WO2018173157A1 - 電池装置および電池装置の制御方法 - Google Patents

電池装置および電池装置の制御方法 Download PDF

Info

Publication number
WO2018173157A1
WO2018173157A1 PCT/JP2017/011464 JP2017011464W WO2018173157A1 WO 2018173157 A1 WO2018173157 A1 WO 2018173157A1 JP 2017011464 W JP2017011464 W JP 2017011464W WO 2018173157 A1 WO2018173157 A1 WO 2018173157A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
terminal
management circuit
power
Prior art date
Application number
PCT/JP2017/011464
Other languages
English (en)
French (fr)
Inventor
慶太 中田
黒田 和人
関野 正宏
高橋 潤
岡部 令
洋介 佐伯
佐藤 信也
達士 梅原
太田 実
篤 稲村
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2017/011464 priority Critical patent/WO2018173157A1/ja
Publication of WO2018173157A1 publication Critical patent/WO2018173157A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments described herein relate generally to a battery device and a battery device control method.
  • a battery device including an assembled battery composed of a plurality of lithium ion battery cells generally includes a battery monitoring circuit (CMU: cell monitoring unit) for monitoring the voltage of the battery cell and the temperature of the assembled battery, and the battery device.
  • a battery management circuit (BMU: battery management unit) for controlling the operation. The battery management circuit is activated by being fed from a battery pack via a DC / DC circuit, for example, and supplies power to the battery monitoring circuit.
  • the battery management circuit and the battery monitoring circuit for example, when the assembled battery is in an overdischarged state, the power supply from the assembled battery is stopped, and the battery device may not continue to operate. For this reason, the load system that is fed from the battery device may suddenly stop.
  • the assembled battery is taken out from the battery device, the assembled battery is charged, and the assembled battery is installed again. In some cases, it is necessary to incorporate the battery device, and it takes time to restart the battery device.
  • Embodiments of the present invention have been made in view of the above circumstances, and an object thereof is to provide a battery device that can be activated independently.
  • the battery device includes at least one assembled battery including a plurality of secondary battery cells, a battery monitoring circuit that detects a voltage of the secondary battery cell, a high-potential-side terminal, and a positive electrode terminal of the assembled battery.
  • a circuit breaker that switches at least one of the electrical connection of the battery pack and the electrical connection between the low-potential-side terminal and the negative electrode terminal of the battery pack, and converts DC power obtained from the battery pack into predetermined DC power DC / DC circuit that outputs the power, a power input terminal that can be connected to an external power source, and a voltage detection in the battery monitoring circuit that can be activated by the power obtained from the DC / DC circuit or the power input terminal
  • a battery management circuit capable of calculating the SOC of the assembled battery using the result and controlling the operation of the DC / DC circuit and the circuit breaker based on the SOC;
  • FIG. 1 is a block diagram schematically illustrating a configuration example of a battery device according to an embodiment.
  • FIG. 2 is a flowchart for explaining an example of the battery device control method according to the embodiment.
  • FIG. 1 is a block diagram schematically illustrating a configuration example of a battery device according to an embodiment.
  • the battery device 100 of this embodiment includes a positive terminal P and a negative terminal N that can be connected to the load system 50.
  • the battery device 100 can supply power to the load system 50 and can be charged by the power supplied from the load system 50.
  • Battery device 100 may be included in load system 100.
  • the battery device 100 includes a plurality of terminals that can be electrically connected to the outside.
  • the battery device 100 includes an SOC terminal T1, an ENABLE terminal T2, a CAN communication terminal T3, a FULL terminal T4, an EMPTY terminal T5, a FAIL terminal T6, and a POWER terminal (power input terminal) T7.
  • MAINTENANCE terminal maintenance power supply signal terminal
  • the SOC terminal T1 is a terminal for outputting the SOC to the outside.
  • the ENABLE terminal T2 is a terminal to which a signal for switching between starting and stopping of the battery device 100 is supplied.
  • CAN communication terminal T3 is a terminal for battery apparatus 100 to transmit a signal based on a CAN (control area network) protocol with the outside.
  • the battery device 100 can communicate with, for example, various devices included in the load system via a CAN bus wiring (not shown).
  • the FULL terminal T4 is a terminal for notifying the outside that the battery device 100 is fully charged.
  • the EMPTY terminal T5 is a terminal for notifying the outside that the battery device 100 is in a completely discharged state.
  • the FAIL terminal T6 is a terminal for notifying the failure of the battery device 100 to the outside.
  • the power input terminal T7 is a terminal to which power is supplied from a connected external power source.
  • the maintenance power supply signal terminal T8 supplies a control signal (maintenance power supply signal) for forcibly charging the plurality of assembled batteries BT to the battery management circuit 20 when the battery management circuit 20 is activated in the maintenance mode, for example. It is a terminal to supply.
  • the power input terminal T7 and the maintenance power supply signal terminal T8 are used only by maintenance workers. Therefore, for example, the power input terminal T7 and the maintenance power supply signal terminal T8 do not need to be provided in a portion exposed to the outside of the battery device 100, and may be covered with a cover that can be removed during maintenance work.
  • the maintenance power supply signal terminal T8 is desirably provided as a terminal independent of the CAN communication terminal T3 to which a control signal or the like from the host controller is input.
  • the battery device 100 includes a plurality of battery modules MDL, a battery management circuit 20, a DC / DC circuit 30, a fuse 40, circuit breakers CN and CP, a current detector CS, and a service disconnect SDC. ing. Note that the battery device 100 only needs to include the number of battery modules MDL corresponding to the required output power, and may include at least one battery module MDL.
  • Each of the plurality of battery modules MDL includes an assembled battery BT and a battery monitoring circuit (CMU: Cell Monitoring Unit) 10.
  • the assembled batteries BT of the plurality of battery modules MDL are connected in series via a service disconnector SDC. Further, the terminal on the highest potential side of the plurality of assembled batteries BT can be electrically connected to the positive terminal P of the battery device 100 via the main circuit wiring on the high potential side, and the terminal on the lowest potential side is It can be electrically connected to the negative terminal N of the battery device 100 via the main circuit wiring on the low potential side.
  • the assembled battery BT is configured to realize a predetermined capacity and output by combining a plurality of secondary battery cells (not shown) of, for example, lithium ion batteries.
  • the positive terminal of the battery module MDL on the highest potential side can be electrically connected to the positive terminal P of the battery device 100 via the circuit breaker CP.
  • the negative electrode terminal of the battery module MDL on the lowest potential side can be electrically connected to the negative electrode terminal N of the battery device 100 via the circuit breaker CN.
  • the assembled battery BT may include a secondary battery cell other than the lithium ion battery.
  • the assembled battery BT may employ, for example, a nickel metal hydride battery or a lead battery.
  • the battery monitoring circuit 10 detects the voltage between the positive terminal and the negative terminal of each of the plurality of secondary battery cells of the assembled battery BT.
  • the battery monitoring circuit 10 detects the temperature in the vicinity of the assembled battery BT at at least one location.
  • the battery monitoring circuit 10 is configured to be able to communicate with a battery management device 20 described later based on, for example, a CAN (Control Area Network) protocol.
  • the battery monitoring circuit 10 periodically transmits detection results of voltage and temperature to the battery management circuit 20.
  • the battery monitoring circuit 10 includes, for example, at least one processor and a memory, and may be configured to realize the above operation by software, or configured to realize the above operation by a circuit configured by hardware. Alternatively, the above-described operation may be realized by a combination of software and hardware.
  • the service disconnect SDC is a maintenance circuit breaker.
  • the service disconnect SDC is disposed, for example, at a substantially central position of a plurality of battery modules MDL electrically connected in series, and is provided so as to be able to cut off the electrical connection between the battery modules MDL. By opening the service disconnect SDC during maintenance of the battery units U1 to Un, the safety of the maintenance worker can be ensured.
  • the service disconnect SDC is an electromagnetic contactor, for example, and can control the operation by a control signal from the battery management circuit 20.
  • the service disconnect SDC is installed. It can be omitted.
  • the circuit breakers CN and CP are provided so that the electrical connection state between the positive terminal P and the negative terminal N and the plurality of battery modules MDL can be switched.
  • the circuit breaker CP is provided in the main circuit wiring on the high potential side, and can switch the electrical connection state between the terminal on the high potential side of the assembled battery BT on the highest potential side and the positive electrode terminal P.
  • the circuit breaker CN is provided in the main circuit wiring on the low potential side, and can switch the electrical connection state between the terminal on the low potential side of the assembled battery BT on the lowest potential side and the negative terminal N.
  • the circuit breakers CN and CP are, for example, electromagnetic contactors, and their operations can be controlled by a control signal from the battery management circuit 20. In addition, at least any one of the circuit breaker CP and the circuit breaker CN should just be provided.
  • the current detector CS is arranged between the terminal on the high potential side of the assembled battery BT on the highest potential side and the circuit breaker CP.
  • the current detector CS is operated by power supplied from the battery management circuit 20, for example.
  • the current detector CS is configured to be communicable with the battery management circuit 20, periodically detects the current flowing through the plurality of assembled batteries BT, and transmits the detection result to the battery management circuit 20.
  • the current detector CS it is preferable to include the current detector CS, but the current detector CS is not an essential configuration and may be omitted.
  • the battery management circuit 20 can calculate the SOC more accurately by combining the current detection result of the current detector CS and the voltage detection result obtained from the battery monitoring circuit. Further, the battery management circuit 20 can determine whether or not the battery pack BT can be forcibly charged using the current detection result of the current detector CS.
  • Battery management circuit 20 acquires voltage and temperature detection results from battery monitoring circuits 10 of a plurality of battery modules MDL. Moreover, the battery management circuit 20 acquires the detection result of the electric current which flows into the some assembled battery BT from the current detector CS. The battery management circuit 20 can calculate the SOC (state of charge) of a plurality of assembled batteries BT (or a plurality of secondary battery cells) using, for example, detection results of voltage, temperature, and current.
  • the battery management circuit 20 may acquire the voltage of the main circuit wiring.
  • the battery management circuit 20 may determine whether or not the plurality of assembled batteries BT are in an overdischarged state and in an overcharged state based on the voltage of the main circuit wiring.
  • the battery management circuit 20 integrates and calculates the voltage for the series connection of the plurality of assembled batteries BT based on the voltage detection results of the secondary battery cells by the plurality of battery monitoring circuits 10, and the obtained main circuit wiring voltage It may be determined whether or not the plurality of assembled batteries BT are in an overdischarged state and whether they are in an overcharged state based on a considerable voltage.
  • the battery management circuit 20 is easily affected by voltage division or the like in order to acquire the voltage of the main circuit wiring.
  • the battery management circuit 20 integrates and calculates the series connection of the plurality of assembled batteries BT, and obtains a voltage corresponding to the obtained main circuit wiring voltage. This is preferable because the voltage of the main circuit wiring can be detected with higher accuracy without the influence of voltage division. Thereby, it is possible to accurately determine whether or not the plurality of assembled batteries BT are in an overdischarged state and whether or not they are in an overcharged state.
  • the battery management circuit 20 can determine whether the forced charging mode is possible according to the deterioration estimation result of the plurality of assembled batteries BT, or An appropriate mode can be accurately selected from a plurality of forced charging modes.
  • the battery management circuit 20 operates with power (12 V) supplied from the plurality of assembled batteries BT via the DC / DC circuit 30 and supplies power to the plurality of battery monitoring circuits 10 and the current detector CS. Further, the battery management circuit 20 can control the operation of the service disconnector SDC and the circuit breakers CN and CP.
  • the battery management circuit 20 includes a memory 21, and a plurality of terminals of the battery device 100, that is, an SOC terminal T1, an ENABLE terminal T2, a CAN communication terminal T3, a FULL terminal T4, an EMPTY terminal T5, and a FAIL terminal T6. Are electrically connected to the power input terminal T7 and the maintenance power supply signal terminal T8.
  • the battery management circuit 20 can output the SOC of a plurality of assembled batteries BT (or a plurality of secondary battery cells) to the SOC terminal T1.
  • the battery management circuit 20 is activated according to the voltage applied to the ENABLE terminal T2.
  • the battery management circuit 20 is configured to start when a signal supplied from the ENABLE terminal T2 becomes a high (H) level.
  • the battery management circuit 20 can communicate signals with each other with a device connected to the outside via the CAN communication terminal T3.
  • the battery management circuit 20 stores, for example, the detection results of the voltages, currents, temperatures, and SOCs of the plurality of assembled batteries BT and control information of each component of the battery device 100 in a built-in memory 21 and stores the external Can be read out from the memory 21 and output to the outside as past log information.
  • the battery management circuit 20 can determine that the battery is fully charged when the SOCs of the plurality of assembled batteries BT are equal to or greater than a predetermined threshold value, and can output a signal notifying that the battery is fully charged to the FULL terminal T4. .
  • the battery management circuit 20 can determine that the discharge is complete when the SOCs of the plurality of assembled batteries BT are less than a predetermined threshold, and can output a signal notifying the EMPTY terminal T5 that the discharge is complete. .
  • the battery management circuit 20 can output a signal notifying the failure to the FAIL terminal T6. For example, when the plurality of assembled batteries BT are in an overcharged state or in an overdischarged state, the battery management circuit 20 determines that the battery device 100 is in failure, and causes the failure to the outside via the FAIL terminal T6. You can be notified.
  • the battery management circuit 20 can be activated by a power supply (12 V) supplied from the outside via the power input terminal T7.
  • a power supply (12 V) supplied from the outside via the power input terminal T7 for example, the power supply line connected between the DC / DC circuit 30 and the battery management circuit 20 is electrically connected to the power input terminal T7, but power is input from the power input terminal T7.
  • the terminal of the battery management circuit 20 that performs the operation may be provided separately from the terminal of the battery management circuit 20 that receives power from the DC / DC circuit 30.
  • the battery management circuit 20 may include, for example, at least one processor and a memory 21, and may be configured to realize the above operation by software, and may realize the above operation by a circuit configured by hardware. You may comprise, and it may be comprised so that the said operation
  • the DC / DC circuit 30 is activated by the power supplied from the main circuit wiring, converts the DC power supplied from the main circuit wiring into 12V DC power, and supplies the DC power to the battery management circuit 20.
  • the operation of the DC / DC circuit 30 is controlled by a power control signal from the battery management circuit 20.
  • the DC / DC circuit 30 stops its operation according to the power control signal from the battery management circuit 20 when the plurality of assembled batteries BT are in an overdischarged state. Note that the DC / DC circuit 30 may be configured to continue the operation without stopping when the battery device 100 stops normally.
  • the battery device 100 has, for example, a configuration built in the battery device 100 when the assembled battery BT is in an overcharged state, when the assembled battery BT is in an overdischarged state, when the assembled battery BT is in an overtemperature state, and When a failure is detected, the operation is stopped as an abnormality is detected.
  • movement of the battery apparatus 100 when the assembled battery BT will be in an overdischarge state is demonstrated.
  • FIG. 2 is a flowchart for explaining an example of the battery device control method according to the embodiment.
  • the battery management circuit 20 periodically receives information (detection results) on the voltage and temperature of the assembled battery BT from each of the plurality of battery monitoring circuits 10 and periodically flows current from the current detector CS to the main circuit wiring. Information (detection result) is received.
  • the battery management circuit 20 calculates the SOC of the plurality of assembled batteries BT based on the received information, outputs the SOC to the outside via the SOC terminal T1, and stores the calculation result in the memory 21.
  • the battery management circuit 20 outputs a notification of complete discharge to the outside via the EMPTY terminal T5 when the SOC (or the voltage of the main circuit wiring) of the plurality of assembled batteries BT becomes equal to or lower than the discharge lower limit value. To do. At this time, for example, when a control signal for stopping the discharge is received from outside via the CAN communication terminal T3, the battery management circuit 20 controls the circuit breakers CP and CN to control the plurality of assembled batteries BT. Electrically disconnect from circuit wiring.
  • the discharge of the plurality of assembled batteries BT further proceeds, and the voltage detection result of the secondary battery cell by the battery monitoring circuit 10 or the SOC of the plurality of assembled batteries BT is the discharge limit value ( ⁇ discharge lower limit value).
  • the circuit breakers CP and CN are controlled to electrically disconnect the plurality of assembled batteries BT from the main circuit wiring, and the power supply from the DC / DC circuit 30 to the battery management circuit 20 is stopped. Then, the battery device 100 is stopped.
  • the battery management circuit 20 sets a signal supplied from the ENABLE terminal T2 to a low (L) level.
  • the battery management circuit 20 may record, for example, a flag indicating an overdischarge state in the memory 21 as control information.
  • the battery management circuit 20 can record, for example, past control information of the battery device 100 (including information on occurrence of an overdischarge state, an overcharge state, etc.) in the memory 21 and via the CAN communication terminal T3.
  • past control information can be read from the memory 21 and output from the CAN communication terminal T3.
  • the discharge lower limit value of the voltage of the main circuit wiring is a lower limit value of a voltage range that can be used by the plurality of assembled batteries BT.
  • the discharge limit value of the voltage of the main circuit wiring is a value lower than the discharge lower limit value, and is a lower limit value of a voltage range in which the plurality of assembled batteries BT can be used safely.
  • the DC / DC circuit 30 is configured to be activated by a control signal from the battery management circuit 20, when the battery management circuit 20 is stopped, the battery device 100 is activated independently by the power supplied from the assembled battery BT. I can't. Therefore, the maintenance worker connects an external power supply to the power input terminal T7 and supplies power (12V) to the battery management circuit 20 in order to activate the battery device 100.
  • the battery management circuit 20 When the power (12 V) is supplied, the battery management circuit 20 starts up in the maintenance mode, for example, when a flag indicating that the battery device 100 is in an overdischarge state is recorded immediately before the battery device 100 stops. (Step S1). In the maintenance mode, the battery management circuit 20 opens the circuit breakers CP and CN and operates according to a control signal supplied from the outside via the CAN terminal.
  • a maintenance worker for example, connects the CAN terminal of the battery device 100 and a computer on which a maintenance program is installed via a CAN-USB cable so as to be able to communicate with each other, and operates the maintenance computer to operate the battery device. 100 is requested for past log information.
  • the battery management circuit 20 When the battery management circuit 20 requests past log information from the outside via the CAN terminal (step S2), the battery management circuit 20 accesses the memory 21 to send past control information and the like of the battery device 100 from the CAN terminal to the outside ( To the request destination) (step S3).
  • the maintenance worker supplies the maintenance power to the battery device 100 to forcibly charge the plurality of assembled batteries BT. Input the supply signal.
  • the battery management circuit 20 When the battery management circuit 20 receives the maintenance power supply signal from the maintenance power supply signal terminal T8 (step S4), the battery management circuit 20 switches to the forced charging mode and controls the circuit breakers CP and CN to control the plurality of assembled batteries BT and the main circuit wiring. Are electrically connected (step S5). Subsequently, the battery management circuit 20 may notify the outside that forced charging is possible via the CAN terminal.
  • the maintenance worker confirms that the battery device 100 is in a state where forced charging is possible (forced charging mode), and connects the charger to the positive terminal P and the negative terminal N.
  • the battery management circuit 20 starts forced charging of the plurality of assembled batteries BT (step S6).
  • the battery management circuit 20 acquires the SOC (or the voltage of the main circuit wiring) of the plurality of assembled batteries BT and exceeds a predetermined threshold (step S7), the battery management circuit 20 starts up the DC / DC circuit 30. Then, the operation can be performed by supplying power from the plurality of assembled batteries BT via the DC / DC circuit 30 (step S8).
  • the battery management circuit 20 may continue the forced charging until, for example, the plurality of assembled batteries BT are fully charged. Further, the battery management circuit 20 receives a notification of complete discharge that has been output to the EMPTY terminal T5 when the forced charging of the plurality of assembled batteries BT is completed and the operation is started by power supply from the DC / DC circuit 30. The failure notification that has been output to the FAIL terminal T6 may be stopped and the external power supply connected to the power supply input terminal T7 may be released. Further, the battery management circuit 20 may cancel the forced charging mode when the operation is started by power supply from the DC / DC circuit 30.
  • the battery device 100 of this embodiment can start the battery management circuit 20 by connecting an external power source to the power input terminal T7 even when the plurality of assembled batteries BT are in an overdischarged state as described above. In order to recover from an overdischarged state to a normal state, it is possible to save the trouble of incorporating the battery module MDL after taking out and charging the battery module MDL.
  • the battery management circuit 20 can be activated to close the circuit breakers CN and CP so that forced charging can be performed. Therefore, according to the present embodiment, deterioration of the assembled battery BT can be avoided and the reliability of the battery device 100 can be ensured.
  • the battery management circuit 20 can output past log information via the CAN communication terminal T3, for example, when performing maintenance, an operator may explain how a plurality of assembled batteries BT are overdischarged. Analyze and take appropriate action. That is, according to the present embodiment, a battery device that can be activated independently can be provided.
  • the battery management circuit 20 transmits various information signals to and from the outside via the communication terminal, but the battery management circuit 20 communicates with the outside by wireless communication without passing through the communication terminal. You may be comprised so that communication is possible. Even in that case, the same effect as the above-described embodiment can be obtained.
  • the battery device 100 or the battery management circuit 20 may include a battery deterioration estimation unit.
  • the battery management circuit 20 can calculate the SOC more accurately by combining the result of the degree of deterioration of the assembled battery BT obtained by the battery deterioration estimation unit and the voltage detection result obtained from the battery monitoring circuit 10. Further, according to the degree of deterioration of the assembled battery BT, the battery management circuit 20 can select the forced charging mode or select an appropriate mode from a plurality of forced charging modes with different charging currents with high accuracy. Is possible.
  • the battery management circuit 20 may include a determination unit that can determine whether or not the forced charging mode can be selected based on a voltage detection result obtained from the battery monitoring circuit 10 or the like.
  • the battery management circuit 20 can select a forced charging mode with an appropriate charging current so as not to damage the assembled battery BT at the time of forced charging from the voltage detection result obtained from the battery monitoring circuit 10, etc. It is possible to maintain the life of the device 100 or to make it closer to the life of the battery device 100 before the occurrence of an abnormality. Further, when a danger due to forced charging occurs, such as when an abnormal abnormality occurs, the battery management circuit 20 can protect the assembled battery BT and the battery device 100 without performing forced charging. .

Abstract

自立起動可能な電池装置を提供する。 実施形態による電池装置は、少なくとも1つの組電池と、前記組電池の高電位側の端子と正極端子との間に延びた高電位側の主回路配線の電気的接続と、前記組電池の低電位側の端子と負極端子との間に延びた低電位側の主回路配線の電気的接続との少なくともいずれか一方を切替える遮断器と、前記主回路配線から得られる電力を所定の大きさに変換して出力するDC/DC回路と、外部電源と接続可能である電源入力端子と、前記DC/DC回路又は前記電源入力端子を介して外部から得られる電力により起動可能であって、前記DC/DC回路および前記遮断器の動作を制御する電池管理回路と、を備える。

Description

電池装置および電池装置の制御方法
 本発明の実施形態は、電池装置および電池装置の制御方法に関する。
 近年、様々な状況で利用される電力エネルギーの需要に備えて、エネルギー密度の高いリチウムイオン電池を用いた、電池装置の実現が望まれている。
 複数のリチウムイオン電池セルにより構成された組電池を含む電池装置は、一般的に、電池セルの電圧や組電池の温度を監視するための電池監視回路(CMU:cell monitoring unit)と、電池装置の動作を制御する電池管理回路(BMU:battery management unit)とを備えている。電池管理回路は、例えば、DC/DC回路を介して組電池から給電されて起動し、電池監視回路へ電源を供給している。
特開2014-143795号公報
 電池管理回路や電池監視回路は、例えば組電池が過放電状態となると、組電池からの電力供給が停止し、電池装置が動作を継続することができないことがあった。そのため、電池装置から給電されていた負荷システムが突然停止してしまうことがあった。
 また、組電池が過放電状態となることにより電池管理回路が停止した後、電池装置を再起動するためには、例えば、組電池を電池装置から取り出し、組電池を充電し、再び組電池を電池装置へ組み込む必要があり、電池装置を再起動するために時間を要する場合があった。
 本発明の実施形態は上記事情を鑑みて成されたものであって、自立起動可能な電池装置を提供することを目的とする。
 実施形態による電池装置は、複数の二次電池セルを含む少なくとも1つの組電池と、前記二次電池セルの電圧を検出する電池監視回路と、前記組電池の高電位側の端子と正極端子との電気的接続と、前記組電池の低電位側の端子と負極端子との電気的接続との少なくともいずれか一方を切替える遮断器と、前記組電池から得られる直流電力を所定の直流電力に変換して出力するDC/DC回路と、外部電源と接続可能である電源入力端子と、前記DC/DC回路又は前記電源入力端子から得られる電力により起動可能であって、前記電池監視回路における電圧検出結果を用いて前記組電池のSOCを演算し、前記SOCに基づいて前記DC/DC回路および前記遮断器の動作を制御可能な電池管理回路と、を備える。
図1は、一実施形態の電池装置の構成例を概略的に示すブロック図である。 図2は、一実施形態の電池装置の制御方法の一例を説明するためのフローチャートである。
実施形態
 以下に、一実施形態の電池装置について図面を参照して詳細に説明する。
 図1は、一実施形態の電池装置の構成例を概略的に示すブロック図である。
 本実施形態の電池装置100は、負荷システム50と接続可能な正極端子Pと負極端子Nとを備えている。電池装置100は負荷システム50へ電力供給可能であって、負荷システム50から供給される電力により充電可能である。なお、電池装置100は、負荷システム100内に含まれていてもよい。
 電池装置100は、外部と電気的に接続可能な複数の端子を備えている。本実施形態では、電池装置100は、SOC端子T1と、ENABLE端子T2と、CAN通信端子T3と、FULL端子T4と、EMPTY端子T5と、FAIL端子T6と、POWER端子(電源入力端子)T7と、MAINTENANCE端子(保守電源供給信号端子)T8と、を備えている。
 SOC端子T1は、外部へSOCを出力するための端子である。ENABLE端子T2は、電池装置100の起動と停止とを切替える信号が供給される端子である。
 CAN通信端子T3は、電池装置100が外部との間でCAN(control area network)プロトコルに基づいて信号を伝送するための端子である。電池装置100は、例えば負荷システムに含まれる各種装置との間で、CANバス配線(図示せず)を介して通信することができる。
 FULL端子T4は、電池装置100が満充電状態であることを外部へ通知するための端子である。EMPTY端子T5は、電池装置100が完放電状態であることを外部へ通知するための端子である。FAIL端子T6は、電池装置100の故障を外部へ通知するための端子である。
 電源入力端子T7は、接続された外部の電源から電力が供給される端子である。
 保守電源供給信号端子T8は、電池管理回路20が例えば保守モードで起動した際に、複数の組電池BTを強制的に充電するための制御信号(保守電源供給信号)を、電池管理回路20へ供給する端子である。
 なお、電源入力端子T7と保守電源供給信号端子T8とは、保守作業員のみにより利用されることが想定される。そのため、電源入力端子T7と保守電源供給信号端子T8とは、例えば、電池装置100の外部に露出した部分に設けられる必要はなく、保守作業時に取り外し可能なカバーにて覆われていてもよい。また、保守電源供給信号端子T8は、上位制御装置からの制御信号等が入力されるCAN通信端子T3とは独立した端子として設けることが望ましい。
 電池装置100は、複数の電池モジュールMDLと、電池管理回路20と、DC/DC回路30と、ヒューズ40と、遮断器CN、CPと、電流検出器CSと、サービスディスコネクトSDCと、を備えている。なお、電池装置100は、必要な出力電力に応じた数の電池モジュールMDLを備えていればよく、少なくとも1つの電池モジュールMDLを備えていればよい。
 複数の電池モジュールMDLのそれぞれは、組電池BTと、電池監視回路(CMU:Cell Monitoring Unit)10と、を備えている。複数の電池モジュールMDLの組電池BTは、サービスディスコネクタSDCを介して直列に接続している。また、複数の組電池BTの最も高電位側の端子は、高電位側の主回路配線を介して電池装置100の正極端子Pと電気的に接続可能であり、最も低電位側の端子は、低電位側の主回路配線を介して電池装置100の負極端子Nと電気的に接続可能である。
 組電池BTは、例えばリチウムイオン電池の二次電池セル(図示せず)を複数組み合わせて、所定の容量および出力を実現するように構成されている。最も高電位側の電池モジュールMDLの正極端子は、遮断器CPを介して電池装置100の正極端子Pと電気的に接続可能である。最も低電位側の電池モジュールMDLの負極端子は、遮断器CNを介して電池装置100の負極端子Nと電気的に接続可能である。
 なお、組電池BTはリチウムイオン電池以外の二次電池セルを備えていてもよい。例えば、組電池BTは、例えば、ニッケル水素電池や鉛電池を採用しても構わない。
 各電池モジュールMDLにおいて、電池監視回路10は、組電池BTの複数の二次電池セル個々の正極端子と負極端子との電圧を検出する。また電池監視回路10は、組電池BTの近傍の温度を少なくとも1ヶ所で検出する。電池監視回路10は、後述する電池管理装置20との間で、例えばCAN(Control Area Network)プロトコルに基づいて通信可能に構成されている。電池監視回路10は、電圧と温度との検出結果を周期的に電池管理回路20へ送信する。
 電池監視回路10は、例えば、少なくとも1つのプロセッサとメモリとを備え、ソフトウエアにより上記動作を実現するように構成されてもよく、ハードウエアにより構成された回路により上記動作を実現するように構成されてもよく、ソフトウエアとハードウエアとの組み合わせにより上記動作を実現するように構成されていてもよい。
 サービスディスコネクトSDCは、保守用の遮断器である。サービスディスコネクトSDCは、例えば、電気的に直列に接続した複数の電池モジュールMDLの略中央の位置に配置され、電池モジュールMDL間の電気的接続を遮断可能に設けられている。電池ユニットU1~Unの保守時にサービスディスコネクトSDCを開くことにより、保守作業者の安全性を確保することができる。サービスディスコネクトSDCは、例えば電磁接触器であって、電池管理回路20からの制御信号により動作を制御可能である。
 なお、例えば電池モジュールMDLの搭載数が少ない電池装置において、複数の電池モジュールMDLを接続した状態であっても保守時に作業員の安全性を担保することが可能であるときには、サービスディスコネクトSDCを省略しても構わない。
 遮断器CN、CPは、正極端子Pおよび負極端子Nと複数の電池モジュールMDLとの電気的接続状態を切替え可能に設けられている。遮断器CPは、高電位側の主回路配線に設けられ、最も高電位側の組電池BTの高電位側の端子と正極端子Pとの電気的接続状態を切替えることができる。遮断器CNは、低電位側の主回路配線に設けられ、最も低電位側の組電池BTの低電位側の端子と負極端子Nとの電気的接続状態を切替えることができる。遮断器CN、CPは、例えば電磁接触器であって、電池管理回路20からの制御信号により動作を制御可能である。なお、遮断器CPと遮断器CNとは、少なくともいずれか一方が設けられていればよい。
 電流検出器CSは、最も高電位側の組電池BTの高電位側の端子と遮断器CPとの間に配置されている。電流検出器CSは、例えば電池管理回路20から供給される電力により動作する。また、電流検出器CSは、電池管理回路20と通信可能に構成され、複数の組電池BTに流れる電流を周期的に検出して検出結果を電池管理回路20へ送信する。
 なお、本実施形態の電池装置において、電流検出器CSを備えるほうが好ましいが、電流検出器CSは必須の構成ではなく、省略しても構わない。電流検出器CSを備えることにより、電池管理回路20は、電流検出器CSの電流検出結果と電池監視回路より得られる電圧検出結果と合わせてより精度良くSOCを算出することができる。また、電池管理回路20は、電流検出器CSの電流検出結果を用いて、組電池BTに対する強制充電可否の判断が可能となる。
 電池管理回路20は、複数の電池モジュールMDLの電池監視回路10から、電圧および温度の検出結果を取得する。また、電池管理回路20は、電流検出器CSから、複数の組電池BTに流れる電流の検出結果を取得する。電池管理回路20は、例えば、電圧、温度、および電流の検出結果を用いて、複数の組電池BT(或いは複数の二次電池セル)のSOC(state of charge)を演算することができる。
 また、電池管理回路20は、主回路配線の電圧を取得してもよい。電池管理回路20は、主回路配線の電圧により、複数の組電池BTが過放電状態であるか否か、および、過充電状態であるか否かを判断してもよい。
 もしくは、電池管理回路20は、複数の電池監視回路10による二次電池セルの電圧検出結果に基づいて、複数の組電池BTの直列接続分の電圧を積算演算し、得られた主回路配線電圧相当の電圧により、複数の組電池BTが過放電状態であるか否か、および、過充電状態であるか否かを判断してもよい。
 電池管理回路20は、主回路配線の電圧を取得するには分圧などの影響を受けやすく、複数の組電池BTの直列接続分を積算演算し、得られた主回路配線電圧相当の電圧の方が分圧の影響なくより精度良く主回路配線の電圧を検出できるため好ましい。これにより、複数の組電池BTが過放電状態であるか否か、および、過充電状態であるか否かを、精度良く判断することができる。
 また、電池装置もしくは電池管理回路20には電池劣化推定部(図示せず)を設けることにより、電池管理回路20は、複数の組電池BTの劣化推定結果に応じて強制充電モード可否、もしくは、複数の強制充電モードから適切なモードを精度よく選択することが可能となる。
 電池管理回路20は、DC/DC回路30を介して、複数の組電池BTから供給される電力(12V)により動作し、複数の電池監視回路10および電流検出器CSへ電力を供給する。また、電池管理回路20は、サービスディスコネクタSDCと遮断器CN、CPとの動作を制御可能である。
 電池管理回路20は、メモリ21を備え、電池装置100の複数の端子、すなわち、SOC端子T1と、ENABLE端子T2と、CAN通信端子T3と、FULL端子T4と、EMPTY端子T5と、FAIL端子T6と、電源入力端子T7と、保守電源供給信号端子T8と、に電気的に接続している。
 電池管理回路20は、複数の組電池BT(或いは複数の二次電池セル)のSOCをSOC端子T1へ出力することができる。
 電池管理回路20は、ENABLE端子T2に印加される電圧に応じて起動する。例えば、電池管理回路20は、ENABLE端子T2から供給される信号がハイ(H)レベルとなったときに起動するように構成されている。
 電池管理回路20は、CAN通信端子T3を介して外部に接続された機器との間で互いに信号を通信可能である。電池管理回路20は、例えば、複数の組電池BTの電圧、電流、温度、SOCの検出結果や、電池装置100の各構成の制御情報等の所定期間分を内蔵のメモリ21に蓄積し、外部から要求された際にメモリ21から読み出して過去のログ情報として外部へ出力することができる。
 電池管理回路20は、複数の組電池BTのSOCが所定の閾値以上となったときに満充電であると判断し、FULL端子T4へ満充電である旨を通知する信号を出力することができる。
 電池管理回路20は、複数の組電池BTのSOCが所定の閾値未満となったときに完放電であると判断し、EMPTY端子T5へ完放電である旨を通知する信号を出力することができる。
 電池管理回路20は、電池装置100が故障していると判断したときに、FAIL端子T6へ故障である旨を通知する信号を出力することができる。例えば、複数の組電池BTが過充電状態であるとき、および、過放電状態であるときには、電池管理回路20は電池装置100の故障であると判断し、FAIL端子T6を介して外部へ故障を通知することができる。
 電池管理回路20は、電源入力端子T7を介して外部から供給される電源(12V)により起動することができる。本実施形態では、例えば、DC/DC回路30と電池管理回路20との間に接続した電源供給ラインは、電源入力端子T7と電気的に接続しているが、電源入力端子T7から電源を入力する電池管理回路20の端子は、DC/DC回路30から電源を入力する電池管理回路20の端子とは別に設けられてもよい。
 電池管理回路20は、例えば、少なくとも1つのプロセッサとメモリ21とを備え、ソフトウエアにより上記動作を実現するように構成されてもよく、ハードウエアにより構成された回路により上記動作を実現するように構成されてもよく、ソフトウエアとハードウエアとの組み合わせにより上記動作を実現するように構成されていてもよい。
 DC/DC回路30は、主回路配線から供給される電力により起動し、主回路配線から供給される直流電力を12Vの直流電力へ変換して電池管理回路20へ供給する。DC/DC回路30は、電池管理回路20からの電源制御信号により動作を制御される。DC/DC回路30は、複数の組電池BTが過放電状態であるときには、電池管理回路20からの電源制御信号に従って動作を停止する。なお、DC/DC回路30は、電池装置100が正常に停止したときには、停止せずに動作を継続するように構成されてもよい。
 次に、上述の電池装置100において異常が検出されたときの動作の一例について説明する。電池装置100は、例えば、組電池BTが過充電状態であるとき、組電池BTが過放電状態であるとき、組電池BTが過温度状態であるとき、および、電池装置100に内蔵された構成の故障が検出されたときに、異常が検出されたものとして動作を停止する。以下に、組電池BTが過放電状態になったときの電池装置100の動作の一例を説明する。
 図2は、一実施形態の電池装置の制御方法の一例を説明するためのフローチャートである。
 電池管理回路20は、複数の電池監視回路10のそれぞれから周期的に、組電池BTの電圧および温度の情報(検出結果)を受信し、電流検出器CSから周期的に主回路配線に流れる電流の情報(検出結果)を受信する。電池管理回路20は、受信した情報に基づいて、複数の組電池BTのSOCを演算し、SOC端子T1を介して外部へ出力するとともにメモリ21に演算結果を記憶させる。
 電池管理回路20は、複数の組電池BTのSOC(又は主回路配線の電圧)が放電下限値以下となったときに、EMPTY端子T5を介して、完放電である旨の通知を外部へ出力する。このとき、例えば、CAN通信端子T3を介して、外部より放電を停止する旨の制御信号を受信したときには、電池管理回路20は、遮断器CP、CNを制御して複数の組電池BTと主回路配線とを電気的に切り離す。
 電池管理回路20は、複数の組電池BTの放電が更に進み、電池監視回路10による二次電池セルの電圧検出結果、もしくは、複数の組電池BTのSOCが放電限界値(<放電下限値)以下となったときに、遮断器CP、CNを制御して複数の組電池BTと主回路配線とを電気的に切り離し、DC/DC回路30から電池管理回路20への電源供給を停止させて、電池装置100を停止する。電池管理回路20は、例えば、ENABLE端子T2から供給する信号をロー(L)レベルとする。このとき、電池管理回路20は、例えばメモリ21に過放電状態であることを示すフラグなどを制御情報として記録してもよい。
 電池管理回路20は、例えば、電池装置100の過去の制御情報(過放電状態や過充電状態などが発生した情報を含む)をメモリ21に記録することが可能であり、CAN通信端子T3を介して外部から過去のログ情報を要求されたときに、メモリ21から過去の制御情報を読み出してCAN通信端子T3より出力可能である。
 なお、主回路配線の電圧の放電下限値は、複数の組電池BTの利用可能な電圧の範囲の下限値である。主回路配線の電圧の放電限界値は、放電下限値よりも小さい値であって、複数の組電池BTを安全に使用することができる電圧の範囲の下限値である。
 DC/DC回路30は、電池管理回路20の制御信号により起動するように構成されているため、電池管理回路20が停止すると、電池装置100は組電池BTから供給される電力により自立起動することができない。そこで、保守作業員は、電池装置100を起動させるために、電源入力端子T7に外部電源を接続し、電池管理回路20へ電源(12V)を供給する。
 電池管理回路20は、電源(12V)が供給されると、例えばメモリ21に、電池装置100が停止する直前に過放電状態であった旨のフラグが記録されていると、保守モードで起動する(ステップS1)。保守モードにおいて、電池管理回路20は、遮断器CP、CNを開いた状態とし、CAN端子を介して外部から供給される制御信号に従って動作する。
 保守作業員は、例えばCAN-USBケーブルを介して、電池装置100のCAN端子と保守作業用のプログラムが搭載されたコンピュータとを通信可能に接続し、保守作業用のコンピュータを操作して電池装置100に対して過去のログ情報を要求する。
 電池管理回路20は、外部からCAN端子を介して過去のログ情報を要求された際に(ステップS2)、メモリ21にアクセスして、電池装置100の過去の制御情報等をCAN端子から外部(要求先)へ出力する(ステップS3)。
 過去のログ情報を読み出して、電池装置100が過放電状態となり停止したものであることが確認されたときには、保守作業員は、複数の組電池BTを強制充電するために電池装置100へ保守電源供給信号を入力する。
 電池管理回路20は、保守電源供給信号端子T8から保守電源供給信号を受信すると(ステップS4)、強制充電モードに切り替わり、遮断器CP、CNを制御して複数の組電池BTと主回路配線とを電気的に接続する(ステップS5)。続いて、電池管理回路20は、CAN端子を介して、外部へ強制充電可能である旨の通知を行っても良い。
 保守作業員は、電池装置100が強制充電可能な状態(強制充電モード)であることを確認し、正極端子Pと負極端子Nとに充電器を接続する。電池管理回路20は、正極端子Pと負極端子Nとに充電器が接続されると、複数の組電池BTの強制充電を開始する(ステップS6)。
 このとき、電池管理回路20は、例えば、複数の組電池BTのSOC(或いは主回路配線の電圧)を取得して所定の閾値を超えたときに(ステップS7)、DC/DC回路30を起動し、DC/DC回路30を介して複数の組電池BTからの電力供給により動作を行うことができる(ステップS8)。
 なお、電池管理回路20は、例えば複数の組電池BTが満充電となるまで強制充電を継続してもよい。また、電池管理回路20は、複数の組電池BTの強制充電が完了し、DC/DC回路30からの電源供給により動作を開始するときに、EMPTY端子T5へ出力していた完放電の通知とFAIL端子T6へ出力していた故障の通知とを停止し、電源入力端子T7に接続されていた外部電源を解除可能としてもよい。また、電池管理回路20は、DC/DC回路30からの電源供給により動作を開始するときに、強制充電モードを解除してもよい。
 本実施形態の電池装置100は、上記のように複数の組電池BTが過放電状態となったときでも、電源入力端子T7に外部電源を接続することにより、電池管理回路20を起動することが可能であり、過放電状態から正常な状態へ回復させるために、電池モジュールMDLを取出して充電した後、電池モジュールMDLを組み込む手間を省くことができる。
 また、組電池BTは、過放電状態となった後に長時間放置されると、さらに電圧が低下して使用不可能な状態になる。本実施形態によれば、過放電により電池装置100が停止したときに、電池管理回路20を起動して遮断器CN、CPを閉じて強制充電可能な状態することができる。したがって、本実施形態によれば、組電池BTの劣化を回避し、電池装置100の信頼性を担保することができる。
 また、電池管理回路20は、CAN通信端子T3を介して過去のログ情報を出力可能であるので、例えばメンテナンスを行う際に、作業者が複数の組電池BTが過放電状態となった経緯を分析し、適切な対応を行うことが可能となる。
 すなわち、本実施形態によれば、自立起動可能な電池装置を提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、上記実施形態では、電池管理回路20は、通信端子を介して外部との間で各種の情報信号を伝送していたが、電池管理回路20は通信端子を介することなく無線通信により外部と通信可能に構成されていても構わない。その場合であっても上述の実施形態と同様の効果を得ることができる。
 また、好ましくは、電池装置100もしくは電池管理回路20は、電池劣化推定部を備えていてもよい。電池劣化推定部により得られる組電池BTの劣化度の結果と、電池監視回路10より得られる電圧検出結果と合わせて、電池管理回路20はより精度良くSOCを算出できる。また、組電池BTの劣化度に応じて、電池管理回路20は、強制充電モードを選択することの可否、もしくは、充電電流が互いに異なる複数の強制充電モードから適切なモードを精度よく選択することが可能となる。
 また、上記実施形態において、電池管理回路20は、電池監視回路10より得られる電圧検出結果などに基づいて、強制充電モードを選択可能か否か判断可能な判断部を備えていてもよい。電池管理回路20は、電池監視回路10より得られる電圧検出結果などから強制充電時に組電池BTにダメージを与えないような適切な充電電流による強制充電モードを選択可能であり、異常発生前の電池装置100の寿命を維持する、もしくは、異常発生前の電池装置100の寿命により近づけることが可能となる。また、過度な異常が発生した場合など、強制充電による危険が発生するようなときに、電池管理回路20は強制充電を実施せずに組電池BTおよび電池装置100を保護することが可能となる。

Claims (5)

  1.  複数の二次電池セルを含む少なくとも1つの組電池と、
     前記二次電池セルの電圧を検出する電池監視回路と、
     前記組電池の高電位側の端子と正極端子との電気的接続と、前記組電池の低電位側の端子と負極端子との電気的接続との少なくともいずれか一方を切替える遮断器と、
     前記組電池から得られる直流電力を所定の直流電力に変換して出力するDC/DC回路と、
     外部電源と接続可能である電源入力端子と、
     前記DC/DC回路又は前記電源入力端子から得られる電力により起動可能であって、前記電池監視回路における電圧検出結果を用いて前記組電池のSOCを演算し、前記SOCに基づいて前記DC/DC回路および前記遮断器の動作を制御可能な電池管理回路と、を備えた電池装置。
  2.  前記電池管理回路は、前記電池監視回路による前記二次電池セルの電圧検出結果、もしくは、前記SOCが放電限界値以下となったときに、前記遮断器により前記組電池から前記DC/DC回路への電源供給を停止して、前記電池管理回路を停止するように構成されている、請求項1記載の電池装置。
  3.  前記電池管理回路を保守モードから強制充電モードに切替える保守電源供給信号が入力される保守電源供給信号端子と、
     外部と通信可能に接続する通信端子と、
     前記電池管理回路の過去の制御情報が記憶されるメモリと、を更に備えた、
    請求項1又は請求項2記載の電池装置。
  4.  すくなくとも1つの組電池を備えた電池装置の制御方法であって、
     前記組電池に流れる電流と前記組電池の電圧とを用いて前記組電池のSOCを演算し、
     前記組電池の二次電池セルの電圧、もしくは、SOCが放電限界値以下となったときに、DC/DC回路を介して前記組電池から供給される電源を停止し、
     電源が供給されたときに、前記組電池と主回路配線との電気的接続を遮断した状態で、外部からの制御信号に従って動作する保守モードにより起動し、
     保守モードから強制充電モードに切替える保守電源供給信号が入力されたときに、前記組電池と前記主回路配線とを電気的に接続して強制充電モードとする、電池装置の制御方法。
  5.  過去の制御情報をメモリに記憶可能であって、
     前記保守モードにおいて、外部から過去のログ情報を要求する信号を受信したときに、前記メモリに記憶された過去の制御情報を外部へ出力する、請求項4記載の電池装置の制御方法。
PCT/JP2017/011464 2017-03-22 2017-03-22 電池装置および電池装置の制御方法 WO2018173157A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011464 WO2018173157A1 (ja) 2017-03-22 2017-03-22 電池装置および電池装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011464 WO2018173157A1 (ja) 2017-03-22 2017-03-22 電池装置および電池装置の制御方法

Publications (1)

Publication Number Publication Date
WO2018173157A1 true WO2018173157A1 (ja) 2018-09-27

Family

ID=63586292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011464 WO2018173157A1 (ja) 2017-03-22 2017-03-22 電池装置および電池装置の制御方法

Country Status (1)

Country Link
WO (1) WO2018173157A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045670A (ja) * 1999-07-30 2001-02-16 Fujitsu Ltd バッテリパック
JP2008283786A (ja) * 2007-05-10 2008-11-20 Toshiba Corp 二次電池充電システム
JP2008312442A (ja) * 2003-11-14 2008-12-25 Sony Corp バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の起動制御方法
JP2013073897A (ja) * 2011-09-29 2013-04-22 Toshiba Corp 蓄電池装置及び蓄電池装置の点検保守方法
JP2013102649A (ja) * 2011-11-09 2013-05-23 Makita Corp バッテリパック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045670A (ja) * 1999-07-30 2001-02-16 Fujitsu Ltd バッテリパック
JP2008312442A (ja) * 2003-11-14 2008-12-25 Sony Corp バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の起動制御方法
JP2008283786A (ja) * 2007-05-10 2008-11-20 Toshiba Corp 二次電池充電システム
JP2013073897A (ja) * 2011-09-29 2013-04-22 Toshiba Corp 蓄電池装置及び蓄電池装置の点検保守方法
JP2013102649A (ja) * 2011-11-09 2013-05-23 Makita Corp バッテリパック

Similar Documents

Publication Publication Date Title
JP5048963B2 (ja) 電池システム
JP6228666B2 (ja) 電池システム
US9873393B2 (en) On-vehicle electrical storage apparatus
JP7130907B2 (ja) メインバッテリー及びサブバッテリーを制御するための装置、バッテリーシステム及び方法
JP2013192389A (ja) 組電池の放電制御システムおよび放電制御方法
WO2017158741A1 (ja) 蓄電池装置及び車両
JP6087675B2 (ja) 電池モジュール
US11437834B2 (en) Storage battery apparatus with current cutoff control
US11658370B2 (en) Safety protection device and method for battery test system
US11114877B2 (en) Battery device and vehicle
JP2007166747A (ja) 組電池および組電池の充電方法
US20220077764A1 (en) Electric energy conversion and control device and energy storage system having the same
CN112531853A (zh) 主电池系统管理单元及电池单柜组并联充放电系统的保护方法
KR101753091B1 (ko) 무정전 전원장치가 일체화된 통신 시스템 및 동작방법
US20150086815A1 (en) Method for checking a sleep mode of a cell supervision circuit and lithium-ion rechargeable battery
WO2018173157A1 (ja) 電池装置および電池装置の制御方法
US20220399619A1 (en) Battery module and energy storage device
JP2015173568A (ja) 電池保護回路および電池パック
EP3200309B1 (en) Vehicle-use storage battery system
JP2014147138A (ja) 蓄電池システム
WO2019193637A1 (ja) 電池装置および車両
KR20210044028A (ko) 개별 팩간 에너지 차이를 이용한 병렬 전지팩 충전방법 및 시스템
US20230176135A1 (en) Battery Pack and Method of Controlling the Same
WO2019049378A1 (ja) 蓄電池装置
WO2019003439A1 (ja) 電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP