JP2019051508A - Aldehyde adsorbent and filter body using the same - Google Patents

Aldehyde adsorbent and filter body using the same Download PDF

Info

Publication number
JP2019051508A
JP2019051508A JP2018167874A JP2018167874A JP2019051508A JP 2019051508 A JP2019051508 A JP 2019051508A JP 2018167874 A JP2018167874 A JP 2018167874A JP 2018167874 A JP2018167874 A JP 2018167874A JP 2019051508 A JP2019051508 A JP 2019051508A
Authority
JP
Japan
Prior art keywords
activated carbon
acid
amount
aldehyde
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018167874A
Other languages
Japanese (ja)
Other versions
JP7137411B2 (en
Inventor
紘大 島村
Kodai Shimamura
紘大 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Publication of JP2019051508A publication Critical patent/JP2019051508A/en
Application granted granted Critical
Publication of JP7137411B2 publication Critical patent/JP7137411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide an aldehyde adsorbent controlling kinds and amount of acid for enhancing adsorption performance of aldehyde, further exhibiting more excellent adsorbing performance of aldehyde than prior art while keeping adsorption performance of active charcoal itself by controlling physical properties of active charcoal.SOLUTION: There is provided an aldehyde adsorbent (10) in which a loading liquid (4) containing water (1), 2-amino-2-hydroxymethyl-1,3-propanediol (2), and acids of inorganic acid or inorganic acid (3) is loaded to a carrier active charcoal (5), a BET specific surface area of the carrier active charcoal is 750 to 2100 m/g, the 2-amino-2-hydroxymethyl-1,3-propanediol of 1 to 60 pts.wt. is loaded to 100 pts.wt. of the carrier active charcoal and inorganic acid or organic acid of 0.1 to 16 pts.wt. is loaded to 100 pts.wt. of the carrier active charcoal.SELECTED DRAWING: Figure 1

Description

本発明は、アルデヒド類吸着材及びこれを用いたフィルター体に関し、特に、活性炭に吸着成分を担持させたアルデヒド類吸着材と、これを組み込んだフィルター体に関する。   The present invention relates to an aldehyde adsorbent and a filter body using the same, and more particularly to an aldehyde adsorbent in which an adsorbing component is supported on activated carbon and a filter body incorporating the same.

汗等の分泌物、人体自体の体臭、食事の際の料理由来の臭気、喫煙時の煙の臭気、さらにはペットの臭気等が混じると、人によっては不快感が高まる。現代の家屋等の室内、車内等の生活環境は、空調制御された閉鎖空間であることから、臭気が空間内に残留しやすい。そのゆえ、余計に臭気に敏感になる。   The presence of secretions such as sweat, the body odor of the human body itself, the odor derived from cooking during meals, the odor of smoke during smoking, the odor of pets, etc., may increase discomfort for some people. Since living environments such as the interior of a modern house and the interior of a vehicle are closed spaces that are air-conditioned, odor tends to remain in the space. Therefore, it becomes more sensitive to odor.

前掲の臭気は生活臭とも称され、酢酸、イソ吉草酸等の低級脂肪酸、アンモニア、アミン類、加えて、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類が主な臭気の原因とされる。その脱臭には活性炭が脱臭材として使用されてきた。また、従来、活性炭の臭気成分の吸着能力を高めるため、アニリンが汎用的に活性炭に添着されていた(特許文献1等参照)。   The above-mentioned odor is also called a daily odor, and lower fatty acids such as acetic acid and isovaleric acid, ammonia and amines, and aldehydes such as formaldehyde and acetaldehyde are the main causes of odor. For the deodorization, activated carbon has been used as a deodorizing material. Conventionally, aniline has been generally attached to activated carbon in order to increase the adsorption capacity of the odor component of activated carbon (see Patent Document 1).

しかしながら、アニリンでは性能劣化の点からは避けられることが多く、新たな添着成分として、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールが主流となりつつある。前記の添着成分の消臭効果を高め、かつ安定化するため、同添着成分に適量の酸を配合した消臭剤が提案されている(特許文献2等参照)。さらに、シート、フィルター等への加工も提案されている(特許文献3等参照)。特に、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールはアルデヒド類の吸着に効果的であることが知られている。   However, aniline is often avoided from the viewpoint of performance deterioration, and 2-amino-2-hydroxymethyl-1,3-propanediol is becoming the mainstream as a new additive component. In order to enhance and stabilize the deodorizing effect of the adhering component, a deodorizing agent in which an appropriate amount of acid is blended with the adhering component has been proposed (see Patent Document 2, etc.). Furthermore, processing into sheets, filters, and the like has also been proposed (see Patent Document 3). In particular, 2-amino-2-hydroxymethyl-1,3-propanediol is known to be effective for adsorption of aldehydes.

特許文献2及び3は、活性炭への直接の添着を目的としていない。活性炭はその発達した細孔により、複数種の臭気分子の吸着に効果を発揮する。そこで、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールの有する化学結合に起因した臭気分子の吸着と、活性炭の細孔内への捕捉の双方を生かした効率の良い活性炭吸着材が求められている。   Patent Documents 2 and 3 do not aim at direct attachment to activated carbon. Activated carbon is effective in adsorbing multiple types of odor molecules due to its developed pores. Therefore, an efficient activated carbon adsorbent that takes advantage of both adsorption of odor molecules due to chemical bonds of 2-amino-2-hydroxymethyl-1,3-propanediol and trapping in the pores of activated carbon. It has been demanded.

特開昭56−53744号公報JP 56-53744 A 特許4590369号公報Japanese Patent No. 4590369 特開2017−127812号公報JP 2017-127812 A

このような経緯を踏まえ、発明者は、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールと配合する酸の量、さらには、活性炭の物性の各指標を均衡させることにより、特にアルデヒド類の消臭に最適な活性炭吸着材を開発するに至った。   In light of such circumstances, the inventor, in particular, balanced the amount of acid to be blended with 2-amino-2-hydroxymethyl-1,3-propanediol, and further by balancing each index of the physical properties of activated carbon, in particular aldehyde. Led to the development of an activated carbon adsorbent that is optimal for deodorization of foods.

本発明は、上記状況に鑑み提案されたものであり、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールのアルデヒド類の吸着能力を高めるべく、最適な酸の種類と量を制御し、さらに、活性炭の物性を制御することにより、活性炭自体の吸着能力をいかしつつ、従来よりも優れたアルデヒド類の吸着能力を発揮するアルデヒド類吸着材を提供するとともに、当該アルデヒド類吸着材を用いたフィルター体を提供する。   The present invention has been proposed in view of the above situation, and the optimum kind and amount of acid are controlled in order to enhance the adsorption ability of aldehydes of 2-amino-2-hydroxymethyl-1,3-propanediol. Furthermore, by controlling the physical properties of the activated carbon, the present invention provides an aldehyde adsorbent that exhibits an adsorption ability of aldehydes that is superior to that of conventional aldehydes while taking advantage of the adsorption ability of the activated carbon itself, and uses the aldehyde adsorbent. Provide the filter body.

すなわち、第1の発明は、水と、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールと、無機酸または有機酸とを含有した添着液を、担体活性炭に添着したアルデヒド類吸着材であって、前記担体活性炭のBET比表面積が750〜2100m2/gであり、前記担体活性炭100重量部に対して前記2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールが1〜60重量部の添着であり、かつ、前記担体活性炭100重量部に対して前記無機酸または有機酸が0.1〜16重量部の添着であることを特徴とするアルデヒド類吸着材に係る。 That is, the first invention is an aldehyde adsorbent obtained by adhering an impregnating liquid containing water, 2-amino-2-hydroxymethyl-1,3-propanediol, and an inorganic acid or an organic acid to a carrier activated carbon. The carrier activated carbon has a BET specific surface area of 750 to 2100 m 2 / g, and the 2-amino-2-hydroxymethyl-1,3-propanediol is 1 to 60 with respect to 100 parts by weight of the carrier activated carbon. The aldehyde adsorbent is characterized by being adsorbed in parts by weight and adsorbed in an amount of 0.1 to 16 parts by weight of the inorganic acid or organic acid with respect to 100 parts by weight of the supported activated carbon.

第2の発明は、前記担体活性炭のDH法による細孔分布の測定において、細孔直径4〜50nmの細孔の総細孔容積が0.003〜0.077mL/gである第1の発明に記載のアルデヒド類吸着材に係る。   The second invention is the first invention wherein the total pore volume of pores having a pore diameter of 4 to 50 nm is 0.003 to 0.077 mL / g in the measurement of pore distribution of the carrier activated carbon by the DH method. It relates to the aldehyde adsorbent described in 1.

第3の発明は、下記の式(F)により表される前記添着液のpH緩衝能が、290〜2900mmol/kgである第1の発明に記載のアルデヒド類吸着材に係る。   A third invention relates to the aldehyde adsorbent according to the first invention, wherein the pH buffer capacity of the impregnation liquid represented by the following formula (F) is 290 to 2900 mmol / kg.

Figure 2019051508
Figure 2019051508

第4の発明は、第1の発明に記載のアルデヒド類吸着材を保持してなることを特徴とするフィルター体に係る。   A fourth invention relates to a filter body characterized by holding the aldehyde adsorbent described in the first invention.

第1の発明に係るアルデヒド類吸着材によると、水と、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールと、無機酸または有機酸とを含有した添着液を、担体活性炭に添着したアルデヒド類吸着材であって、前記担体活性炭のBET比表面積が750〜2100m2/gであり、前記担体活性炭100重量部に対して前記2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールが1〜60重量部の添着であり、かつ、前記担体活性炭100重量部に対して前記無機酸または有機酸が0.1〜16重量部の添着であるため、活性炭自体の吸着能力を活かしつつ、優れたアルデヒド類の吸着能力が発揮される。 According to the aldehyde adsorbent according to the first invention, an impregnation liquid containing water, 2-amino-2-hydroxymethyl-1,3-propanediol, and an inorganic acid or an organic acid is impregnated on the support activated carbon. An aldehyde adsorbent, wherein the carrier activated carbon has a BET specific surface area of 750 to 2100 m 2 / g, and the 2-amino-2-hydroxymethyl-1,3-propane with respect to 100 parts by weight of the carrier activated carbon Since the diol is attached in an amount of 1 to 60 parts by weight and the inorganic acid or the organic acid is attached in an amount of 0.1 to 16 parts by weight with respect to 100 parts by weight of the carrier activated carbon, the adsorption ability of the activated carbon itself is utilized. However, it has an excellent ability to adsorb aldehydes.

第2の発明に係るアルデヒド類吸着材によると、第1の発明において、前記担体活性炭のDH法による細孔分布の測定において、細孔直径4〜50nmの細孔の総細孔容積が0.003〜0.077mL/gであるため、アルデヒド類の高い吸着性能を維持できる細孔分布の範囲となる。   According to the aldehyde adsorbent according to the second invention, in the first invention, in the measurement of the pore distribution of the carrier activated carbon by the DH method, the total pore volume of pores having a pore diameter of 4 to 50 nm is 0. Since it is 003-0.077 mL / g, it becomes the range of the pore distribution which can maintain the high adsorption performance of aldehydes.

第3の発明に係るアルデヒド類吸着材によると、第1の発明において、式(F)により表される前記添着液のpH緩衝能が、290〜2900mmol/kgであるため、滴定を通じて添着液のアルデヒド類の吸着性能を把握でき、添着液の管理が容易となる。   According to the aldehyde adsorbent according to the third invention, in the first invention, since the pH buffering capacity of the impregnation liquid represented by the formula (F) is 290 to 2900 mmol / kg, The adsorption performance of aldehydes can be grasped, and the management of the impregnating liquid becomes easy.

第4の発明に係るフィルター体によると、第1の発明に記載のアルデヒド類吸着材を保持してなるため、アルデヒド類吸着のためのユニット化された部材として活用でき、空調機器内、空気清浄機、送気用のダクト内等への設置は容易となる。   According to the filter body according to the fourth invention, since the aldehyde adsorbent described in the first invention is held, it can be used as a unitized member for adsorbing aldehydes. It is easy to install in a machine, a duct for air supply, etc.

本発明のアルデヒド類吸着材の製造例を示す概略工程図である。It is a schematic process drawing which shows the manufacture example of the aldehyde adsorbent of this invention. 本発明のアルデヒド類吸着材を用いたフィルター体の模式図である。It is a schematic diagram of the filter body using the aldehyde adsorbent of the present invention.

本発明のアルデヒド類吸着材は、主にアルデヒド類の吸着効果を発揮するポリヒドロキシアミン化合物を含有する添着液を、担体活性炭に添着して得た薬剤添着型の活性炭吸着材である。すなわち、薬剤によるアルデヒド類の吸着の化学的吸着と、活性炭に発達した細孔による物理的吸着の双方を兼ね備えた吸着材である。   The aldehyde adsorbent of the present invention is a drug-added activated carbon adsorbent obtained by adhering an impregnating liquid containing a polyhydroxyamine compound mainly exhibiting an aldehyde adsorption effect to carrier activated carbon. That is, the adsorbent has both chemical adsorption of aldehydes by chemicals and physical adsorption by pores developed in activated carbon.

本発明のアルデヒド類とは、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブタナール、ペンタナール、ヘキサナール、ヘプタナール、オクタナール、ノナナール、さらにはグルタルアルデヒド等のアルデヒド化合物の全般を包含する概念である。これらは不快臭の原因物質であり、生活臭、体臭が発生要因である。これらのうち、主にホルムアルデヒド及びアセトアルデヒドの効率の良い吸着を目的とする。   The aldehyde of the present invention is a concept including all of aldehyde compounds such as formaldehyde, acetaldehyde, propionaldehyde, butanal, pentanal, hexanal, heptanal, octanal, nonanal, and glutaraldehyde. These are substances that cause unpleasant odors, and life odors and body odors are the cause of generation. Of these, the main purpose is efficient adsorption of formaldehyde and acetaldehyde.

アルデヒド類は、ポリヒドロキシアミン化合物との間でシッフ塩基等のアルデヒド−アミンの結合を形成することが知られている。そこで、当該反応の利用を通じて、不快臭の原因物質であるアルデヒド類は化学結合により効率良く吸着される。   Aldehydes are known to form aldehyde-amine bonds such as Schiff bases with polyhydroxyamine compounds. Thus, through the use of the reaction, aldehydes that cause unpleasant odors are efficiently adsorbed by chemical bonds.

ポリヒドロキシアミン化合物として、「2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール」が好ましい。この化合物の別名は、トロメタミン、またはトリスヒドロキシメチルアミノメタンである。なお、ポリヒドロキシアミン化合物の他の例として、2−アミノ−1,3−プロパンジオール、2−アミノ−2−メチル−1,3−プロパンジオール、2−アミノ−2−エチル−1,3−プロパンジオール、または2−アミノ−2−ヒドロキシエチル−1,3−プロパンジオール等が挙げられる。   As the polyhydroxyamine compound, “2-amino-2-hydroxymethyl-1,3-propanediol” is preferable. Another name for this compound is tromethamine or trishydroxymethylaminomethane. As other examples of polyhydroxyamine compounds, 2-amino-1,3-propanediol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3- Examples include propanediol, 2-amino-2-hydroxyethyl-1,3-propanediol, and the like.

2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール等のポリヒドロキシアミン化合物と、アルデヒド類との反応は、適切な酸性下であるほど促進する。すなわち、酸が触媒として作用することが考えられる。ここで用いられる酸は無機酸または有機酸である。無機酸として、塩酸、硫酸、硝酸、リン酸、ポリリン酸、メタリン酸等が挙げられる。また、有機酸として、コハク酸、フマル酸、リンゴ酸、マロン酸、マレイン酸、クエン酸等のカルボン酸が挙げられる。有機酸の選択に際し、臭気の少ない種類が好ましい。   The reaction between polyhydroxyamine compounds such as 2-amino-2-hydroxymethyl-1,3-propanediol and aldehydes is accelerated as the acidity becomes appropriate. That is, it is conceivable that the acid acts as a catalyst. The acid used here is an inorganic acid or an organic acid. Examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, and metaphosphoric acid. Examples of the organic acid include carboxylic acids such as succinic acid, fumaric acid, malic acid, malonic acid, maleic acid, and citric acid. In selecting an organic acid, a kind having a low odor is preferable.

前掲のポリヒドロキシアミン化合物と、無機酸または有機酸との混合により添着液が調製される。そして、添着液は担体活性炭に添着される。つまり、活性炭は添着のための基材となる。担体活性炭は公知の活性炭より選択される。吸着活性炭の原料は、ヤシ殻、大鋸粉(オガコ)、廃材、廃竹、ヤシ殻、パームヤシの搾りかす、コーヒーの抽出後に生じるコーヒー豆の搾りかす、石炭、石油ピッチ、フェノール樹脂等である。これらの原料は炭化された後、水蒸気賦活、塩化亜鉛賦活、リン酸賦活、硫酸賦活、空気賦活、炭酸ガス賦活等の賦活処理が加えられる。この結果、活性炭に細孔が発達する。   An impregnation liquid is prepared by mixing the polyhydroxyamine compound described above with an inorganic acid or an organic acid. The impregnation liquid is then impregnated with the carrier activated carbon. That is, the activated carbon becomes a base material for attachment. The carrier activated carbon is selected from known activated carbon. The raw materials for the adsorbed activated carbon are coconut husk, large saw dust, sawdust, waste bamboo, coconut husk, palm coconut squeezed, coffee beans squeezed after coffee extraction, coal, petroleum pitch, phenol resin, and the like. After these raw materials are carbonized, activation treatment such as steam activation, zinc chloride activation, phosphoric acid activation, sulfuric acid activation, air activation, carbon dioxide activation, etc. is applied. As a result, pores develop in the activated carbon.

担体活性炭を評価する物性にBET比表面積がある。担体活性炭のBET比表面積は750ないし2100m2/gを充たす範囲である。後記の実施例の検証より、アルデヒド類の吸着(破過時間による評価)の結果から、下限の750m2/gを下回る場合にアルデヒド類の吸着性能は低下した。2100m2/gを上回る場合は、活性炭の強度が不足し、実用上好ましくない。そこで、良好な性能を確保する範囲として、BET比表面積は750ないし2100m2/gの範囲である。 BET specific surface area is a physical property for evaluating the carrier activated carbon. The BET specific surface area of the carrier activated carbon is in a range satisfying 750 to 2100 m 2 / g. From the verification of the examples described later, the adsorption performance of aldehydes was lowered when the lower limit of 750 m 2 / g was exceeded from the results of adsorption of aldehydes (evaluation by breakthrough time). When it exceeds 2100 m 2 / g, the strength of the activated carbon is insufficient, which is not preferable for practical use. Therefore, as a range to ensure good performance, the BET specific surface area is in the range of 750 to 2100 m 2 / g.

さらに、担体活性炭の物性評価に際し、DH法(Dollimore−Heal法)による担体活性炭の細孔分布の解析が用いられる。DH法は一般に2.0ないし50.0nmの直径のメソ細孔の分布解析を比較的容易に把握できることから、当該直径の細孔の解析に多く用いられる。そこで、DH法による担体活性炭の細孔分布の測定において、細孔直径4ないし50nmの細孔の総細孔容積は0.003ないし0.077mL/gの範囲に収斂する。   Furthermore, in the physical property evaluation of the carrier activated carbon, analysis of the pore distribution of the carrier activated carbon by the DH method (Dollimore-Heal method) is used. The DH method is generally used for analysis of pores having a diameter of 2.0 to 50.0 nm because it can relatively easily grasp distribution analysis of mesopores having a diameter of 2.0 to 50.0 nm. Therefore, in the measurement of the pore distribution of the supported activated carbon by the DH method, the total pore volume of pores having a pore diameter of 4 to 50 nm converges in the range of 0.003 to 0.077 mL / g.

後記の実施例から明らかであるように、担体活性炭についてDH法により各種範囲の細孔直径について測定し、どの範囲が吸着に際して効果的であるか否かを検討した。その結果、細孔直径4ないし50nmの細孔範囲の多少が吸着性能に最も影響していることを見出した。そこで、細孔直径4ないし50nmの範囲の総細孔容積を評価対象とした。この総細孔容積の範囲が0.003mL/gを下回る範囲では、アルデヒド類の吸着性能の低下は顕著であり好ましくない。また、0.077mL/gを上回る範囲においては活性炭の強度が不足し、実用上好ましくない。このことを理由に総細孔容積は規定される。   As is clear from the examples described later, the support activated carbon was measured for pore diameters in various ranges by the DH method, and which range was effective for adsorption was examined. As a result, it has been found that the pore range having a pore diameter of 4 to 50 nm has the most influence on the adsorption performance. Therefore, the total pore volume in the pore diameter range of 4 to 50 nm was evaluated. In the range where the total pore volume is less than 0.003 mL / g, the decrease in the adsorption performance of aldehydes is remarkable, which is not preferable. Moreover, in the range exceeding 0.077 mL / g, the strength of the activated carbon is insufficient, which is not preferable for practical use. For this reason, the total pore volume is defined.

加えて、担体活性炭の大きさ、すなわち、アルデヒド類吸着材の好ましい大きさは、おおよそ0.5ないし5mmの粒径である。その中でも、1ないし4mmの平均粒径がより好ましい。当該アルデヒド類吸着材は、専ら空気中の臭気成分の吸着に用いられる。例えば、空気清浄機、エアコンディショナー、その他空気流通用の配管、ダクト等に設置される。この用途を勘案すると、空気流通の圧力損失を過大にすることなく、円滑な流通確保が望まれる。   In addition, the size of the carrier activated carbon, that is, the preferred size of the aldehyde adsorbent is a particle size of approximately 0.5 to 5 mm. Among these, an average particle diameter of 1 to 4 mm is more preferable. The aldehyde adsorbent is exclusively used for adsorption of odor components in the air. For example, it is installed in air cleaners, air conditioners, other air circulation pipes, ducts, and the like. Taking this application into consideration, it is desired to ensure smooth circulation without excessively increasing the pressure loss of the air circulation.

そのため、粉末状活性炭等の細かすぎる活性炭では不向きとなりやすい。そこで、比較的粒の大きい活性炭として、0.5ないし5mm、特には1ないし4mmの大きさが適する。平均粒径が1mmを下回る活性炭では、充填時に緻密化して通気性能が低下する。平均粒径が4mmを上回る活性炭では、重量当たりの表面積が減少し、ポリヒドロキシアミン化合物の添着量が減少し、所望のアルデヒド類の吸着能力が発揮されにくくなる。そこで、前記の範囲が好ましい。   Therefore, too fine activated carbon such as powdered activated carbon tends to be unsuitable. Therefore, a size of 0.5 to 5 mm, particularly 1 to 4 mm is suitable as the activated carbon having relatively large grains. When the average particle size is less than 1 mm, the activated carbon is densified at the time of filling and the air permeability is lowered. In the case of activated carbon having an average particle size exceeding 4 mm, the surface area per weight is reduced, the amount of polyhydroxyamine compound is reduced, and the adsorption ability of desired aldehydes is hardly exhibited. Therefore, the above range is preferable.

続いて、図1の概略工程図を用いながら本発明のアルデヒド類吸着材の作製について説明する。無機酸または有機酸の酸類が秤量され、水に溶解される。水の量は添着対象の担体活性炭の量に合わせて加減される。そして、ここに2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール等のポリヒドロキシアミン化合物が溶解される。こうして添着液は調製される。   Next, production of the aldehyde adsorbent of the present invention will be described using the schematic process diagram of FIG. Inorganic or organic acids are weighed and dissolved in water. The amount of water is adjusted according to the amount of carrier activated carbon to be attached. Then, a polyhydroxyamine compound such as 2-amino-2-hydroxymethyl-1,3-propanediol is dissolved therein. In this way, the impregnation liquid is prepared.

担体活性炭は乾燥機等により絶乾状態に乾燥される。そして、前記調製の添着液は担体活性炭に滴下、浸漬等され、均等に表面に付着する。添着の方法はこれ以外にもスプレー塗布等可能である。その後、適宜乾燥され、添着液中の余分な水分は蒸発される。こうして、アルデヒド吸着材は完成する。   The carrier activated carbon is dried in an absolutely dry state by a dryer or the like. Then, the prepared additive solution is dropped, immersed, etc. on the carrier activated carbon and uniformly adhered to the surface. In addition to this method, spray coating or the like is possible. Then, it dries suitably and the excess water | moisture content in an attachment liquid is evaporated. Thus, the aldehyde adsorbent is completed.

ここで、アルデヒド吸着材における2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール及び無機酸または有機酸の酸類の添着割合は、担体活性炭の重量を基準に規定される。   Here, the addition ratio of 2-amino-2-hydroxymethyl-1,3-propanediol and inorganic acid or organic acid in the aldehyde adsorbent is defined based on the weight of the carrier activated carbon.

具体的には、担体活性炭100重量部に対し、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールは1ないし60重量部の添着量である。当該ポリヒドロキシアミン化合物が1重量部未満の場合、もとより少ないためアルデヒド類の吸着能力が発揮されない。逆に60重量部を超過する場合は添着液の調整が困難である。この量に関しては、酸類の量を変化させた場合であっても同様であった。従って、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールは前記の添着量として規定される。   Specifically, 2-amino-2-hydroxymethyl-1,3-propanediol is added in an amount of 1 to 60 parts by weight with respect to 100 parts by weight of the carrier activated carbon. When the amount of the polyhydroxyamine compound is less than 1 part by weight, the amount of aldehydes is not exhibited because it is less than the original. Conversely, when the amount exceeds 60 parts by weight, it is difficult to adjust the impregnating liquid. This amount was the same even when the amount of acids was changed. Accordingly, 2-amino-2-hydroxymethyl-1,3-propanediol is defined as the amount of addition.

次に、担体活性炭100重量部に対し、無機酸または有機酸の酸類は0.1ないし16重量部の添着量である。2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールの量及び酸類の種類を変更した場合であっても、当該範囲が好適であることが判明している。0.1重量部未満の場合、実質的に酸が存在していないに等しく吸着効率が乏しい。16重量部を超過する場合、酸の量が過剰となることにより逆にアルデヒド類の結合が阻害されるためである。   Next, the amount of the inorganic acid or organic acid is 0.1 to 16 parts by weight with respect to 100 parts by weight of the carrier activated carbon. It has been found that the range is suitable even when the amount of 2-amino-2-hydroxymethyl-1,3-propanediol and the type of acid are changed. When the amount is less than 0.1 part by weight, the adsorption efficiency is substantially the same as when no acid is present. This is because when the amount exceeds 16 parts by weight, the binding of aldehydes is inhibited by the excessive amount of acid.

添着液がアルデヒド類を吸着するための条件はpHに依存する。特に、塩基性条件下において良好な吸着性能が得られやすい。また、酸類は触媒として作用しアルデヒド−アミンの結合の形成が促される。そのことからも、前述の規定量に従い、無機酸または有機酸が添加される。その上で、添着液全体における酸−塩基の好ましい均衡についてはpH緩衝能を通じて把握される。pH緩衝能の数値を指標として用いることにより、添着液中の2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールの量を増減させた場合の最適な酸類の量の把握が可能となる。総じて添着液の調製は容易となる。   The conditions for adsorbing liquid to adsorb aldehydes depend on pH. In particular, good adsorption performance is easily obtained under basic conditions. Acids also act as a catalyst and promote the formation of aldehyde-amine bonds. Also from this, an inorganic acid or an organic acid is added according to the above-mentioned prescribed amount. In addition, the preferred acid-base balance in the entire impregnation solution is determined through the pH buffering capacity. By using the value of the pH buffering capacity as an index, it becomes possible to grasp the optimum amount of acids when the amount of 2-amino-2-hydroxymethyl-1,3-propanediol in the impregnating solution is increased or decreased. . In general, the preparation of the impregnation liquid becomes easy.

添着液のpH緩衝能は、前掲の式(F)として表される。添着液自体は本来塩基性域のpHである。そこに塩酸が添加されれば中性を超えて酸性域にpHは移行する。この際の塩酸量を通じて添着液の性状を把握できる。添着液のpHが5.0未満の酸性領域ではアルデヒド類の吸着性能は低下する。逆に言うと、酸が過剰に添加されるとしても、添着液がpH5.0に到達するまではアルデヒド類の吸着性能は確保されると考えられる。従って、式中の「pHを5.0にするため」とは、添着液のアルデヒド類の吸着の性能上の限界を意味する。   The pH buffering ability of the impregnation liquid is expressed as the above formula (F). The impregnating solution itself is essentially in the basic pH range. If hydrochloric acid is added there, the pH shifts to the acidic range beyond neutrality. The properties of the impregnating liquid can be grasped through the amount of hydrochloric acid at this time. In the acidic region where the pH of the impregnating solution is less than 5.0, the adsorption performance of aldehydes decreases. Conversely, even if the acid is added excessively, it is considered that the adsorption performance of aldehydes is ensured until the impregnating solution reaches pH 5.0. Therefore, “in order to adjust the pH to 5.0” in the formula means a limit on the performance of adsorption of aldehydes in the impregnating solution.

式(F)により表されるpH緩衝能は、290ないし3000mmol/kgの範囲、より好ましくは290ないし2900mmol/kgの範囲である。pH緩衝能が290mmol/kgを下回る場合、アルデヒド類吸着材に仕上げた際のアルデヒド類の吸着性能が低下する。また、pH緩衝能の2900mmol/kgを超えた場合、活性炭に対し過剰量の添着となるため吸着性能が低下する。滴定量を通じて添着液のpH緩衝能を把握できるため、添着液の性能、品質の管理が容易となる。   The pH buffer capacity represented by the formula (F) is in the range of 290 to 3000 mmol / kg, more preferably in the range of 290 to 2900 mmol / kg. When the pH buffering capacity is lower than 290 mmol / kg, the adsorption performance of aldehydes when finished into an aldehyde adsorbent is lowered. Further, when the pH buffer capacity exceeds 2900 mmol / kg, the adsorption performance is lowered because of excessive addition to the activated carbon. Since the pH buffering ability of the additive solution can be grasped through titration, the performance and quality of the additive solution can be easily managed.

背景技術に提示の特許文献2(特許4590369号公報)もpH緩衝能を示し、0.3ないし300mmol/kgの範囲を開示する。しかしながら、本発明のpH緩衝能の範囲と大きく相違する。特に本発明においては、添着液をより塩基性側に強めた性状である。背景技術に提示の特許4590369号公報は専ら噴霧用の液体としての使用である。これに対し、本発明は前述のとおり担体活性炭に添着液を添着してアルデヒド類吸着材に至るまで加工される。一般に、活性炭の表面には酸性または塩基性の官能基(残基)が存在する。   Patent document 2 (Japanese Patent No. 4590369) presented in the background art also shows pH buffering capacity and discloses a range of 0.3 to 300 mmol / kg. However, it is greatly different from the range of the pH buffering capacity of the present invention. In particular, in the present invention, it is a property in which the impregnating liquid is strengthened to the more basic side. Japanese Patent No. 4590369 presented in the background art is exclusively used as a spraying liquid. On the other hand, as described above, the present invention is processed up to the aldehyde adsorbent by impregnating the impregnating liquid onto the carrier activated carbon. In general, there are acidic or basic functional groups (residues) on the surface of activated carbon.

双方のpH緩衝能の相違は、おそらく活性炭表面の官能基の存在が大きく影響していると考えられる。添着液は当初から塩基性側へ移行するべく調製していたのではなく、良好な試作例の結果を集めたところ、290ないし2900mmol/kgの範囲のpH緩衝能が導き出された。このように、途中の加工の相違等から本発明と特許4590369号のpH緩衝能の範囲は相違すると考えられる。   The difference in pH buffering capacity between the two is probably due to the presence of functional groups on the activated carbon surface. The impregnation liquid was not prepared to shift to the basic side from the beginning, but the results of good prototype examples were collected, and a pH buffering capacity in the range of 290 to 2900 mmol / kg was derived. Thus, it is considered that the range of the pH buffer capacity of the present invention and that of Japanese Patent No. 4590369 are different from each other due to differences in processing during the process.

一連の説明により得られるアルデヒド類吸着材は、それのみで既に完成しており、空気浄化用の各種装置に使用される。例えば、図2のフィルター体20としての活用も可能である。フィルター体20は、矩形の枠部21と前後の設けられた通気部22を備える。そして、注入口23から完成したアルデヒド類吸着材10が枠部21内に注がれ、枠部21内はアルデヒド類吸着材10により満たされる。後に、注入口23は封止される。このフィルター体20はひとつのユニット化された部材として活用できる。そこで、空調機器内、空気清浄機、送気用のダクト内等への設置は容易となる。   The aldehyde adsorbent obtained by a series of explanations has already been completed by itself, and is used in various devices for air purification. For example, utilization as the filter body 20 of FIG. 2 is also possible. The filter body 20 includes a rectangular frame portion 21 and front and rear ventilation portions 22. The completed aldehyde adsorbent 10 is poured into the frame portion 21 from the inlet 23, and the inside of the frame portion 21 is filled with the aldehyde adsorbent 10. Later, the inlet 23 is sealed. The filter body 20 can be used as a unitized member. Therefore, installation in an air conditioner, an air purifier, a duct for air supply, or the like becomes easy.

例えば、一定時間装置を運転した後、フィルター体20ごと装置から取り外され、新たに新しいフィルター体20が設置される。そして、フィルター体20内部のアルデヒド類吸着材10が抜き取られ、未使用の新しいアルデヒド類吸着材10に交換される。この場合、フィルター体20は設置対象の装置の構造に合わせて設計でき、内部に充填されるアルデヒド類吸着材10を詰め替えるのみで足りる。結果として、消耗品の交換のみで十分となる。むろん、フィルター体は図示の矩形以外にも、円筒体等の種々の形状もあり、用途、目的、処理能力等に応じて最適な大きさ、形状が選択される。   For example, after operating the apparatus for a certain time, the filter body 20 is removed from the apparatus, and a new filter body 20 is newly installed. Then, the aldehyde adsorbent 10 inside the filter body 20 is extracted and replaced with a new unused aldehyde adsorbent 10. In this case, the filter body 20 can be designed in accordance with the structure of the device to be installed, and it is only necessary to refill the aldehyde adsorbent 10 filled therein. As a result, it is sufficient to replace the consumables. Of course, the filter body has various shapes such as a cylindrical body in addition to the illustrated rectangle, and an optimum size and shape are selected according to the application, purpose, processing capacity, and the like.

[使用原料]
担体活性炭の物性特定に際し、ヤシ殻由来の活性炭を使用して賦活の条件を制御することにより、BET比表面積、細孔容積等を作り分け、篩別して粒径を揃えて用意した(活性炭Ac1ないしAc6)。
その後のアルデヒド類吸着材の作製に際しては、「HC−30E」(株式会社ツルミコール製)(活性炭Ac7)と、「HC−16」(株式会社ツルミコール製)(活性炭Ac8)とを使用した。
[Raw materials]
When specifying the physical properties of the carrier activated carbon, the activated conditions derived from the coconut shell were used to control the activation conditions, so that the BET specific surface area, pore volume, etc. were made differently and sieved to prepare the particle sizes (activated carbon Ac1 to Ac6).
In the subsequent production of the aldehyde adsorbent, “HC-30E” (manufactured by Tsurumi Co.) (activated carbon Ac7) and “HC-16” (manufactured by Tsurumi Co.) (activated carbon Ac8) were used.

活性炭の粒径は、後述のアルデヒド類の吸着性能評価における破過試験の試験内容によって変更した。試験No.1及び試験No.3においては、活性炭Ac1ないしAc5及びAc7について、篩別により粒径をおよそ1.7ないし2mmとした。試験No.2においては、活性炭Ac6ないしAc8について、同様に篩別により粒径をおよそ1.18ないし1.4mmとした。   The particle size of the activated carbon was changed depending on the content of the breakthrough test in the evaluation of adsorption performance of aldehydes described later. Test No. 1 and test no. In No. 3, the activated carbon Ac1 to Ac5 and Ac7 had a particle size of approximately 1.7 to 2 mm by sieving. Test No. In No. 2, activated carbon Ac6 to Ac8 was similarly sieved to a particle size of about 1.18 to 1.4 mm.

ポリヒドロキシアミン化合物として、「2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール」を使用した(以降、同物質を「AHMPD」と略記する。)。   As the polyhydroxyamine compound, “2-amino-2-hydroxymethyl-1,3-propanediol” was used (hereinafter, the substance is abbreviated as “AHMPD”).

無機酸として、次の5種類を使用した。
リン酸(オルトリン酸):NYLEX SPECIALTY CHEMICALS SDN BHD製,純度89%
塩酸:関東化学株式会社製,特級,純度36.7%
硫酸:関東化学株式会社製,鹿一級,純度96.3%
ポリリン酸:Acros Organics製,純度85.4%(P25として)
メタリン酸:関東化学株式会社製,鹿特級,純度42.7%(HPO3として)
The following five types were used as inorganic acids.
Phosphoric acid (orthophosphoric acid): NYLEX SPECIALTY CHEMICALS SDN BHD, 89% purity
Hydrochloric acid: manufactured by Kanto Chemical Co., Ltd., special grade, purity 36.7%
Sulfuric acid: manufactured by Kanto Chemical Co., Ltd., deer first grade, purity 96.3%
Polyphosphoric acid: manufactured by Acros Organics, purity 85.4% (as P 2 O 5 )
Metaphosphoric acid: manufactured by Kanto Chemical Co., Inc., deer special grade, purity 42.7% (as HPO 3 )

有機酸として、次の2種類を使用した。
クエン酸:関東化学株式会社製,鹿特級,純度99.8%
コハク酸:関東化学株式会社製,鹿特級,純度99.8%
The following two types were used as organic acids.
Citric acid: manufactured by Kanto Chemical Co., Inc., deer special grade, purity 99.8%
Succinic acid: manufactured by Kanto Chemical Co., Inc., deer special grade, purity 99.8%

[アルデヒド類吸着材の作製]
各試作例のアルデヒド類吸着材の作製に際し、原料の添加量は後出の表中の重量部とした。活性炭100重量部を基準とする相対量である。表中の「部」は重量部と同義である。はじめに酸類を秤量し、水に溶解し酸溶液とした。この酸溶液中に秤量した2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール(AHMPD)を添加し溶解して各試作例に対応した添着液を調製した。担体活性炭は添着液の添着に先立ち乾燥して絶乾状態とした。
[Production of aldehyde adsorbent]
In the production of the aldehyde adsorbent for each prototype, the amount of raw material added was in parts by weight in the table below. The relative amount is based on 100 parts by weight of activated carbon. “Parts” in the table are synonymous with parts by weight. First, acids were weighed and dissolved in water to obtain an acid solution. A weighed 2-amino-2-hydroxymethyl-1,3-propanediol (AHMPD) was added to this acid solution and dissolved to prepare an adhesion solution corresponding to each prototype. The carrier activated carbon was dried and completely dried prior to the addition of the addition solution.

担体活性炭を秤量し、これに添着液を滴下ながら攪拌し全体を均質化した。その後、乾燥して各試作例に対応したアルデヒド類吸着材を作製した。   The carrier activated carbon was weighed and stirred while dropping the adhering solution thereto to homogenize the whole. Then, it dried and produced the aldehyde adsorbent corresponding to each prototype.

[担体活性炭の物性測定]
比表面積(m2/g)は、マイクロトラック・ベル株式会社製,自動比表面積/細孔分布測定装置「BELSORP−miniII」を使用して77Kにおける窒素吸着等温線を測定し、BET法により求めた(BET比表面積)。
[Measurement of physical properties of supported activated carbon]
The specific surface area (m 2 / g) is obtained by measuring the nitrogen adsorption isotherm at 77K using an automatic specific surface area / pore distribution measuring device “BELSORP-miniII” manufactured by Microtrack Bell Co., Ltd., and obtained by the BET method. (BET specific surface area).

全細孔容積(mL/g)は、上記の比表面積の測定に用いた装置を使用し、Gurvitschの法則を適用して相対圧0.990における窒素吸着量(V)を下記の数式(i)により液体窒素の体積(Vp)に換算して求めた。なお、数式(i)において、Mgは吸着質の分子量(窒素:28.020)、ρg(g/cm3)は吸着質の密度(窒素:0.808)である。 For the total pore volume (mL / g), the amount of nitrogen adsorbed (V) at a relative pressure of 0.990 was calculated by the following formula (i) using the apparatus used for measuring the specific surface area and applying the Gurvitsch law. ) And converted to the volume (V p ) of liquid nitrogen. In Equation (i), M g is the molecular weight of the adsorbate (nitrogen: 28.020), and ρ g (g / cm 3 ) is the density of the adsorbate (nitrogen: 0.808).

Figure 2019051508
Figure 2019051508

平均細孔直径(nm)は、細孔の形状を円筒形と仮定し、前述の測定から得た細孔容積(mL/g)及び比表面積(m2/g)の値を用いて数式(ii)より求めた。 The average pore diameter (nm) is calculated by using the pore volume (mL / g) and specific surface area (m 2 / g) values obtained from the above-mentioned measurement, assuming that the shape of the pore is cylindrical. Obtained from ii).

Figure 2019051508
Figure 2019051508

細孔直径2ないし200nmの範囲における細孔容積の値は、窒素ガスの吸着等温線からDH法によって解析した。DH法の解析結果から、細孔直径2.0nm以下の細孔の総細孔容積を求めた。同様に、細孔直径2.0ないし4.0nmの細孔、4.0ないし50.0nmの細孔、50.0ないし100.0nmの細孔の総細孔容積を求めた。そして、全細孔容積に占める各範囲の細孔の総細孔容積が占める割合(%)も算出した。   The value of the pore volume in the pore diameter range of 2 to 200 nm was analyzed by the DH method from the adsorption isotherm of nitrogen gas. From the analysis result of the DH method, the total pore volume of pores having a pore diameter of 2.0 nm or less was determined. Similarly, the total pore volume of pores having a pore diameter of 2.0 to 4.0 nm, pores of 4.0 to 50.0 nm, and pores of 50.0 to 100.0 nm was determined. And the ratio (%) which the total pore volume for each range of pores occupies in the total pore volume was also calculated.

担体活性炭(担持前、活性炭のみ)のベンゼン吸着力(%)と、アルデヒド類吸着材(担持後)のベンゼン吸着力(%)、充填密度(g/mL)、及びpHは、JIS K 1474(2014)に準拠して測定した。ベンゼン吸着力は、活性炭として備える一般的な吸着能力を評価する指標として採用した。   The benzene adsorption capacity (%) of the carrier activated carbon (before loading, only activated carbon), the benzene adsorption capacity (%) of the aldehyde adsorbent (after loading), packing density (g / mL), and pH are JIS K 1474 ( 2014). The benzene adsorption power was adopted as an index for evaluating general adsorption ability provided as activated carbon.

[pH緩衝能の測定]
各試作例の添着液(50g)をコニカルビーカーに分注し、ここに1.0mol/L(1N)の塩酸をビュレットにより滴下した。液のpHを測定しながら塩酸を滴下し、pH5.0に到達した時点の塩酸の滴下量を読み取った。そして、前掲の式(F)に従い、「添着液のpHを5.0にするために要した塩酸水溶液の滴定量(mL)」を「添着液の量(kg)」で除し、これに「塩酸水溶液の濃度(mol/L)」を乗じ、各試作例の添着液のpH緩衝能(mmol/kg)を算出した。
[Measurement of pH buffering capacity]
The impregnation liquid (50 g) of each prototype was dispensed into a conical beaker, and 1.0 mol / L (1N) hydrochloric acid was added dropwise thereto using a burette. Hydrochloric acid was added dropwise while measuring the pH of the solution, and the amount of hydrochloric acid added when the pH reached 5.0 was read. Then, according to the above formula (F), “the titration amount of hydrochloric acid aqueous solution (mL) required to bring the pH of the impregnating solution to 5.0” is divided by “amount of impregnating solution (kg)”. The pH buffering capacity (mmol / kg) of the impregnating solution of each prototype was calculated by multiplying by “the concentration of hydrochloric acid aqueous solution (mol / L)”.

[アルデヒド類の吸着性能評価]
各試作例のアルデヒド類吸着材に関し、アセトアルデヒドの吸着性能を破過試験により評価した。併せて他のアルデヒド類の評価としてホルムアルデヒドの吸着性能も破過試験により評価した。表1はそれぞれの試験条件である。「C」は出口濃度、「C0」は入口濃度とし、「C/C0=0.1」に達したときを破過とみなした。すなわち、出口濃度が入口濃度の「1/10」に到達したときを破過とした。そして、ガスの流入開始から破過に至るまでの時間を破過時間とした。アルデヒド類の濃度はガス検知管により評価した。表中の検知管の番号は全て株式会社ガステック製である。
[Adsorption performance evaluation of aldehydes]
Regarding the aldehyde adsorbents of each prototype, the acetaldehyde adsorption performance was evaluated by a breakthrough test. In addition, as an evaluation of other aldehydes, the adsorption performance of formaldehyde was also evaluated by a breakthrough test. Table 1 shows the test conditions. “C” was the outlet concentration, “C 0 ” was the inlet concentration, and when “C / C 0 = 0.1” was reached, it was regarded as breakthrough. That is, when the outlet concentration reached “1/10” of the inlet concentration, the breakthrough was determined. The time from the start of gas inflow to breakthrough was defined as breakthrough time. The concentration of aldehydes was evaluated using a gas detector tube. All detector tube numbers in the table are manufactured by Gastec Corporation.

Figure 2019051508
Figure 2019051508

[担体活性炭の物性]
アルデヒド類吸着材の担体(基材)である担体活性炭が具備するべき物性を検証するべく次の6種類のヤシ殻由来の活性炭を用意した(活性炭Ac1ないしAc6)。また、BET比表面積及び細孔分布の近似した活性炭Ac7(株式会社ツルミコール製,品名:「HC−30E」)及び活性炭Ac8(株式会社ツルミコール製,品名:「HC−16」)を用意した。活性炭Ac1ないしAc8を担体活性炭とした。そして、活性炭Ac1ないしAc8を使用し、表2及び3のAHMPD(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール)、リン酸、水を選択して、前述のアルデヒド類吸着材の作製に従い作製し、試作例1−1ないし1−8のアルデヒド類吸着材を得た。AHMPDとリン酸の量は共通とした。活性炭Ac1ないしAc8及び試作例1−1ないし1−8のアルデヒド類吸着材の結果は表2及び3である。
[Physical properties of supported activated carbon]
The following six types of activated carbon derived from coconut shells were prepared (activated carbon Ac1 to Ac6) in order to verify the physical properties that the carrier activated carbon that is the carrier (base material) of the aldehyde adsorbent should have. Further, activated carbon Ac7 (manufactured by Tsurumi Co., Ltd., product name: “HC-30E”) and activated carbon Ac8 (manufactured by Tsurumi Co., Ltd., product name: “HC-16”) having approximate BET specific surface area and pore distribution were prepared. Activated carbon Ac1 to Ac8 was used as carrier activated carbon. And using activated carbon Ac1 thru | or Ac8, AHMPD (2-amino- 2-hydroxymethyl- 1, 3- propanediol) of Table 2 and 3, phosphoric acid, and water are selected, and the above-mentioned aldehyde adsorbent of It produced according to preparation and the aldehyde adsorbent of prototype example 1-1 thru | or 1-8 was obtained. The amounts of AHMPD and phosphoric acid were common. Tables 2 and 3 show the results of the activated carbon Ac1 to Ac8 and the aldehyde adsorbents of prototype examples 1-1 to 1-8.

表2及び3中、活性炭ベンゼン吸着力(%)、BET比表面積(m2/g)、平均細孔直径(nm)、全細孔容積(mL/g)、及びDH法の各細孔直径の総細孔容積(mL/g)とその割合(%)は、活性炭Ac1ないしAc8の単独での測定結果である。さらに、活性炭単独の破過時間(min)を測定した。 In Tables 2 and 3, activated carbon benzene adsorption power (%), BET specific surface area (m 2 / g), average pore diameter (nm), total pore volume (mL / g), and each pore diameter of DH method The total pore volume (mL / g) and the ratio (%) are the measurement results of activated carbon Ac1 to Ac8 alone. Furthermore, the breakthrough time (min) of the activated carbon alone was measured.

同表2及び3中、AHMPD、リン酸、水はいずれも担体活性炭を100重量部としたときの相対重量部表記である。そして、充填密度(g/mL)、pH、ベンゼン吸着力(%)、破過時間(min)は試作例1−1ないし1−8のアルデヒド類吸着材の測定結果である。各活性炭単独及び試作例1−1ないし1−8の破過時間測定の吸着対象は「アセトアルデヒド」とした(試験No.1)。表中、「N.D.」は測定限界以下、「−」は測定せず、である。   In Tables 2 and 3, all of AHMPD, phosphoric acid, and water are relative parts by weight when the carrier activated carbon is 100 parts by weight. The packing density (g / mL), pH, benzene adsorption power (%), and breakthrough time (min) are the measurement results of the aldehyde adsorbents of prototype examples 1-1 to 1-8. The adsorption target for the breakthrough time measurement of each activated carbon alone and prototype examples 1-1 to 1-8 was “acetaldehyde” (Test No. 1). In the table, “ND” is below the measurement limit, and “−” is not measured.

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

[担体活性炭物性の考察]
担体活性炭Ac1と、これに添着液を添着した試作例1−1との比較では、添着の無い担体活性炭単独の破過時間が良好となった。すなわち、活性炭の細孔のみによる吸着が添着液の性能を上回ったと考える。しかしながら、担体活性炭単独では、BET比表面積の増加に反して破過時間の向上は喪失した。これに対し、アルデヒド類吸着材の試作例1−2ないし1−6のとおり、破過時間は顕著に向上した。そこで、BET比表面積について、良好な吸着性能を示す範囲を破過時間の変遷から求めた。結果、750ないし2100m2/gが望ましい範囲である。
[Consideration of physical properties of supported activated carbon]
In comparison between the carrier activated carbon Ac1 and the prototype 1-1 in which the impregnation liquid was impregnated, the breakthrough time of the carrier activated carbon alone without the addition was good. That is, it is considered that the adsorption by only the pores of the activated carbon exceeded the performance of the impregnating solution. However, the carrier activated carbon alone lost improvement in breakthrough time against the increase in BET specific surface area. On the other hand, the breakthrough time was remarkably improved as in prototype examples 1-2 to 1-6 of the aldehyde adsorbent. Therefore, the range showing good adsorption performance was determined from the transition of breakthrough time for the BET specific surface area. As a result, 750 to 2100 m 2 / g is a desirable range.

担体活性炭Ac1からAc6の順にBET比表面積は増加した。これと連動して同様の傾向でベンゼン吸着力も上昇した。この傾向から、試作例の順に破過時間の性能も向上すると考えた。しかし、予想に反して試作例1−4と比較して試作例1−5の破過時間は低下した。この傾向から、活性炭の物性をBET比表面積のみによって評価したのでは、効果的な吸着性能(破過時間)を得ることができないと判明した。そこで、活性炭の物性をより正確に把握するため、DH法による細孔分布を加えた。   The BET specific surface area increased in the order of carrier activated carbon Ac1 to Ac6. In conjunction with this, the benzene adsorption power also increased with the same tendency. From this tendency, it was considered that the performance of breakthrough time was also improved in the order of prototypes. However, contrary to expectations, the breakthrough time of Prototype Example 1-5 was lower than that of Prototype Example 1-4. From this tendency, it was proved that effective adsorption performance (breakthrough time) could not be obtained by evaluating the physical properties of activated carbon only by the BET specific surface area. Therefore, in order to grasp the physical properties of the activated carbon more accurately, a pore distribution by the DH method was added.

DH法による測定における細孔直径の区分ごとの総細孔容積の変遷と破過時間の性能発現が明確化する範囲として、細孔直径4ないし50nmの範囲に着目した。同範囲の試作例の結果から、細孔直径4ないし50nmの総細孔容積は0.002ないし0.080mL/gの範囲であり、より好ましくは0.003ないし0.077mL/gの範囲である。   The range of pore diameters of 4 to 50 nm was focused on as the range in which the transition of the total pore volume and the expression of breakthrough performance in each pore diameter category in the measurement by the DH method were clarified. From the results of prototypes in the same range, the total pore volume with a pore diameter of 4 to 50 nm is in the range of 0.002 to 0.080 mL / g, more preferably in the range of 0.003 to 0.077 mL / g. is there.

[AHMPDの添着量]
次に、前出の担体活性炭Ac4及びAc5を使用し、AHMPD(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール)の添着量を変えながらアルデヒド類吸着材の試作例2−1ないし2−5を作製した。表4は試作例の結果である。順番は前掲の表2と同様である。破過時間測定の吸着対象は「アセトアルデヒド」(試験No.1)とした。
[AHMPD attachment amount]
Next, using the above-mentioned carrier activated carbon Ac4 and Ac5, while changing the amount of AHMPD (2-amino-2-hydroxymethyl-1,3-propanediol) attached, trial production examples 2-1 to aldehydes 2-5 was produced. Table 4 shows the results of the prototype. The order is the same as in Table 2 above. The adsorption target for breakthrough time measurement was “acetaldehyde” (Test No. 1).

Figure 2019051508
Figure 2019051508

そして、担体活性炭Ac6、Ac7及びAc8を使用し、同様にAHMPD(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール)の添着量を変えながらアルデヒド類吸着材の試作例2−6ないし2−20を作製した。破過時間測定の吸着対象は「ホルムアルデヒド」(試験No.2)とした。表5ないし7は試作例の結果である。同表5ないし7中、AHMPD、リン酸、水はいずれも担体活性炭を100重量部としたときの相対重量部表記である。そして、充填密度(g/mL)、pH、ベンゼン吸着力(%)、破過時間(min)は試作例2−6ないし2−20のアルデヒド類吸着材の測定結果である。また、一部の試作例においてはその添着液のpH緩衝能を測定した。表中、「−」は測定せず、である。   Then, using activated carbon Ac6, Ac7 and Ac8, and similarly changing the amount of AHMPD (2-amino-2-hydroxymethyl-1,3-propanediol) attached, trial production examples 2-6 to 2-20 was produced. The adsorption target for breakthrough time measurement was “formaldehyde” (Test No. 2). Tables 5 to 7 show the results of prototype examples. In Tables 5 to 7, AHMPD, phosphoric acid, and water are all expressed in relative parts by weight when the carrier activated carbon is 100 parts by weight. The packing density (g / mL), pH, benzene adsorption power (%), and breakthrough time (min) are the measurement results of the aldehyde adsorbents in Prototype Examples 2-6 to 2-20. In some prototypes, the pH buffering capacity of the impregnating solution was measured. In the table, “−” means not measured.

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

[AHMPDの添着量の考察]
試作例2−4,2−5及び試作例2−6ないし2−8はそれぞれ同一の担体活性炭を使用し、AHMPDの添着量が異なる例である。この傾向から、AHMPDの添着量が増すほどアセトアルデヒド又はホルムアルデヒドの吸着性能は向上した。試作例2−1ないし2−3も同一の担体活性炭を使用した例である。しかしながら、この場合、AHMPDの添着量とアセトアルデヒドの吸着性能は単純に比例せず、試作例2−3では吸着性能が低下した。試作例2−14ないし2−20も同一の担体活性炭を使用した例である。同様に、AHMPDの添着量とホルムアルデヒドの吸着性能は単純に比例せず、試作例2−20では吸着性能が低下した。試作例2−9ないし2−13も同様であって、試作例2−13で吸着性能は低下した。このことから、BET比表面積の異なる各担体活性炭によって最適なAHMPD添着範囲が存在することを突き止めた。また、試作例2−8の結果より、AHMPDの添着量については60重量部が上限であると考える。
[Consideration of AHMPD deposition amount]
Prototype Examples 2-4 and 2-5 and Prototype Examples 2-6 to 2-8 are examples using the same carrier activated carbon and different amounts of AHMPD. From this tendency, the adsorption performance of acetaldehyde or formaldehyde improved as the amount of AHMPD added increased. Prototype examples 2-1 to 2-3 are also examples in which the same carrier activated carbon is used. However, in this case, the amount of AHMPD added and the adsorption performance of acetaldehyde were not simply proportional, and the adsorption performance was lowered in prototype 2-3. Prototype Examples 2-14 to 2-20 are also examples using the same carrier activated carbon. Similarly, the amount of AHMPD added and the adsorption performance of formaldehyde are not simply proportional, and the adsorption performance was lowered in Prototype Example 2-20. The same is true for Prototype Examples 2-9 to 2-13, and the adsorption performance was lowered in Prototype Example 2-13. From this, it was determined that there is an optimum AHMPD attachment range for each carrier activated carbon having a different BET specific surface area. Further, from the results of Prototype Example 2-8, it is considered that the upper limit of the amount of AHMPD attached is 60 parts by weight.

さらに、「AHMPDの添着量と酸量の関係」、「酸類の種類拡張」、「アルデヒド類の種類拡張」と検証を重ねた。以降の全試作例の作製は、活性炭の選択の他は、前述のアルデヒド類吸着材の作製手法と同様とし、量と種類のみを変更した。表8以降の各表において、pH、充填密度、及びベンゼン吸着力はいずれも試作例のアルデヒド類吸着材について測定した結果である。また、一部の試作例においてはその添着液のpH緩衝能を測定した。   Furthermore, “relation between the amount of AHMPD added and the amount of acid”, “expansion of types of acids”, and “expansion of types of aldehydes” were repeatedly verified. The subsequent production of all prototypes was the same as the method for producing the aldehyde adsorbent described above except for the selection of activated carbon, and only the amount and type were changed. In each table after Table 8, pH, packing density, and benzene adsorption power are all the results of measurement of the prototype aldehyde adsorbent. In some prototypes, the pH buffering capacity of the impregnating solution was measured.

[AHMPDの添着量と酸量の関係]
担体活性炭Ac7を使用し、AHMPDの添着量を適宜選択するとともに固定し、これに対応して酸(リン酸)の量を変更しながら試作例3−1ないし3−17を作製した。吸着試験の対象は「アセトアルデヒド」(試験No.1)である。また、酸量を固定してAHMPDの添着量を変更した試作例4−1ないし4−6、及び5−1ないし5−5を作製した。結果は表8ないし13である。
[Relationship between AHMPD deposition amount and acid amount]
Using support activated carbon Ac7, the amount of AHMPD attached was appropriately selected and fixed, and prototypes 3-1 to 3-17 were produced while changing the amount of acid (phosphoric acid) correspondingly. The target of the adsorption test is “acetaldehyde” (Test No. 1). Prototype examples 4-1 to 4-6 and 5-1 to 5-5 were prepared in which the acid amount was fixed and the amount of AHMPD attached was changed. The results are Tables 8-13.

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

そして、担体活性炭Ac8を使用し、AHMPDの添着量を固定し、酸(リン酸)の量を変更しながら試作例6−1ないし6−7を作製した。吸着試験の対象は「ホルムアルデヒド」(試験No.2)である。結果は表14及び15である。   Then, the activated carbon Ac8 was used, and the amount of AHMPD was fixed, and prototype examples 6-1 to 6-7 were produced while changing the amount of acid (phosphoric acid). The object of the adsorption test is “formaldehyde” (test No. 2). The results are Tables 14 and 15.

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

[AHMPDの添着量と酸量の考察]
表13より、全く酸類(リン酸)を使用せずに作製した試作例5−1ないし5−5については、AHMPDの量に比例して破過時間も延びた。自明ながら、専らAHMPDに起因する吸着能力の発現である。この場合、良好な吸着性能を得るためには、AHMPDの量をかなり多くしなければならず、効率的とはいえない。しかも、AHMPD量の増加に伴いベンゼン吸着力が低下することから、アセトアルデヒド以外の吸着能力の低下が顕著であり好ましいとはいえない。それゆえ、酸類の無添加は吸着材としての性能維持の観点から効果的ではない。
[Consideration of AHMPD Amount and Acid Amount]
As can be seen from Table 13, the trial examples 5-1 to 5-5 produced without using any acid (phosphoric acid) had a breakthrough time that was proportional to the amount of AHMPD. Obviously, it is the manifestation of the adsorption capacity solely due to AHMPD. In this case, in order to obtain good adsorption performance, the amount of AHMPD must be considerably increased, which is not efficient. Moreover, since the benzene adsorption power decreases with an increase in the amount of AHMPD, the decrease in the adsorption capacity other than acetaldehyde is remarkable, which is not preferable. Therefore, the non-addition of acids is not effective from the viewpoint of maintaining the performance as an adsorbent.

表8ないし11に開示の試作例3−1ないし3−17は、AHMPDの量を3段階に固定し、酸類(リン酸を使用)を変化させた結果である。はじめに、試作例3−1ないし3−8は酸類のリン酸を無添加から6.5部(相対量)まで変化させた作製例である。試作例3−1から3−5までは破過時間が延びていることからアセトアルデヒドの吸着効率は高まった。しかし、試作例3−6から3−8の結果によると、アセトアルデヒドの吸着効率が低下した。従って、酸類の添加には上限が存在することを突き止めた。   Prototype examples 3-1 to 3-17 disclosed in Tables 8 to 11 are the results of changing the acids (using phosphoric acid) while fixing the amount of AHMPD in three stages. First, prototype examples 3-1 to 3-8 are production examples in which the phosphoric acid acid was changed from no addition to 6.5 parts (relative amount). Since the breakthrough time was extended from Prototype Examples 3-1 to 3-5, the adsorption efficiency of acetaldehyde was increased. However, according to the results of Prototype Examples 3-6 to 3-8, the adsorption efficiency of acetaldehyde decreased. Therefore, it was determined that there is an upper limit for the addition of acids.

試作例3−9ないし3−12は酸類のリン酸を無添加から4.0部(相対量)まで変化させた作製例であり、試作例3−13ないし3−17は酸類のリン酸を無添加から6.0部(相対量)まで変化させた作製例である。いずれにおいても、前述と同様の傾向であり、試作例3−15から3−17の結果によると、アセトアルデヒドの吸着効率が低下した。   Prototype Examples 3-9 to 3-12 are production examples in which the acid phosphoric acid was changed from no addition to 4.0 parts (relative amount), and Prototype Examples 3-13 to 3-17 represent acid phosphates. In this example, the amount was changed from no addition to 6.0 parts (relative amount). In any case, the tendency was the same as described above, and according to the results of Prototype Examples 3-15 to 3-17, the adsorption efficiency of acetaldehyde decreased.

試作例6−1ないし6−7は活性炭Ac8を使用し、AHMPDの量を20.0部に固定し、酸類のリン酸を無添加から16.0部(相対量)まで変化させた作製例である。試作例6−2から6−6までは無添加の試作例1よりも破過時間が伸びていることからホルムアルデヒドの吸着効率は高まった。試作例6−7の結果から、これまでと同様に、添加する酸量が多すぎるとホルムアルデヒドの吸着効率が低下した。   Prototype examples 6-1 to 6-7 use activated carbon Ac8, the amount of AHMPD is fixed to 20.0 parts, and the phosphoric acid acid is changed from no addition to 16.0 parts (relative amount). It is. From trial example 6-2 to 6-6, the breakthrough time was longer than in additive-free trial example 1, and thus the adsorption efficiency of formaldehyde was increased. From the results of Prototype Example 6-7, the adsorption efficiency of formaldehyde was lowered when the amount of acid added was too large as in the past.

一連の結果から、アセトアルデヒドの吸着性能は、AHMPDの量の変動に関わらず酸類の添着量は4重量部から低下する傾向があるものの、4重量部以上に酸類を添加したとしてもホルムアルデヒドの吸着性能は高まることから、酸類の上限は概ね16重量部であると結論づけた。下限については、試作例3−2より0.1重量部とした。   From a series of results, the adsorption performance of acetaldehyde shows that even if acids are added to 4 parts by weight or more, the adsorbed amount of acids tends to decrease from 4 parts by weight regardless of variation in the amount of AHMPD Therefore, it was concluded that the upper limit of acids was approximately 16 parts by weight. About the minimum, it was set as 0.1 weight part from Prototype Example 3-2.

表12に開示の試作例4−1ないし4−6は、酸類(リン酸)の量を固定しAHMPDの量を変化させた結果である。前述の表13の結果と比較すると、酸類の添加に伴い格段に破過時間は延長した。この結果からも酸類添加は必須といえる。   Prototype examples 4-1 to 4-6 disclosed in Table 12 are the results of changing the amount of AHMPD while fixing the amount of acids (phosphoric acid). Compared to the results shown in Table 13, the breakthrough time was significantly extended with the addition of acids. From this result, it can be said that addition of acids is essential.

[酸類の種類拡張]
担体活性炭Ac7を使用し、酸類として使用する無機酸と有機酸の種類を増やしてアルデヒド類吸着材の試作例を作製した。表16は塩酸(試作例7−1)と硫酸(試作例8−1ないし8−5)であり、表17はクエン酸(試作例9−1ないし9−3)とコハク酸(試作例10−1,10−2)であり、表18はポリリン酸(試作例11−1ないし11−6)であり、表19はメタリン酸(試作例12−1ないし12−6)である。吸着試験の対象は「アセトアルデヒド」(試験No.1)である。
[Expansion of acid types]
Using the activated carbon Ac7 and increasing the types of inorganic and organic acids used as acids, a prototype example of an aldehyde adsorbent was prepared. Table 16 shows hydrochloric acid (prototype example 7-1) and sulfuric acid (prototype examples 8-1 to 8-5), and Table 17 shows citric acid (prototype examples 9-1 to 9-3) and succinic acid (prototype example 10). -1,10-2), Table 18 is polyphosphoric acid (prototype examples 11-1 to 11-6), and Table 19 is metaphosphoric acid (prototype examples 12-1 to 12-6). The target of the adsorption test is “acetaldehyde” (Test No. 1).

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

Figure 2019051508
Figure 2019051508

[酸類の種類拡張の考察]
各試作例のとおり、酸類の種類を他の無機酸、有機酸に変更した作製においても同様にアセトアルデヒドの吸着に効果的であった。ただし、硫酸は強酸であることから触媒としての作用よりもAHMPDの分解が強まり性能低下したと考える。それゆえ、試作例8−4,8−5では破過時間の性能低下が顕著であった。さらに、リン酸の種類を変更した場合であっても酸類の量と破過時間との間の傾向は同様であった。
[Consideration of extended types of acids]
As in each prototype, the production of the acids changed to other inorganic acids and organic acids was also effective for acetaldehyde adsorption. However, since sulfuric acid is a strong acid, it is considered that the degradation of AHMPD is stronger than the action as a catalyst and the performance is lowered. Therefore, in Prototype Examples 8-4 and 8-5, the performance degradation of breakthrough time was remarkable. Furthermore, even when the type of phosphoric acid was changed, the trend between the amount of acids and breakthrough time was similar.

[アルデヒド類の種類拡張]
これまでアセトアルデヒド及びホルムアルデヒドの破過時間によりアルデヒド類吸着材の性能を評価してきた。ここで、同一の試作例において、アセトアルデヒド(試験No.1)及びホルムアルデヒド(試験No.3)の破過時間も併せて測定することにより、アルデヒド類の吸着に効果的であることを検証した。表20の試作例13−1ないし13−3は、順に前出の試作例3−3、3−10、及び3−14に対応する。
[Expanding types of aldehydes]
So far, the performance of aldehyde adsorbents has been evaluated by the breakthrough time of acetaldehyde and formaldehyde. Here, in the same prototype, it was verified that the breakthrough time of acetaldehyde (Test No. 1) and formaldehyde (Test No. 3) was also measured, thereby being effective for adsorption of aldehydes. Prototype examples 13-1 to 13-3 in Table 20 correspond to the above-described prototype examples 3-3, 3-10, and 3-14 in this order.

Figure 2019051508
Figure 2019051508

[アルデヒド類の種類拡張の考察]
アルデヒド類の種類により破過時間に相違は見られるものの、アセトアルデヒドとホルムアルデヒドはほぼ同様の傾向で推移することを確認した。よって、他のアルデヒド類の吸着にも有効であると確信した。
[Consideration of extended types of aldehydes]
Although there was a difference in breakthrough time depending on the type of aldehydes, it was confirmed that acetaldehyde and formaldehyde had a similar trend. Therefore, it was convinced that it was also effective for the adsorption of other aldehydes.

[pH緩衝能の考察]
試作例において、アセトアルデヒドの吸着性能(破過時間)の良好であった一部の例については、作製に用いた添着液のpH緩衝能も測定した。この結果からpH緩衝能の数値範囲をまとめると、290ないし2900mmol/kgの範囲を妥当とした。当該範囲を規定することにより、調製した添着液の性状等の把握ができ利便性が高まる。
[Consideration of pH buffering capacity]
In some of the prototype examples, the pH buffering ability of the impregnating solution used for production was also measured for some examples where the acetaldehyde adsorption performance (breakthrough time) was good. From this result, the range of 290 to 2900 mmol / kg was considered appropriate when the numerical range of pH buffer capacity was summarized. By prescribing the range, it is possible to grasp the properties and the like of the prepared impregnating liquid, and the convenience is enhanced.

[まとめ]
各試作例のアルデヒド類吸着材の作製結果、検証の結果から、水、AHMPD(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール)、酸類から調製される添着液を担体活性炭に添着して作製する吸着材において、担体活性炭に必要なBET比表面積、DH法による細孔分布を規定することができた。また、添着液におけるAHMPD及び酸類の量、さらに、pH緩衝能も規定することができた。これらの各指標を統合することにより、前述の好例の試作例のアルデヒド類吸着材を得ることができた。この知見から、アルデヒド類吸着材の性能を生かし、これを保持したフィルター体にも展開可能である。こうすると、取り扱いの利便性の増した製品にもなり得る。
[Summary]
From the production results and verification results of the aldehyde adsorbents of each prototype, an impregnation liquid prepared from water, AHMPD (2-amino-2-hydroxymethyl-1,3-propanediol), and acids is impregnated on the carrier activated carbon In the adsorbent prepared as described above, the BET specific surface area required for the carrier activated carbon and the pore distribution by the DH method could be defined. Moreover, the amount of AHMPD and acids in the impregnating solution, and also the pH buffering capacity could be specified. By integrating these indices, it was possible to obtain the above-mentioned prototypical aldehyde adsorbent. From this knowledge, the performance of the aldehyde adsorbent can be utilized to develop the filter body holding it. In this way, it can be a product with increased handling convenience.

本発明のアルデヒド類吸着材は、活性炭に添着液を組み合わせるため安価に作製でき、しかも、添着液によるアルデヒド類の吸着と活性炭による一般的な吸着の両方を備えた極めて効率の良い吸着材となる。そこで、室内、病院内、車内、機内、船内等の閉鎖環境の空気浄化に有望である。さらに、フィルター体へ簡単に加工できるため、取り扱いの利便性が向上し空調機器への適用も容易である。   The aldehyde adsorbent of the present invention can be produced at low cost because the adsorbent is combined with activated carbon, and it is an extremely efficient adsorbent with both adsorption of aldehydes with the adsorbent and general adsorption with activated carbon. . Therefore, it is promising for air purification in closed environments such as indoors, hospitals, cars, cabins, and ships. Furthermore, since it can be easily processed into a filter body, the convenience of handling is improved and the application to air conditioning equipment is easy.

1 水
2 ポリヒドロキシアミン化合物(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール)
3 酸類(無機酸または有機酸)
4 添着液
5 担体活性炭
10 アルデヒド類吸着材
20 フィルター体
21 枠部
22 通気部
23 注入口
1 water 2 polyhydroxyamine compound (2-amino-2-hydroxymethyl-1,3-propanediol)
3 acids (inorganic or organic acids)
4 Adsorbing liquid 5 Activated carbon carrier 10 Aldehyde adsorbent 20 Filter body 21 Frame part 22 Vent part 23 Inlet

Claims (4)

水と、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールと、無機酸または有機酸とを含有した添着液を、担体活性炭に添着したアルデヒド類吸着材であって、
前記担体活性炭のBET比表面積が750〜2100m2/gであり、
前記担体活性炭100重量部に対して前記2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールが1〜60重量部の添着であり、かつ、
前記担体活性炭100重量部に対して前記無機酸または有機酸が0.1〜16重量部の添着である
ことを特徴とするアルデヒド類吸着材。
An aldehyde adsorbent obtained by adsorbing water, 2-amino-2-hydroxymethyl-1,3-propanediol, and an impregnation liquid containing an inorganic acid or an organic acid on a carrier activated carbon,
The carrier activated carbon has a BET specific surface area of 750 to 2100 m 2 / g;
1 to 60 parts by weight of the 2-amino-2-hydroxymethyl-1,3-propanediol is attached to 100 parts by weight of the carrier activated carbon, and
The aldehyde adsorbent characterized in that 0.1 to 16 parts by weight of the inorganic acid or organic acid is attached to 100 parts by weight of the carrier activated carbon.
前記担体活性炭のDH法による細孔分布の測定において、細孔直径4〜50nmの細孔の総細孔容積が0.003〜0.077mL/gである請求項1に記載のアルデヒド類吸着材。   2. The aldehyde adsorbent according to claim 1, wherein a total pore volume of pores having a pore diameter of 4 to 50 nm is 0.003 to 0.077 mL / g in measurement of pore distribution of the support activated carbon by a DH method. . 下記の式(F)により表される前記添着液のpH緩衝能が、290〜2900mmol/kgである請求項1に記載のアルデヒド類吸着材。
Figure 2019051508
2. The aldehyde adsorbent according to claim 1, wherein a pH buffer capacity of the impregnating solution represented by the following formula (F) is 290 to 2900 mmol / kg.
Figure 2019051508
請求項1に記載のアルデヒド類吸着材を保持してなることを特徴とするフィルター体。   A filter body comprising the aldehyde adsorbent according to claim 1.
JP2018167874A 2017-09-15 2018-09-07 Aldehyde adsorbent and filter body using the same Active JP7137411B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177910 2017-09-15
JP2017177910 2017-09-15

Publications (2)

Publication Number Publication Date
JP2019051508A true JP2019051508A (en) 2019-04-04
JP7137411B2 JP7137411B2 (en) 2022-09-14

Family

ID=66013277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167874A Active JP7137411B2 (en) 2017-09-15 2018-09-07 Aldehyde adsorbent and filter body using the same

Country Status (1)

Country Link
JP (1) JP7137411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113304727A (en) * 2021-06-17 2021-08-27 苏州岚露新材料科技有限公司 Preparation method of formaldehyde purification activated carbon with low cost and high activity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057955A (en) * 2009-12-08 2010-03-18 Kao Corp Deodorizing filter
JP4590369B2 (en) * 2005-04-21 2010-12-01 花王株式会社 Deodorants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590369B2 (en) * 2005-04-21 2010-12-01 花王株式会社 Deodorants
JP2010057955A (en) * 2009-12-08 2010-03-18 Kao Corp Deodorizing filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113304727A (en) * 2021-06-17 2021-08-27 苏州岚露新材料科技有限公司 Preparation method of formaldehyde purification activated carbon with low cost and high activity
CN113304727B (en) * 2021-06-17 2023-09-15 苏州岚露新材料科技有限公司 Preparation method of formaldehyde purification activated carbon with low cost and high activity

Also Published As

Publication number Publication date
JP7137411B2 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
KR20160071428A (en) Deodorizing filter
JP2008207151A (en) Deodorization filter
CN104248891B (en) Filter core for air cleaning facility
WO2015037483A1 (en) Gas adsorbent, gas adsorbing sheet, and air filter
JPWO2019151283A1 (en) Manufacturing method of gas adsorbent, deodorant fiber sheet and gas adsorbent
JP3526592B2 (en) Method for producing deodorant
JP2009178670A (en) Filter medium of air filter and air filter for air cleaning device
JP7137411B2 (en) Aldehyde adsorbent and filter body using the same
JP2010063963A (en) Dehumidification element and dehumidifying apparatus using the same
JP6066176B2 (en) Cigarette odor deodorant filter
JP2014133220A (en) Sheet-shaped low-desorption adsorbent
JP6501575B2 (en) Deodorant filter
JP6053121B2 (en) Gas adsorbent
JP2001009019A (en) Deodorant structure and deodorant
JP5229784B2 (en) Tobacco deodorant filter
WO2017104614A1 (en) Filter material and filter
JP2950683B2 (en) Air purifier and air purifier
JP2009028718A (en) Air filter medium, air filter, and air purification device
JP2016154640A (en) Deodorant filter
JP2014064970A (en) Aldehyde remover and filter using the same
JP6756543B2 (en) Deodorant
JP2016215168A (en) Harmful gas removal filter
KR101563063B1 (en) Method for deodorizing and deodorizing system
JP2010162335A (en) Deodorant and filter
JPS6048138A (en) Adsorbent of aldehydes in gaseous phase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R150 Certificate of patent or registration of utility model

Ref document number: 7137411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150