WO2018171559A1 - 资源分配方法、基站、移动终端和通信控制方法及其系统 - Google Patents

资源分配方法、基站、移动终端和通信控制方法及其系统 Download PDF

Info

Publication number
WO2018171559A1
WO2018171559A1 PCT/CN2018/079488 CN2018079488W WO2018171559A1 WO 2018171559 A1 WO2018171559 A1 WO 2018171559A1 CN 2018079488 W CN2018079488 W CN 2018079488W WO 2018171559 A1 WO2018171559 A1 WO 2018171559A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
mobile terminal
cell
frequency
Prior art date
Application number
PCT/CN2018/079488
Other languages
English (en)
French (fr)
Inventor
费腾
刘巧艳
李静岚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018171559A1 publication Critical patent/WO2018171559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication technologies, and in particular, to a resource allocation method, a base station, a mobile terminal, and a communication control method and system thereof.
  • the mobile terminal may send a resource request message to the base station before the data is transmitted, and the base station according to the request of the mobile terminal, and According to the corresponding time-frequency resource allocation rule, all time-frequency resources of the cell are allocated and allocated, and are fed back to the mobile terminal through signaling, and the mobile terminal selects to send on the corresponding time-frequency resource according to the allocation result fed back by the base station. data.
  • the mobile terminal and the base station are required to have a resource allocation negotiation process, and the corresponding time-frequency resource transmission data is acquired according to the result of the negotiation, and the data is sent from the negotiation completion to the start of the data transmission.
  • the process there is a large delay, which greatly reduces the final data transmission efficiency of the mobile terminal, and the base station also needs to perform frequent reallocation of time-frequency resources for each data transmission of the mobile terminal.
  • the resource allocation method, the base station, the mobile terminal, and the communication control method and the system thereof provided by the embodiments of the present disclosure prevent the mobile terminal from acquiring the time-frequency resource to the data transmission with a long delay, resulting in low data transmission efficiency.
  • An embodiment of the present disclosure provides a resource allocation method, including:
  • an operating parameter of the cell that is connected to the base station, where the working parameter includes the number of users of the cell, the maximum number of terminals that the same time-frequency resource supports one-time data transmission, the time-frequency resource cycle period, and the cell
  • the base station sends the number of available time-frequency resources to all mobile terminals of the cell to be sent data.
  • the embodiment of the present disclosure further provides a resource allocation method, including:
  • the mobile terminal to be sent data receives the number of available time-frequency resources that are sent by the base station, and the number of available time-frequency resources is used to calculate the available time-frequency resources of the terminal for transmitting the data of the mobile terminal;
  • the embodiment of the present disclosure further provides a communication control method, including:
  • the working parameter includes the number of users of the cell, the maximum number of terminals that the same time-frequency resource supports one-time data transmission, the time-frequency resource cycle period, and the cell a loop period of the system frame number; calculating, according to the working parameter, the number of available time-frequency resources allocated by the cell, where the number of available time-frequency resources is used when calculating, by the mobile terminal, that the terminal that sends data by the mobile terminal is available a frequency resource; a mobile terminal that transmits the available time-frequency resource quantity to all data to be transmitted of the cell;
  • the mobile terminal to be transmitted data calculates an offset value of the time-frequency resource available to the terminal according to the number of available time-frequency resources delivered by the base station; and acquires a current system frame of the cell where the mobile terminal to which the data to be transmitted is located a frame number and a time-frequency resource cycle; calculating an offset of the current time-frequency resource of the current system frame according to the frame number of the current system frame and a time-frequency resource cycle period; according to the offset value and the offset Determining a time-frequency resource used by the mobile terminal to transmit data, and transmitting data on the determined time-frequency resource.
  • the embodiment of the present disclosure further provides a base station, including:
  • the first collection module is configured to: obtain an operating parameter of a cell that is connected to the base station, where the working parameter includes the number of users in the cell, the maximum number of terminals that the same time-frequency resource supports for one data transmission, and the time-frequency. a cycle period of a resource cycle period and a system frame number of the cell;
  • An allocation module configured to: calculate, according to the working parameter, a quantity of available time-frequency resources allocated by the cell, where the number of available time-frequency resources is used to calculate, when the mobile terminal is used, that the terminal for data transmission of the mobile terminal is available Frequency resource
  • the sending module is configured to: send the number of available time-frequency resources to all mobile terminals of the cell to be sent data.
  • the embodiment of the present disclosure further provides a mobile terminal, including:
  • the receiving module is configured to: receive the number of available time-frequency resources that are sent by the base station, where the number of available time-frequency resources is used to calculate available time-frequency resources of the terminal that is sent by the mobile terminal;
  • the first calculating module is configured to: calculate an offset value of the available time-frequency resource of the terminal according to the available time-frequency resource quantity;
  • the second collection module is configured to: acquire a frame number and a time-frequency resource cycle period of a current system frame of the cell where the mobile terminal is located;
  • a second calculating module configured to: calculate an offset of a current time-frequency resource of the current system frame according to a frame number of the current system frame and a time-frequency resource cycle period;
  • the determining module is configured to: determine, according to the offset value and the offset, a time-frequency resource used by the mobile terminal to send data.
  • An embodiment of the present disclosure further provides a communication control system, including: a base station as described above and at least one mobile terminal as described above;
  • the base station is configured to: obtain an operating parameter of a cell that is connected to the base station, where the working parameter includes the number of users in the cell, the maximum number of terminals that the same time-frequency resource supports for one data transmission, and the time-frequency resource cycle. And a cycle period of the system frame number of the cell; calculating the number of available time-frequency resources allocated by the cell according to the working parameter, where the number of available time-frequency resources is used to calculate, by the mobile terminal, the mobile terminal to send The terminal of the data may use a time-frequency resource; and send the available time-frequency resource quantity to the mobile terminal;
  • the mobile terminal is configured to: calculate an offset value of the available time-frequency resource of the terminal according to the number of available time-frequency resources delivered by the base station; and acquire a frame number and time of a current system frame of the cell where the mobile terminal is located a frequency resource cycle period; calculating an offset of a current time-frequency resource of the current system frame according to a frame number of the current system frame and a time-frequency resource cycle period; determining the movement according to the offset value and the offset amount
  • the terminal is configured to send time-frequency resources of the data, and send the data on the determined time-frequency resource.
  • Embodiments of the present disclosure also provide a computer storage medium having stored therein computer executable instructions for performing the foregoing resource allocation method and communication control method.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement the resource allocation method described above.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement the communication control method described above.
  • the operating parameters of the cell connected to the base station are obtained, and the required parameters of the cell are calculated by using the working parameter.
  • the number of time-frequency resources available, and the number of available time-frequency resources is sent to all mobile terminals in the cell to be transmitted, and the number of available time-frequency resources is used when calculating, by the mobile terminal, that the terminal that the mobile terminal sends data is available a frequency resource;
  • the mobile terminal to be transmitted data calculates an offset value of the time-frequency resource available to the terminal according to the number of available time-frequency resources, and the mobile terminal further acquires a frame number and a time-frequency resource cycle period of the current system frame of the cell, Calculating, according to the frame number and the time-frequency resource cycle period, an offset of the current time-frequency resource of the current system frame, determining, according to the offset value and the offset, a time-frequency resource used by the mobile terminal to send data, and determining the time-
  • the number of frequency resources can be issued.
  • For the allocation of time-frequency resources only the mobile terminal itself needs to calculate the time-frequency resources, and no real-time and complex mutual negotiation with the base station is required, thereby effectively reducing the number of resources.
  • the signaling interaction between the mobile terminal and the base station greatly shortens the delay for the mobile terminal to acquire data transmitted by the time-frequency resource, improves the efficiency of data transmission, and improves the utilization of time-frequency resources.
  • FIG. 1 is a flowchart of a resource allocation method according to a first embodiment of the present disclosure
  • FIG. 2 is a flowchart of another resource allocation method according to a first embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of time-frequency resource period division in a system frame according to the first embodiment of the present disclosure
  • FIG. 4 is a flowchart of a resource allocation method according to a second embodiment of the present disclosure.
  • FIG. 5 is a flowchart of another resource allocation method according to a second embodiment of the present disclosure.
  • FIG. 6 is a flowchart of still another resource allocation method according to a second embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a communication control method according to a third embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a base station according to a fourth embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a mobile terminal according to a fifth embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of a communication control system according to a sixth embodiment of the present disclosure.
  • FIG. 1 is a resource allocation method according to the embodiment, where the method is generally directed to a base station to a resource. The distribution was made.
  • the optional distribution process is as follows:
  • the base station acquires an operating parameter of a cell that is connected to the base station, where the cell refers to a cell in an area covered by the base station signal.
  • the working parameter may include the number of users of the cell, the maximum number of terminals that the same time-frequency resource supports for one data transmission, the time-frequency resource cycle period, and the cycle period of the system frame number of the cell.
  • the number of users is a cell.
  • the maximum number of users that can be supported, the time-frequency resource cycle can be understood as a cycle period of time-frequency resources that can be used by the mobile terminal in the system frame, and the cycle period of the system frame number refers to the cell. The time it takes for the system frame to be used for one cycle.
  • the number of available time-frequency resources can be used to calculate the available time-frequency resources of the terminal for data transmission of the mobile terminal on the mobile terminal.
  • the number of available time-frequency resources can be performed once for all mobile terminals in the cell. The number of time-frequency resources required for data transmission.
  • the calculating, by the base station, the available time-frequency resources of the allocated cell may further include: limiting the size of each time-frequency resource, the modulation order, and the amount of data that can be transmitted by each time-frequency resource, for example, performing Configuration.
  • the available time-frequency resource is optionally added to the system message of the base station, and the system message is sent to each of the cells by the base station by means of broadcast. On the mobile terminal.
  • step S101 in calculating the number of available time-frequency resources, two ratios may be calculated, and the minimum value may be selected from the two ratios as the available time-frequency resource quantity.
  • a minimum value is selected from the first ratio and the second ratio, and the selected minimum value is sent to all mobile terminals of the cell as the available time-frequency resource quantity, and the calculation formula of the available time-frequency resource quantity may be as follows:
  • NumOfSched is the number of available time-frequency resources
  • MaxUeNum is the number of users of the cell
  • MaxUeNumPerResource is the maximum number of terminals that one time-frequency resource supports one data transmission
  • Tresource is the time-frequency resource cycle
  • T is the cycle of the system frame number of the cell. Cycle
  • min means take the minimum value
  • ceil means the rounding operation.
  • the method before selecting a minimum value from the first ratio and the second ratio, the method further includes: acquiring a correction coefficient of the ratio, correcting the second ratio polarity according to the correction coefficient, and then performing the first
  • the ratio of the time-frequency resource to the mobile terminal of the cell is selected as the minimum number of available time-frequency resources, and the calculation formula of the number of available time-frequency resources can be as follows:
  • NumOfSched is the number of available time-frequency resources
  • MaxUeNum is the number of users of the cell
  • MaxUeNumPerResource is the maximum number of terminals that one time-frequency resource supports one data transmission
  • Tresource is the time-frequency resource cycle
  • T is the cycle of the system frame number of the cell.
  • alpha is the correction factor of the second ratio
  • min means the minimum value
  • ceil means the rounding operation.
  • the base station when the base station receives the cell mobile terminal registration instruction or the cell establishment command, the base station may set the number of users of the cell, and acquire the maximum number of terminals that the time-frequency resource supports for one data transmission, in the system frame.
  • the time-frequency resource cycle period, and the cycle period of the system frame number of the cell when the registration or establishment is performed, the base station can automatically generate relevant parameters according to the above information, and put the parameter into the system message and send it to the cell.
  • the relevant processing steps can be as shown in Figures 2 and 3.
  • MaxUeNum 100
  • MaxUeNumPerResource 5
  • Tresource 10 milliseconds (ms)
  • T 10240ms
  • alpha 0, then you can have:
  • S201 Put NumOfSched into the system message, and notify all mobile terminals in the cell by using a broadcast manner.
  • the base station may also obtain the working parameters of all the cells managed by the base station, and then calculate and allocate the available time-frequency resources for the cell according to the working parameters of each cell.
  • the mobile terminal in the cell needs to send data, it can directly calculate the resource according to the allocation result of the resource, and does not need to request the base station to send the packet, thereby shortening the interaction delay between the mobile terminal and the base station, and improving the data transmission of the mobile terminal. effectiveness.
  • the resource allocation method provided by the embodiment of the present disclosure calculates the working time parameter allocated by the base station for the cell, and calculates the available time-frequency resource quantity allocated by the cell according to the working parameter, where the available time-frequency resource quantity is used on the mobile terminal. Calculating the available time-frequency resources of the terminal for transmitting the data of the mobile terminal, and finally transmitting the available time-frequency resources to all the mobile terminals in the cell; by implementing the resource allocation method provided by the embodiment, the base station only needs to work according to the cell
  • the parameter can allocate the time-frequency resource of the cell, and does not need to perform real-time negotiation and interaction with the mobile terminal, thereby reducing the signaling interaction between the base station and the mobile terminal, improving the resource allocation efficiency of the base station, and shortening the mobile
  • the interaction delay between the terminal and the base station improves the data transmission efficiency of the mobile terminal.
  • FIG. 4 is a flowchart of a resource allocation method according to an embodiment, where the method is generally proposed for a mobile terminal to allocate resources.
  • the optional distribution process is as follows:
  • the mobile terminal that is to send data receives the available time-frequency resource quantity sent by the base station, where the available time-frequency resource quantity is used to calculate the available time-frequency resource of the terminal that is sent by the mobile terminal, where the mobile terminal to be sent data refers to the cell. All mobile terminals in the network may also be part of the mobile terminal in need.
  • the number of available time-frequency resources is allocated by the base station for the cell, and can satisfy the required number of time-frequency resources that all mobile terminals in the cell have the opportunity of one data transmission.
  • the number of available time-frequency resources may be a parameter according to the number of users of the cell, the maximum number of terminals supported by the same time-frequency resource for data transmission, the time-frequency resource cycle period, and the cycle period of the system frame number of the cell. Calculated.
  • calculating a first ratio according to the number of users of the cell and the maximum number of terminals calculating a second period according to a cycle period of the system frame number and the time-frequency resource cycle period. The ratio is then selected by comparing the first ratio and the second ratio as the minimum number of available time-frequency resources.
  • the method further includes: receiving identity identification information of the mobile terminal that is sent by the base station, where the offset value is calculated, may be calculated according to the identity identification information and the quantity of available time-frequency resources, optionally, The offset value is obtained by dividing the identity information by the number of available time-frequency resources, and dividing the identity information by the number of available time-frequency resources.
  • the remaining residual value is taken as the offset.
  • the time-frequency resource for determining the time-frequency resource according to the offset value and the offset, it may be determined whether the two are equal by comparing the offset value with the offset, and when the two are equal, determining the The current time-frequency resource of the current system frame is a time-frequency resource used by the mobile terminal to transmit data; when the two are not equal, waiting for the arrival of the next time-frequency resource, and recalculating the judgment, where the time-frequency resource is The cycle can be as shown in Figure 3.
  • the time-frequency resource in the current system frame is determined to be a time-frequency resource available to the mobile terminal by using the foregoing steps.
  • the method further includes the step of calculating location information of the multiplexed frequency domain in the current time-frequency resource.
  • calculating the location information of the multiplexed frequency domain in the current time-frequency resource includes: acquiring the number of divisions in the frequency domain of the current time-frequency resource of the current system frame; and according to the identity identification information and the The number of divisions in the frequency domain calculates the location information in the time-frequency resource used by the mobile terminal to transmit data when the mobile terminal transmits data.
  • the uplink and downlink synchronization operations are also performed, and the information that the base station pre-configured for all the mobile terminals of the cell is synchronized to each mobile terminal, for example, The frame number of the system frame and the cycle period, as well as the time-frequency resource cycle period of the system frame, and so on.
  • the step of allocating resources required for transmitting data may be as shown in FIG. 5.
  • the mobile terminal calculates an offset value TransOffset of the time-frequency resource available to the mobile terminal.
  • the mobile terminal obtains the identity identification information of the mobile terminal by performing signaling interaction with the base station, and performs modulo operation on the identity identification information and the available time-frequency resource quantity, that is, the identity identification information is divided by the available time-frequency resources.
  • the quantity, the remainder value, to get the offset value can be calculated as:
  • the TransOffset is an offset value
  • the UEID is the identity information of the mobile terminal
  • NumOfSched is the number of available time-frequency resources
  • mod is a modulo operation.
  • the mobile terminal may acquire the frame number of the current system frame, and the time-frequency resource cycle period in the system frame, and then according to the frame number, the time-frequency resource cycle period, and the available time-frequency.
  • the number of resources is calculated.
  • the frame number can be divided by the time-frequency resource cycle period and rounded down to obtain a third ratio, and then the third ratio is compared with the available time-frequency resource quantity, thereby obtaining the The offset of the time-frequency resource where the current system frame is located.
  • the calculation formula of the offset can be:
  • Toffset mod(ceil(CurrFrameNum/Tresource), NumOfSched)
  • TOffset is the offset
  • CurrFrameNum is the frame number of the current system frame
  • Tresource is the time-frequency resource cycle
  • NumOfSched is the number of available time-frequency resources
  • mod is the modulo operation
  • ceil is the round-robin operation.
  • the mobile terminal may determine that the multiplexed frequency domain is available in addition to determining the available time-frequency resources in the current system frame.
  • the location on the time-frequency resource, the step of calculating the location information of the multiplexed frequency domain in the current time-frequency resource may be as shown in FIG. 6.
  • S600 Determine, by using the identity information of the mobile terminal and the quantity of available time-frequency resources, an offset value TransOffset of the available time-frequency resources of the terminal.
  • the step of determining the location information of the frequency domain FreqOffset may include: acquiring the number of divisions in the frequency domain of the current time-frequency resource of the current system frame; and dividing the identifier according to the identity identification information and the frequency domain. Calculating the location information in the time-frequency resource used by the mobile terminal to transmit data when the mobile terminal transmits data; the calculation formula of the location information in the frequency domain may be:
  • FreqOffset represents the location information of the frequency domain
  • the identity identification information of the UEID mobile terminal represents the identity identification information of the UEID mobile terminal
  • FreqResource is the number of divisions of the frequency domain on each time-frequency resource.
  • the third ratio may be divided by the number of available time-frequency resources, and the remaining values are taken as the offset Toffset of the current time-frequency resource of the current system frame.
  • the multiplexing process of the corresponding frequency domain resource may be selected according to the obtained location information of the frequency domain.
  • the mobile terminal calculates an offset value of the available time-frequency resource of the terminal according to the quantity of the available time-frequency resources, and the mobile terminal further acquires a frame number and a time-frequency resource cycle of the current system frame of the cell.
  • FIG. 7 is a flowchart of a communication control method according to an embodiment, which may be applied to communication control between a mobile terminal and a base station, and the interaction process between the mobile terminal and the base station may include:
  • the base station calculates, according to the working parameters of the cell, the number of available time-frequency resources allocated by the cell.
  • the number of available time-frequency resources is used to calculate the available time-frequency resources of the terminal for data transmission of the mobile terminal on the mobile terminal.
  • the number of available time-frequency resources can be performed once for all mobile terminals in the cell. The number of time-frequency resources required for data transmission.
  • calculating the number of available time-frequency resources may include: first, acquiring the number of users in the cell, the maximum number of terminals that the same time-frequency resource supports for one data transmission, the time-frequency resource cycle period, and the system of the cell. The cycle period of the frame number; then, two ratios are calculated according to the parameters obtained above, and finally, the minimum value is selected from the two ratios as the number of available time-frequency resources.
  • the number of users is the maximum number of users that the cell can support.
  • the time-frequency resource cycle can be understood as the cycle time of the time-frequency resources that can be used by the mobile terminal in the system frame, and the system frame number.
  • the cycle period refers to the time required for one cycle of the used system frame in the cell.
  • a minimum value is selected from the first ratio and the second ratio, and the selected minimum value is taken as the available time-frequency resource amount.
  • the base station may optionally add the available time-frequency resource quantity to the system message; notify the system message to all mobile terminals of the cell by using a broadcast manner.
  • S702. Calculate an offset value of the time-frequency resource available to the terminal according to the quantity of the available time-frequency resources delivered by the base station.
  • the method further includes: receiving identity information of the mobile terminal delivered by the base station;
  • the calculating the offset value of the available time-frequency resource of the terminal may include: calculating an offset value of the available time-frequency resource of the terminal according to the identity identification information and the available time-frequency resource quantity.
  • the identity information is divided by the number of available time-frequency resources, and the remainder value of the identity information divided by the number of available time-frequency resources is taken as the offset value.
  • the calculating the offset may include: first, acquiring a frame number and a time-frequency resource cycle period of the current system frame of the cell, according to the frame number, the time-frequency resource cycle period, and the available time-frequency resource of the current system frame. The quantity calculates the offset of the current time-frequency resource of the current system frame.
  • the residual value after the operation is taken as the offset.
  • the time-frequency resource for determining the time-frequency resource according to the offset value and the offset, it may be determined whether the two are equal by comparing the offset value with the offset, and when the two are equal, determining the The current time-frequency resource of the current system frame is a time-frequency resource used by the mobile terminal to transmit data; when the two are not equal, waiting for the arrival of the next time-frequency resource, and recalculating the judgment.
  • the mobile terminal when the mobile terminal still has resource multiplexing on the time-frequency resource, the mobile terminal needs to determine that the multiplexed frequency domain is available in addition to determining the available time-frequency resources in the current system frame.
  • the location on the time-frequency resource, the step of calculating the location information of the multiplexed frequency domain in the current time-frequency resource may include:
  • the base station only needs to deliver the number of available video resources, and the allocation of the time-frequency resources requires only the calculation of the mobile terminal itself to implement the acquisition of the time-frequency resources, and is no longer needed.
  • Perform real-time and complex mutual negotiation with the base station thereby effectively reducing the signaling interaction between the mobile terminal and the base station, greatly shortening the delay of the mobile terminal acquiring the time-frequency resource transmission data, improving the efficiency of data transmission, and improving the efficiency.
  • the utilization of time-frequency resources is performed by the base station.
  • FIG. 8 is a structural block diagram of a base station according to the embodiment.
  • the base station may include: a first collection module 81, an allocation module 82, and a sending module 83, where:
  • the first collecting module 82 is configured to: obtain an operating parameter that the base station pre-configured for the cell.
  • the working parameters include a number of users of the cell, a maximum number of terminals that the same time-frequency resource supports for one data transmission, a cycle period of the time-frequency resource cycle period, and a system frame number of the cell, optionally, the The number of users is the maximum number of users that the cell can support.
  • the time-frequency resource cycle can be understood as the cycle time of the time-frequency resources that can be used by the mobile terminal in the system frame.
  • the cycle period of the system frame number refers to The time required for a system frame in the cell to cycle.
  • the allocating module 82 is configured to calculate the number of available time-frequency resources allocated by the cell according to the working parameter.
  • the available time-frequency resource quantity may be used to calculate a time-frequency resource available to the terminal for data transmission of the mobile terminal on the mobile terminal.
  • the available time-frequency resource quantity may be performed by all mobile terminals in the cell. The number of time-frequency resources required for a data transmission.
  • the allocating module 82 may further include a size of each time-frequency resource, a modulation order, and an amount of data that can be transmitted by each time-frequency resource. Make a limit, for example, to configure.
  • the sending module 83 is configured to: send the number of available time-frequency resources to all mobile terminals of the cell to be sent data.
  • the sending module 83 when transmitting the available time-frequency resource, optionally adds the available time-frequency resource to the system message of the base station, and sends the system message to the system through the base station. To each mobile terminal in the cell.
  • the allocation module 82 can optionally be implemented by using a calculation submodule and a selection submodule;
  • the calculating sub-module is configured to: calculate a ratio of the number of users of the cell to the maximum number of terminals, and perform rounding to obtain a first ratio; and calculate a cycle period of the system frame number and the time-frequency The ratio of the resource cycle period, and rounding up to obtain the second ratio;
  • the selecting sub-module is configured to: select a minimum value from the first ratio and the second ratio, and use the selected minimum value as the number of available time-frequency resources, and calculate the number of available time-frequency resources.
  • the formula can be as follows:
  • NumOfSched is the number of available time-frequency resources
  • MaxUeNum is the number of users of the cell
  • MaxUeNumPerResource is the maximum number of terminals that one time-frequency resource supports one data transmission
  • Tresource is the time-frequency resource cycle
  • T is the cycle of the system frame number of the cell. Cycle
  • min means taking the minimum value
  • ceil means taking the rounding operation.
  • the base station may be further configured to: obtain a correction coefficient of the ratio, and perform correction processing on the second ratio according to the correction coefficient; the selection submodule is from the first ratio and the corrected Select a minimum value from the second ratio, and the corresponding calculation formula can be as follows:
  • NumOfSched is the number of available time-frequency resources
  • MaxUeNum is the number of users of the cell
  • MaxUeNumPerResource is the maximum number of terminals that one time-frequency resource supports one data transmission
  • Tresource is the time-frequency resource cycle
  • T is the cycle of the system frame number of the cell.
  • alpha is the correction factor of the second ratio
  • min means the minimum value
  • ceil means the rounding operation.
  • the base station when the base station receives the cell mobile terminal registration command or the cell establishment command, the base station sets the number of users in the cell, and acquires the maximum number of terminals that the time-frequency resource supports for one data transmission, in the system frame.
  • the time-frequency resource cycle period and the cycle period of the system frame number of the cell are automatically generated according to the above information when the registration or establishment is performed, and the parameter is put into the system message and sent to each mobile of the cell. terminal.
  • MaxUeNum 100
  • MaxUeNumPerResource 5
  • Tresource 10ms
  • T 10240ms
  • alpha 0.
  • the module of the foregoing base station may be implemented by using a processor, an antenna, and a memory in the base station, and may optionally be a program code for implementing the function of the foregoing module in a memory, where the base station needs to perform resource allocation.
  • the processor reads the program code in the memory and runs on the processor, thereby realizing the acquisition of the working parameters, and the processor can calculate the available time-frequency resources according to the obtained working parameters, and calculate the obtained The number of available time-frequency resources is delivered to each mobile terminal of the cell through the antenna.
  • the base station acquires the working parameters allocated in advance for the cell by using the first collecting module, and the allocating module calculates the number of available time-frequency resources allocated by the cell according to the working parameter, where the available time-frequency resource quantity is used in
  • the mobile terminal calculates the available time-frequency resources of the terminal for transmitting the data of the mobile terminal, and the last sending module sends the available time-frequency resources to all the mobile terminals in the cell; by implementing the resource allocation method provided by the embodiment, the base station only The time-frequency resources of the cell need to be allocated according to the working parameters of the cell, and no real-time negotiation interaction with the mobile terminal is needed, thereby reducing signaling interaction between the base station and the mobile terminal, and improving resource allocation efficiency of the base station. At the same time, the interaction delay between the mobile terminal and the base station is shortened, and the data transmission efficiency of the mobile terminal is improved.
  • FIG. 9 is a structural block diagram of a mobile terminal according to the embodiment.
  • the mobile terminal includes: a receiving module 91, a first calculating module 92, a second collecting module 93, a second calculating module 94, and a determining module 95. among them:
  • the receiving module 91 is configured to: receive the number of available time-frequency resources that are sent by the base station, where the available time-frequency resources are used to calculate the available time-frequency resources of the terminal that is sent by the mobile terminal;
  • the number of available time-frequency resources is allocated by the base station for the cell, and can satisfy the required number of time-frequency resources that all mobile terminals in the cell have the opportunity of one data transmission.
  • the number of available time-frequency resources may be a parameter according to the number of users of the cell, the maximum number of terminals supported by the same time-frequency resource for data transmission, the time-frequency resource cycle period, and the cycle period of the system frame number of the cell. Calculated.
  • calculating a first ratio according to the number of users of the cell and the maximum number of terminals and calculating a second ratio according to a cycle period of the system frame number and the time-frequency resource cycle period, and then comparing the first ratio and the second ratio
  • the size of the selected one of the available time-frequency resources is sent to the mobile terminal.
  • the receiving module 91 may be further configured to: receive identity identification information of the mobile terminal delivered by the base station.
  • the first calculating module 92 is configured to: calculate an offset value of the available time-frequency resources of the terminal according to the available time-frequency resource quantity;
  • the first calculating module 92 may be configured to: when calculating the offset value, calculate an offset of the available time-frequency resources of the terminal according to the identity identification information and the number of available time-frequency resources. value.
  • the first calculating module 92 is configured to: divide the identity identification information by the number of available time-frequency resources, and divide the identity identification information by the number of available time-frequency resources. The value is taken as the offset value.
  • the second collection module 93 is configured to: acquire a frame number and a time-frequency resource cycle period of a current system frame of a cell where the mobile terminal is located;
  • the second calculation module 94 is configured to: calculate an offset of the current time-frequency resource of the current system frame according to the frame number of the current system frame, the time-frequency resource cycle period, and the available time-frequency resource quantity;
  • the second calculating module 94 may calculate the offset by dividing the frame number of the current system frame by the time-frequency resource cycle period and rounding down to obtain a third ratio; Performing a modulo operation on the third ratio and the number of available time-frequency resources to obtain the offset, that is, dividing the third ratio by the number of available time-frequency resources, and dividing the third ratio The remainder value after the number of available time-frequency resources is used as the offset.
  • the determining module 95 is configured to: determine, according to the offset value and the offset, a time-frequency resource used by the mobile terminal to send data.
  • the determining module 95 may be configured to: determine whether the offset value is equal to the offset, and determine the current system when the offset value is equal to the offset
  • the current time-frequency resource of the frame is a time-frequency resource used by the mobile terminal to transmit data; when the offset value is not equal to the offset, wait for the arrival of the next time-frequency resource, and recalculate the judgment.
  • the uplink and downlink synchronization operations are also performed, and the information that the base station pre-configured for all the mobile terminals of the cell is synchronized to each mobile terminal, for example,
  • the frame number of the system frame and the cycle period, as well as the time-frequency resource cycle period of the system frame, etc. can be as follows:
  • the mobile terminal acquires the identity identification information of the mobile terminal by performing signaling interaction with the base station, and performs modulo operation on the identity identification information and the available time-frequency resource quantity, that is, the identity identification information is divided by the available time-frequency resource quantity,
  • the residual value thus obtaining the offset value, the offset value can be calculated as:
  • the TransOffset is an offset value
  • the UEID is the identity information of the mobile terminal
  • NumOfSched is the number of available time-frequency resources
  • mod is a modulo operation.
  • the mobile terminal further needs to obtain a frame number of the current system frame, and a time-frequency resource cycle period in the system frame, and then calculate, according to the frame number, the time-frequency resource cycle period, and the available time-frequency resource quantity, optionally
  • the frame number is divided by the time-frequency resource cycle period and rounded down to obtain a third ratio, and then the third ratio is modulo-operated with the available time-frequency resource quantity, thereby obtaining the time frequency of the current system frame.
  • the offset of the resource, the formula for calculating the offset can be:
  • Toffset mod(ceil(CurrFrameNum/Tresource), NumOfSched)
  • TOffset is the offset
  • CurrFrameNum is the frame number of the current system frame
  • Tresource is the time-frequency resource cycle
  • NumOfSched is the number of available time-frequency resources
  • mod is the modulo operation
  • ceil is the round-robin operation.
  • the time-frequency resource where the current system frame is located is determined as the available time-frequency resource of the terminal for transmitting data by the mobile terminal;
  • the shift value and the offset are not equal, continue to judge the time-frequency resource of the next system frame.
  • the time-frequency resource in the current system frame is determined to be a time-frequency resource available to the mobile terminal by using the foregoing steps.
  • some frequency domains may be The multiplexing, in order to determine the location information of the multiplexed frequency domain, the mobile terminal may further include a positioning module 96 configured to calculate location information of the multiplexed frequency domain in the current time-frequency resource, where the calculation process may be Obtaining, in the current frequency frame, the number of divisions in the frequency domain of the current system frame; and calculating, according to the identity identification information and the number of divisions in the frequency domain, the frequency domain used by the mobile terminal
  • the location information in the time-frequency resource used by the mobile terminal to transmit data; the calculation formula of the location information in the frequency domain may be:
  • FreqOffset represents the location information of the frequency domain
  • the identity identification information of the UEID mobile terminal represents the identity identification information of the UEID mobile terminal
  • FreqResource is the number of divisions of the frequency domain on each time-frequency resource.
  • the module for the mobile terminal may be implemented by using a processor, a radio frequency unit, and a memory in the mobile terminal, and may be, by storing, in a memory, program code for implementing the function of the foregoing module, when the mobile terminal needs to acquire resources.
  • the processor reads the program code in the memory and runs on the processor, thereby receiving the system message sent by the base station, and parsing the available time-frequency resources from the system message, and other related Information, the processor calculates an offset value of the available time-frequency resource of the terminal and an offset of the current time-frequency resource of the current system frame according to the information, and then compares the two to determine the finally available time-frequency resource.
  • the mobile terminal when the mobile terminal allocates and uses the time-frequency resource, the mobile terminal only needs to calculate the time-frequency resource, and the real-time and complex mutual negotiation with the base station is no longer needed. Thereby, the signaling interaction between the mobile terminal and the base station is effectively reduced, the time delay for the mobile terminal to acquire the data of the time-frequency resource is greatly shortened, the efficiency of data transmission is improved, and the utilization rate of the time-frequency resource is also improved.
  • FIG. 10 is a structural block diagram of a communication control system according to any of the foregoing embodiments.
  • the communication control system includes: any one of the base station 1 and at least one of the foregoing operations provided by the foregoing embodiments.
  • Terminal 2 where:
  • the base station 1 is configured to: calculate the number of available time-frequency resources allocated by the cell according to the working parameters of the cell, and send the available time-frequency resources to all the mobile terminals 2 of the cell.
  • the available time-frequency resource quantity may be used to calculate, on the mobile terminal, a time-frequency resource available to the terminal for data transmission of the mobile terminal, and optionally, the available time-frequency resource quantity is all in the cell.
  • the mobile terminal can perform the number of time-frequency resources required for data transmission.
  • calculating the number of available time-frequency resources may include: first, obtaining the number of users of the cell, the maximum number of terminals that the same time-frequency resource supports for one data transmission, the time-frequency resource cycle period, and the system of the cell. The cycle period of the frame number; then, two ratios are calculated according to the parameters obtained above, and finally, the minimum value is selected from the two ratios as the number of available time-frequency resources.
  • the number of users is the maximum number of users that the cell can support.
  • the time-frequency resource cycle can be understood as the cycle time of the time-frequency resources that can be used by the mobile terminal in the system frame, and the system frame number.
  • the cycle period refers to the time required for one cycle of the used system frame in the cell.
  • the base station 1 can transmit the number of available time-frequency resources to all mobile terminals 2 of the cell.
  • the mobile terminal 2 is configured to: calculate an offset value of the time-frequency resource available to the terminal according to the number of available time-frequency resources delivered by the base station; and acquire a frame number and a time-frequency resource cycle period of the current system frame of the cell; Calculating an offset of a current time-frequency resource of the current system frame by using a frame number of the current system frame and a time-frequency resource cycle period; determining, when the mobile terminal is used to send data, according to the offset value and the offset Frequency resources, and send data on the determined time-frequency resources.
  • the mobile terminal 2 may further include:
  • the identity information is divided by the number of available time-frequency resources, and the remainder value of the identity information divided by the number of available time-frequency resources is taken as the offset value.
  • the time-frequency resource in the current system frame is determined to be a time-frequency resource available to the mobile terminal by using the foregoing steps.
  • the mobile terminal may further include: calculating location information of the multiplexed frequency domain in the current time-frequency resource, where the location information may be calculated by using other mobile terminals to determine location information of the multiplexed frequency domain. Obtaining, in the current frequency frame, the number of divisions in the frequency domain of the current system frame; and calculating, according to the identity identification information and the number of divisions in the frequency domain, the frequency domain used by the mobile terminal The location information in the time-frequency resource used by the mobile terminal to transmit data.
  • the base station only needs to deliver the available time-frequency resources, and allocates the time-frequency resources. Only the mobile terminal itself needs to calculate the time-frequency resources, and no real-time and complex mutual negotiation with the base station is needed, thereby effectively reducing the signaling interaction between the mobile terminal and the base station, and greatly shortening the acquisition time of the mobile terminal.
  • the delay of transmitting data by frequency resources improves the efficiency of data transmission and also improves the utilization of time-frequency resources.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement the resource allocation method described above.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions that, when executed, implement the communication control method described above.
  • modules or steps of the embodiments of the present disclosure may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by a computing device such that they may be stored by a computing device in a computer storage medium (ROM/RAM, diskette, optical disk) and, in some cases, The steps shown or described may be performed in a different order than that herein, or they may be separately fabricated into different integrated circuit modules, or a plurality of the modules or steps may be implemented as a single integrated circuit module. Therefore, the present disclosure is not limited to any specific combination of hardware and software.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media include, but are not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), and Electrically Erasable Programmable Read-only Memory (EEPROM). Flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical disc storage, magnetic cassette, magnetic tape, disk storage or other magnetic storage device, or Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the operating parameters of the cell connected to the base station are obtained, and the required parameters of the cell are calculated by using the working parameter.
  • the number of time-frequency resources available, and the number of available time-frequency resources is sent to all mobile terminals in the cell to be transmitted, and the number of available time-frequency resources is used when calculating, by the mobile terminal, that the terminal that the mobile terminal sends data is available a frequency resource;
  • the mobile terminal to be transmitted data calculates an offset value of the time-frequency resource available to the terminal according to the number of available time-frequency resources, and the mobile terminal further acquires a frame number and a time-frequency resource cycle period of the current system frame of the cell, Calculating, according to the frame number and the time-frequency resource cycle period, an offset of the current time-frequency resource of the current system frame, determining, according to the offset value and the offset, a time-frequency resource used by the mobile terminal to send data, and determining the time-
  • the number of frequency resources can be issued.
  • For the allocation of time-frequency resources only the mobile terminal itself needs to calculate the time-frequency resources, and no real-time and complex mutual negotiation with the base station is required, thereby effectively reducing the number of resources.
  • the signaling interaction between the mobile terminal and the base station greatly shortens the delay for the mobile terminal to acquire data transmitted by the time-frequency resource, improves the efficiency of data transmission, and improves the utilization of time-frequency resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源分配方法包括:基站获取其下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、时频资源循环周期和所述小区的系统帧号的循环周期;根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源;所述基站将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端。

Description

资源分配方法、基站、移动终端和通信控制方法及其系统 技术领域
本公开涉及但不限于通信技术领域,尤其是一种资源分配方法、基站、移动终端和通信控制方法及其系统。
背景技术
在无线通信系统中,为了避免大量移动终端使用相同的时频资源传输信号,而导致通信拥挤的情况,移动终端在发送数据之前,可以向基站发送资源请求消息,基站根据移动终端的请求,并按照对应的时频资源分配规则,对该小区的所有时频资源进行分配划分,并通过信令反馈给移动终端,移动终端再根据基站反馈的分配结果,选择在自身对应的时频资源上发送数据。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
在数据发送过程中,移动终端在发送数据之前,要求移动终端与基站之间存在一个资源分配的协商过程,根据协商的结果获取对应的时频资源发送数据,而从协商完成到开始发送数据的过程中,会存在一个较大的时延,这会大大降低了移动终端最终的数据传输效率,并且基站还需要对为移动终端每次的数据发送频繁地进行时频资源的重新分配处理。
本公开实施例提供的资源分配方法、基站、移动终端和通信控制方法及其系统,以避免移动终端获取时频资源到数据发送的时延较长,导致数据传送效率较低。
本公开实施例提供一种资源分配方法,包括:
基站获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期;
根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源;
所述基站将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端。
本公开实施例还提供一种资源分配方法,包括:
待发送数据的移动终端接收基站下发的可用时频资源数量,所述可用时频资源数量用于计算移动终端数据发送的终端可用时频资源;
根据所述可用时频资源数量计算所述终端可用时频资源的偏移值;
获取所述待发送数据的移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;
根据所述当前系统帧的帧号、时频资源循环周期和所述可用时频资源数量计算所述当前系统帧的当前时频资源的偏移量;
根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源。
本公开实施例还提供一种通信控制方法,包括:
基站获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期;根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算所述移动终端发送数据的终端可用时频资源;将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端;
待发送数据的移动终端根据所述基站下发的所述可用时频资源数量计算所述终端可用时频资源的偏移值;获取所述待发送数据的移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;根据所述当前系统帧的帧号和时频资源循环周期计算所述当前系统帧的当前时频资源的偏移量;根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据。
本公开实施例还提供一种基站,包括:
第一采集模块,设置为:获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期;
分配模块,设置为:根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源;
发送模块,设置为:将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端。
本公开实施例还提供一种移动终端,包括:
接收模块,设置为:接收基站下发的可用时频资源数量,所述可用时频资源数量用于计算移动终端数据发送的终端可用时频资源;
第一计算模块,设置为:根据所述可用时频资源数量计算所述终端可用时频资源的偏移值;
第二采集模块,设置为:获取所述移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;
第二计算模块,设置为:根据所述当前系统帧的帧号和时频资源循环周期计算所述当前系统帧的当前时频资源的偏移量;
判断模块,设置为:根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源。
本公开实施例还提供一种通信控制系统,包括:如上所述的基站和至少一个如上所述的移动终端;
所述基站设置为:获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期;根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算所述移动终端发送数据的终端可用时频资源;将所述可用时频资源数量发送至所述移动终端;
所述移动终端设置为:根据所述基站下发的所述可用时频资源数量计算 所述终端可用时频资源的偏移值;获取该移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;根据所述当前系统帧的帧号和时频资源循环周期计算所述当前系统帧的当前时频资源的偏移量;根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据。
本公开实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的资源分配方法和通信控制方法。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述资源分配方法。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述通信控制方法。
本公开的有益效果是:
根据本公开实施例提供的资源分配方法、基站、移动终端和通信控制方法及其系统,以及计算机存储介质,获取基站下挂的小区的工作参数,通过该工作参数计算出该小区所需要分配的可用时频资源数量,并将该可用时频资源数量发送给小区中的所有待发送数据的移动终端,该可用时频资源数量用于在移动终端上计算所述移动终端发送数据的终端可用时频资源;该待发送数据的移动终端根据所述可用时频资源数量计算所述终端可用时频资源的偏移值,同时移动终端还获取小区当前系统帧的帧号和时频资源循环周期,根据该帧号和时频资源循环周期计算该当前系统帧的当前时频资源的偏移量,根据偏移值和偏移量确定移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据;通过本公开提供的方法进行数据的发送,基站只需要下发可用视频资源数量的下发即可,对于时频资源的分配使用只需要移动终端自身计算就可以实现时频资源的获取,不再需要与基站进行实时的、复杂的相互协商,从而有效地减少了移动终端与基站的信令交互,大大缩短了移动终端获取时频资源发送数据的时延,提高了数据传输的效率,同时也提高了时频资源的利用率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本公开第一实施例提供的一种资源分配方法的流程图;
图2为本公开第一实施例提供的另一种资源分配方法的流程图;
图3为本公开第一实施例提供的系统帧中的时频资源周期划分示意图;
图4为本公开第二实施例提供的一种资源分配方法的流程图;
图5为本公开第二实施例提供的另一种资源分配方法的流程图;
图6为本公开第二实施例提供的又一种资源分配方法的流程图;
图7为本公开第三实施例提供的通信控制方法的流程图;
图8为本公开第四实施例提供的基站的结构框图;
图9为本公开第五实施例提供的移动终端的结构框图;
图10为本公开第六实施例提供的通信控制系统的结构框图。
本公开的较佳实施方式
下面结合附图对本公开的实施方式进行描述。
第一实施例:
基站在为小区中的移动终端分配时频资源时,可以是通过与小区中的每个移动终端进行实时的协商,对每个移动终端进行固定的资源分配,而协商的过程非常复杂繁琐,导致了基站的梳理效率非常低,本公开实施例提供了一种资源分配方法,能够提高效率,请参见图1,图1为本实施例提供的资源分配方法,该方法大致是针对于基站对资源的分配提出的。可选的分配流程如下所示:
S100,基站获取该基站下挂的小区的工作参数,该小区指的是基站信号所覆盖的区域内的小区;
该工作参数可包括该小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、时频资源循环周期和该小区的系统帧号的循环周期,可选地,该用户数量为小区所能支持的最大用户数量,所述时频资源循环周期可以理解为是系统帧中可被移动终端使用的时频资源的循环周期,所述系统 帧号的循环周期指的可以是该小区中的所用系统帧进行一次循环所需要的时间。
S101,根据该工作参数计算该小区所分配的可用时频资源数量。
该可用时频资源数量可用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源,可选地,该可用时频资源数量为该小区中的所有移动终端都能进行一次数据发送所需要时频资源个数。
在本实施例中,基站计算分配小区的可用时频资源还可以包括,对每个时频资源的大小、调制阶数,以及每个时频资源所能传输的数据量进行限定,例如,进行配置。
S102,将该可用时频资源数量发送至该小区的所有待发送数据的移动终端。
在该步骤中,对于该可用时频资源的发送,可选地,将该可用时频资源添加到基站的系统消息中,通过基站将该系统消息通过广播的方式下发给小区中的每个移动终端上。
在本实施例中,对于步骤S101,在计算可用时频资源数量过程中,可以是通过计算两个比值,并从两个比值中选择最小值作为可用时频资源数量。
可选地,计算该小区的用户数量与该最大终端数量的比值,并对该比值进行上取整,得到第一比值;
计算系统帧号的循环周期与时频资源循环周期的比值,并对该比值进行上取整,得到第二比值;
然后,从第一比值和第二比值中选择一个最小值,并将该选择的最小值作为可用时频资源数量下发给小区的所有移动终端,可用时频资源数量的计算公式可以如下:
Figure PCTCN2018079488-appb-000001
其中,NumOfSched为可用时频资源数量,MaxUeNum为小区的用户数量,MaxUeNumPerResource为一个时频资源所支持一次数据发送的最大终端数量,Tresource为时频资源循环周期,T为小区的系统帧号的循环周期,min 表示取最小值,ceil表示上取整运算。
在本实施例中,在从第一比值和第二比值中选择一个最小值之前,还可以包括:获取比值的修正系数,根据该修正系数对第二比值极性修正处理,然后再从第一比值和修正后的第二比值中选择一个最小值作为可用时频资源数量下发给小区的所有移动终端,可用时频资源数量的计算公式可以如下:
Figure PCTCN2018079488-appb-000002
其中,NumOfSched为可用时频资源数量,MaxUeNum为小区的用户数量,MaxUeNumPerResource为一个时频资源所支持一次数据发送的最大终端数量,Tresource为时频资源循环周期,T为小区的系统帧号的循环周期,alpha为第二比值的修正系数,min表示取最小值,ceil表示上取整运算。
在实际应用中,当基站接收到小区移动终端注册指令或者小区建立指令时,基站可以对小区的用户数量进行设置,并获取一个时频资源所支持一次数据发送的最大终端数量,系统帧中的时频资源循环周期,以及小区的系统帧号的循环周期,在进行注册或建立时,基站可以根据上述的信息自动生成相关的参数,并将该参数放入系统消息中下发给小区的每个移动终端,相关处理步骤可以如图2、3所示。
S200,计算小区中的所有移动终端都有一次数据发送所需要的时频资源数NumOfSched。
假设MaxUeNum为100,MaxUeNumPerResource为5,Tresource为10毫秒(ms),T为10240ms,alpha为0,则可以有:
Figure PCTCN2018079488-appb-000003
Figure PCTCN2018079488-appb-000004
NumOfSched=min(20,10240)=20。
S201,将NumOfSched放入系统消息中,通过广播方式通知小区中的所有移动终端。
在实际应用中,该基站在获取工作参数时,还可以是将该基站所管理的所有小区的工作参数都获取过来,然后根据每个小区的工作参数为该小区进行可用时频资源的计算分配,当该小区中的移动终端需要发送数据时,可以直接根据资源的分配结果自行计算,不需要再请求基站下发,从而缩短了移动终端与基站的交互时延,提高了移动终端的数据发送效率。
本公开实施例提供的资源分配方法,通过获取基站预先为小区分配的工作参数,根据所述工作参数计算所述小区分配的可用时频资源数量,该可用时频资源数量用于在移动终端上计算该移动终端数据发送的终端可用时频资源,最后将所述可用时频资源发送至小区中的所有移动终端;通过对本实施例提供的资源分配方法的实施,该基站只需要根据小区的工作参数对小区的时频资源进行分配即可,不需要与移动终端进行实时的协商交互,从而减少了基站与移动终端之间的信令交互,提高了基站的资源分配效率,同时也缩短了移动终端与基站的交互时延,提高了移动终端的数据发送效率。
第二实施例:
请参考图4,图4为本实施例提供的资源分配方法的流程图,该方法大致是针对于移动终端对资源的分配提出的。可选的分配流程如下所示:
S400,待发送数据的移动终端接收基站下发的可用时频资源数量,该可用时频资源数量用于计算移动终端数据发送的终端可用时频资源,该待发送数据的移动终端指的是小区中的所有移动终端,也可以是部分有需求的移动终端。
该可用时频资源数量为基站为该小区分配的,并可以满足该小区中的所有移动终端都具有一次数据发送的机会的所需要的时频资源个数。该可用时频资源数量可以是根据所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期等参数计算得到。
可选地,在计算该可用时频资源数量时,可以是根据该小区的用户数量和该最大终端数量计算第一比值,以及根据系统帧号的循环周期和该时频资源循环周期计算第二比值,然后通过比较第一比值和第二比值的大小,选择 其中的最小值作为该可用时频资源数量。
S401,根据该可用时频资源数量计算该终端可用时频资源的偏移值。
在该步骤中,还可包括:接收基站下发的移动终端的身份标识信息,在计算该偏移值时,可以是根据该身份标识信息和可用时频资源数量计算得到,可选地,可以通过将所述身份标识信息除以所述可用时频资源数量,并取所述身份标识信息除以所述可用时频资源数量后的余数值作为所述偏移值。
S402,获取待发送数据的移动终端所在的小区的当前系统帧的帧号和时频资源循环周期。
S403,根据该当前系统帧的帧号、时频资源循环周期和可用时频资源数量计算当前系统帧的当前时频资源的偏移量。
可选地,通过以下方式计算所述偏移量:将所述当前系统帧的帧号除以所述时频资源循环周期并下取整,得到第三比值;将第三比值与所述可用时频资源数量进行取模运算,得到所述偏移量,即是将所述第三比值除以所述可用时频资源数量,并取所述第三比值除以所述可用时频资源数量后的余数值作为所述偏移量。
S404,根据该偏移值和偏移量确定该移动终端用于发送数据的时频资源。
在本实施例中,对于根据偏移值和偏移量确定时频资源,可以是通过将偏移值与所述偏移量进行比较,判断两者是否相等,当两者相等时,确定所述当前系统帧的当前时频资源为所述移动终端用于发送数据的时频资源;当两者不相等时,等待下一个时频资源的到来,并重新计算判断,这里,时频资源的循环周期可以如图3所示。
在本实施例中,可以通过上述的步骤确定当前系统帧中的时频资源为移动终端可用的时频资源,但是,在该确定的时频资源上发送数据时,还可能有部分频域会被复用,这时,本实施例提供的资源分配方法中,还可以包括计算该被复用的频域在当前时频资源中的位置信息的步骤。
可选地,计算该被复用的频域在当前时频资源中的位置信息包括:获取所述当前系统帧的当前时频资源中频域的划分个数;根据所述身份标识信息 和所述频域的划分个数计算所述移动终端发送数据时,所使用的频域在所述移动终端用于发送数据的时频资源中的位置信息。
在实际应用中,在移动终端接收到基站下发的系统消息后,还需要进行上、下行同步操作,可以是将基站为小区所有移动终端预先配置的信息同步到每个移动终端上,例如,系统帧的帧号以及循环周期,还有系统帧的时频资源循环周期等等。在同步完成后,当移动终端需要发送数据时,发送数据所需资源的分配步骤可以如图5所示。
S500,移动终端计算自身可用的时频资源的偏移值TransOffset。
可以是,移动终端通过与基站进行信令的交互,获取该移动终端的身份标识信息,将该身份标识信息与可用时频资源数量进行取模运算,即是身份标识信息除以可用时频资源数量,取余值,从而得到偏移值,偏移值的计算方法可以为:
TransOffset=mod(UEID,NumOfSched)
其中,TransOffset为表示偏移值,UEID为移动终端的身份标识信息,NumOfSched为可用时频资源数量,mod为取模运算。
S501,计算小区当前系统帧所处的时频资源的偏移量Toffset。
在该步骤中,在计算偏移量之前,移动终端可以获取当前系统帧的帧号,以及该系统帧中的时频资源循环周期,然后根据该帧号、时频资源循环周期和可用时频资源数量计算得到,可选地,可以将帧号除以时频资源循环周期并下取整,得到第三比值,再将该第三比值与可用时频资源数量进行取模运算,从而得到该当前系统帧所处的时频资源的偏移量,偏移量的计算公式可以为:
Toffset=mod(ceil(CurrFrameNum/Tresource),NumOfSched)
其中,TOffset为表示偏移量,CurrFrameNum为当前系统帧的帧号,Tresource为时频资源循环周期,NumOfSched为可用时频资源数量,mod表示取模运算,ceil表示下取整运算。
S502,比较偏移值TransOffset和偏移量Toffset两者是否相等。
S503,若是(即两者相等),则将当前系统帧所处的时频资源确定为移 动终端发送数据的终端可用时频资源。
S504,若否(即两者不相等),则继续判断下一次系统帧的时频资源。
在本实施例中,当移动终端在时频资源上还存在资源复用的情况时,移动终端除了确定当前系统帧中的可用时频资源之外,还可确定被复用的频域在可用时频资源上的位置,计算被复用的频域在当前时频资源中的位置信息的步骤可以如图6所示。
S600,利用移动终端的身份标识信息和可用时频资源数量确定终端可用时频资源的偏移值TransOffset。
S601,利用移动终端的身份标识信息确定频域的位置信息FreqOffset。
在本实施例中,确定频域的位置信息FreqOffset的步骤可以包括:获取所述当前系统帧的当前时频资源中频域的划分个数;根据所述身份标识信息和所述频域的划分个数计算所述移动终端发送数据时,所使用的频域在所述移动终端用于发送数据的时频资源中的位置信息;频域的位置信息的计算公式可以为:
FreqOffset=mod(UEID,FreqResource)
其中,FreqOffset表示频域的位置信息,UEID移动终端的身份标识信息,FreqResource为每个时频资源上频域的划分个数。
S602,将当前系统帧的帧号除以时频资源循环周期并下取整,得到第三比值。
S603,根据第三比值和可用时频资源数量计算当前系统帧的当前时频资源的偏移量Toffset。
可以是将第三比值除以可用时频资源数量,取其余值,将该余值作为当前系统帧的当前时频资源的偏移量Toffset。
S604,判断TransOffset和Toffset是否相等。
S605,若是(即TransOffset和Toffset相等),则将当前系统帧所处的时频资源确定为移动终端发送数据的终端可用时频资源。
S606,若否(即TransOffset和Toffset不相等),则继续判断下一次系 统帧的时频资源。
在本实施例中,当移动终端在时频资源上存在资源复用时,可以根据上述得到的频域的位置信息选定对应的频域资源的复用处理。
本公开实施例提供的资源分配方法,移动终端根据所述可用时频资源数量计算所述终端可用时频资源的偏移值,同时移动终端还获取小区当前系统帧的帧号和时频资源循环周期,根据该帧号和时频资源循环周期计算该当前系统帧的当前时频资源的偏移量,根据偏移值和偏移量确定移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据;通过本公开提供的方法进行数据的发送,移动终端在对时频资源的分配使用时,只需要移动终端自身计算就可以实现时频资源的获取,不再需要与基站进行实时的、复杂的相互协商,从而有效地减少了移动终端与基站的信令交互,大大缩短了移动终端获取时频资源发送数据的时延,提高了数据传输的效率,同时也提高了时频资源的利用率。
第三实施例:
请参考图7,图7为本实施例提供的通信控制方法的流程图,可以应用于移动终端与基站之间通信控制,移动终端与基站之间进行通信控制的交互流程可以包括:
S700,基站根据小区的工作参数计算小区分配的可用时频资源数量。
该可用时频资源数量用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源,可选地,该可用时频资源数量为该小区中的所有移动终端都能进行一次数据发送所需要时频资源个数。
在本实施例中,对计算该可用时频资源数量可以包括:首先,获取该小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、时频资源循环周期和该小区的系统帧号的循环周期;然后,根据上述获取到的参数计算两个比值,最后,从两个比值中选择最小值作为可用时频资源数量。
在实际应用中,该用户数量为小区所能支持的最大用户数量,所述时频资源循环周期可以理解为是系统帧中可被移动终端使用的时频资源的循环周 期,所述系统帧号的循环周期指的是该小区中的所用系统帧进行一次循环所需要的时间。
可选地,计算该小区的用户数量与该最大终端数量的比值,并对该比值进行上取整,得到第一比值;
计算系统帧号的循环周期与时频资源循环周期的比值,并对该比值进行上取整,得到第二比值;
然后,从第一比值和第二比值中选择一个最小值,并将该选择的最小值作为可用时频资源数量。
S701,将该可用时频资源数量发送至小区中的所有待发送数据的移动终端。
在本实施例中,所述基站可选地可以将所述可用时频资源数量添加到系统消息中;将所述系统消息通过广播方式通知所述小区的所有移动终端。
S702,根据所述基站下发的所述可用时频资源数量计算所述终端可用时频资源的偏移值。
在该步骤中,还可包括:接收基站下发的所述移动终端的身份标识信息;
所述计算所述终端可用时频资源的偏移值可包括:根据所述身份标识信息和所述可用时频资源数量计算所述终端可用时频资源的偏移值。
可选地,将所述身份标识信息除以所述可用时频资源数量,并取所述身份标识信息除以所述可用时频资源数量后的余数值作为所述偏移值。
S703,计算小区当前系统帧所处的时频资源的偏移量。
在本实施例中,计算该偏移量可以包括:首先,获取小区当前系统帧的帧号和时频资源循环周期,根据该当前系统帧的帧号、时频资源循环周期和可用时频资源数量计算当前系统帧的当前时频资源的偏移量。
可选地,通过以下方式计算所述偏移量:将所述当前系统帧的帧号除以所述时频资源循环周期并下取整,得到第三比值;将第三比值与所述可用时频资源数量进行取模运算,得到所述偏移量,即是将所述第三比值除以所述可用时频资源数量,并取所述第三比值除以所述可用时频资源数量运算后的余数值作为所述偏移量。
S704,根据该偏移值和偏移量确定移动终端用于发送数据的时频资源。
在本实施例中,对于根据偏移值和偏移量确定时频资源,可以是通过将偏移值与所述偏移量进行比较,判断两者是否相等,当两者相等时,确定所述当前系统帧的当前时频资源为所述移动终端用于发送数据的时频资源;当两者不相等时,等待下一个时频资源的到来,并重新计算判断。
在本实施例中,当移动终端在时频资源上还存在资源复用的情况时,移动终端除了确定当前系统帧中的可用时频资源之外,还需要确定被复用的频域在可用时频资源上的位置,计算被复用的频域在当前时频资源中的位置信息的步骤可包括:
获取所述当前系统帧的当前时频资源中频域的划分个数;
根据所述身份标识信息和所述频域的划分个数计算所述移动终端发送数据时,所使用的频域在所述移动终端用于发送数据的时频资源中的位置信息。
本公开实施例提供的通信控制方法,基站只需要下发可用视频资源数量的下发即可,对于时频资源的分配使用只需要移动终端自身计算就可以实现时频资源的获取,不再需要与基站进行实时的、复杂的相互协商,从而有效地减少了移动终端与基站的信令交互,大大缩短了移动终端获取时频资源发送数据的时延,提高了数据传输的效率,同时也提高了时频资源的利用率。
第四实施例:
请参考图8,图8为本实施例提供的基站的结构框图,该基站可以包括:第一采集模块81、分配模块82和发送模块83,其中:
第一采集模块82设置为:获取基站预先为小区配置的工作参数。
所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期,可选地,该用户数量为小区所能支持的最大用户数量,所述时频资源循环周期可以理解为是系统帧中可被移动终端使用的时频资源的循环周期,所述系统帧号的循环周期指的是该小区中的所用系统帧进行一次循环所需要的时间。
分配模块82设置为:根据所述工作参数计算所述小区分配的可用时频资源数量。
所述可用时频资源数量可用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源,可选地,该可用时频资源数量为该小区中的所有移动终端都能进行一次数据发送所需要时频资源个数。
在本实施例中,所述分配模块82在计算分配小区的可用时频资源时,还可包括对每个时频资源的大小、调制阶数,以及每个时频资源所能传输的数据量进行限定,例如,进行配置。
发送模块83设置为:将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端。
在本实施例中,所述发送模块83在发送该可用时频资源时,可选地,将该可用时频资源添加到基站的系统消息中,通过基站将该系统消息通过广播的方式下发给小区中的每个移动终端上。
在本实施例中,所述分配模块82可选地可以采用计算子模块和选择子模块来实现;
所述计算子模块设置为:计算所述小区的用户数量与所述最大终端数量的比值,并进行上取整,得到第一比值;以及计算所述系统帧号的循环周期与所述时频资源循环周期的比值,并进行上取整,得到第二比值;
所述选择子模块设置为:从所述第一比值和所述第二比值中选择一个最小值,并将选择的最小值作为所述可用时频资源数量,所述可用时频资源数量的计算公式可以如下:
Figure PCTCN2018079488-appb-000005
其中,NumOfSched为可用时频资源数量,MaxUeNum为小区的用户数量,MaxUeNumPerResource为一个时频资源所支持一次数据发送的最大终端数量,Tresource为时频资源循环周期,T为小区的系统帧号的循环周期,min表示取最小值,ceil表示上取整运算。
在本实施例中,所述基站还可设置为:获取比值的修正系数,根据所述 修正系数对所述第二比值进行修正处理;所述选择子模块从所述第一比值和修正后的第二比值中选择一个最小值,相应的计算公式可以如下:
Figure PCTCN2018079488-appb-000006
其中,NumOfSched为可用时频资源数量,MaxUeNum为小区的用户数量,MaxUeNumPerResource为一个时频资源所支持一次数据发送的最大终端数量,Tresource为时频资源循环周期,T为小区的系统帧号的循环周期,alpha为第二比值的修正系数,min表示取最小值,ceil表示上取整运算。
在实际应用中,当基站接收到小区移动终端注册指令或者小区建立指令时,基站会对小区的用户数量进行设置,并获取一个时频资源所支持一次数据发送的最大终端数量,系统帧中的时频资源循环周期,以及小区的系统帧号的循环周期,在进行注册或建立时,根据上述的信息自动生成相关的参数,并将该参数放入系统消息中下发给小区的每个移动终端。
假设MaxUeNum为100,MaxUeNumPerResource为5,Tresource为10ms,T为10240ms,alpha为0,则
Figure PCTCN2018079488-appb-000007
Figure PCTCN2018079488-appb-000008
NumOfSched=min(20,10240)=20。
可以将该NumOfSched=20放入系统消息中,通过广播方式通知小区中的所有移动终端。
在实际应用中,对于上述基站的模块可以采用基站中的处理器、天线和存储器来实现,可选地可以是通过在存储器中存储用于实现上述模块功能的程序代码,当基站需要进行资源分配时,处理器读取存储器中的程序代码,并在处理器上运行,从而实现了工作参数的获取,处理器可根据获取到的工作参数进行计算得到可用时频资源数量,并将计算得到的可用时频资源数量通过天线下发至小区的每个移动终端。
本公开实施例提供的基站,通过第一采集模块获取预先为小区分配的工 作参数,分配模块根据所述工作参数计算所述小区分配的可用时频资源数量,该可用时频资源数量用于在移动终端上计算该移动终端数据发送的终端可用时频资源,最后发送模块将所述可用时频资源发送至小区中的所有移动终端;通过对本实施例提供的资源分配方法的实施,该基站只需要根据小区的工作参数对小区的时频资源进行分配即可,不需要与移动终端进行实时的协商交互,从而减少了基站与移动终端之间的信令交互,提高了基站的资源分配效率,同时也缩短了移动终端与基站的交互时延,提高了移动终端的数据发送效率。
第五实施例:
请参考图9,图9为本实施例提供的移动终端的结构框图,该移动终端包括:接收模块91、第一计算模块92、第二采集模块93、第二计算模块94和判断模块95,其中:
接收模块91设置为:接收基站下发的的可用时频资源数量,该可用时频资源数量用于计算移动终端数据发送的终端可用时频资源;
该可用时频资源数量为基站为该小区分配的,并可以满足该小区中的所有移动终端都具有一次数据发送的机会的所需要的时频资源个数。该可用时频资源数量可以是根据所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期等参数计算得到。
可选地,根据该小区的用户数量和该最大终端数量计算第一比值,以及根据系统帧号的循环周期和该时频资源循环周期计算第二比值,然后通过比较第一比值和第二比值的大小,选择其中的最小值作为该可用时频资源数量下发给移动终端。
在本实施例中,所述接收模块91还可设置为:接收基站下发的所述移动终端的身份标识信息。
第一计算模块92设置为:根据所述可用时频资源数量计算所述终端可用时频资源的偏移值;
在本实施例中,所述第一计算模块92可以是设置为:在计算偏移值时,根据所述身份标识信息和所述可用时频资源数量计算所述终端可用时频资源的偏移值。可选地,所述第一计算模块92是设置为:将所述身份标识信息除以所述可用时频资源数量,并取所述身份标识信息除以所述可用时频资源数量后的余数值作为所述偏移值。
第二采集模块93设置为:获取该移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;
第二计算模块94设置为:根据所述当前系统帧的帧号、时频资源循环周期和所述可用时频资源数量计算所述当前系统帧的当前时频资源的偏移量;
在本实施例中,第二计算模块94可以通过以下方式计算所述偏移量:将所述当前系统帧的帧号除以所述时频资源循环周期并下取整,得到第三比值;将第三比值与所述可用时频资源数量进行取模运算,得到所述偏移量,即是将所述第三比值除以所述可用时频资源数量,并取所述第三比值除以所述可用时频资源数量后的余数值作为所述偏移量。
判断模块95设置为:根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源。
在实际应用中,所述判断模块95可以是设置为:判断所述偏移值与所述偏移量是否相等,当所述偏移值与所述偏移量相等时,确定所述当前系统帧的当前时频资源为所述移动终端用于发送数据的时频资源;当所述偏移值与所述偏移量不相等时,等待下一个时频资源的到来,并重新计算判断。
在实际应用中,在移动终端接收到基站下发的系统消息后,还需要进行上、下行同步操作,可以是将基站为小区所有移动终端预先配置的信息同步到每个移动终端上,例如,系统帧的帧号以及循环周期,还有系统帧的时频资源循环周期等等,过程可以如下:
移动终端通过与基站进行信令的交互,获取该移动终端的身份标识信息,将该身份标识信息与可用时频资源数量进行取模运算,即是身份标识信息除以可用时频资源数量,取余值,从而得到偏移值,偏移值的计算方法可以为:
TransOffset=mod(UEID,NumOfSched)
其中,TransOffset为表示偏移值,UEID为移动终端的身份标识信息,NumOfSched为可用时频资源数量,mod为取模运算。
可选地,移动终端还需要获取当前系统帧的帧号,以及该系统帧中的时频资源循环周期,然后根据该帧号、时频资源循环周期和可用时频资源数量计算得到,可选地,将帧号除以时频资源循环周期并下取整,得到第三比值,再将该第三比值与可用时频资源数量进行取模运算,从而得到该当前系统帧所处的时频资源的偏移量,偏移量的计算公式可以为:
Toffset=mod(ceil(CurrFrameNum/Tresource),NumOfSched)
其中,TOffset为表示偏移量,CurrFrameNum为当前系统帧的帧号,Tresource为时频资源循环周期,NumOfSched为可用时频资源数量,mod表示取模运算,ceil表示下取整运算。
最后,可以比较偏移值和偏移量是否相等,当偏移值和偏移量相等时,将当前系统帧所处的时频资源确定为移动终端发送数据的终端可用时频资源;当偏移值和偏移量不相等时,继续判断下一次系统帧的时频资源。
在本实施例中,通过上述的步骤确定当前系统帧中的时频资源为移动终端可用的时频资源,但是,在该确定的时频资源上发送数据时,还可能有部分频域会被复用,为了确定被复用的频域的位置信息,该移动终端还可包括定位模块96,设置为计算该被复用的频域在当前时频资源中的位置信息,其计算过程可以为:获取所述当前系统帧的当前时频资源中频域的划分个数;根据所述身份标识信息和所述频域的划分个数计算所述移动终端发送数据时,所使用的频域在所述移动终端用于发送数据的时频资源中的位置信息;频域的位置信息的计算公式可以为:
FreqOffset=mod(UEID,FreqResource)
其中,FreqOffset表示频域的位置信息,UEID移动终端的身份标识信息,FreqResource为每个时频资源上频域的划分个数。
在实际应用中,对于上述移动终端的模块可以采用移动终端中的处理器、射频单元和存储器来实现,可以是通过在存储器中存储用于实现上述模块功 能的程序代码,当移动终端需要获取资源发送数据时,处理器读取存储器中的程序代码,并在处理器上运行,从而实现对基站下发的系统消息的接收,并从系统消息中解析出可用时频资源数量,以及其他的相关信息,处理器根据这些信息计算终端可用时频资源的偏移值和当前系统帧的当前时频资源的偏移量,然后比较两者,确定最终可用的时频资源。
本公开实施例提供的移动终端,移动终端在对时频资源的分配使用时,只需要移动终端自身计算就可以实现时频资源的获取,不再需要与基站进行实时的、复杂的相互协商,从而有效地减少了移动终端与基站的信令交互,大大缩短了移动终端获取时频资源发送数据的时延,提高了数据传输的效率,同时也提高了时频资源的利用率。
第六实施例:
请参考图10,图10为本实施例提供的通信控制系统的结构框图,该通信控制系统包括:如上实施例提供的任一所述基站1和至少一个如上实施例提供的任一所述移动终端2,其中:
基站1设置为:根据小区的工作参数计算小区分配的可用时频资源数量,并将可用时频资源数量发送至所述小区的所有移动终端2。
在本实施例中,该可用时频资源数量可用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源,可选地,该可用时频资源数量为该小区中的所有移动终端都能进行一次数据发送所需要时频资源个数。
在本实施例中,对计算该可用时频资源数量可包括:首先,获取该小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、时频资源循环周期和该小区的系统帧号的循环周期;然后,根据上述获取到的参数计算两个比值,最后,从两个比值中选择最小值作为可用时频资源数量。
在实际应用中,该用户数量为小区所能支持的最大用户数量,所述时频资源循环周期可以理解为是系统帧中可被移动终端使用的时频资源的循环周期,所述系统帧号的循环周期指的是该小区中的所用系统帧进行一次循环所需要的时间。
可选地,计算该小区的用户数量与该最大终端数量的比值,并对该比值进行上取整,得到第一比值;
计算系统帧号的循环周期与时频资源循环周期的比值,并对该比值进行上取整,得到第二比值;
然后,从第一比值和第二比值中选择一个最小值,并将该选择的最小值作为可用时频资源数量;
最后,该基站1可将可用时频资源数量发送至所述小区的所有移动终端2。
移动终端2设置为:根据所述基站下发的所述可用时频资源数量计算所述终端可用时频资源的偏移值;获取小区当前系统帧的帧号和时频资源循环周期;根据所述当前系统帧的帧号和时频资源循环周期计算所述当前系统帧的当前时频资源的偏移量;根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据。
在本实施例中,所述移动终端2还可包括:
接收基站1下发的所述移动终端的身份标识信息;
根据所述身份标识信息和所述可用时频资源数量计算所述终端可用时频资源的偏移值。
可选地,将所述身份标识信息除以所述可用时频资源数量,并取所述身份标识信息除以所述可用时频资源数量后的余数值作为所述偏移值。
在本实施例中,可通过上述的步骤确定当前系统帧中的时频资源为移动终端可用的时频资源,但是,在该确定的时频资源上发送数据时,还可能有部分频域会被其他移动终端复用,为了确定被复用的频域的位置信息,该移动终端还可包括计算该被复用的频域在当前时频资源中的位置信息,位置信息的计算过程可以为:获取所述当前系统帧的当前时频资源中频域的划分个数;根据所述身份标识信息和所述频域的划分个数计算所述移动终端发送数据时,所使用的频域在所述移动终端用于发送数据的时频资源中的位置信息。
综上所述,本公开实施例提供的资源分配方法、基站、移动终端和通信控制方法及其系统,基站只需要下发可用时频资源数量的下发即可,对于时 频资源的分配使用只需要移动终端自身计算就可以实现时频资源的获取,不再需要与基站进行实时的、复杂的相互协商,从而有效地减少了移动终端与基站的信令交互,大大缩短了移动终端获取时频资源发送数据的时延,提高了数据传输的效率,同时也提高了时频资源的利用率。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述资源分配方法。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述通信控制方法。
本领域的技术人员可以明白,上述本公开实施例的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成不同集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(RAM,Random Access Memory)、只读存储器(ROM,Read-Only Memory)、电可擦除只 读存储器(EEPROM,Electrically Erasable Programmable Read-only Memory)、闪存或其他存储器技术、光盘只读存储器(CD-ROM,Compact Disc Read-Only Memory)、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本领域的普通技术人员可以理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求范围当中。
工业实用性
根据本公开实施例提供的资源分配方法、基站、移动终端和通信控制方法及其系统,以及计算机存储介质,获取基站下挂的小区的工作参数,通过该工作参数计算出该小区所需要分配的可用时频资源数量,并将该可用时频资源数量发送给小区中的所有待发送数据的移动终端,该可用时频资源数量用于在移动终端上计算所述移动终端发送数据的终端可用时频资源;该待发送数据的移动终端根据所述可用时频资源数量计算所述终端可用时频资源的偏移值,同时移动终端还获取小区当前系统帧的帧号和时频资源循环周期,根据该帧号和时频资源循环周期计算该当前系统帧的当前时频资源的偏移量,根据偏移值和偏移量确定移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据;通过本公开提供的方法进行数据的发送,基站只需要下发可用视频资源数量的下发即可,对于时频资源的分配使用只需要移动终端自身计算就可以实现时频资源的获取,不再需要与基站进行实时的、复杂的相互协商,从而有效地减少了移动终端与基站的信令交互,大大缩短了移动终端获取时频资源发送数据的时延,提高了数据传输的效率,同时也提高了时频资源的利用率。

Claims (14)

  1. 一种资源分配方法,包括:
    基站获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、时频资源循环周期和所述小区的系统帧号的循环周期;
    根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源;
    所述基站将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端。
  2. 如权利要求1所述的资源分配方法,其中,所述将所述可用时频资源数量发送至所述小区的所有移动终端包括:
    将所述可用时频资源数量添加到系统消息中;
    将所述系统消息通过广播方式通知所述小区的所有待发送数据的移动终端。
  3. 一种资源分配方法,包括:
    待发送数据的移动终端接收基站下发的可用时频资源数量,所述可用时频资源数量用于计算移动终端数据发送的终端可用时频资源;
    根据所述可用时频资源数量计算所述终端可用时频资源的偏移值;
    获取所述待发送数据的移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;
    根据所述当前系统帧的帧号、时频资源循环周期和所述可用时频资源数量计算所述当前系统帧的当前时频资源的偏移量;
    根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源。
  4. 如权利要求3所述的资源分配方法,其中,
    在所述根据所述可用时频资源数量计算所述终端可用时频资源的偏移值之前,还包括:接收基站下发的所述移动终端的身份标识信息;
    所述计算所述终端可用时频资源的偏移值包括:根据所述身份标识信息和所述可用时频资源数量计算所述终端可用时频资源的偏移值。
  5. 如权利要求4所述的资源分配方法,其中,所述根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源包括:
    判断所述偏移值与所述偏移量是否相等;
    当所述偏移值与所述偏移量相等时,确定所述当前系统帧的当前时频资源为所述移动终端用于发送数据的时频资源。
  6. 如权利要求3至5任一项所述的资源分配方法,还包括:
    获取所述当前系统帧的当前时频资源中频域的划分个数;
    根据身份标识信息和所述频域的划分个数计算所述移动终端发送数据时,所使用的频域在所述移动终端用于发送数据的时频资源中的位置信息。
  7. 一种通信控制方法,包括:
    基站获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期;根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算所述移动终端发送数据的终端可用时频资源;将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端;
    待发送数据的移动终端根据所述基站下发的所述可用时频资源数量计算所述终端可用时频资源的偏移值;获取所述待发送数据的移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;根据所述当前系统帧的帧号、时频资源循环周期和所述可用时频资源数量计算所述当前系统帧的当前时频资源的偏移量;根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据。
  8. 一种基站,包括:
    第一采集模块,设置为:获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期;
    分配模块,设置为:根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算用于所述移动终端数据发送的终端可用时频资源;
    发送模块,设置为:将所述可用时频资源数量发送至所述小区的所有待发送数据的移动终端。
  9. 如权利要求8所述的基站,其中,所述发送模块是设置为:将所述可用时频资源数量添加到系统消息中;将所述系统消息通过广播方式通知所述小区的所有待发送数据的移动终端。
  10. 一种移动终端,包括:
    接收模块,设置为:接收基站下发的用于计算移动终端数据发送的终端可用时频资源的可用时频资源数量;
    第一计算模块,设置为:根据所述可用时频资源数量计算所述终端可用时频资源的偏移值;
    第二采集模块,设置为:获取所述移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;
    第二计算模块,设置为:根据所述当前系统帧的帧号、时频资源循环周期和所述可用时频资源数量计算所述当前系统帧的当前时频资源的偏移量;
    判断模块,设置为:根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源。
  11. 如权利要求10所述的移动终端,其中,
    所述接收模块还设置为:接收基站下发的所述移动终端的身份标识信息;
    所述第一计算模块是设置为:根据所述身份标识信息和所述可用时频资源数量计算所述终端可用时频资源的偏移值。
  12. 如权利要求11所述的移动终端,其中,所述判断模块是设置为:判断所述偏移值与所述偏移量是否相等,若相等,则确定所述当前系统帧的当前时频资源为所述移动终端用于发送数据的时频资源。
  13. 如权利要求10至12任一项所述的移动终端,还包括定位模块,设 置为:获取所述当前系统帧的当前时频资源中频域的划分个数;根据身份标识信息和所述频域的划分个数计算所述移动终端发送数据时,所使用的频域在所述移动终端用于发送数据的时频资源中的位置信息。
  14. 一种通信控制系统,包括:如权利要求8或9所述的基站和至少一个如权利要求10至13任一项所述的移动终端;
    所述基站设置为:获取所述基站下挂的小区的工作参数,所述工作参数包括所述小区的用户数量、同一时频资源所支持一次数据发送的最大终端数量、所述时频资源循环周期和所述小区的系统帧号的循环周期;根据所述工作参数计算所述小区所分配的可用时频资源数量,所述可用时频资源数量用于在移动终端上计算所述移动终端发送数据的终端可用时频资源;将所述可用时频资源数量发送至所述移动终端;
    所述移动终端设置为:根据所述基站下发的所述可用时频资源数量计算所述终端可用时频资源的偏移值;获取该移动终端所在的小区的当前系统帧的帧号和时频资源循环周期;根据所述当前系统帧的帧号和时频资源循环周期计算所述当前系统帧的当前时频资源的偏移量;根据所述偏移值和偏移量确定所述移动终端用于发送数据的时频资源,并在该确定的时频资源上发送数据。
PCT/CN2018/079488 2017-03-23 2018-03-19 资源分配方法、基站、移动终端和通信控制方法及其系统 WO2018171559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710179541.9 2017-03-23
CN201710179541.9A CN108633017B (zh) 2017-03-23 2017-03-23 资源分配方法、基站、移动终端和通信控制方法及其系统

Publications (1)

Publication Number Publication Date
WO2018171559A1 true WO2018171559A1 (zh) 2018-09-27

Family

ID=63584078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079488 WO2018171559A1 (zh) 2017-03-23 2018-03-19 资源分配方法、基站、移动终端和通信控制方法及其系统

Country Status (2)

Country Link
CN (1) CN108633017B (zh)
WO (1) WO2018171559A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561646A (zh) * 2001-12-04 2005-01-05 诺基亚公司 基于端口号码的分组数据的无线电资源管理
CN101141772A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 时频资源分配方法及装置
US20090073932A1 (en) * 2007-09-14 2009-03-19 Mcbeath Sean Michael Method and Apparatus for Associating a Packet with an H-ARQ Channel Identifier
CN101925008A (zh) * 2009-06-09 2010-12-22 中兴通讯股份有限公司 一种长周期事件动作时间指示方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881867A (zh) * 2005-06-17 2006-12-20 华为技术有限公司 一种消除小区间干扰的方法
KR101062674B1 (ko) * 2006-02-18 2011-09-06 삼성전자주식회사 무선 통신 시스템에서 자원을 할당하고 통신을 수행하는 장치 및 방법
CN101459641A (zh) * 2007-12-14 2009-06-17 华为技术有限公司 资源获取方法及系统、终端和基站
CN101553035B (zh) * 2008-04-03 2011-09-21 中兴通讯股份有限公司 时频资源分配方法
EP3091806B1 (en) * 2014-01-29 2018-07-18 Huawei Technologies Co., Ltd. Method for indicating cell coverage enhancement mode and base station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561646A (zh) * 2001-12-04 2005-01-05 诺基亚公司 基于端口号码的分组数据的无线电资源管理
CN101141772A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 时频资源分配方法及装置
US20090073932A1 (en) * 2007-09-14 2009-03-19 Mcbeath Sean Michael Method and Apparatus for Associating a Packet with an H-ARQ Channel Identifier
CN101925008A (zh) * 2009-06-09 2010-12-22 中兴通讯股份有限公司 一种长周期事件动作时间指示方法

Also Published As

Publication number Publication date
CN108633017A (zh) 2018-10-09
CN108633017B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN109495222B (zh) 一种ra-rnti确定方法及装置
CN108401488B (zh) 信息反馈方法及装置
EP2911334A1 (en) Uplink resource scheduling for noma communication systems
JP2020515193A (ja) ランダムアクセスバックオフ後のランダムアクセスおよびランダムアクセスバックオフを示す方法および装置
CN113411894B (zh) 信息的传输方法、终端设备和网络设备
JP6356818B2 (ja) デバイス間(d2d)通信におけるデバイスおよびデバイス同期方法
CN104335665A (zh) 分帧的通信系统中的无线电资源预留
WO2016155113A1 (zh) 一种群组通信的方法、用户设备、基站设备及系统
EP3618513B1 (en) Service transmission method, device and system
JP2014517585A (ja) ネットワークアクセス方法及び装置
WO2017128882A1 (zh) 数据传输的方法、终端设备、网络侧设备及系统
EP3001580A1 (en) Connection establishment method, device and system
KR20220051856A (ko) 데이터 전송 방법 및 장치
WO2020063947A1 (zh) 参考信号配置及定位方法、装置、网元、服务器、用户设备及存储介质
JP7210437B2 (ja) データ伝送のための方法及び装置
US20180084565A1 (en) Bearer setup method and apparatus
WO2017059731A1 (zh) 寻呼处理方法及装置
CN104168656A (zh) 一种探测参考信号srs资源分配方法及装置
JP2022540113A (ja) グループキャストフィードバックリソースを決定する方法及び装置、ストレージメディア、及びユーザ機器
WO2020065075A1 (en) Configured uplink for unlicensed operation
CN108810996B (zh) 一种资源分配方法、基站及用户设备
WO2012062169A1 (zh) 广播和接收系统信息的方法、设备及系统
CN104394592A (zh) Prb资源的分配方法、装置及基站
WO2018171559A1 (zh) 资源分配方法、基站、移动终端和通信控制方法及其系统
CN109152014B (zh) 一种上行控制信道传输方法、终端、基站及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771600

Country of ref document: EP

Kind code of ref document: A1