volatile strong acid;
    Each includes a 1,2,4-triazole skeleton and an electron donating group bonded to the N atom at the 4-position thereof, and the atom bonded to the N atom at the 4-position of the electron donating group is an unshared electron Contacting a porous carrier with a treatment liquid containing one or more drugs having a pair;
    And removing the solvent from the porous carrier.
    The aldehyde removal agent according to any one of claims 1 to 3, wherein the treatment liquid contains the one or more drugs in a range of 2 to 30 parts by mass with respect to 100 parts by mass of the porous carrier. Adsorbent.
  5.  前記処理液は前記多孔質担体100質量部に対して前記不揮発性強酸を0.5質量部乃至12質量部の範囲内で含有する請求項4に記載のアルデヒド除去用吸着剤。 The aldehyde removal adsorbent according to claim 4, wherein the treatment liquid contains the nonvolatile strong acid in a range of 0.5 to 12 parts by mass with respect to 100 parts by mass of the porous carrier.
  6.  前記不揮発性強酸は硫酸である請求項4に記載のアルデヒド除去用吸着剤。 The adsorbent for aldehyde removal according to claim 4, wherein the non-volatile strong acid is sulfuric acid.
  7.  前記アルデヒド除去用吸着剤は硫黄を0.1質量%乃至2質量%の割合で含む請求項6に記載のアルデヒド除去用吸着剤。 The aldehyde-removing adsorbent according to claim 6, wherein the aldehyde-removing adsorbent contains 0.1 to 2% by mass of sulfur.
  8.  前記アルデヒド除去用吸着剤は、
     溶媒と、
     不揮発性強酸と、
     1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤と
    を含有した処理液に、多孔質担体を接触させる工程と、
     前記多孔質担体から前記溶媒を除去する工程と
     を含む方法により得られ、
     前記処理液は前記多孔質担体100質量部に対して前記不揮発性強酸を0.5質量部乃至12質量部の範囲内で含有する請求項1乃至3の何れか1項に記載のアルデヒド除去用吸着剤。
    The adsorbent for aldehyde removal is
    A solvent,
    A non-volatile strong acid;
    Each includes a 1,2,4-triazole skeleton and an electron donating group bonded to the N atom at the 4-position thereof, and the atom bonded to the N atom at the 4-position of the electron donating group is an unshared electron Contacting a porous carrier with a treatment liquid containing one or more drugs having a pair;
    And removing the solvent from the porous carrier.
    The aldehyde removal agent according to any one of claims 1 to 3, wherein the treatment liquid contains the non-volatile strong acid in a range of 0.5 to 12 parts by mass with respect to 100 parts by mass of the porous carrier. Adsorbent.
  9.  請求項1乃至8の何れか1項に記載のアルデヒド除去用吸着剤と、前記アルデヒド除去用吸着剤を担持した基材とを含んだ脱臭材。 A deodorizing material comprising the aldehyde-removing adsorbent according to any one of claims 1 to 8, and a base material carrying the aldehyde-removing adsorbent.
  10.  基材と、
     前記基材に担持された多孔質担体と、
     不揮発性強酸と、
     1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤と
    を含んだ脱臭材。
    A substrate;
    A porous carrier carried on the substrate;
    A non-volatile strong acid;
    Each includes a 1,2,4-triazole skeleton and an electron donating group bonded to the N atom at the 4-position thereof, and the atom bonded to the N atom at the 4-position of the electron donating group is an unshared electron A deodorizing material comprising one or more drugs having a pair.
  11.  不揮発性強酸と、
     1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を各々が含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している1つ以上の薬剤と
    を多孔質担体に担持させる工程
    を含むアルデヒド除去用吸着剤の製造方法。
    A non-volatile strong acid;
    Each includes a 1,2,4-triazole skeleton and an electron donating group bonded to the N atom at the 4-position thereof, and the atom bonded to the N atom at the 4-position of the electron donating group is an unshared electron A method for producing an adsorbent for removing aldehyde, comprising a step of supporting one or more drugs having a pair on a porous carrier.
  12.  前記不揮発性強酸と前記1つ以上の薬剤とを前記多孔質担体に担持させる工程は、
     溶媒と、
     前記不揮発性強酸と、
     前記1つ以上の薬剤と
    を含有した処理液に、前記多孔質担体を接触させることと、
     前記多孔質担体から前記溶媒を除去することと
    を含む請求項11に記載の方法。
    The step of supporting the non-volatile strong acid and the one or more drugs on the porous carrier,
    A solvent,
    The non-volatile strong acid;
    Contacting the porous carrier with a treatment liquid containing the one or more agents;
    12. The method of claim 11, comprising removing the solvent from the porous support.
  13.  請求項1乃至8の何れか1項に記載のアルデヒド除去用吸着剤を基材に担持させることを含んだ脱臭材の製造方法。 A method for producing a deodorizing material, comprising supporting an adsorbent for removing aldehyde according to any one of claims 1 to 8 on a base material.
  14.  不揮発性強酸と1つ以上の薬剤と多孔質担体と分散媒とを含んだ分散液であって、前記1つ以上の薬剤の各々は、1,2,4-トリアゾール骨格及びその4位のN原子に結合した電子供与性基を含み、前記電子供与性基のうち前記4位のN原子に結合している原子は非共有電子対を有している分散液を、基材へ供給することと、
     前記分散液を供給した前記基材を乾燥させることと
    を含んだ脱臭材の製造方法。
    A dispersion comprising a non-volatile strong acid, one or more drugs, a porous carrier, and a dispersion medium, each of the one or more drugs comprising a 1,2,4-triazole skeleton and an N at the 4-position Supplying a dispersion liquid containing an electron donating group bonded to an atom, wherein the atom bonded to the N atom at the 4-position of the electron donating group has a lone pair When,
    A method for producing a deodorizing material, comprising drying the base material supplied with the dispersion.
PCT/JP2018/004420 2017-03-21 2018-02-08 Adsorbent for removal of aldehyde, deodorizing material, and production method for same WO2018173534A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880007477.9A CN110198744A (en) 2017-03-21 2018-02-08 Except aldehyde adsorbent and deodoring materials and their manufacturing method
JP2019507423A JP6816258B2 (en) 2017-03-21 2018-02-08 Adsorbents and deodorants for removing aldehydes and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054817 2017-03-21
JP2017-054817 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173534A1 true WO2018173534A1 (en) 2018-09-27

Family

ID=63585966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004420 WO2018173534A1 (en) 2017-03-21 2018-02-08 Adsorbent for removal of aldehyde, deodorizing material, and production method for same

Country Status (3)

Country Link
JP (1) JP6816258B2 (en)
CN (1) CN110198744A (en)
WO (1) WO2018173534A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346088A (en) * 1993-06-08 1994-12-20 Daisan Kogyo Kk Solubilizing agent comprising azole compound and solubilization method using the same
JPH0956800A (en) * 1995-08-24 1997-03-04 Toyota Central Res & Dev Lab Inc Deodorant and deodorizing method
JP2006075312A (en) * 2004-09-09 2006-03-23 Otsuka Chemical Co Ltd Deodorant composition having superior heat resistance and molding using the same
JP2006088100A (en) * 2004-09-27 2006-04-06 Nittetsu Mining Co Ltd Sheet-like formaldehyde scavenger
JP2008212448A (en) * 2007-03-06 2008-09-18 Toray Ind Inc Air cleaning filter
WO2011040577A1 (en) * 2009-09-30 2011-04-07 株式会社 キャタラー Adsorbent material and method for producing same
JP2014133220A (en) * 2013-01-11 2014-07-24 Cataler Corp Sheet-shaped low-desorption adsorbent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017679A (en) * 2008-07-14 2010-01-28 Eiko:Kk Absorbent of lower aldehyde
CN101786008B (en) * 2010-02-10 2012-10-24 东南大学 Load-type heteropolyacid catalyst for aldolization and preparation method thereof
JP5809417B2 (en) * 2010-03-03 2015-11-10 株式会社キャタラー Adsorbent capable of regenerating light and its use
JP5341871B2 (en) * 2010-12-06 2013-11-13 新菱冷熱工業株式会社 Aldehyde adsorbent and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346088A (en) * 1993-06-08 1994-12-20 Daisan Kogyo Kk Solubilizing agent comprising azole compound and solubilization method using the same
JPH0956800A (en) * 1995-08-24 1997-03-04 Toyota Central Res & Dev Lab Inc Deodorant and deodorizing method
JP2006075312A (en) * 2004-09-09 2006-03-23 Otsuka Chemical Co Ltd Deodorant composition having superior heat resistance and molding using the same
JP2006088100A (en) * 2004-09-27 2006-04-06 Nittetsu Mining Co Ltd Sheet-like formaldehyde scavenger
JP2008212448A (en) * 2007-03-06 2008-09-18 Toray Ind Inc Air cleaning filter
WO2011040577A1 (en) * 2009-09-30 2011-04-07 株式会社 キャタラー Adsorbent material and method for producing same
JP2014133220A (en) * 2013-01-11 2014-07-24 Cataler Corp Sheet-shaped low-desorption adsorbent

Also Published As

Publication number Publication date
JP6816258B2 (en) 2021-01-20
CN110198744A (en) 2019-09-03
JPWO2018173534A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP2008056901A (en) Flame-retardant composition and flame-retardant fabric having deodorant effect
JP5321209B2 (en) Aldehyde removal agent
JP3526592B2 (en) Method for producing deodorant
WO2018173534A1 (en) Adsorbent for removal of aldehyde, deodorizing material, and production method for same
JP2004105854A (en) Adsorbing material and method for production thereof
JP2014133220A (en) Sheet-shaped low-desorption adsorbent
JP2010058075A (en) Material and sheet for removing aldehyde
JP6103858B2 (en) Adsorbent for purifying aldehydes
JP2000107274A (en) Deodorant and its production
WO2016060124A1 (en) Method for manufacturing deodorizing material
JP2007014857A (en) Adsorbent and its production method
WO2016031474A1 (en) Adsorbent
JPH0252043A (en) Air purifying agent
JP3430955B2 (en) Deodorant
JP3489136B2 (en) Method for producing deodorant
JP2003093872A (en) Adsorbent and its preparing method
JP2019051508A (en) Aldehyde adsorbent and filter body using the same
JP2003236374A (en) Adsorbing material and method for manufacturing the same
JP4562838B2 (en) Gel deodorant
JP3180997B2 (en) Odor gas adsorbent
JP2006075312A (en) Deodorant composition having superior heat resistance and molding using the same
JP2858283B2 (en) Aliphatic aldehyde adsorbent
JP2007216215A (en) Adsorbent
JP2010125401A (en) Aldehyde removing material
JP4952570B2 (en) Adsorbent for aldehyde removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771888

Country of ref document: EP

Kind code of ref document: A1