WO2018171776A1 - 一种广播信息指示的发送方法和发送设备 - Google Patents

一种广播信息指示的发送方法和发送设备 Download PDF

Info

Publication number
WO2018171776A1
WO2018171776A1 PCT/CN2018/080378 CN2018080378W WO2018171776A1 WO 2018171776 A1 WO2018171776 A1 WO 2018171776A1 CN 2018080378 W CN2018080378 W CN 2018080378W WO 2018171776 A1 WO2018171776 A1 WO 2018171776A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
scrambling
spbch
self
transmitting device
Prior art date
Application number
PCT/CN2018/080378
Other languages
English (en)
French (fr)
Inventor
张朝龙
王坚
戴胜辰
皇甫幼睿
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018171776A1 publication Critical patent/WO2018171776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a broadcast information indication.
  • the physical broadcast channel (English: Physical Broadcast Channel, abbreviation: PBCH) carries the main information block (English: Master Information Block, abbreviation: MIB). Since the payload of the physical broadcast channel is getting larger and larger, the current MIB has been difficult to meet the communication capability. Therefore, how to transmit the physical broadcast channel information becomes an urgent problem to be solved.
  • PBCH Physical Broadcast Channel
  • MIB Master Information Block
  • the main purpose of the present application is to provide a method and a device for transmitting a broadcast information indication, which are used to indicate a transmission resource of control information of a physical broadcast channel.
  • the embodiment of the present application provides a method for transmitting a secondary broadcast channel indication, where the method is applied to a sending device, including:
  • the sending device encodes the control information to obtain a coding sequence, where the control information includes a Secondary Physical Broad East (SPBCH) indication information;
  • SPBCH Secondary Physical Broad East
  • the transmitting device scrambles the coding sequence by using a scrambling sequence to obtain a scrambled sequence
  • the transmitting device transmits the scrambled sequence using modulation and mapping operations.
  • the encoding the bit sequence to obtain a coded sequence comprises encoding the coded sequence using Polar coding.
  • the embodiment of the present application further provides a method for transmitting a secondary broadcast channel indication, where the method is applied to a sending device, including:
  • n being an integer, n>0;
  • the scrambled sequence is transmitted after the modulation and mapping operations.
  • scrambling the n self-decoding units with a scrambling sequence to obtain a scrambled sequence includes: scrambling the n self-decoding units with n scrambling sequences, the n The scrambling sequence belongs to different scrambling sequence packets, and the packet information of the scrambling sequence packet is used to indicate whether the SPBCH exists or the resource location of the SPBCH is transmitted.
  • the scrambling sequence is scrambled by using n scrambling sequences to obtain a scrambled sequence including:
  • the information bits are scrambled using different scrambling sequences that are used to indicate whether the SPBCH is present or to transmit the resource location of the SPBCH.
  • scrambling the n self-decoding units with a scrambling sequence to obtain the scrambled sequence includes:
  • the n self-decoding units are scrambled by a scrambling sequence whose length is greater than the total length of the n self-decoding units, wherein the scrambling sequence whose length is greater than the total length of the n self-decoding units can be divided into multiple parts, different parts
  • the scrambling sequence is used to indicate whether there is an SPBCH or a resource location for transmitting the SPBCH.
  • the encoding the bit sequence to obtain the coding sequence comprises: encoding the coding sequence by using Polar coding.
  • the embodiment of the present application provides a sending device, which has a function of implementing the behavior of the sending device in the sending method of the second-level broadcast channel, respectively.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the embodiment of the present application provides a method for receiving a secondary broadcast channel indication, including:
  • the receiving device demaps and demodulates the symbol sequence to obtain soft information of the coding sequence
  • the receiving device performs descrambling on the soft information of the coding sequence, performs decoding, and performs verification on the decoding result to obtain control information.
  • the embodiment of the present application provides another method for receiving a secondary broadcast channel indication, including:
  • the receiving device selects at least one self-decoding unit from the coding sequence
  • the receiving device decodes and verifies the descrambled sequence.
  • the embodiment of the present application provides a transmitting device, which has a function of implementing the behavior of the receiving device in the receiving method of the foregoing secondary broadcast channel, respectively.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • Figure 1 is a basic flow chart of wireless communication.
  • FIG. 2 is a flowchart of a method for transmitting a secondary broadcast channel indication according to an embodiment of the present application.
  • Figure 3 is a structural diagram of the Arikan Polar code.
  • FIG. 4 is a configuration diagram of a CA Polar code.
  • Fig. 5 is a configuration diagram of a PC Polar code.
  • FIG. 6 is a process of processing of a receiving side PBCH in LTE.
  • FIG. 7 is a flowchart of a method for receiving a secondary broadcast channel indication according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for transmitting a secondary broadcast channel indication according to another embodiment of the present application.
  • FIG. 9 is a flowchart of a method for receiving a secondary broadcast channel indication according to another embodiment of the present application.
  • FIG. 10 is a simplified structural diagram of a transmitting device in an embodiment of the present application.
  • Figure 11 is a simplified block diagram of a receiving device in an embodiment of the present application.
  • FIG. 1 is a basic flow of wireless communication.
  • a source is sequentially transmitted after source coding, channel coding, rate matching, and modulation mapping.
  • the output sink is sequentially demodulated by demodulation, de-rate matching, channel decoding, and source decoding.
  • the channel coding code can use Polar polarization code. Since the original Polar code (mother code) has a code length of 2, it is necessary to implement rate matching for Polar code of arbitrary code length in practical applications.
  • the sender performs rate matching after channel coding to achieve an arbitrary target code length, and performs de-rate matching on the receiving end before channel decoding.
  • the basic process of the wireless communication also includes additional processes (for example, precoding and interleaving), and since these additional processes are common knowledge to those skilled in the art, they are not enumerated.
  • the embodiments of the present application can be applied to a wireless communication system, including but not limited to: a narrowband Internet of Things system (English: Narrow Band-Internet of Things, referred to as NB-IoT), and a global mobile communication system (English: Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA) ), Code Division Multiple Access 2000 (English: Code Division Multiple Access, CDMA2000 for short), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution System (English: Long Term Evolution, LTE for short) and the three major application scenarios of the next-generation 5G mobile communication system, eMBB, URLLC and eMTC.
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • the base station is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In the system (English: 3rd Generation, 3G for short), it is called Node B (English: Node B).
  • the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a base station or a BS.
  • the terminals involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal may also be referred to as a user equipment (UE), and may also include a subscriber unit (English: subscriber unit), a cellular phone (English: cellular phone), a smart phone (English: smart phone), and wireless data.
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • UE user equipment
  • PDA Personal Digital Assistant
  • tablet computer tablet computer
  • wireless modem English: modem
  • handheld device English: handset
  • laptop English: laptop computer
  • machine Type communication English: Machine Type Communication, referred to as: MTC
  • a fifth-generation (5 th Generation, 5G) communication system to provide a minimum amount of information systems (Minimum System Information, MSI).
  • the PBCH is divided into a physical broadcast channel and a secondary physical broadcast channel (SPBCH).
  • SPBCH secondary physical broadcast channel
  • the MSI performs segmentation, a portion of the MSI information (eg, relatively important MSI information) is transmitted in the physical broadcast channel, and another portion of the MSI information is transmitted on the secondary physical broadcast channel.
  • an embodiment of the present application provides a method for transmitting a secondary broadcast channel indication, where the sending method can be applied to a sending device, including:
  • the transmitting device encodes the control information to obtain a coding sequence, where the control information includes a secondary broadcast channel SPBCH indication information.
  • the control information includes SPBCH indication information, where the SPBCH indication information may be one or more bits, and may be used to indicate whether the SPBCH exists. Normally, this control information is transmitted through the PBCH. For example, when the resource location of the SPBCH is fixed, the terminal needs to receive control information of the SPBCH transmission at a fixed resource location. Alternatively, the SPBCH indication information may also be used to indicate the resource location of the SPBCH. When the resource location of the SPBCH is not fixed, for example, the resource location may be a selection of a plurality of resource locations from the candidate according to the SPBCH indication information, or the resource location itself is indicated by the SPBCH.
  • the transmitting device may indicate an index of a certain resource location of the candidate or indicate the resource location itself by the SPBCH indication information.
  • the transmitting device may indicate an index of the resource location needed to transmit the SPBCH information.
  • the foregoing SPBCH indication information may be included in an idle bit of a Master Information Block (MIB) structure similar to an LTE system, where the MIB includes 14 information bits and 10 idle bits.
  • the SPBCH indication information may be indicated by a number of idle bits or some of a number of idle bits.
  • the embodiment of the present application further provides a block of information, which may be referred to as Minimum System Information (MSI), which is sent on the PBCH and includes downlink system bandwidth, PHICH. , the first eight bits of the subframe number and the SPBCH configuration.
  • MSI Minimum System Information
  • the SPBCH configuration is used to indicate whether the SPBCH exists or the location of the SPBCH resource transmission.
  • the transmitting device may perform channel coding on the bit sequence using a Polar code, which is briefly described below.
  • the sending device performs Cyclic Redundancy Check (CRC) encoding on the control information to be sent, and then the transmitting device performs channel coding and rate matching on the CRC check encoded sequence to obtain a coding sequence.
  • CRC Cyclic Redundancy Check
  • CA Polar code it is simply referred to as CA Polar code.
  • the transmitting device performs Polar coding and rate matching on the control information to obtain a coding sequence. That is, the traditional Polar code.
  • the transmitting device performs channel coding and rate matching on the PC-coded sequence to obtain a coding sequence.
  • PC Polar code parity check
  • the Polar code proposed by Turkish professor Arikan is the first code that theoretically proves to achieve Shannon capacity and has low coding and decoding complexity.
  • the Polar code is also a linear block code whose encoding matrix is G N and the encoding process is among them Is a binary line vector of length N (ie code length); G N is an N ⁇ N matrix, and Defined as the Kronecker product of log 2 N matrices F 2 .
  • N binary line vector of length
  • F 2 the Kronecker product of log 2 N matrices
  • G N (A) is the set of G N
  • G N (A C ) is the set of G N
  • the encoded output of the Polar code can be simplified to: ,Here for a collection of information bits, a row vector of length K, ie
  • the construction process of the Polar code is a collection
  • the selection process determines the performance of the Polar code.
  • the construction process of the Polar code is generally: determining that there are N polarized channels in total according to the length N of the mother code, respectively corresponding to N rows of the coding matrix, calculating the reliability of the polarized channel, and the first K polarizations with higher reliability.
  • Channel index as a collection Element
  • the index corresponding to the remaining (NK) polarized channels as the index set of fixed bits Elements. set Determine the location of the information bits, the collection The position of the fixed bit is determined.
  • the original Polar code (parent code) has a code length of 2, which is an integer power of 2, and in practice, a Polar code of arbitrary code length needs to be implemented by rate matching.
  • ⁇ u1, u2, u3, u5 ⁇ is set as a fixed bit set
  • ⁇ u4, u6, u7, u8 ⁇ is set as a set of information bits
  • 4 in the information vector of length 4 The bit information bits are encoded into 8-bit coded bits.
  • ⁇ u1, u2 ⁇ is set as a fixed bit set
  • ⁇ u3, u4, u5, u6 ⁇ is set as a set of information bits
  • ⁇ u7, u8 ⁇ is a set of CRC bits.
  • the value of ⁇ u7, u8 ⁇ is obtained by CRC of ⁇ u3, u4, u5, u6 ⁇ .
  • CA-SCL International: CRC-Aided Successive Cancellation List
  • the CA-SCL decoding algorithm selects the path through which the CRC passes as the decoding output in the candidate path of the SCL decoding output by the CRC check.
  • ⁇ u1, u2, u5 ⁇ is set as a fixed bit set
  • ⁇ u3, u4, u6, u7 ⁇ is set as an information bit set
  • ⁇ u7 ⁇ is a PC fixed bit set.
  • the value of ⁇ u7 ⁇ is obtained by X0, u6 ⁇ XOR.
  • the transmitting device scrambles the code sequence by using a scrambling sequence to obtain a scrambled sequence.
  • the transmitting device repeats the coding sequence to obtain a plurality of PBCH independent self-decoding units of equal size, and scrambles the coding sequence by using the scrambling code sequence to obtain a scrambled sequence.
  • Each of the independent self-decoding units carries the same coded bits and is distinguished by a scrambling sequence of different phases.
  • the transmitting device sends the scrambled sequence by using a modulation and mapping operation.
  • steps 101 and 102 can be reversed, that is, the bit sequence can be first encoded and then scrambled, or the bit sequence can be scrambled and then encoded.
  • the receiving end when the channel quality is good enough, the receiving end can successfully perform descrambling, decoding, and CRC check operations only by receiving one PBCH independent self-decoding unit. Since the receiving end repels the successful scrambling code sequence, it can be obtained that the transmitting end transmits the MIB in the first few radio frames in one cycle, thereby knowing the lower 2 bits of the SFN. For the case of poor channel quality, if the receiving end only receives one PBCH independent self-decoding unit and cannot successfully descramble the decoding, it performs soft combining with the PBCH independent unit transmitted in the next 10 ms for decoding until successful decoding.
  • another embodiment of the present application provides a method for receiving a secondary broadcast channel indication, where the receiving method can be applied to a receiving device, and the receiving device can be a terminal.
  • the receiving method of the channel indication includes:
  • the receiving device receives a sequence of symbols, where the symbol sequence is obtained after the transmitting device encodes the control information and performs scrambling modulation mapping.
  • the receiving device demaps and demodulates the symbol sequence to obtain soft information of the code sequence.
  • the receiving device performs descrambling on the soft information of the coding sequence, performs decoding, and performs verification on the decoding result to obtain control information, where the control information includes SPBCH indication information.
  • the receiving device reads the control information on the SPBCH according to the indication of the SPBCH indication information.
  • control information is obtained, and the receiving device performs reading of the control information on the SPBCH.
  • the verification is unsuccessful, the sequence of symbols continues to be received.
  • another embodiment of the present application provides a method for transmitting a secondary broadcast channel indication, where the sending method can be applied to a sending device, and the sending device can be a base station.
  • the sending method includes:
  • the sending device encodes the control information to obtain a coding sequence.
  • the transmitting device first performs Cyclic Redundancy Check (CRC) encoding on the control information to be sent, and then the transmitting device performs channel coding and rate matching on the CRC-coded bit sequence to obtain a coding sequence.
  • CRC Cyclic Redundancy Check
  • the transmitting device may perform parity check on the control information to be sent, and then perform channel coding and rate matching on the parity bit sequence to obtain a coding sequence.
  • channel coding may be performed by using a Polar code.
  • the transmitting device repeats the coding sequence to obtain n self-decoding units, where n is an integer and n>0.
  • the MIB information is 14 bits, plus 10 bits of reserved information and 16 bits of CRC check information are 40 bits in total.
  • the code rate is 1/3 to generate 120 coded bits into one self-decoding unit. Each transmission repeats 4 copies of the 120 coded bits, a total of 480 coded bits, which are 4 self-decoding units.
  • the PBCH is done by four retransmissions, that is, a total of 1920 coded bits are transmitted.
  • the sending device scrambles the n self-decoding units by using a scrambling sequence to obtain a scrambled sequence.
  • the SPBCH may be indicated by employing different scrambling sequences, and by way of example, different scrambling sequences may be generated by different scrambling initial values.
  • the scrambling sequences S 1 and S 2 generated with different scrambling initial values as an example.
  • the scrambling sequence S 1 when used for scrambling, it indicates that the SPBCH exists; when the scrambling sequence S 2 is used for scrambling, it indicates that the SPBCH does not exist.
  • the number of candidate scrambling sequences may be greater than two. When the number of candidate scrambling sequences is 4, the transmitting device selects 2 from which to perform an indication.
  • the candidate scrambling sequences may also be grouped, and the SPBCH is indicated by scrambling using scrambling sequences in different scrambling sequence packets. For example, when the transmitting device performs scrambling using a certain scrambling sequence in packet 1, it indicates that the SPBCH exists; when the transmitting device performs scrambling using a scrambling sequence in packet 2, it indicates that the SPBCH does not exist.
  • the different scrambling sequences or different scrambling sequence packets described above may also be used to indicate the SPBCH resource location.
  • using a different scrambling sequence or a scrambling sequence in the scrambling sequence packet may indicate one of several candidate resource locations.
  • the transmitting device may also use different scrambling sequence packets to indicate the SPBCH resource location.
  • the scrambling code sequence may be divided into four, and each scrambling code sequence corresponds to one resource location.
  • scrambling is performed in a scrambling code sequence corresponding to the resource location.
  • the scrambling code sequence may be four groups, and each group of scrambling code sequences includes multiple scrambling code sequences, and each group of scrambling code sequences corresponds to one resource position.
  • one of a set of scrambling code sequences corresponding to the resource location is used for scrambling.
  • the transmitting device may also generate a scrambling sequence with a length greater than n total lengths of the self-decoding unit by using the same initial value of the scrambling sequence, for example, twice the coding sequence, and then the transmitting end performs the scrambling operation using different parts of the scrambling sequence. Different parts of the scrambling sequence implicitly indicate SPBCH information or SPBCH resource transmission locations.
  • each PBCH independent self-decoding unit carries the same coded bits.
  • the receiving method includes:
  • the receiving device receives a sequence of symbols, where the symbol sequence is obtained by using, after the transmitting device encodes the control information, and scrambles the modulation mapping.
  • the receiving device performs de-mapping and demodulating the symbol sequence to obtain a coding sequence.
  • the receiving device selects at least one self-decoding unit from the coding sequence.
  • the receiving device performs a descrambling operation on the at least one self-decoding unit by using at least one descrambling sequence to obtain a descrambled sequence.
  • the receiving device decodes, verifies, and controls the descrambled sequence.
  • the SPBCH indication information may be obtained according to the descrambling sequence, and the receiving device reads the corresponding control information to the SPBCH according to the indication of the SPBCH indication information.
  • the transmitting device 500 can be a base station or a DSP or ASIC or chip that implements the associated encoding function.
  • the transmitting device 200 includes a memory 501, a processor 502, and a transceiver 503.
  • the memory 501, the processor 502, and the transceiver 503 are previously connected by a bus 504.
  • the memory 501 is configured to store a program, where the memory may be a random access memory (RAM) or a read only memory (ROM) or a flash memory, and the memory may be separately located in the sending device 500, or may be Located inside the processor 502.
  • RAM random access memory
  • ROM read only memory
  • the processor 502 is configured to execute a program stored in the memory 501.
  • the processor 502 encodes the control information to obtain a code sequence, where the control information includes SPBCH indication information;
  • the sequence scrambles the coded sequence to obtain a scrambled sequence; the scrambled sequence uses modulation and mapping operations.
  • the processor 502 is configured to execute a program stored in the memory 501.
  • the processor 502 encodes the control information to obtain a code sequence; and the code sequence is repeated to obtain n self-decoding units.
  • n is an integer, n>0; the n self-decoding units are scrambled with a scrambling sequence to obtain a scrambled sequence; and the scrambled sequence is subjected to a modulation and mapping operation.
  • the transceiver 503 is configured to send the scrambled sequence after the modulation mapping.
  • the embodiment of the present application proposes an SPBCH indication mechanism to save signaling overhead by using one or more bits in the system information to indicate whether the SPBCH exists or is a resource mapping location.
  • the transmitting device 600 can be a terminal or a DSP or ASIC or chip that implements an encoding function.
  • the transmitting device 600 includes a memory 601, a processor 602, and a transceiver 603.
  • the memory 601, the processor 602, and the transceiver 603 are previously connected by a bus 604.
  • the memory 601 is configured to store a program; wherein the memory may be a random access memory (RAM) or a read only memory (ROM) or a flash memory, and the memory may be separately located in the sending device 600, or may be Located inside the processor 602.
  • RAM random access memory
  • ROM read only memory
  • flash memory a flash memory
  • the transceiver 603 is configured to receive a sequence of symbols.
  • the processor 602 is configured to execute a program stored in the memory 601. When the program is executed, the processor 602 is configured to demap and demodulate the symbol sequence to obtain soft information of the encoded sequence; and descramble the soft information of the encoded sequence. After decoding, the decoding result is verified to obtain control information.
  • the processor 602 is configured to execute a program stored in the memory 601.
  • the processor 502 demaps and demodulates the symbol sequence to obtain a coded sequence; and selects at least one self-decode from the code sequence. And performing a descrambling operation on the at least one self-decoding unit by using at least one descrambling sequence to obtain a descrambled sequence.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center By wired (for example, coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) to another website, computer, server or data center transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD (Digital Video Disk), or a semiconductor medium (for example, a solid state hard disk).
  • SSD Solid State Disk
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the computer program product includes the above computer program instructions, and when executed on a computer, causes the computer to execute the method of transmitting the downlink synchronization signal or the method of receiving the downlink synchronization signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种二级广播信道指示的发送方法,所述方法应用于发送设备,包括:发送设备将控制信息进行编码后得到编码序列,其中控制信息中包括二级广播信道SPBCH指示信息;发送设备采用加扰序列对编码序列进行加扰得到加扰后序列;发送设备将加扰后的序列采用调制和映射操作后发送。通过指示二级广播信道SPBCH的指示信息,能够使得接收设备获取SPBCH是否存在,并在SPBCH进行控制信息的读取。

Description

一种广播信息指示的发送方法和发送设备
本申请要求于2017年03月24日提交中国专利局、申请号为201710182104.2、申请名称为“一种广播信息指示的发送方法和发送设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种广播信息指示的发送方法与设备。
背景技术
长期演进(英文:Long Term Evolution,缩写:LTE)系统中,物理广播信道(英文:Physical Broadcast Channel,缩写:PBCH)承载主信息块(英文:Master Information Block,缩写:MIB)。由于物理广播信道的载荷越来越大,目前MIB已经难以满足通讯能力的需求,因此,如何传输物理广播信道信息成为亟待解决的问题。
发明内容
有鉴于此,本申请的主要目的是提供一种广播信息指示的发送方法和设备,用于指示物理广播信道的控制信息的传输资源。
一方面,本申请实施例提出一种二级广播信道指示的发送方法,所述方法应用于发送设备,包括:
发送设备将控制信息进行编码后得到编码序列,其中控制信息中包括二级广播信道(Secondary Physical Broadeast,SPBCH)指示信息;
发送设备采用加扰序列对编码序列进行加扰得到加扰后序列;
发送设备将加扰后的序列采用调制和映射操作后发送。
通过指示二级广播信道SPBCH的指示信息,能够使得接收设备获取SPBCH是否存在,并在SPBCH进行控制信息的读取。
在一种可能的设计中,所述将比特序列进行编码得到编码序列包括:采用Polar编码对所述编码序列进行编码。
另一方面,本申请实施例还提出一种二级广播信道指示的发送方法,所述方法应用于发送设备,包括:
将控制信息进行编码得到编码序列;
将所述编码序列重复得到n个自解码单元,n为整数,n>0;
将所述n个自解码单元采用加扰序列加扰得到加扰后序列;
将加扰后序列采用调制和映射操作后发送。
在一种可能的设计中,将所述n个自解码单元采用加扰序列加扰得到加扰后序列包括:将所述n个自解码单元采用n个加扰序列加扰,所述n个加扰序列属于不同的加扰序列分组,所述加扰序列分组的分组信息用于指示SPBCH是否存在或者传输 SPBCH的资源位置。
在一种可能的设计中,所述将n个自解码单元采用加扰序列加扰得到加扰后序列包括:
采用不同的加扰序列对信息比特进行加扰,所述不同的加扰序列用于指示SPBCH是否存在或者传输SPBCH的资源位置。
在一种可能的设计中,将所述n个自解码单元采用加扰序列加扰得到加扰后序列包括:
采用一个长度大于n个自解码单元总长的加扰序列对n个自解码单元进行加扰,其中,所述长度大于n个自解码单元总长的加扰序列可以被划分为多个部分,不同部分的加扰序列用于表示是否存在SPBCH或者传输SPBCH的资源位置。
在一种可能的设计中,所述将比特序列进行编码得到编码序列具体包括:采用Polar编码对所述编码序列进行编码。
另一方面,本申请实施例提出一种发送设备,该发送设备具有分别实现上述二级广播信道的发送方法中发送设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
又一方面,本申请实施例提出一种二级广播信道指示的接收方法,包括:
接收设备接收符号序列;
接收设备对符号序列进行解映射和解调后得到编码序列的软信息;
接收设备对编码序列的软信息进行解扰后进行译码,对译码结果进行校验得到控制信息。
另一方面,本申请实施例提出另一种二级广播信道指示的接收方法,包括:
接收设备接收符号序列;
接收设备对所述符号序列进行解映射解调后得到编码序列;
接收设备从编码序列中选取至少一个自解码单元;
接收设备用至少一个解扰序列对至少一个自解码单元进行解扰操作,获得解扰后序列;
接收设备对解扰后序列进行译码及校验。
另一方面,本申请实施例提出一种发送设备,该发送设备具有分别实现上述二级广播信道的接收方法中接收设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为无线通信的基本流程图。
图2为本申请一个实施例中一种二级广播信道指示的发送方法的流程图。
图3为Arikan Polar码的构造示图。
图4为CA Polar码的构造示图。
图5为PC Polar码的构造示图。
图6为LTE中接收侧PBCH的处理的过程。
图7为本申请一个实施例中一种二级广播信道指示的接收方法的流程图。
图8为本申请另一个实施例中一种二级广播信道指示的发送方法的流程图。
图9为本申请另一个实施例中一种二级广播信道指示的接收方法的流程图。
图10为本申请一个实施例中发送设备的简化结构图。
图11为本申请一个实施例中接收设备的简化结构图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
图1是无线通信的基本流程,在发送端,信源依次经过信源编码、信道编码、速率匹配和调制映射后发出。在接收端,依次通过解调解映射、解速率匹配、信道译码和信源译码输出信宿。信道编译码可以采用Polar极化码,由于原始Polar码(母码)的码长为2的整数次幂,在实际应用中需要通过速率匹配实现任意码长的Polar码。发送端在信道编码后进行速率匹配实现任意的目标码长,在接收端,信道解码之前先进行解速率匹配。需要说明的是,无线通信的基本流程还包括额外流程(例如:预编码和交织),鉴于这些额外流程对于本领域技术人员而言是公知常识,不再一一列举。
本申请实施例可以应用于无线通信系统,所涉及无线通信系统包括但不限于:窄带物联网系统(英文:Narrow Band-Internet of Things,简称:NB-IoT)、全球移动通信系统(英文:Global System for Mobile Communications,简称:GSM)、增强型数据速率GSM演进系统(英文:Enhanced Data rate for GSM Evolution,简称:EDGE)、宽带码分多址系统(英文:Wideband Code Division Multiple Access,简称:WCDMA)、码分多址2000系统(英文:Code Division Multiple Access,简称:CDMA2000)、时分同步码分多址系统(英文:Time Division-Synchronization Code Division Multiple Access,简称:TD-SCDMA),长期演进系统(英文:Long Term Evolution,简称:LTE)以及下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC。
本申请实施例中,所述基站是一种部署在无线接入网中为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(英文:3rd Generation,简称:3G)系统中,称为节点B(英文:Node B)等。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为基站或BS。
本申请实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端 也可以称为用户设备(英文:user equipment,UE),还可以包括用户单元(英文:subscriber unit)、蜂窝电话(英文:cellular phone)、智能手机(英文:smart phone)、无线数据卡、个人数字助理(英文:Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(英文:modem)、手持设备(英文:handset)、膝上型电脑(英文:laptop computer)、机器类型通信(英文:Machine Type Communication,简称:MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为MS。
在第五代(5 th Generation,5G)通信系统中,提出一种最小量信息系统(Minimum System Information,MSI)。PBCH被划分为物理广播信道和二级物理广播信道(Secondary Physical Broadcast Channel,SPBCH)。由于广播信息的载荷越来越大,MSI会进行分段,一部分MSI信息(例如,相对重要的MSI信息)在物理广播信道中进行传输,另一部分MSI信息在二级物理广播信道上传输。
随着5G技术的发展,其所支持的蜂窝网络类型各有不同,并非所有的蜂窝网络都会存在SPBCH。在一些蜂窝网络中只存在PBCH,在另一些蜂窝网络中同时存在PBCH和SPBCH。请同时参照图2和图3,本申请一实施例提供了一种二级广播信道指示的发送方法,该发送方法可以应用于发送设备,包括:
101:发送设备将控制信息进行编码后得到编码序列,其中控制信息中包括二级广播信道SPBCH指示信息。
控制信息中包括SPBCH指示信息,其中SPBCH指示信息可以为一个或多个比特,且可以用于指示SPBCH是否存在。通常情况下,该控制信息通过PBCH传输。例如,当SPBCH的资源位置是固定的时,终端需要在固定的资源位置接收SPBCH传输的控制信息。或者,SPBCH指示信息还可以用于指示SPBCH的资源位置。当SPBCH的资源位置不固定时,例如,该资源位置可以是需要根据SPBCH指示信息从候选地多个资源位置选择,或者通过SPBCH指示资源位置本身。发送设备可以通过SPBCH指示信息指示候选的某一资源位置的索引或者指示资源位置本身。示例性地,当候选的资源位置为四个时,发送设备可以指示需要用于发送SPBCH信息的资源位置的索引。
示例性地,上述SPBCH指示信息可以被包括在类似LTE系统中的主信息块(Master Information Block,MIB)结构的空闲比特中,其中,MIB中包括14个信息比特和10个空闲比特。SPBCH指示信息可以由若干个空闲比特或者若干个空闲比特中的部分比特来指示。
鉴于此,本申请实施例还提出一种信息块(block),该信息块可被称为最小量系统信息(Minimum System Information,MSI),其在PBCH上发送且包括下行链路系统带宽,PHICH,子帧编号的前八位和SPBCH配置。其中,SPBCH配置用于指示SPBCH是否存在,或者SPBCH资源传输的位置。示例性地,当SPBCH的配置位置为全零时,则意味着不存在SPBCH。示例性地,发送设备可以采用Polar码对比特序列进行信道编码,以下对Polar码进行简单描述。
具体地,发送设备对要发送的控制信息进行循环冗余校验(Cyclical Redundancy  Check,CRC)编码,然后发送设备将CRC校验编码后的序列进行信道编码以及速率匹配后得到编码序列。以下,简称为CA Polar编码。
或者,发送设备将控制信息进行Polar编码以及速率匹配后得到编码序列。即传统的Polar编码。
或者,发送设备对要发送的控制信息进行奇偶校验PC(Parity Check,PC)编码后,然后发送设备将PC校验编码后的序列进行信道编码以及速率匹配后得到编码序列。以下,简称为PC Polar编码。
土耳其教授Arikan提出的Polar码是第一个理论上证明可以达到香农容量且具有低编译码复杂度的码。Polar码也是一种线性块码,其编码矩阵为G N,编码过程为
Figure PCTCN2018080378-appb-000001
其中
Figure PCTCN2018080378-appb-000002
是一个二进制的行矢量,长度为N(即码长);G N是一个N×N的矩阵,且
Figure PCTCN2018080378-appb-000003
Figure PCTCN2018080378-appb-000004
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。上述矩阵
Figure PCTCN2018080378-appb-000005
Polar码的编码过程中,
Figure PCTCN2018080378-appb-000006
中的一部分比特用来携带信息,称为信息比特集合,这些比特的索引的集合记作
Figure PCTCN2018080378-appb-000007
另外的一部分比特设置为收发端预先约定的固定值,称之为固定比特集合或冻结比特集合(frozen bits),其索引的集合用
Figure PCTCN2018080378-appb-000008
的补集
Figure PCTCN2018080378-appb-000009
表示。Polar码的编码过程相当于:
Figure PCTCN2018080378-appb-000010
这里,G N(A)是G N中由集合
Figure PCTCN2018080378-appb-000011
中的索引对应的那些行得到的子矩阵,G N(A C)是G N中由集合
Figure PCTCN2018080378-appb-000012
中的索引对应的那些行得到的子矩阵。
Figure PCTCN2018080378-appb-000013
Figure PCTCN2018080378-appb-000014
中的信息比特集合,数量为K;
Figure PCTCN2018080378-appb-000015
Figure PCTCN2018080378-appb-000016
中的固定比特集合,其数量为(N-K),是已知比特。这些固定比特通常被设置为0,但是只要收发端预先约定,固定比特可以被任意设置。从而,Polar码的编码输出可简化为: ,这里
Figure PCTCN2018080378-appb-000018
Figure PCTCN2018080378-appb-000019
中的信息比特集合,
Figure PCTCN2018080378-appb-000020
为长度K的行矢量,即
Figure PCTCN2018080378-appb-000021
|·|表示集合中元素的个数,K为信息块大小,
Figure PCTCN2018080378-appb-000022
是矩阵G N中由集合
Figure PCTCN2018080378-appb-000023
中的索引对应的那些行得到的子矩阵,
Figure PCTCN2018080378-appb-000024
是一个K×N的矩阵。
Polar码的构造过程即集合
Figure PCTCN2018080378-appb-000025
的选取过程,决定了Polar码的性能。Polar码的构造过程通常是,根据母码码长N确定共存在N个极化信道,分别对应编码矩阵的N个行,计算极化信道可靠度,将可靠度较高的前K个极化信道的索引作为集合
Figure PCTCN2018080378-appb-000026
的元素,剩余(N-K)个极化信道对应的索引作为固定比特的索引集合
Figure PCTCN2018080378-appb-000027
的元素。集合
Figure PCTCN2018080378-appb-000028
决定了信息比特的位置,集合
Figure PCTCN2018080378-appb-000029
决定了固定比特的位置。
从编码矩阵可以看出,原始Polar码(母码)的码长为2的整数次幂,在实际应用中需要通过速率匹配实现任意码长的Polar码。
对图3中Airkan传统Polar编码说明,{u1,u2,u3,u5}设置为固定比特集合,{u4,u6,u7,u8}设置为信息比特集合,将长度为4的信息向量中的4位信息比特编码成8位编码比特。
对图4中CA Polar编码说明,{u1,u2}设置为固定比特集合,{u3,u4,u5,u6}设置为信息比特集合,{u7,u8}为CRC比特集合。其中,{u7,u8}的值由{u3,u4,u5,u6}做CRC得到。
对于CA Polar编码,采用CA-SCL(英文:CRC-Aided Successive Cancellation List,中文:CRC协助的串行抵消列表)译码算法。CA-SCL译码算法通过CRC校验在SCL 译码输出的候选路径中选择CRC通过的路径作为译码输出。
对图5中PC Polar编码说明,{u1,u2,u5}设置为固定比特集合,{u3,u4,u6,u7}设置为信息比特集合,{u7}为PC固定比特集合。其中,{u7}的值由{u3,u6}异或得到。
102,发送设备采用加扰序列对编码序列进行加扰得到加扰后序列;
具体地,在步骤102中,发送设备对编码序列进行重复得到大小相等的若干个PBCH独立自解码单元,并采用扰码序列对编码序列进行加扰得到加扰后的序列。其中,各个独立自解码单元携带相同的编码比特,并通过不同相位的加扰序列进行区分。
103,发送设备将加扰后的序列采用调制和映射操作后发送。
需要说明的是,步骤101和102可以调换,即可以把比特序列先编码再加扰,也可以把比特序列先加扰再编码。
请参照图6,在信道质量足够好的情况下,接收端只接收一个PBCH独立自解码单元就可以成功完成解扰、译码以及CRC校验的操作。由于接收端通过解扰成功的扰码序列,可以得到发送端是在一个周期内的第几个无线帧发送MIB,从而知道了SFN的低2位。而对于信道质量较差的情况,接收端如果只接收一个PBCH独立自解码单元不能成功解扰译码,就与下一个10ms发送的PBCH独立单元进行软合并在进行译码,直到成功解码。
请同时参照图7,本申请另一实施例提供一种二级广播信道指示的接收方法,该接收方法可以应用于接收设备,该接收设备可以为终端。信道指示的接收方法包括:
201:接收设备接收符号序列,所述符号序列是发送设备对控制信息采用编码并且加扰调制映射后得到;
202:接收设备对符号序列进行解映射和解调后得到编码序列的软信息;
203,接收设备对编码序列的软信息进行解扰后进行译码,对译码结果进行校验得到控制信息,控制信息中包括SPBCH指示信息。接收设备根据SPBCH指示信息的指示在SPBCH上读取控制信息。
具体地,当校验成功时得到控制信息,接收设备在SPBCH上进行控制信息的读取。当校验不成功时,继续接收符号序列。
在请参照图8,本申请另一实施例提供了又一种二级广播信道指示的发送方法,该发送方法可以应用于发送设备,该发送设备可以为基站。该发送方法包括:
301,发送设备将控制信息进行编码后得到编码序列;
具体地,发送设备首先对要发送的控制信息进行循环冗余校验(Cyclical Redundancy Check,CRC)编码,然后发送设备将CRC校验编码后的比特序列进行信道编码以及速率匹配后得到编码序列。或者,发送设备也可以对要发送的控制信息进行奇偶校验,然后将奇偶校验后的比特序列进行信道编码及速率匹配后得到编码序列。在本申请的实施方式中,可以采用Polar码的方式进行信道编码。
302,发送设备将所述编码序列重复得到n个自解码单元,n为整数,n>0。
示例性地,参照LTE系统中采用CRC校验并获得自解码单元的方式,在LTE系统中,MIB信息为14比特,加上10比特预留信息以及16比特的CRC校验信息一共 40比特,通过TBCC编码,码率是1/3生成120个编码比特为一个自解码单元。每一次传输对这120个编码比特重复4份,一共480个编码比特,为4个自解码单元。PBCH是通过四次重传来完成的,即一共传输了1920个编码比特。
303,发送设备将所述n个自解码单元采用加扰序列加扰得到加扰后序列;
在一个实施方式中,可以通过采用不同的加扰序列来指示SPBCH,示例性地,不同的加扰序列可以通过不同的加扰初始值产生。
以采用不同的加扰初始值生成的加扰序列S 1和S 2为例,。其中,采用加扰序列S 1进行加扰时,表示SPBCH存在;采用加扰序列S 2进行加扰时,表示SPBCH不存在。可选地,候选的加扰序列数量可以大于2。当候选的加扰序列数量为4时,发送设备从中选取2个进行指示。
在另一实施方式中,当候选的加扰序列数量较大时,还可以对候选的加扰序列进行分组,通过采用不同加扰序列分组中的加扰序列进行加扰来指示SPBCH。例如,当发送设备采用分组1中的某一加扰序列进行加扰时,表示SPBCH存在;当发送设备采用分组2中的某一加扰序列进行加扰时,表示SPBCH不存在。
可选地,上述不同的加扰序列或者不同的加扰序列分组还可以用于指示SPBCH资源位置。具体地,当SPBCH有若干候选资源位置时,采用不同的加扰序列或者加扰序列分组中的加扰序列,可以指示若干候选资源位置中的某一个。例如,以加扰序列S 3和S 4为例,当发射设备采用加扰序列S 3进行加扰来指示若干候选资源位置中的一个(同时,也表示了SPBCH的存在);当发射设备加扰序列S 4进行加扰来指示若干候选资源位置中的另一个。类似的,发送设备也可以采用不同加扰序列分组中来指示SPBCH资源位置。
示例性地,上述候选资源位置为四个时,扰码序列可以分为四个,每一个扰码序列对应一个资源位置。当需要在某一个资源位置上进行SPBCH控制信息的传输时,则采用与该资源位置对应的一个扰码序列中进行加扰。或者,上述扰码序列可以为四组,每一组扰码序列中包含多个扰码序列,每一组扰码序列对应一个资源位置。当需要在某一个资源位置上进行SPBCH控制信息的传输时,则采用与该资源位置对应的一组扰码序列中的一个进行加扰。
发送设备也可以采用同一个加扰序列初始值生成一个长度大于n个自解码单元总长的加扰序列,例如为编码序列两倍,然后发射端使用加扰序列的不同部分执行加扰操作,加扰序列的不同部分隐式的指示SPBCH信息或者SPBCH资源传输位置。
304,将加扰后序列采用调制和映射操作后发送。
请参照图9,本申请又一实施例提供一种二级广播信道指示的接收方法,该接收方法应用于接收设备。由发送端描述可知,各个PBCH独立自解码单元携带相同的编码比特。该接收方法包括:
401,接收设备接收符号序列,所述符号序列是发送设备对控制信息采用编码并且加扰调制映射后得到的;
402:接收设备对所述符号序列进行解映射解调后得到编码序列;
403:接收设备从所述编码序列选取至少一个自解码单元;
404:接收设备用至少一个解扰序列对所述至少一个自解码单元进行解扰操作,获得解扰后序列。405:接收设备对解扰后序列进行译码及校验,控制信息。
具体地,如果校验正确,则根据解扰序列可以获得SPBCH指示信息,接收设备根据SPBCH指示信息的指示,至SPBCH读取相应的控制信息。
如图10所示,本申请又一实施例还提出一种发送设备500。该发送设备可以为基站,或者实现相关编码功能的DSP或ASIC或芯片。该发送设备200包括存储器501、处理器502以及收发器503,存储器501、处理器502和收发器503之前通过总线504连接。
存储器501,用于存储程序;其中,该存储器可以为随机访问内存(Random Access Memory,RAM)或者只读内存(Read only Memory,ROM)或者闪存,存储器可以单独位于发送设备500内,或者也可以位于处理器502的内部。
在一个实施例中,处理器502,用于执行存储器501存储的程序,当程序被执行时,处理器502将控制信息进行编码后得到编码序列,其中控制信息中包括SPBCH指示信息;采用加扰序列对编码序列进行加扰得到加扰后序列;将加扰后序列采用调制和映射操作。
在另一个实施例中,处理器502,用于执行存储器501存储的程序,当程序被执行时,处理器502将控制信息进行编码后得到编码序列;将编码序列重复得到n个自解码单元,n为整数,n>0;将n个自解码单元采用加扰序列加扰得到加扰后序列;;将加扰后序列采用调制和映射操作。
收发器503,用于发送调制映射后的加扰后序列。
本申请实施例通过利用系统信息中的一个或多个比特指示SPBCH是否存在或者是资源映射位置,提出了一种SPBCH指示机制,节省信令开销。
如图11所示,本申请又一实施例还提出一种接收设备600。该发送设备可以为终端,或者实现相关编码功能的DSP或ASIC或芯片。该发送设备600包括存储器601、处理器602以及收发器603,存储器601、处理器602和收发器603之前通过总线604连接。
存储器601,用于存储程序;其中,该存储器可以为随机访问内存(Random Access Memory,RAM)或者只读内存(Read only Memory,ROM)或者闪存,存储器可以单独位于发送设备600内,或者也可以位于处理器602的内部。
在一个实施例中,收发器603,用于接收符号序列。
处理器602,用于执行存储器601存储的程序,当程序被执行时,处理器602用于对符号序列进行解映射和解调后得到编码序列的软信息;对编码序列的软信息进行解扰后进行译码,对译码结果进行校验得到控制信息。
在另一个实施例中,处理器602,用于执行存储器601存储的程序,当程序被执行时,处理器502对符号序列进行解映射解调后得到编码序列;从编码序列选取至少一个自解码单元;用至少一个解扰序列对至少一个自解码单元进行解扰操作,获得解扰后序列。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(英文:Digital Subsciber line,简称:DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD(英文:Digital Video Disk,中文:数字视频光盘))、或者半导体介质(例如固态硬盘(英文:Solid State Disk,简称:SSD)等。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
上述计算机程序产品包含上述计算机程序指令,当其在计算机上运行时,使得计算机执行上述下行同步信号的发送方法或者上述下行同步信号的接收方法。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种二级广播信道指示的发送方法,所述方法应用于发送设备,其特征在于,包括:
    发送设备将控制信息进行编码后得到编码序列,其中控制信息中包括二级广播信道SPBCH指示信息;
    发送设备采用加扰序列对编码序列进行加扰得到加扰后序列;
    发送设备将加扰后的序列采用调制和映射操作后发送。
  2. 根据权利要求1所述的方法,其特征在于,所述将比特序列进行编码得到编码序列包括:
    采用Polar编码对所述编码序列进行编码。
  3. 一种二级广播信道指示的发送方法,所述方法应用于发送设备,其特征在于,包括
    将控制信息进行编码得到编码序列;
    将所述编码序列重复得到n个自解码单元,n为整数,n>0;
    将所述n个自解码单元采用加扰序列加扰得到加扰后序列;
    将加扰后序列采用调制和映射操作后发送。
  4. 根据权利要求3所述的方法,其特征在于,将所述n个自解码单元采用加扰序列加扰得到加扰后序列包括:
    将所述n个自解码单元采用n个加扰序列加扰,所述n个加扰序列属于不同的加扰序列分组,所述加扰序列分组的分组信息用于指示SPBCH是否存在或者传输SPBCH的资源位置。
  5. 根据权利要求3所述的方法,其特征在于,所述将n个自解码单元采用加扰序列加扰得到加扰后序列包括:
    采用不同的加扰序列对n个自解码单元进行加扰,所述不同的加扰序列用于指示是否存在SPBCH或者传输SPBCH的资源位置。
  6. 根据权利要求3所述的方法,其特征在于,所述将n个自解码单元采用加扰序列加扰得到加扰后序列包括:
    采用一个长度大于n个自解码单元总长的加扰序列对n个自解码单元进行加扰,其中,所述长度大于n个自解码单元总长的加扰序列可以被划分为多个部分,不同部分的加扰序列用于表示是否存在SPBCH或者传输SPBCH的资源位置。
  7. 根据权利要求3-6所述的方法,其特征在于,所述将比特序列进行编码得到编码序列具体包括:
    采用Polar编码对所述编码序列进行编码。
  8. 一种发送设备,其特征在于,该发送设备包括:
    处理器,用于将控制信息进行编码后得到编码序列,其中控制信息中包括二级广播信道SPBCH指示信息,以及采用加扰序列对编码序列进行加扰得到加扰后序列,还用于将加扰后的序列采用调制和映射操作;
    收发器,用于将调制和映射操作后的加扰后序列发送。
  9. 如权利要求8所述的发送设备,其特征在于,所述处理器采用Polar编码对所述 编码序列进行编码。
  10. 一种发送设备,其特征在于,该发送设备包括:
    处理器,用于将控制信息进行编码得到编码序列;将所述编码序列重复得到n个自解码单元,n为整数,n>0;将所述n个自解码单元采用加扰序列加扰得到加扰后序列;将加扰后序列采用调制和映射操作;
    收发器,用于发送调制和映射操作后的加扰后序列。
  11. 根据权利要求10所述的发送设备,其特征在于,所述处理器用于将n个自解码单元采用n个加扰序列加扰得到加扰后序列,其中所述n个加扰序列属于不同的加扰序列分组,所述加扰序列分组的分组信息用于指示SPBCH是否存在或者传输SPBCH的资源位置。
  12. 根据权利要求10所述的发送设备,其特征在于,所述处理器用于采用不同的加扰序列对n个自解码单元进行加扰,所述不同的加扰序列用于指示是否存在SPBCH或者传输SPBCH的资源位置。
  13. 根据权利要求10所述的发送设备,其特征在于,所述处理器用于采用一个长度大于n个自解码单元总长的加扰序列对n个自解码单元进行加扰,其中,所述长度大于n个自解码单元总长的加扰序列可以被划分为多个部分,不同部分的加扰序列用于表示是否存在SPBCH或者传输SPBCH的资源位置。
  14. 根据权利要求10所述的发送设备,其特征在于,所述处理器采用Polar编码对所述编码序列进行编码。
  15. 一种发送设备,其特征在于,所述发送设备包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求1-2任意一项所述的方法。
  16. 一种发送设备,其特征在于,所述发送设备包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求1-2任意一项所述的方法。
  17. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-2任意一项所述的方法。
  18. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-2任意一项所述的方法。
  19. 一种发送设备,其特征在于,所述发送设备包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求3-7任意一项所述的方法。
  20. 一种发送设备,其特征在于,所述发送设备包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求3-7任意一项所述的方法。
  21. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求3-7任意一项所述的方法。
  22. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求3-7任意一项所述的方法。
PCT/CN2018/080378 2017-03-24 2018-03-24 一种广播信息指示的发送方法和发送设备 WO2018171776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710182104.2 2017-03-24
CN201710182104.2A CN108631977B (zh) 2017-03-24 2017-03-24 一种广播信息指示的发送方法和发送设备

Publications (1)

Publication Number Publication Date
WO2018171776A1 true WO2018171776A1 (zh) 2018-09-27

Family

ID=63584933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080378 WO2018171776A1 (zh) 2017-03-24 2018-03-24 一种广播信息指示的发送方法和发送设备

Country Status (2)

Country Link
CN (1) CN108631977B (zh)
WO (1) WO2018171776A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535800B (zh) * 2019-02-01 2023-04-25 中兴通讯股份有限公司 一种数据处理方法及装置、计算机可读存储介质
CN111865491B (zh) * 2020-06-15 2021-09-21 北京邮电大学 一种极化编码混合自动请求重传自解码方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924606A (zh) * 2010-08-16 2010-12-22 中兴通讯股份有限公司 基于pusch传输的上行控制信息的发送方法及系统
US20120275400A1 (en) * 2011-04-27 2012-11-01 Texas Instruments Incorporated Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
US20130294368A1 (en) * 2012-05-04 2013-11-07 Texas Instruments Incorporated Enhanced downlink control channel configuration for lte
US20150103800A1 (en) * 2012-02-21 2015-04-16 Lg Electronics Inc. Initial access method and device in wireless communication system
WO2016119105A1 (zh) * 2015-01-26 2016-08-04 华为技术有限公司 极化Polar码的生成方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4806665B2 (ja) * 2007-06-19 2011-11-02 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、送信方法、及び通信システム
EP3252986B1 (en) * 2012-08-10 2021-10-06 Huawei Technologies Co., Ltd. Methods and nodes in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924606A (zh) * 2010-08-16 2010-12-22 中兴通讯股份有限公司 基于pusch传输的上行控制信息的发送方法及系统
US20120275400A1 (en) * 2011-04-27 2012-11-01 Texas Instruments Incorporated Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
US20150103800A1 (en) * 2012-02-21 2015-04-16 Lg Electronics Inc. Initial access method and device in wireless communication system
US20130294368A1 (en) * 2012-05-04 2013-11-07 Texas Instruments Incorporated Enhanced downlink control channel configuration for lte
WO2016119105A1 (zh) * 2015-01-26 2016-08-04 华为技术有限公司 极化Polar码的生成方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Minimum system information delivery", 3GPP TSG-RAN WG1 NR ADHOC, R1-1700296, 16 January 2017 (2017-01-16), XP051207834 *
ERICSSON: "NR-PBCH Design", 3GPP TSG-RAN WG1 MEETING #88, R1-1702124, 17 February 2017 (2017-02-17), XP051209284 *

Also Published As

Publication number Publication date
CN108631977A (zh) 2018-10-09
CN108631977B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
US11057150B2 (en) Polar code transmission method and apparatus
WO2018137567A1 (zh) 一种极性码的译码方法和装置
JP6731115B2 (ja) 情報送信方法、送信端デバイス及び受信端デバイス
WO2017101631A1 (zh) 用于处理极化码的方法和通信设备
WO2018127064A1 (zh) 控制信息传输方法及装置
CN109039344B (zh) 编码输入数据为极性码的方法及设备、解码方法及其设备
WO2018177227A1 (zh) 一种编码方法、译码方法、装置和设备
EP3576478B1 (en) Data sending method, receiving method and related equipment
WO2017124844A1 (zh) 确定极化码传输块大小的方法和通信设备
WO2018166416A1 (zh) 传输控制信息的方法和装置
CN108809500B (zh) 编码方法、装置和设备
JP7165954B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
WO2018127139A1 (zh) 一种控制信息的传输方法和装置
WO2018161965A1 (zh) 无线通信方法和设备
US11026244B2 (en) Method and device in terminal and base station for dynamic scheduling
WO2017101023A1 (zh) 通信方法及网络设备、用户设备
WO2018171776A1 (zh) 一种广播信息指示的发送方法和发送设备
WO2017133407A1 (zh) 信号传输方法和装置
US20200036474A1 (en) Resource mapping method and apparatus thereof
TWI791023B (zh) 編碼輸入資料為極性碼的方法及設備、解碼方法及用以解碼碼字的設備
WO2018177258A1 (zh) 标识信息的处理方法及设备
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
WO2019095203A1 (zh) 一种系统消息传输的方法及网络设备
CN114696943A (zh) 序列传输方法、接收方法、终端、网络设备和存储介质
CN113574806A (zh) 极化编码

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771698

Country of ref document: EP

Kind code of ref document: A1